发明名称
4,4- 二取代的哌啶衍生物

摘要
本发明涉及式(I)的 4,4- 二取代的哌啶衍生物及其药用盐，其中 A 和 R^1 至 R^5 如说明书中所定义。本发明还涉及含有这些化合物的药物组合物，它们的制备方法以及它们用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病的用途。
1. 式 I 化合物:

![化学结构式](image)

其中

- R^1 选自：C_{2-7}-烷基，C_{2-7}-链烯基，C_{3-7}-炔基，
 C_{3-7}-环烷基，卤素-C_{1-7}-烷基，C_{1-7}-烷氧基-C_{1-7}-烷基和苯基；

- R^2 选自：氢，C_{1-7}-烷基，
 羟基，C_{1-7}-烷氧基，C_{2-7}-链烯基氧基，
 羟基-C_{1-7}-烷氧基，C_{1-7}-烷氧基-C_{1-7}-烷氧基，
 -O-苯基，-O-C_{3-7}-环烷基，
 卤素，卤素-C_{1-7}-烷基，卤素-C_{1-7}-烷氧基，
 氨基，吡咯基，咪唑基，
 -C(O)OR^6，其中 R^6 是 C_{1-7}-烷基，和
 未取代的苯基或被 1 至 3 个基团取代的苯基，所述的基团独立地选自：
 C_{1-7}-烷基，卤素和 C_{1-7}-烷氧基；

- R^3 是氢或 C_{1-7}-烷氧基；

- R^4 是-NH-CO-R^7，其中 R^7 是选自苯基或吡啶基的环，所述的环是未取代或被选自 C_{1-7}-烷基或卤素中的 1 或 2 个基团取代的；

- R^5 是-CO-NH$_2$ 或-CN；

或者 R^4 和 R^5 彼此结合以与它们连接的碳原子一起形成环，并且 R^4 和 R^5

一起是：

- NH-C(O)-NH-C(O)-，
- C(O)-NR^8-CH$_2$-CH$_2$-，其中 R^8 是苯基，或
- N=CR^9-NH-C(O)-，其中 R^9 是苯基；

及其药用盐。
2. 根据权利要求 1 的式 I 化合物，其中 A 是 O。
3. 根据权利要求 1 或 2 的式 I 化合物，其中 R¹ 选自：C₂₋₇-烷基，C₂₋₇-链烯基，C₃₋₇-环烷基和卤素-C₁₋₇-烷基。
4. 根据权利要求 1 至 3 中任何一项的式 I 化合物，其中 R¹ 选自：乙基，丙基，异丙基，烯丙基，2-氟乙基，异丁基和环戊基。
5. 根据权利要求 1 至 4 中任何一项的式 I 化合物，其中 R² 选自：氢，C₁₋₇-烷基，C₁₋₇-烷氧基，C₂₋₇-链烯基氧基，-O-苯基，-O-C₃₋₇-环烷基，卤素，卤素-C₁₋₇-烷基，卤素-C₁₋₇-烷氧基，氨基，吡咯基，咪唑基，和
未取代的苯基或被 1 至 3 个基团取代的苯基，所述的基团独立地选自：C₁₋₇-烷基，卤素和 C₁₋₇-烷氧基。
6. 根据权利要求 1 至 5 中任何一项的式 I 化合物，其中 R² 选自：氢，C₁₋₇-烷氧基，C₂₋₇-链烯基氧基，卤素，卤素-C₁₋₇-烷氧基，吡咯基和被卤素取代的苯基。
7. 根据权利要求 1 至 6 中任何一项的式 I 化合物，其中 R² 是卤素。
8. 根据权利要求 1 至 7 中任何一项的式 I 化合物，其中 R³ 是 C₁₋₇-烷氧基。
9. 根据权利要求 1 至 8 中任何一项的式 I 化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -NH-C(O)-NH-C(O)-。
10. 根据权利要求 1 至 8 中任何一项的式 I 化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -C(O)-NR⁸-CH₂-CH₂-，其中 R⁸ 是苯基。
11. 根据权利要求 1 至 8 中任何一项的式 I 化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -N=CR⁹-NH-C(O)-，其中 R⁹ 是苯基。
12. 根据权利要求 1 至 8 中任何一项的式 I 化合物，其中 R⁴ 是-NH-CO-R⁷，其中 R⁷ 是选自苯基或吡啶基的环，所述的环是未取代
的或被选自 C_{1.7}-烷基或卤素中的 1 或 2 个基团取代的，并且 R^5 是-CO-NH_2 或-CN。

13. 根据权利要求 1 至 8 或 12 中任何一项的式 I 化合物，其中 R^4 是-NH-CO-R^7，其中 R^7 是苯基，所述苯环是未取代的或被选自 C_{1.7}-烷基或卤素中的 1 或 2 个基团取代的。

14. 根据权利要求 13 的式 I 化合物，其中 R^4 是-NH-CO-R^7，其中 R^7 是 4-氯苯基。

15. 根据权利要求 1 至 8 或 12 中任何一项的式 I 化合物，其中 R^4 是-NH-CO-R^7，其中 R^7 是吡啶基，所述吡啶环是未取代的或被选自 C_{1.7}-烷基或卤素中的 1 或 2 个基团取代的。

16. 根据权利要求 1 至 8 和 12 至 15 中任何一项的式 I 化合物，其中 R^5 是-CO-NH_2。

17. 根据权利要求 1 至 8 和 12 至 15 中任何一项的式 I 化合物，其中 R^5 是-CN。

18. 根据权利要求 1 的式 I 化合物，其选自：
8-(3-乙氧基-4-甲基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3-乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3-异丁氧基-4-甲氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3,5-二异丙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-溴-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3,5-二乙氧基-4-氟-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3-乙氧基-4-甲基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-氟-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-羟基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,4-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-烯丙氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-异丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-异丁氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-环戊氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-苄氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-二氟甲氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-甲氧基-3-丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-异丙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-[3-(2-氟-乙氧基)-4-甲氧基-苄基]-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-烯丙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-丁氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-异丁氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-环戊氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二异丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-4-氟-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-溴-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
4-(4-氯-苯甲酰基氨基)-1-(4-氯-3-乙氧基-苄基)哌啶-4-羧酸酰胺，
4-(4-氯-苯甲酰基氨基)-1-(3,5-二乙氧基-4-氟苯基)哌啶-4-羧酸酰胺，
4-(4-氯-苯甲酰基氨基)-1-(4-氯-3,5-二乙氧基-苄基)哌啶-4-羧酸酰胺，
N-[4-氯基-1-(3-乙氧基-4-甲氧基-苄基)哌啶-4-基]-5-甲基-烟酰胺，
N-[4-氮基-1-(3,5-二乙氧基-4-氟-苄基)-哌啶-4-基]-5-甲基-烟酰胺，
6-氯-N-[1-(4-氯-3,5-二乙氧基-苄基)-4-氟基-哌啶-4-基]-烟酰胺，
6-氯-N-[4-氟基-1-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-哌啶-4-基]-烟酰胺，
及其药用盐。

19. 根据权利要求1的式I化合物，其选自：
8-(4-氯-3,5-二乙氧基-苄基)-1,3,8-三氮杂螺[4.5]癸烷-2,4-二酮，
8-(4-溴-3,5-二乙氧基-苄基)-1,3,8-三氮杂螺[4.5]癸烷-2,4-二酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-1,3,8-三氮杂螺[4.5]癸烷-2,4-二酮，
8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-1,3,8-三氮杂螺[4.5]癸烷-2,4-二酮，
8-(3-乙氧基-4'-甲基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
8-(4-溴-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-1,3,8-三氮杂螺[4.5]癸烷-1-烯-4-酮，
4-(4-氯-苯甲酰基氨基)-1-(4-氯-3,5-二乙氧基-苄基)-哌啶-4-羧酸酰胺，
6-氯-N-[4-氟基-1-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-哌啶-4-基]-烟酰胺，
及其药用盐。

20. 一种用于制备根据权利要求 1 至 19 中任何一项的化合物的方法，
该方法包括：

a) 通过采用还原剂，将式 II 的哌啶

![piperidine](attachment:attachment.png)

其中 R^4 和 R^5 如权利要求 1 中定义，
与式 III 的醛反应，
其中 A 和 R¹ 至 R³ 如权利要求 1 中定义，
得到式 I 化合物：

并且，如果需要，将式 I 化合物转化成药用盐；或者，备选地，

b) 在碱性条件下，将式 II 的哌啶

其中 R⁴ 和 R⁵ 如权利要求 1 中定义，
用式 IV 化合物烷基化，

其中 A 和 R¹ 至 R³ 如权利要求 1 中定义，并且 X 是离去基团，
得到式 I 化合物：

并且，如果需要，将式 I 化合物转化成药用盐；或者，备选地，
c) 在三烷基膦和重氮化合物存在下，将通式 II 的化合物，

其中 R^4 和 R^5 如权利要求 1 中定义，
与式 V 化合物反应，

其中 A 和 R^1 至 R^3 如权利要求 1 中定义，
得到式 I 化合物：

并且，如果需要，将式 I 化合物转化成药用盐。

21. 通过权利要求 20 的方法制备的根据权利要求 1 至 19 中任何一项的化合物。

22. 药物组合物，其包含根据权利要求 1 至 19 中任何一项的化合物以及药用载体和/或辅剂。

23. 根据权利要求 22 的药物组合物，其用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病。

24. 用作治疗活性物质的根据权利要求 1 至 19 中任何一项的化合物。

25. 根据权利要求 1 至 19 中任何一项的化合物，其用作治疗和/或预防与 SST 受体亚型 5 调节有关疾病的治疗活性物质。

26. 一种治疗和/或预防与 SST 受体亚型 5 调节有关的疾病的方法，该方法包括对人或动物施用治疗有效量的根据权利要求 1 至 19 中任何一项的化合物。

27. 根据权利要求 1 至 19 中任何一项的化合物在制备药物中的应用，
所述药物用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病。

28. 根据权利要求 27 的应用，用于治疗和/或预防糖尿病，特别是 II 型糖尿病，空腹血糖受损，糖耐量减低，微-和大脉管糖尿病并发症，I 型糖尿病患者移植后糖尿病，妊娠性糖尿病，肥胖，炎性肠病如局限性回肠炎或溃疡性结肠炎，吸收不良，自身免疫性疾病如类风湿性关节炎，骨关节炎，牛皮癣和其它皮肤疾病，以及免疫缺陷。

29. 根据权利要求 27 的应用，用于治疗和/或预防糖尿病，特别是 II 型糖尿病，空腹血糖受损和糖耐量减低。

30. 基本上如上所述的新化合物，工艺和方法以及这些化合物的应用。
4,4-二取代的哌啶衍生物

本发明涉及新的 1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，2,8-二氮杂-螺[4.5]癸-1-酮，1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，哌啶-4-羧酸酰胺和哌啶-4-酰胺衍生物，它们的制备，含有它们的药物组合物和它们作为药物的应用。本发明的活性化合物可用于预防和/或治疗糖尿病和其它疾病。

特别是，本发明涉及通式 I 化合物：

![化合物结构图]

其中

A 是-O-或-NH-;

R¹ 选自：C₂₋₇-烷基，C₂₋₇-链烯基，C₃₋₇-炔基，
C₃₋₇-环烷基，卤素-C₁₋₇-烷基，C₁₋₇-烷氧基-C₁₋₇-烷基和苯基；

R² 选自：氢，C₁₋₇-烷基，
羟基，C₁₋₇-烷氧基，C₂₋₇-链烯基氧基，
羟基-C₁₋₇-烷氧基，C₁₋₇-烷氧基-C₁₋₇-烷氧基，
-O-苯基，-O-C₃₋₇-环烷基，
卤素，卤素-C₁₋₇-烷基，卤素-C₁₋₇-烷氧基，
氨基，吡咯基，咪唑基，
-C(O)OR⁶，其中 R⁶ 是 C₁₋₇-烷基，和
未取代的苯基或被 1 至 3 个基团取代的苯基，所述的基团独立地选自：
C₁₋₇-烷基，卤素和 C₁₋₇-烷氧基；

R³ 是氢或 C₁₋₇-烷氧基；

R⁴ 是-NH-C(O)-R⁷，其中 R⁷ 是选自苯基或吡啶基的环，所述的环是未取代或被选自 C₁₋₇-烷基或卤素中的 1 或 2 个基团取代的；

R⁵ 是-C(O)-NH₂ 或-CN；
或者 R^4 和 R^5 彼此结合以与它们连接的碳原子一起形成环，并且 R^4 和 R^5

一起是:
-NH-C(O)-NH-C(O)-,
-C(O)-NR^8-CH_2-CH_2-，其中 R^8 是苯基，或
-N=CR^9-NH-C(O)-，其中 R^9 是苯基；

及其药用盐。

式 I 化合物具有药物活性，具体而言，它们是促生长素抑制素受体活
性的调节剂。更具体地，这些化合物是促生长素抑制素受体亚型 5 (SSTR5)
的拮抗剂。

糖尿病是全身性疾病，其特征在于包括胰岛素、碳水化合物、脂肪和
蛋白质的代谢紊乱，以及血管结构和功能的紊乱。急性糖尿病的主要症状
是高血糖，经常伴随有糖尿，尿中存在大量葡萄糖，和多尿，大量尿的分
泌。另外的症状源自慢性糖尿病，包括血管壁的退化。尽管许多不同的人
体器官受到这些血管变化的影响，但是眼睛和肾看来似乎是最敏感的。如
此，长期受糖尿病，甚至在用胰岛素治疗时，也是失明的主导起因。

公认有三种糖尿病类型。Ⅰ型糖尿病或胰岛素依赖性糖尿病(IDDM)是典
型的青少年发病类型；症状严重许多的酮病发生于生命的早期，并且具
有几乎确定的后期脉管受累的前景。Ⅰ型糖尿病的控制是困难的，并且需
要外源性的胰岛素给药。Ⅱ型糖尿病或非胰岛素依赖性糖尿病(NIDDM)是抗
酮病的，通常发生于生命的后一阶段，是温和的并且具有更加逐渐的发病。
妊娠性糖尿病与Ⅱ型糖尿病有关，并且与该疾病的后期发展的风险增
加有关。Ⅲ型糖尿病是与营养不良有关的糖尿病。

NIDDM 是对西方世界公民的健康造成主要威胁的病症。全世界的
NIDDM 占糖尿病发病率的 85%以上，约 1 亿 6 千万人遭受 NIDDM 的痛
苦。预期其发病率在下一个十年中将显著增加，特别是在发展中国家。
NIDDM 与由严重并发症例如心血管疾病所导致的患病率和提前死亡有关
(G. C. Weir 和 J. L. Leahy, Pathogenesis of non-insulin dependent (Type II)
diabetes mellitus, Joslin's diabetes mellitus (C. R. Kahn 和 G. C. Weir 编辑),
在于由胰岛素分泌和胰岛素作用异常导致的空腹和餐后高血糖(G. C. Weir
等，见上)。

因此，对于具有新的作用机理，从而避免由已知疗法产生的副作用的抗糖尿病药有着显著的和不断增长的需求。激素促生长素抑制素（SST）主要产生于肠道和胰腺中。另外，其起作用神经递质作用。该激素通过其受体参与数种其它激素的调节和免疫调节。特别是 SST 抑制胰 β 细胞的胰岛素分泌和 L 细胞的胰高血糖素样肽 1 (GLP-1) 的分泌。而 GLP-1 是胰岛素产生和分泌的最有效刺激物之一，并且是 β 细胞的营养因子。此外，GLP-1 直接提高外周葡萄糖处置（例如，D. A. D’Alessio, S. E. Kahn, C. R. Leusner 和 J. W. Ensinck，J. Clin. Invest. 1994, 93, 2263-2266）。β 和 L 细胞表达 SST 受体亚型 5 (SSTR5)，并且拮抗（agonizing）该受体在人和动物模型中抑制了胰岛素和 GLP-1 分泌（例如，Y. Zambre, Z. Ling, M.-C. Chen, X. Hou,

因此，拮抗 SST 的作用将导致提高的外周葡萄糖处置和更高的血浆胰岛素浓度。另外，SSTR5 敲除小鼠显示了比同窝出生仔畜更高的胰岛素灵敏性 (M. Z. Strowski, M. Köhler 等，见上)。在遭受糖耐量减低和 NIDDM 痛苦的患者中，这些组合效果将缓和危险的高血糖，因此降低组织损伤的风险。如果这样的 SSTR5 拮抗剂对其它四种 SST 受体具有足够的选择性，则预期对其它激素的分泌几乎没有影响。特别是，对 SST 受体亚型 2 的选择性避免了对胰高血糖素分泌的影响 (K. Cejvan, D. H. Coy 和 S. Efendic Diabetes 2003, 52, 1176-1181; M. Z. Strowski, R. M. Parmar, A. D. Blake 和 J. M. Schaeffer Endocrinology 2000, 141, 111-117)。相对于已有疗法的优势在于其增加胰岛素分泌 (直接作用于胰腺的 β 细胞和通过由 L 细胞释放 GLP-1 的间接作用) 和提高葡萄糖处置的双重作用机理，从而 SSTR5 拮抗剂可能具有有益影响 NIDDM 患者的胰岛素抗性的潜力。总之，预期 SSTR5 拮抗剂有益地影响 NIDDM，潜在的空腹血糖受损 (impaired fasting glucose) 和糖耐量减低，以及长期存在的并发症，未充分控制的糖尿病。

而且，有正在增加的证据显示 SST 对免疫细胞和 SSTR5 在激活的 T 淋巴细胞上的表达的作用（T. Talme, J. Ivanoff, M. Hägglund, R. J. J. van

因此，本发明的一个目的是提供选择性的、直接作用的 SSTR5 拮抗剂。这样的拮抗剂可用作治疗活性物质，特别是用于治疗和/或预防与 SST 受体亚型 5 的调节有关的疾病。

在本说明书中，单独或和其它基团组合的术语“烷基”是指 1 到 20 个碳原子、优选 1 到 16 个碳原子、更优选 1 到 10 个碳原子的支链或直链一价饱和脂族烃基。

单独或组合的术语“低级烷基”或“C₈₋₇-烷基”是指 1 到 7 个碳原子的直链或支链烷基，优选 1 到 4 个碳原子的直链或支链烷基。直链和支链 C₈₋₇ 烷基的实例为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、异构的戊基、异构的己基和异构的庚基，优选甲基，乙基和异丙基，并且最优选本文具体示例的基团。

单独或组合的术语“低级链烯基”或“C₂₋₇-链烯基”是指包含烯键和 2 至 7 个、优选 2 至 6 个、特别优选 2 至 4 个碳原子的直链或支链烃基残基。链烯基的实例为乙烯基，1-丙烯基，2-丙烯基，异丙烯基，1-丁烯基，2-丁烯基，3-丁烯基和异丁烯基。优选实例为 2-丙烯基(烯丙基)。

术语“低级炔基”或“C₃₋₇-炔基”是指包含三键和 3 至 7 个、优选 3 至 6 个、特别优选 3 至 4 个碳原子的直链或支链烃基残基。炔基的实例为 2-丙炔基，2-丁炔基和 3-丁炔基。优选实例为 3-丙炔基。

术语“环烷基”或“C₃₋₇-环烷基”表示 3 到 7 个，优选 3 到 5 个碳原子的一价环烷基。该术语进一步由诸如环丙基、环丁基、环戊基、环己基和环庚基的基团示例，其中特别优选环戊基。

术语“烷氧基”是指基团 R’-O-，其中 R’是烷基。术语“低级烷氧基”或“C₁₋₇-烷氧基”是指基团 R’-O-，其中 R’是低级烷基，并且术语“低级烷基”具有如上给出的含义。低级烷氧基的实例为，例如甲氧基、乙氧基、正丙
氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基和叔丁氧基，优选甲氧基和乙氧基，並且优选本发明具体示例的基团。

术语“低级烷氧烷氧基”或“C_{1,7}-烷氧基-C_{1,7}-烷氧基”是指如上定义的低级烷氧基，其中低级烷氧基的至少一个氢原子被如上定义的烷氧基取代。其中优选的低级烷氧烷氧基是甲氧基甲基、甲氧乙基和乙氧甲基。

术语“低级烷氧烷氧基”或“C_{1,7}-烷氧基-C_{1,7}-烷氧基”是指如上定义的低级烷氧基，其中低级烷氧基的至少一个氢原子被如上定义的烷氧基取代。其中优选的低级烷氧烷氧基是2-甲氧基乙氧基和3-甲氧基-丙氧基。

术语“卤素”是指氟、氯、溴和碘，优选氟、氯和溴，並且优选氯和溴。

术语“低级卤代烷基”或“卤素-C_{1,7}-烷基”是指如上定义的低级烷基，其中低级烷基的至少一个氢原子被卤素原子、优选氟或氯、最优选氯取代。其中优选的卤代低级烷基是三氟甲基、二氟甲基、二氟乙基、氟甲基和氯甲基，特别优选三氟甲基和二氟乙基。

术语“低级卤代烷氧基”或“卤素-C_{1,7}-烷氧基”是指如上定义的低级烷氧基，其中低级烷氧基的至少一个氢原子被卤素原子、优选氟或氯、最优选氯取代。其中优选的卤代低级烷氧基是三氟甲氧基、二氟甲氧基、氟甲氧基和氯甲氧基，特別优选三氟甲氧基。

术语“低级羟基烷基”或“羟基-C_{1,7}-烷基”是指如上定义的低级烷基，其中低级烷基的至少一个氢原子被羟基取代。低级羟基烷基的实例是羟基甲基或羟基乙基，但也有具有两个羟基的基团，如1,3-二羟基-2-丙基。

术语“低级羟基烷氧基”或“羟基-C_{1,7}-烷氧基”是指如上定义的低级烷氧基，其中低级烷氧基的至少一个氢原子被羟基取代。低级羟基烷氧基的实例是羟基甲氧基或羟基乙氧基。

术语"药用盐"是指保持了游离碱或游离酸的生物效力和性质并且不是生物学上或其它方面不适宜的盐。这些盐是与无机酸或有机酸形成的，无机酸如盐酸、氢溴酸、硫酸、硝酸、磷酸等，优选盐酸，有机酸如乙酸、丙酸、羟基乙酸、丙酮酸、草酸、马来酸、丙二酸、水杨酸、琥珀酸、富马酸、酒石酸、柠檬酸、苯甲酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、对甲苯磺酸、水杨酸、N-乙酰半胱氨酸等。另外，这些盐可以通过将无机碱
或有机碱加入到游离酸中来制备。衍生自无机碱的盐包括，但不限于，钠、钾、锂、铵、钙、镁盐等。衍生自有机碱的盐包括，但不限于，伯、仲和叔胺、取代胺包括天然存在的取代胺、环胺和碱性离子交换树脂的盐。如异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、赖氨酸、精氨酸、N-乙基哌啶、哌啶、聚胺树脂等的盐。式 I 化合物还可以以两性离子形式存在。特别优选的式 I 化合物的药用盐是盐酸盐。

还可以将式 I 化合物溶剂化，例如水合。溶剂化可以在制造过程中实现，或者可以作为例如初始的无水式 I 化合物吸湿性的结果而发生(水合)。术语“药用盐”也包括生理上可接受的溶剂化物。

“异构体”是具有相同分子式的但是特性或它们的原子结合顺序或它们的原子空间排列不同的化合物。它们的原子空间排列不同的异构体称作“立体异构体”。彼此不是镜像的立体异构体称作“非对映异构体”，而镜像不重复的立体异构体称作“对映异构体”，或者有时称作旋光异构体。结合四个不全同取代基的碳原子称作“手性中心”。

具体而言，本发明涉及通式 I 化合物，

![分子结构图]

其中

A 是-O-或-NH-；

R¹ 选自：C₂₋₇-烷基，C₂₋₇-链烯基，C₃₋₇-炔基，
C₃₋₇-环烷基，卤素-C₁₋₇-烷基，C₁₋₇-烷氧基-C₁₋₇-烷基和苄基；

R² 选自：氢，C₁₋₇-烷基，
羟基，C₁₋₇-烷氧基，C₂₋₇-链烯基氧基，
羟基-C₁₋₇-烷氧基，C₁₋₇-烷氧基-C₁₋₇-烷氧基，
-O-芳基，-O-C₃₋₇-环烷基，
卤素，卤素-C₁₋₇-烷基，卤素-C₁₋₇-烷氧基，
氨基，吡啶基，咪唑基，
-C(O)OR⁶，其中 R⁶ 是 C₁₋₇-烷基，和
未取代的苯基或被1至3个基团取代的苯基，所述的基团独立地选自：
C_{1-7}-烷基，卤素和C_{1-7}-烷氧基；
R^3 是氢或C_{1-7}-烷氧基；
R^4 是-NH-CO-R^7，其中R^7 是选自苯基或吡啶基的环，所述的环是未取代或被选自C_{1-7}-烷基或卤素中的1或2个基团取代的；
R^5 是-CO-NH_2或-CN；
或者R^4和R^5彼此结合以与它们连接的碳原子一起形成环，并且R^4和R^5一起是：
-NH-C(O)-NH-C(O)-，
-C(O)-NR^8-CH_2-CH_2-，其中R^8 是苯基，或
-N=CR^9-NH-C(O)-，其中R^9 是苯基；
及其药用盐。

本发明优选的式I化合物还是其中A是O的那些化合物。
另一组式I化合物是其中A是NH的那些化合物。

还优选的是根据本发明的式I化合物，其中R^1选自：C_{2-7}-烷基，C_{2-7}-链烯基，C_{3-7}-环烷基和卤素-C_{1-7}-烷基。特别优选的是那些式I化合物，其中R^1选自：乙基，丙基，异丙基，烯丙基，2-氟乙基，异丁基和环戊基，其中最优选其中R^1是乙基的那些化合物。

根据本发明进一步优选的式I化合物是那些化合物，其中R^2选自：
氢，C_{1-7}-烷基，
C_{1-7}-烷氧基，C_{2-7}-链烯基氧基，
-O-苯基，-O-C_{3-7}-环烷基，
卤素，卤素-C_{1-7}-烷基，卤素-C_{1-7}-烷氧基，
氨基，吡咯基，咪唑基，和
未取代的苯基或被1至3个基团取代的苯基，所述的基团独立地选自：C_{1-7}-烷基，卤素和C_{1-7}-烷氧基。

更优选的是那些式I化合物，其中R^2选自：氢，C_{1-7}-烷氧基，C_{2-7}-链烯基氧基，卤素，卤素-C_{1-7}-烷氧基，吡咯基和被卤素取代苯基，特别优选其中R^2是卤素的那些化合物。最优选R^2是氟。
此外，优选本发明的式 I 化合物，其中 R³ 是 C₁₋₇ 烷氧基。更优选 R³ 是乙氧基或异丙氧基。

还优选其中 R³ 是氢的式 I 化合物。

根据本发明的一组优选的式 I 化合物是那些化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -NH-C(O)-NH-C(O)-。这些是式 Ia 化合物：

![Ia化合物](image)

根据本发明的另一组优选的式 I 化合物是那些化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -C(O)-NR⁸-CH₂-CH₂-，其中 R⁸ 是苯基。这些是式 Ib 化合物：

![Ib化合物](image)

根据本发明的再一组优选的式 I 化合物是那些化合物，其中 R⁴ 和 R⁵ 彼此结合以与它们连接的碳原子一起形成环，并且 R⁴ 和 R⁵ 一起是 -N=CR⁹-NH-C(O)-，其中 R⁹ 是苯基。这些是式 Ic 化合物：

![Ic化合物](image)

此外，优选根据本发明的式 I 化合物，其中 R⁴ 是-NH-CO-R⁷，其中 R⁷ 是选自苯基或吡啶基的环，所述的环是未取代的或被选自 C₁₋₇-烷基或卤素中的 1 或 2 个基团取代的，并且 R⁵ 是-CO-NH₂ 或-CN。
特别优选的是式 I 化合物，其中 R^4 是 NH-CO-R^7，其中 R^7 是苯基，所述苯环是未取代的或被选自 C_{1,7}-烷基或卤素中的 1 或 2 个基团取代的，其中最优选其中 R^7 是 4-氯苯基的那些化合物。

还特别优选的是根据本发明的式 I 化合物，其中 R^4 是 NH-CO-R^7，并且其中 R^7 是吡啶基，所述吡啶环是未取代的或被选自 C_{1,7}-烷基或卤素中的 1 或 2 个基团取代的。

此外，优选根据本发明的式 I 化合物，其中 R^5 是 CO-NH_2。这些是式 Id 化合物：

特别优选的是式 Id 化合物，其中 R^7 是苯基，所述苯环是未取代的或被选自 C_{1,7}-烷基或卤素中的 1 或 2 个基团取代的。

根据本发明再一组优选的式 I 化合物是其中 R^5 是 CN 的那些化合物。这些是式 Ie 化合物：

特别优选的是式 Ie 化合物，其中 R^7 是吡啶基，所述吡啶环是未取代的或被选自 C_{1,7}-烷基或卤素中的 1 或 2 个基团取代的。最优选 R^7 是 3-吡啶基。

优选的式 I 化合物是下列化合物：
8-(3-乙氧基-4-甲基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3-乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3-异丁氧基-4-甲氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3,5-二异丙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-溴-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(2,6-二乙氧基-4-氟-联苯-4-基甲基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3,5-二乙氧基-4-氟-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(4-氨基-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(2,6-二乙氧基-4-氟-联苯-4-基甲基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮，
8-(3-乙氧基-4-甲基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-氟-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-羟基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,4-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-烯丙氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-异丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-乙氧基-4-异丁氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-环戊氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-苄氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-二氟甲氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-甲氧基-3-丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-甲氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-[3-(2-氟-乙氧基)-4-甲氧基-苄基]-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-烯丙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-丁氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-异丁氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3-环戊氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二异丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-4-氟-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-溴-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-苯甲酰基氨基)-1-(4-氯-3-乙氧基-苄基)-哌啶-4-羧酸酰胺，
4-(4-氯-苯甲酰基氨基)-1-(3,5-二乙氧基-苄基)-哌啶-4-羧酸酰胺，
4-(4-氯-苯甲酰基氨基)-1-(3,5-二乙氧基-4-氟-苄基)-哌啶-4-羧酸酰胺，
N-[4-氨基-1-(3-乙氧基-4-甲基-苄基)-哌啶-4-基]-5-甲基-烟酰胺，
N-[4-氨基-1-(3,5-二乙氧基-4-氟-苄基)-哌啶-4-基]-5-甲基-烟酰胺，
6-氯-N-[1-(4-氯-3,5-二乙氧基-4-氟-苄基)-哌啶-4-基]-烟酰胺，
6-氯-N-[4-氰基-1-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-哌啶-4-基]-烟酰胺，
及其药用盐。

特别优选的是本发明的下列式I化合物：
8-(4-氯-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(4-溴-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮，
8-(3-乙氧基-4-甲基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(4-溴-3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
8-(3,5-二乙氧基-4-吡咯-1-基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮，
4-(4-氯-苯甲酰基氨基)-1-(4-氯-3,5-二乙氧基-苄基)-哌啶-4-羧酸酰胺，
6-氯-N-[4-氰基-1-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-哌啶-4-基]-烟酰胺，
及其药用盐。

此外，式I化合物的药用盐也各自构成本发明的优选实施方案。

式I化合物可以含有一个或多个不对称碳原子，并且其存在形式可以
是旋光纯对映异构体、例如外消旋体的对映异构体混合物、旋光纯非对映异构体、非对映异构体混合物、非对映异构体的外消旋体或非对映异构体的外消旋体的混合物。可以通过例如外消旋体的拆分，通过不对称合成或不对称色谱法(使用手性吸附剂或洗脱剂的色谱法)，获得旋光活性形式。

本发明包括所有这些形式。

应当理解，可以将本发明中的通式 I 化合物在官能团处衍生，能够在体内转化回母体化合物的衍生物。能够在体内产生通式 I 的母体化合物的生理可接受且易代谢的衍生物也在本发明的范围内。

本发明的再一方面是用于制备如上定义的式 I 化合物的方法，该方法包括：

a) 通过采用还原剂，将式 II 的哌啶

![Piperidine](image)

其中 R^4 和 R^5 如上面定义，

与式 III 的醛反应，

![Aldehyde](image)

其中 A 和 R^1 至 R^3 如上面定义，

得到式 I 化合物：

![Compound I](image)

并且，如果需要，将式 I 化合物转化成药用盐；或者，备选地，
b) 在碱性条件下，将式 II 的哌啶

![化学结构式 II](image)

其中 R⁴ 和 R⁵ 如上面定义，

用式 IV 化合物烷基化，

![化学结构式 IV](image)

其中 A 和 R¹ 至 R³ 如上面定义，并且 X 是离去基团，
得到式 I 化合物：

![化学结构式 I](image)

并且，如果需要，将式 I 化合物转化成药用盐；或者，备选地，

c) 在三烷基膦和重氮化合物存在下，将通式 II 的化合物，

![化学结构式 II](image)

其中 R⁴ 和 R⁵ 如上面定义，

与式 V 化合物反应，

![化学结构式 V](image)

其中 A 和 R¹ 至 R³ 如上面定义，
得到式 I 化合物：
并且，如果需要，将式 I 化合物转化成药用盐。

本发明进一步涉及根据如上定义的方法制造的如上定义的式 I 化合物。

合适的还原剂优选选自哒啶·BH₃配合物，NaBH(OAc)₃和NaCNBH₃。可以如下进行反应：在环境温度或者使用常规的加热通过微波辐照加热在高温下，在合适的溶剂如二氯甲烷、二氯乙烷、乙醇或异丙醇(或它们的混合物)中，通过使用布朗斯台德酸如乙酸或甲酸或路易斯酸(例如 Ti(iPrO)₄, ZnCl₂)在酸性条件下，或者在缓冲条件(例如在乙酸和叔胺如N-乙基二异丙胺或三乙胺存在下)条件下。

适宜的离去基团X是卤化物，甲磺酸酯或甲苯磺酸酯，或转变成另一种离去基团的醇。优选的离去基团选自碘化物、溴化物、甲磺酸酯和氯化物。

适宜的三烷基膦是三丁膦和三苯膦。优选的重氮化合物是偶氮二羧酸二乙酯(DEAD)，偶氮二羧酸二异丙酯(DIAD)或偶氮二羧酸二叔丁酯。

如上所述，本发明的式 I 化合物可用作用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病的药物。

“与 SST 受体亚型 5 调节有关的疾病”是如糖尿病那样的疾病，特别是 II 型糖尿病、空腹血糖受损、糖耐量减低、微-和大脉管糖尿病并发症、I 型糖尿病患者移植后糖尿病、妊娠性糖尿病、肥胖、炎性肠病如局限性回肠炎或溃疡性结肠炎、吸收不良、自体免疫疾病如类风湿性关节炎、骨关节炎、牛皮癣等皮肤病、以及免疫缺陷。微脉管糖尿病并发症包括糖尿病性肾病和糖尿病性视网膜病，而大脉管糖尿病有关的并发症导致心肌梗死、中风和截肢的风险增加。

优选用作药物的用途，所述药物用于治疗和/或预防糖尿病，特别是 II 型糖尿病、空腹血糖受损或糖耐量减低。

本发明因此还涉及包含如上定义的化合物和药用载体和/或辅剂的药
物组合物。

此外，本发明涉及用作治疗活性物质，特别是用作于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病治疗活性物质的如上定义的化合物。

在另一实施方案中，本发明涉及一种治疗和/或预防与 SST 受体亚型 5 调节有关的疾病的方法。该方法包括向人或动物施用式 I 化合物。最优选用于治疗和/或预防糖尿病，特别是 II 型糖尿病、空腹血糖受损或糖耐量减低的方法。

本发明进一步涉及如上定义的化合物用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病的用途。

另外，本发明涉及如上定义的化合物用于制备药物的用途，所述药物用于治疗和/或预防与 SST 受体亚型 5 调节有关的疾病。这样的疾病的优选实例是糖尿病，特别是 II 型糖尿病、空腹血糖受损或糖耐量减低。

可以用下面给出的方法、实施例中给出的方法或者类似方法，制备式 I 化合物。各个反应步骤的合适的反应条件是标准反应并且是本领域技术人员已知的。原料或者是可商购的，或者可以通过下面所给方法的类似方法、文中或实施例中所引参考文献中所述的方法，或者通过本领域已知的方法制备的。

具有通用结构 I 的化合物，特别是根据 Ia 至 Ie 的化合物的合成描述于方案 1 至 6 中。

可以根据方案 1 完成根据式 Ia 化合物的合成。

式 Ia 的目标化合物还可以通过如下方法制备：在溶剂如 DMF，二氯甲烷，二氯乙烷或丙酮中，在环境温度或使用常规加热或微波辐照加热的高温，在加入适宜的叔胺碱（例如，三乙胺，N-乙基二异丙胺）或无机碱（例如， Cs₂CO₃，K₂CO₃）的情况下，用通用结构 3 的适宜卤化物、甲磺酸酯、甲苯磺酸酯或转化成任何其它适宜的离去基团 X 的醇直接烷基化哌啶 1；或类似的烷基化反应。备选地，式 Ia 的目标结构可以由 Mitsunobu 反应（D. L. Hughes，The Mitsunobu Reaction， Organic Reactions，Volume 42，1992，John Wiley & Sons，New York；第 335-656 页）通过下面的方法得到：在通常用于这种转变的溶剂如 THF，甲苯，DCM 等中，采用由膦如三烷基膦例如三丁膦 ((n-Bu)₃P)，三苯膦 (Ph₃P) 等和重氮化合物如偶氮二亚硝酸二乙酯 (DEAD)，偶氮二亚硝酸二异丙酯 (DIAD) 或偶氮二亚硝酸二叔丁酯等的混合物活化的醇 4(方案 1，步骤 b)。对所采用的溶剂的性质没有特别限制，条件是它对反应或参加反应的试剂没有不利的影响，并且它可以溶解试剂至少到一定程度。反应可以在范围为从环境温度至所采用的溶剂的回流温度的宽温度范围内进行。

方案2

可以通过使用如下的策略完成通用结构Ic的目标化合物：螺衍生物6用醛2的还原性烷基化(方案3，步骤a)或6用中间体3或4在如上论述的条件下的直接烷基化(方案3，步骤b)。2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮6可以如WO 03/104 236 A1 (Bristol-Myers Squibb Company)中所述制备。

方案3

通用结构Id的目标化合物可以通过周知的偶合方法，由适宜保护的4-氨基-4-氰基-哌啶7(对于保护基，参见Protective Groups in Organic Synthesis, T. W. Greene, Wiley-Interscience 1999)，经由与各种类型的酸或酰氯的偶合来制备，以得到酰胺8(方案4，步骤a)，其中B是指CH或N。典型地，哌啶7与苯甲酰氯的酰胺键形成得到中间体8是在以下条件下进行的：在叔胺碱(例如三乙胺，N-乙基二异丙胺)存在下，在惰性溶剂如DCM
或甲苯等中，在室温或高温（方案4，步骤a）。用于羧酸与胺的反应的适宜
偶合剂是N,N'-羰基二咪唑 (CDI)，N,N'-二环己基碳二亚胺 (DCC)，1-(3-
二甲基-氨基丙基)-3-乙基碳二亚胺盐酸盐 (EDCI)，1-[双(二甲基氨基) 亚
甲基]-1H-1,2,3-三唑并[4,5-b]吡啶鎓-3-氧化物六氟磷酸盐(HATU)，1-羟基
-1,2,3-苯并三唑 (HOBT)，O-苯并三唑-1-基-N,N,N',N'-四甲基-脲鎓四氟硼
酸盐(TBTU)等。优选的偶合剂是1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐
酸盐 (EDCI)或N,N'-羰基二咪唑 (CDI)，典型地在溶剂如二甲基甲酰胺
(DMF)或二氯乙烷 (DCE)中，在室温或高温。

氰基哌啶 8 中的烷氧羰基保护基的除去可以在强酸催化下进行(方案
4，步骤b)，以提供游离的胺 9。根据哌啶 8 的脱保护步骤的反应条件(例
如反应时间，温度和痕量水的存在)，可以发生 9b 中的氰基至伯酰胺 9a
的部分水解。在得到氰基 9b 和酰胺化合物 9a 的混合物这样的情况下，将
产物混合物在没有进一步纯化的情况下直接用于随后的还原性胺化步骤。
最后，游离哌啶 9a 用醚 2 的还原性烴基化得到目标化合物 1d (方案 4，步
骤 c)。在此转化步骤过程中，可能发生氰基至伯酰胺键的进一步水解。制
备型 HPLC 或二氧化硅柱色谱可以进行目标伯酰胺衍生物的分离和纯化。
通用结构 1e 的目标化合物可以如上所述，经由氰基哌啶 9b 与醛 2 的偶合得到。再次，最终化合物用制备型 HPLC 或二氧化硅柱色谱的纯化可以分离目标的伯氰基衍生物。
醛中间体的合成

必不可少的醛伙伴是可商购的，或可以通过用烷基卤化物，甲磺酸烷基酯，甲苯磺酸烷基酯或转变成任何其它适宜离去基团的醇在下面的条件
下烷基化而衍生：在极性溶剂如 DMF (N,N-二甲基甲酰胺)或丙酮和适宜的
碱 (例如，Cs₂CO₃，K₂CO₃)中，在室温或高温，通过与用三苯膦和氮杂二
羧酸二乙酯的混合物活化的酯的 Mitsunobu 反应，或通过式 10 的酚式羧酸
酯或酸的类似烷基化(方案 6，步骤 a)。在溶剂如 THF 中，由适宜的还原
剂(例如，氢化二异丁基铝，在低温，或用 LiAlH₄，在低、高温或环境温
度)还原式 11 的酯提供式 12 的相应苄基酯 (方案 6，步骤 b)，然后可以将
其氧化为式 13 的醛，优选用活化的 MnO₂ 作为氧化剂，在 DCM 中进行氧
化(方案 6，步骤 c)。

备选地，侧链的引入可以通过直接烷基化式 13 的酚式苯甲酰(对于不
对称化合物是连续的)实现，直接提供所需要的式 2 化合物(方案 6，步骤
d)。

对于合成式 15 的苄基醛，另一沿用已久的路线包括用适宜的还原剂
如氢化二异丁基铝还原式 14 的相应苯甲腈，所述还原在低温，在非质子
极性溶剂中(例如，THF；方案 6，步骤 e)进行。

式 II 的醛的其它合成描述于实施例中。
如上所述，已经发现式1化合物具有药物活性，特别是，它们是促生长素抑制素受体活性的调节剂。更具体而言，已经发现本发明的化合物是促生长素抑制素受体亚型5（SSTR5）的拮抗剂。

进行如下测试是为了确定式1化合物的活性。

由Euroscreen获得稳定转染了编码人亚型5促生长素抑制素受体（GenBank登记号D16827）的质粒的CHO细胞株。培养细胞并且用于结合和功能试验。

通过在蛋白酶抑制剂的存在下超声处理，随后分级离心，制备这些细胞的膜。膜制剂中的蛋白浓度是使用商业试剂盒（BCA试剂盒，Pierce，USA）测定的。将膜在-80°C储存直至使用。在解冻后，将膜稀释在试验缓冲液（pH 7.4的50 mM Tris-HCl, 5 mM MgCl2和0.20 % BSA）中，并且进行杜恩斯匀浆。
为了进行结合研究，将 0.1 mL 膜悬浮液，对应于约 6 × 10^{15} mol 受体，与 0.05 nM ¹²⁵I 标记的示踪剂 (11-Tyr 促生长素抑制素-14, Perkin-Elmer) 和不同浓度的测试化合物，或者为了测定非特异性结合，与 0.001 mM 非标记的促生长素抑制素-14 在室温温育 1 h。通过 GF/B 玻璃纤维过滤器过滤并且用冰-冷却的洗涤缓冲液 (pH 7.4 的 50 mM Tris-HCl) 洗涤停止温育。结合放射性是在施用闪烁液 (Microscint 40) 后测量的，并且用每分钟的衰变 (dpm) 表示。

在预先饱和实验中测定受体浓度，其中将固定的任意量的膜与浓度范围的放射标记的示踪剂温育。这可以估计特异性结合位点的总量/蛋白质的量 (即，B_max)，其典型地在 1 和 5 pmol/mg 之间。

导致放射标记的示踪剂的结合的最大抑制的一半所需的测试化合物的浓度 (IC_{50}) 是由浓度-dpm 曲线图估计的。结合亲合力 (K_i) 是通过对单个结合位点使用 Cheng-Prusoff 等式由 IC_{50} 计算的。

为了进行功能实验，将 50’000 个细胞温育在补充有 1 mM IBMX 和 0.1% BSA 的 Krebs Ringer HEPES 缓冲液中 (115 mM NaCl, 4.7 mM KCl, 2.56 mM CaCl₂, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 20 mM NaHCO₃ 和 16 mM HEPES，调节到 pH 7.4)，然后用 0.004 mM 去甲肾上腺素刺激。在使用去甲肾上腺素的同时，施加不同浓度的测试化合物。然后将细胞在 37 °C 和 5% CO₂ 下温育 20 分钟。然后，溶解细胞，并且根据制造商使用基于荧光的商业试剂盒 (HitHunter cAMP, DiscoverX) 测量 cAMP 浓度。

导致半最大效果的测试化合物的浓度 (即，EC_{50}) 以及与 0.15 nM 促生长素抑制素-14 相比的效力是由浓度-荧光 (任意单位) 曲线图测定的。为了测定潜在的拮抗性，0.15 nM 促生长素抑制素-14 与测试化合物一起施加，并且由浓度-荧光曲线图推导出促生长素抑制素-14 的作用的半最大逆转的测试化合物的浓度 (即，IC_{50})。

本发明化合物对于人亚型 5 促生长素抑制素受体在放射性配体代替测试中表现出的K_i值为 0.1 nM 到 10 μM，优选K_i值为 0.1 nM 到 500 nM，更优选 0.1 nM 到 100 nM。下表显示了选出的本发明化合物的测量值。
实施例2	51
实施例5	42
实施例7	15
实施例11	228
实施例15	37
实施例17	50
实施例26	226
实施例29	717
实施例33	273
实施例38	18
实施例42	96
实施例44	342
实施例46	66

可以将式 I 表化合物和它们的药用盐和酯用作药物，例如以药物制剂形式用于经肠的、肠胃外或局部给药。它们可以这样给药，例如经口给药，其形式如片剂、包衣片剂、糖衣剂、硬和软明胶胶囊、溶液剂、乳剂或混悬剂；直肠给药，如以栓剂形式；肠胃外给药，如以注射液或输液形式；或者局部给药，如以软膏剂、乳膏剂或油剂形式。

药物制剂的制备可以是用本领域技术人员熟悉的方式进行的，将所述的式 I 表化合物和它们的药用盐和酯和合适的、非毒性的、惰性的、治疗学上相容的固体或液体载体材料以及如果需要，与普通的药物辅剂一起制成盖伦氏给药形式。

合适的载体材料不仅有无机载体材料，而且有有机载体材料。因此，可以使用例如乳糖、玉米淀粉或其衍生物、滑石、硬脂酸或其盐作为用于片剂、包衣片剂、糖衣剂和硬明胶胶囊的载体材料。软明胶胶囊的合适载体材料为，例如植物油、蜡、脂肪以及半固体和液体多元醇(但是，根据活性成分的性质，在软明胶胶囊的情况下不需要载体)。制造溶液或糖浆的合
适载体材料为，例如水、多元醇、蔗糖，转化糖等。注射液的合适载体材料为，例如水、醇类、多元醇、甘油和植物油。栓剂的合适载体材料为，例如天然或硬化油、蜡，脂肪和半液体或液体多元醇。局部制剂的合适载体材料为甘油酯类、半合成和合成甘油酯类、氢化油、液态蜡，液体石蜡，液态脂肪醇、甾醇，聚乙二醇和纤维素衍生物。

可考虑使用常用的稳定剂、防腐剂、湿润剂和乳化剂、稠度改善剂、增香剂、用于改变渗透压的盐、缓冲物质、增溶剂、着色剂以及掩蔽剂和抗氧化剂作为药物辅剂。

根据所要控制的疾病、患者年龄和个体状况以及给药方式，式 I 化合物的剂量可以在宽的限度内变化，当然，在每个具体病例中将和个体需求相适合。对于成年患者，可考虑的每日剂量为约 1mg 到约 1000mg，特别是约 1mg 到约 100mg。根据剂量，将日剂量分成几个剂量单位给药是方便的。

药物制剂方便地包含约 0.1-500mg、优选 0.5-100mg 的式 I 化合物。

下面参考如下说明性的实施例进一步解释本发明。但是，这些实施例不意在以任何方式限制其范围。

实施例

缩略语
Ar = 氩气，DMF = N,N-二甲基甲酰胺，DMSO = 二甲亚砜，EI = 电子碰撞(电离)，HPLC = 高效液相色谱，Hyflo Super Cel® = 助滤剂(Fluka)，ISP = 离子喷雾正(模式)，NMR = 核磁共振，MPLC = 中压液相色谱，MS = 质谱，P = 保护基，R = 任意基团，rt = 室温，THF = 四氢呋喃，X = 卤素。
实施例1

8-(3-乙氧基-4-甲基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮

步骤1：1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 [CAS RN 13625-39-3] (中间体A1)

步骤2：8-(3-乙氧基-4-甲基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮

向1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 (25.4 mg, 0.15 mmol, 1.0 当量; 中间体A1) 在乙醇 (1 mL), 乙酸 (72.1 mg, 1.2 mmol, 8.0 当量) 和 N-乙基二异丙胺 (77.6 mg, 0.6 mmol, 4.0 当量) 中的溶液中, 加入 3-乙氧基-4-甲基-苯甲醛 (29.6 mg, 0.18 mmol, 1.2 当量; 中间体B10, 下文), 并且将混合物于 55 °C 搅拌1 h 后, 加入溶解于乙醇 (0.5 mL) 中的氯基硼氢化钠 (47.1 mg, 0.75 mmol, 5.0 当量), 并且将混合物于 55 °C 搅拌过夜。在减压下除去溶剂和用乙腈/水梯度洗脱的反相制备型 HPLC 的纯化提供 8.6 mg (17%) 的标题化合物。MS (ISP): 338.2 [M+H]+。

2,8-二氮杂-螺[4.5]癸-1-酮和 1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮 中间体A2 和 A3 如下所述制备。
合成 2,8-二烯杂-螺[4.5]癸-1-酮和 1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮将在表 1 中使用的中间体 A2 和 A3

中间体 A2

![中间体A2](image)

标题化合物可购自 Ennova MedChem Group, Inc., USA。

中间体 A3
2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐

![中间体A3](image)

中间体 B1
4-氯-3-乙氧基-苯甲醛 [CAS RN 85259-46-7]

![中间体B1](image)

向4-氯-3-羟基-苯甲醛 (3.0 g, 17.4 mmol, 1.0当量)的 DMF (15 mL)溶液中加入K₂CO₃ (4.81 g, 34.8 mmol, 2.0当量)和乙基碘 (4.03 mL, 5.97 g,
38.2 mmol, 2.2当量). 将反应混合物在室温搅拌 6 h，用水 (20 mL) 稀释并且用乙酸乙酯 (3 x 50 mL) 萃取。将有机相用 Na₂SO₄ 干燥并且浓缩，得到 3.6 g (91%) 4-氯-3-乙氧基-苯甲酰乙酯。然后在 Ar 下将粗制的酯溶解在 THF (20 mL) 中并且冷却到 -78 °C。缓慢加入氢化二异丁基铝溶液 (95 mL, 95.0 mmol, 6.0当量；1.0 M 的THF溶液)，历时 15 min，加完后除去冷却浴并且使反应物达到 0 °C。搅拌 1 h 后，将反应物冷却到 -78 °C，并且通过小心添加 1 M HCl溶液 (10 mL) 稀释过量的氢化物。使混合物达到室温，分离有机相并且用乙酸乙酯 (3 x 100 mL) 萃取水层。将合并的有机相用 Na₂SO₄ 干燥和通过减压蒸发浓缩，得到 2.94 g (100%) 的 4-氯-3-乙氧基-苯甲酰铵。将粗制的醇 (2.94 g, 15.75 mmol, 1.0当量) 溶解在二氯甲烷 (15 mL) 中并且加入活化的 MnO₂ (5.48 g, 63.0 mmol, 4.0当量)。将反应混合物搅拌 16 h，之后将反应物通过 Hyflo Super Cel 并且浓缩。将残余物通过用庚烷/乙酸乙酯 (4:1) 洗脱的快速硅胶柱色谱纯化，得到 1.51 g (52%) 的标题化合物。¹H NMR (300 MHz, CDCl₃): δ 1.51 (t, J = 7.1 Hz, 3H), 4.19 (q, J = 7.1 Hz, 2H), 7.37-7.42 (m, 2H), 7.55 (d, J = 9.0 Hz, 1H), 9.94 (s, 1H)。

中间体 B2

3-异丁氧基-4-甲氧基-苯甲酸 [CAS RN 57724-26-2]

如 WO 04/000 806 A1 (Elbion AG) 中所述，通过异香草酸与 1-溴-2-甲基丙烷的反应，制备标题化合物。

中间体 B3

3,5-二异丙氧基-苯甲酸 [CAS RN 94169-64-9]

向 3,5-二羟基-苯甲醛 (5.0 g, 36.20 mmol, 1.0 当量) 的无水 DMF (30
mL)溶液中加入 K₂CO₃ (15.0 g, 108.60 mmol, 3.0 当量)和 2-溴-丙烷 (13.36 g, 10.20 mL, 108.60 mmol, 3.0 当量), 并且将混合物在 100℃ 搅拌 18 h。通过过滤除去 K₂CO₃, 并且将有机相减压浓缩。向残余物中加入饱和 NaCl 溶液 (100 mL), 并且用乙酸乙酯 (3 x 100 mL) 萃取溶液。将合并的有机相用 MgSO₄ 干燥并且将产物用硅胶柱色谱纯化，该硅胶柱色谱使用 MPLC 系统 (CombiFlash Companion, Isco Inc.), 用庚烷/乙酸乙酯梯度洗脱，得到 6.64 g (83%) 的标题化合物和 0.59 g (9%) 的 3-羟基-5-异丙氧基-苯甲醛。³H NMR (300 MHz, CDCl₃): δ 1.35 (d, J = 6.1 Hz, 12H), 4.59 (hept, J = 6.1 Hz, 1H), 6.66-6.68 (m, 1H), 6.96-6.97 (m, 2H), 9.88 (s, 1H)。MS (ISP): 223.1 [M+H]^+。

中间体 B4

4-氯-3,5-二乙氧基-苯甲醛

步骤1: 4-氯-3,5-二乙氧基-苯甲酸乙酯

向在 0℃ 下的 4-氨基-3,5-二乙氧基-苯甲酸乙酯 (5.1 g, 20.13 mmol, 1.0 当量；如 L. Kompis 和 A. Wick, Helv. Chim. Acta 1977, 60, 3025-3034 中所述制备) 在水 (40 mL) 和 37% HCl (40 mL) 中的溶液中加入亚硝酸钠 (1.67 g, 24.16 mmol, 1.2 当量)。10 min 后, 加入氯化铜(I) (12.0 g, 120.81 mmol, 6.0 当量), 将反应混合物在 0℃ 再搅拌 5 h, 然后除去冰浴。在搅拌 18 h 后, 通过添加 1 M NaOH 溶液将粗的反应混合物调节到 pH = 8, 并且用乙酸乙酯 (3 x 100 mL) 萃取水层。将合并的有机相用 MgSO₄ 干燥, 通过减压蒸发浓缩, 并且将粗制物用硅胶柱色谱纯化, 该硅胶柱色谱使用 MPLC 系统 (CombiFlash Companion, Isco Inc.), 用庚烷/乙酸乙酯梯度洗脱, 得到 5.0 g (91%) 的标题化合物。³H NMR (300 MHz, CDCl₃): δ 1.32 (t, J = 7.0 Hz, 4H), 1.40 (t, J = 7.0 Hz, 6H), 4.09 (q, J = 7.0 Hz, 4H), 4.30 (q, J = 7.0 Hz, 2H), 7.18 (s, 2H)。³C NMR (75 MHz, CDCl₃): δ 13.33, 13.66, 60.29, 64.16, 105.75, 115.88, 128.25, 154.49, 165.01。MS (ISP):
步骤2: (4-氯-3,5-二乙氧基-苯基)-甲醇

在略冷至-30 °C 的情况下，向 4-氯-3,5-二乙氧基-苯甲酸乙酯 (5.0 g，18.33 mmol，1.0 当量)的二氯甲烷 (25 mL)溶液中缓慢加入氢化二异丁基铝溶液 (55.0 mL，55.00 mmol，3.0 当量；1.0 M 的 THF 溶液)，历时 15 min。在 30 min 后，通过小心加入甲醇 (10 mL)和水 (2 mL) 熄灭过量的氢化物。将混合物搅拌 30 min，加入 1 M HCl 溶液并且用乙酸乙酯 (3 x 100 mL)萃取水层。将合并的有机相用 MgSO4 干燥和通过减压蒸发浓缩，得到 4.0 g (95%)的标题化合物。\(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta\) 1.45 (t, \(J = 7.0 \text{ Hz, 6H}\), 1.93 (br s, 1H), 4.09 (q, \(J = 7.0 \text{ Hz, 4H}\), 4.62 (s, 2H), 6.57 (s, 2H)。\(^13\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) 14.74, 64.96, 65.18, 104.30, 110.65, 140.29, 155.66。MS (ISP): 231.4 [M+H]^+)。

步骤3: 4-氯-3,5-二乙氧基-苯甲酸

向(4-氯-3,5-二乙氧基-苯基)-甲醇 (4.0 g，17.34 mmol，1.0 当量)的THF (40 mL) 溶液中加入活化的MnO2 (15.08 g，173.4 mmol，10.0 当量)，并且将反应混合物在室温搅拌 18 h。通过Hyflo Super Cel过滤并且通过硅胶柱色谱纯化制备，该硅胶柱色谱使用MPLC系统 (CombiFlash Companion，Isco Inc.)，用庚烷/乙酸乙酯梯度洗脱，得到3.7 g (92%)的标题化合物。\(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta\) 1.50 (t, \(J = 7.0 \text{ Hz, 6H}\), 4.19 (q, \(J = 7.0 \text{ Hz, 4H}\), 7.07 (s, 2H), 9.89 (s, 1H)。\(^13\text{C NMR (75 MHz, CDCl}_3\): \(\delta\) 14.61, 65.22, 106.26, 118.64, 135.08, 156.22, 191.01。MS (EI): 229.4 [M]^+)

中间体 B5

4-溴-3,5-二乙氧基-苯甲酸 [CAS RN 363166-11-4]

中间体 B6

3,5-二乙氧基-4-吡咯-1-基-苯甲醛

步骤1：3,5-二乙氧基-4-吡咯-1-基-苯甲酸乙酯

向 4-氨基-3,5-二乙氧基-苯甲酸乙酯 (3.0 g, 11.84 mmol, 1.0 当量；如 I. Kompis 和 A. Wick *Helv. Chim. Acta* 1977, 60, 3025-3034 中所述制备) 在庚烷 (10 mL) 和浓乙酸 (0.2 mL) 的溶液中加入 2,5-二甲氧基-四氢-呋喃 (1.88 g, 14.21 mmol, 1.2 当量)。在加热至回流 5 h 后，加上 Dean-Stark 装置并且将反应混合物再加热 5 h。过滤粗的反应混合物并且在 0 °C 由庚烷中结晶，得到 2.94 g (82%) 的标题化合物。\(^1\)H NMR (300 MHz, DMSO): \(\delta\) 1.15 (t, \(J = 7.0\) Hz, 6H), 1.27 (t, \(J = 7.1\) Hz, 3H), 3.98 (q, \(J = 7.0\) Hz, 4H), 4.28 (q, \(J = 7.1\) Hz, 2H), 6.07-6.08 (m, 2H), 6.73-6.74 (m, 2H), 7.22 (s, 2H)。\(^13\)C NMR (75 MHz, DMSO): \(\delta\) 14.11, 14.35, 61.06, 64.57, 106.87, 107.64, 122.61, 123.33, 129.29, 153.75, 165.06。MS (ISP): 303.4 [M+H]^+。

步骤2：3,5-二乙氧基-4-吡咯-1-基-苯甲醛

在略冷至 20 °C 的情况下，向 3,5-二乙氧基-4-吡咯-1-基-苯甲酸乙酯 (1.51 g, 4.98 mmol, 1.0 当量) 的甲苯 (5 mL) 溶液中缓慢加入氯化二异丁基铝溶液 (8.9 mL, 12.45 mmol, 2.5 当量; 20% 甲苯溶液), 历时 15 min。1 h 后，通过小心加入水 (10 mL) 和 28% NaOH 溶液 (2 mL) 熄灭过量的氯化物。将混合物搅拌 30 min 并且在 Hyflo Super Cel 上过滤有机相。水层用甲苯 (2 × 50 mL) 萃取，合并的有机相用饱和 NaCl 溶液 (2 × 50 mL) 洗涤并且通过减压蒸发浓缩，得到 1.30 g (100%) 的 (3,5-二乙氧基-4-吡咯-1-基-苯基)-甲醇。将粗制的醇 (1.30 g, 4.98 mmol, 1.0 当量) 溶解在甲苯 (20 mL)
中并且加入活化的 MnO₂ (7.79 g, 89.5 mmol, 18.0 当量)。将反应混合物加热至回流 7 h，之后将反应混合物通过 Hyflo Super Cel 过滤并且浓缩，得到 1.15 g (89%产率)的标题化合物。¹H NMR (300 MHz, DMSO): δ 1.17 (t, J = 7.0 Hz, 6H), 4.02 (q, J = 7.0 Hz, 4H), 6.08-6.09 (m, 2H), 6.75-6.76 (m, 2H), 7.25 (s, 2H), 9.89 (s, 1H)。MS (ISP): 260.1 [M+H]⁺。

中间体 B7

2,6-二乙氧基-4'-氟-联苯-4-甲醛

在Ar下，将3,5-二乙氧基-4-碘-苯甲醛 (14.05 g, 43.89 mmol, 1.0当量；如WO 01/326 33 A1 (F. Hoffmann-La Roche AG)中所述制备；[CAS RN 338454-05-0])溶解于甲苯 (180 mL)和水 (20 mL)中，并且相继用4-氟苯基硼酸 (12.28 g, 87.78 mmol, 2.0当量), K₃PO₄ (50.12 g, 236.12 mmol, 5.38当量), 三环己基膦 (2.80 g, 9.66 mmol, 0.22当量)和乙酸钯 (II) (1.08 g, 4.83 mmol, 0.11当量)处理。在GC指示没有原料碘化合物时，在小心地排除氧下，将反应混合物加热至100 ℃，时间18 h。将反应混合物倾倒在碎冰/NH₄Cl上，用乙酸乙酯 (2 x 200 mL)萃取，并且将合并的有机相用NaCl饱和溶液 (2 x 100 mL)和水 (2 x 100 mL)洗涤。将有机相用Na₂SO₄干燥，通过在减压下蒸发而浓缩，并且粗制材料由用己烷/乙酸乙酯 (9:1)混合物洗脱的二氧化硅柱色谱纯化。从己烷/乙酸乙酯中重结晶提供10.44 g (83%)的标题化合物，为白色晶体。MS (EI): 288.2 [M]⁺。
中间体 B8

3,5-二乙氧基-4-氟-苯甲醛

步骤1: 叔丁基-(4-氟-苄氧基)-二甲基-硅烷

于 0 °C，在 Ar 下，在(4-氟-苯基)-甲醇 (12.16 g, 96.4 mmol, 1.0 当量)在无水 DMF (50 mL)中的溶液中，加入咪唑 (7.22 g, 106.1 mmol, 1.1 当量)和叔丁基-氯-二甲基-硅烷 (15.99 g, 106.1 mmol, 1.1 当量)。在加入完成后，移走冷却浴，并且将反应物于 rt 搅拌 18 h。将反应混合物倾倒在冰上，用乙酸乙酯 (2 x 100 mL)萃取，并且将合并的有机相用 Na₂CO₃ 饱和溶液 (2 x 100 mL) 和 NaCl 饱和溶液 (2 x 100 mL) 洗涤。将有机相用 Na₂SO₄ 干燥，通过在减压下蒸发而浓缩，得到褐色油，其通过高真空蒸馏 (bp 32-35 °C，于 0.1 毫巴) 而纯化，得到 23.0 g (99%) 的标题化合物。¹H NMR (400 MHz, CDCl₃): δ 0.00 (s, 6H), 0.84 (s, 9H), 4.60 (s, 2H), 6.89-6.94 (m, 2H), 7.16-7.20 (m, 2H)。MS (EI): 183.1 [M-tert-Bu]+。

步骤2: 5-(叔丁基-二甲基-硅氧基甲基)-2-氟-苯酚

向叔丁基-(4-氟-苄氧基)-二甲基-硅烷 (5.00 g, 20.8 mmol, 1.0 当量)在无水 THF (20 mL) 中的溶液中，于-78 °C，在 Ar 下，在 30 min 内加入 sec-BuLi 溶液 (17.6 mL, 22.8 mmol, 1.1 当量; 1.3 M 在己烷中的溶液)。然后，在 30 min 内，慢慢地加入硼酸三甲酯 (2.37 mL, 2.20 g, 20.8 mmol, 1.0 当量) 在无水 THF (7.5 mL) 中的溶液，并且移走冷却浴。慢慢地加入浓乙酸溶液 (2.78 mL, 1.87 g, 31.2 mmol, 1.5 当量)，接着加入 35% 过氧化氢水溶液 (2.0 mL, 2.23 g, 22.9 mmol, 1.1 当量)，并且将反应于 0 °C 进行另外 30 min。于 rt 搅拌另外 4 h 后，将混合物用二乙醚 (2 x 100 mL) 萃取，并且将合并的有机相用 10% NaOH 溶液 (2 x 100 mL) 和 NaCl 饱和溶液 (2 x 100 mL) 洗涤。将有机相用 Na₂SO₄ 干燥，通过在减压下蒸发而浓缩，并且粗制材料由用己烷/乙酸乙酯 (19:1) 调脱的二氧化硅柱色谱纯化，提供
步骤3: 2-(叔丁基-二甲基-硅氧基)-4-(叔丁基-二甲基-硅氧基甲基)-1-氟-苯

于0 ℃，在Ar下，向5-(叔丁基-二甲基-硅氧基甲基)-2-氟-苯酚 (4.60 g, 17.9 mmol, 1.0当量)在无水DMF (20 mL)中的溶液中，加入咪唑 (1.34 g, 19.7 mmol, 1.1当量)和叔丁基-氯-二甲基-硅烷 (2.97 g, 19.7 mmol, 1.1当量)。在加入完成后，移走冷却浴，并且将反应物于rt搅拌18 h。将反应混合物倾倒在冰上，用乙酸乙酯 (2 x 100 mL)萃取，并且将合并的有机相用Na2CO3饱和溶液(2 x 100 mL)和NaCl饱和溶液 (2 x 100 mL)洗涤。将有机相用Na2SO4干燥，并且通过在减压下蒸发而浓缩，得到4.50 g (68%)的标体化合物。1H NMR (400 MHz, CDCl3): δ 0.00 (s, 6H), 0.10 (s, 6H), 0.85 (s, 9H), 0.92 (s, 9H), 4.55 (s, 2H), 6.71-6.74 (m, 1H), 6.80-6.83 (m, 1H), 6.87-6.92 (m, 1H)。MS (EI): 370.2 [M]+。

步骤4: 3-(叔丁基-二甲基-硅氧基)-5-(叔丁基-二甲基-硅氧基甲基)-2-氟-苯酚

向2-(叔丁基-二甲基-硅氧基)-4-(叔丁基-二甲基-硅氧基甲基)-1-氟-苯 (23.70 g, 63.9 mmol, 1.0当量)在无水THF (130 mL)中的溶液中，于-78 ℃，
在Ar下，向30 min内加入sec-BuLi溶液 (54.5 mL, 71.6 mmol, 1.1当量; 1.3 M在己烷中的溶液)。然后，在30 min内慢慢地加入硼酸三甲酯 (7.13 mL, 6.64 g, 63.9 mmol, 1.0当量)在无水THF (30 mL)中的溶液，并且移走冷却浴。慢慢地加入浓乙酸溶液 (5.49 mL, 5.76 g, 95.9 mmol, 1.5当量)，接
着加入35% 过氧化氢溶液(6.2 mL, 6.83 g, 70.3 mmol, 1.1当量)，并且
将反应于0 ℃进行另外30 min。于rt搅拌另外4 h后，将混合物用二乙醚 (2 x 100 mL)萃取，并且将合并的有机相用10% NaOH溶液 (2 x 100 mL)和NaCl
饱和溶液 (2 x 100 mL)洗涤。将有机相用Na2SO4干燥，通过在减压下蒸发而浓缩，并且将粗制材料用用己烷/乙酸乙酯 (19:1)洗脱的二氧化硅柱色谱纯化，提供15.80 g (64%)的标体化合物。1H NMR (400 MHz, CDCl3): δ 0.00 (s,
6H), 0.10 (s, 6H), 0.85 (s, 9H), 0.91 (s, 9H), 4.50 (s, 2H), 4.93 (br s, 1H), 6.37 (d, \(J = 5.6 \text{ Hz}, 1H \)), 6.47 (d, \(J = 5.6 \text{ Hz}, 1H \)). MS (EI): 329.2 \([M-\text{tert-Bu}]^+\)。

步骤5: 叔丁基-(3,5-二乙氧基-4-氟-苄氧基)-二甲基-硅烷

向3-(叔丁基-二甲基-硅氧基)-5-(叔丁基-二甲基-硅氧基甲基)-2-氟-苯酚 (5.80 g, 15.0 mmol, 1.0 当量)在DMF (60 mL)中的溶液中，加入K₂CO₃ (4.56 g, 33.0 mmol, 2.2 当量)和乙基溴 (2.46 mL, 3.60 g, 33.0 mmol, 2.2 当量)，并且将反应混合物在 Ar 下，于 60 °C 搅拌 5 h。通过过滤除去 K₂CO₃，将粗制反应混合物通过在减压下蒸发而浓缩，将剩余物用乙酸乙酯 (3 x 100 mL)萃取，将合并的有机相用水 (2 x 100 ml)洗滌，并且用 Na₂SO₄ 干燥。通过在减压下蒸发除去溶剂，并且将粗制材料由用己烷/乙酸乙酯 (99:1)洗脱的二氧化硅柱色谱纯化，提供 3.10 g (63%) 的标题化合物。\(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 0.00 (s, 6H), 0.85 (s, 9H), 1.33 (t, \(J = 7.0 \text{ Hz}, 6H \)), 4.00 (q, \(J = 7.0 \text{ Hz}, 4H \)), 4.55 (s, 2H), 6.47 (d, \(J = 6.8 \text{ Hz}, 2H \)). MS (ISP): 329.3 \([M+H]^+\)。

步骤6: (3,5-二乙氧基-4-氟-苯基)-甲醇

向叔丁基-(3,5-二乙氧基-4-氟-苄氧基)-二甲基-硅烷 (1.20 g, 3.65 mmol, 1.0 当量)在甲醇 (8 mL)中的溶液中，加入 Dowex 50W-X8 (0.33 g, 阳离子交换树脂)，并且将反应混合物在 Ar 下，于 rt 搅拌 22 h。通过过滤除去树脂，并且将反应混合物通过在减压下蒸发而浓缩，得到标题化合物，为定量产率 (0.78 g)。\(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 1.34 (t, \(J = 7.0 \text{ Hz}, 6H \)), 1.57 (t, \(J = 5.4 \text{ Hz}, 1H \)), 4.01 (q, \(J = 7.0 \text{ Hz}, 4H \)), 4.51 (d, \(J = 5.4 \text{ Hz}, 2H \)), 6.51 (d, \(J = 6.8 \text{ Hz}, 2H \)). MS (EI): 214.2 \([M]^+\)。

步骤7: 3,5-二乙氧基-4-氟-苯甲醛

向(3,5-二乙氧基-4-氟-苄基)-甲醇 (2.30 g, 10.7 mmol, 1.0 当量)在1,2-二氯乙烷 (50 mL)中的溶液中，加入活性 MnO₂ (2.89 g, 33.3 mmol, 3.1 当量)。将反应混合物于 50 °C 搅拌 21 h，然后通过 Hyflo Super Cel 过滤，
在减压下蒸发溶剂后，提供 1.90 g (83%) 的标题化合物。1H NMR (400 MHz, CDCl$_3$): δ 1.38 (t, J = 7.0 Hz, 6H), 4.09 (q, J = 7.0 Hz, 4H), 7.04 (d, J = 7.2 Hz, 2H), 9.75 (s, 1H)。MS (EI): 212.1 [M$^+$]。

中间体 B9

4-氨基-3,5-二乙氧基-苯甲醛

![结构式]

步骤1: (4-氨基-3,5-二乙氧基-苯基)-甲醇

于 0 °C，在 Ar 下，向 4-氨基-3,5-二乙氧基-苯甲酸乙酯 (2.8 g, 11.05 mmol, 1.0 当量；如 I. Kompis, A. Wick *Helv. Chim. Acta* 1977, 60, 3025-3034 中所述制备)在二氯甲烷 (50 mL) 中的溶液中，在 15 min 的时间内，慢慢地加入氯化二异丁基铝 (27.6 mL, 27.64 mmol, 2.5 当量；1.0 M 在二氯甲烷中的溶液)，并且在加入完成后，移走冷却浴。在搅拌 18 h 后，通过小心地加入硫酸钠饱和溶液 (10 mL)，萃取过量的氢化物。将固化混合物用二氯甲烷 (5 x 200 mL) 和 THF (2 x 150 mL) 萃取，合并的有机相用水 (3 x 100 mL) 洗涤，用 MgSO$_4$ 干燥，通过在减压下蒸发而浓缩，并且粗制材料由用庚烷/乙酸乙酯 (4:1 → 1:1) 浓度洗脱的二氧化碳柱色谱纯化，提供 1.10 g (47%) 的标题化合物。1H NMR (300 MHz, CDCl$_3$): δ 1.42 (t, J = 7.0 Hz, 3H), 3.82 (br s, 2H), 4.05 (q, J = 7.0 Hz, 2H), 4.54 (s, 2H), 6.50 (s, 2H)。13C NMR (75 MHz, CDCl$_3$): δ 15.03, 64.21, 66.00, 104.51, 125.44, 129.89, 146.71。MS (ISP): 211.9 [M+H$^+$]。

步骤2: 4-氨基-3,5-二乙氧基-苯甲酸

向(4-氨基-3,5-二乙氧基-苯基)-甲酯 (0.79 g, 3.74 mmol, 1.0 当量) 在 DMF (20 mL) 中的溶液，加入活性MnO$_2$ (1.63 g, 18.70 mmol, 5.0 当量)。将反应混合物于 rt 搅拌 24 h，通过 Hyflo Super Cel 过滤，将滤液用乙酸乙酯 (3 x 50 mL) 萃取，并且将合并的有机相用水洗涤，用 MgSO$_4$ 干燥，并且蒸发至干燥，由此提供 0.69 g (88%) 的标题化合物。1H NMR (300 MHz, CDCl$_3$):...
DMSO): δ 1.46 (t, $J = 7.0$ Hz, 3H), 4.15 (q, $J = 7.0$ Hz, 2H), 4.50 (br s, 2H), 7.04 (s, 2H), 9.70 (s, 1H)。MS (ISP): 210.0 [M+H]$^+$.

中间体 B10

3-乙氧基-4-甲基-苯甲醛 [CAS RN 157143-20-9]

中间体 B11

3-乙氧基-4-氟-苯甲醛

根据用于合成4-氟-3-乙氧基-苯甲醛 (中间体 B2) 的程序, 由4-氟-3-羟基-苯甲醛开始, 在由用己烷/乙酸乙酯 (10:1) 洗脱的二氧化硅快速柱色谱纯化后, 以73％的总产率制备标称化合物。1H NMR (300 MHz, DMSO): δ 1.32 (t, $J = 7.0$ Hz, 3H), 4.12 (q, $J = 7.0$ Hz, 2H), 7.34-7.41 (m, 1H), 7.47-7.56 (m, 2H), 9.87 (s, 1H)。MS (ISP): 186.1 [M+NH$_4$]$^+$.

中间体 B12

4-甲氧基-3-丙氧基-苯甲醛 [CAS RN 5922-56-5]
类似于制备 3-乙氧基-4-甲基-苯甲酰（中间体 B10），通过使用 K₂CO₃ 作为碱，将异香兰素与丙基溴在 DMF 中反应，制备标题化合物。

中间体 B13

3-(2-氟-乙氧基)-4-甲氧基-苯甲酰

向 3-羟基-4-甲氧基-苯甲酰（10.0 g，66.0 mmol，1.0 当量；可商购）在无水 DMF（40 mL）中的溶液中，加入 K₂CO₃（13.6 g，99.0 mmol，1.5 当量）和 1-溴-2-氟-乙烷（9.2 mg，72.0 mmol，1.1 当量），并且将混合物于 rt 搅拌 48 h。通过过滤除去 K₂CO₃，并且将有机相在减压下浓缩。向剩余物中，加入 NaCl 饱和溶液（100 mL），并且将溶液用乙酸乙酯（3 x 100 mL）萃取。将合并的有机相用 MgSO₄ 干燥，并且产物从异丙醇/二乙醚的混合物中结晶，得到 12.69 g (97%) 的标题化合物。¹H NMR (300 MHz，DMSO): δ3.89 (s，3H)，4.24-4.27 (m，1H)，4.34-4.37 (m，1H)，4.67-4.70 (m，1H)，4.83-4.86 (m，1H)，7.20 (d，J = 8.4 Hz，1H)，7.43 (d，J = 1.9 Hz，1H)，7.59 (dd，J = 8.4 Hz，J = 1.9 Hz，1H)，9.84 (s，1H)。MS (ISP): 198.6 [M+H]⁺。

中间体 B14

3-烯丙氧基-4-甲氧基-苯甲酰[CAS RN 225939-36-6]

类似于 3-乙氧基-4-甲基-苯甲酰（中间体 B10），通过使用 K₂CO₃ 作为碱，将 3-羟基-4-甲氧基-苯甲酰与烯丙基溴在 DMF 中反应，制备标题化合物。

中间体 B15

3-丁氧基-4-甲氧基-苯甲醛

类似于 3-乙氧基-4-甲基-苯甲醛 (中间体 B10)，通过使用 K₂CO₃ 作为碱，将 3-羟基-4-甲氧基-苯甲醛与 4-溴-丁烷在 DMF 中反应，制备目标化合物。

中间体 B16

3,5-二乙氧基-苯甲醛 [CAS RN 120355-79-5]

类似于 3-乙氧基-4-甲基-苯甲醛 (中间体 B10)，通过使用 K₂CO₃ 作为碱，将 3,5-二羟基苯甲醛与乙基碘在 DMF 中反应，制备目标化合物。

实施例 2 至 39

<table>
<thead>
<tr>
<th>No.</th>
<th>MW</th>
<th>化合物名称</th>
<th>原料</th>
<th>ISP [M+H]^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>337.81</td>
<td>8-(4-氯-3-乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 (中间体 A1)和</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-氯-3-乙氧基-苯甲醛(中间体 B1)</td>
<td>338.2</td>
</tr>
<tr>
<td>3</td>
<td>361.44</td>
<td>8-(3-异丁氧基-4-甲氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 (中间体 A1)和</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-异丁氧基-4-甲氧基-苯甲醛(中间体 B2)</td>
<td>362.2</td>
</tr>
<tr>
<td>4</td>
<td>375.47</td>
<td>8-(3,5-二异丙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 (中间体 A1)和</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,5-二异丙氧基-苯甲醛(中间体 B3)</td>
<td>376.3</td>
</tr>
<tr>
<td>5</td>
<td>381.86</td>
<td>8-(4-氯-3,5-二乙氧基-苄基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮 (中间体 A1)和</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-氯-3,5-二乙氧基-苯甲醛(中间体 B4)</td>
<td>382.3</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>6</td>
<td>426.32</td>
<td>8-(4-溴-3,5-二乙氧基-苯基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮（中间体A1）和 4-溴-3,5-二乙氧基-苯甲醛（中间体B5）</td>
<td>[M+H]^+ 428.1</td>
</tr>
<tr>
<td>7</td>
<td>412.49</td>
<td>8-(3,5-二乙氧基-4-吡咯-1-基-苯基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮（中间体A1）和 3,5-二乙氧基-4-吡咯-1-基-苯甲醛（中间体B6）</td>
<td>[M+H]^+ 413.3</td>
</tr>
<tr>
<td>8</td>
<td>441.50</td>
<td>8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮</td>
<td>1,3,8-三氮杂-螺[4.5]癸烷-2,4-二酮（中间体A1）和 2,6-二乙氧基-4'-氟-联苯-4-甲醛（中间体B7）</td>
<td>[M+H]^+ 442.3</td>
</tr>
<tr>
<td>9</td>
<td>398.93</td>
<td>8-(4-氯-3-乙氧基苯基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮</td>
<td>2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮酸盐（中间体A2）和 4-氯-3-乙氧基-苯甲醛（中间体B1）</td>
<td>[M+H]^+ 399.4</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>11</td>
<td>442.99</td>
<td>8-(4-氯-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮</td>
<td>2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮盐酸盐(中间体 A2)和4-氯-3,5-二乙氧基-苯甲酸(中间体 B4)</td>
<td>[M+H]^+ 443.4</td>
</tr>
<tr>
<td>12</td>
<td>423.56</td>
<td>8-(4-氨基-3,5-二乙氧基-苄基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮</td>
<td>2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮盐酸盐(中间体 A2)和4-氨基-3,5-二乙氧基-苯甲酸(中间体 B9)</td>
<td>[M+H]^+ 424.4</td>
</tr>
<tr>
<td>14</td>
<td>502.63</td>
<td>8-(2,6-二乙氧基-4'-氟-联苯-4-基甲基)-2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮</td>
<td>2-苯基-2,8-二氮杂-螺[4.5]癸-1-酮盐酸盐(中间体 A2)和2,6-二乙氧基-4'-氟-联苯-4-甲酸(中间体 B7)</td>
<td>[M+H]^+ 503.4</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------------------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>15</td>
<td>377.49</td>
<td>8-(3-乙氧基-4-甲基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐(中间体 A3)和3-乙氧基-4-甲基-苯甲醛(中间体 B10)</td>
<td>[M+H]^+ 378.3</td>
</tr>
<tr>
<td>16</td>
<td>381.45</td>
<td>8-(3-乙氧基-4-氟-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐(中间体 A3)和3-乙氧基-4-氟-苯甲醛(中间体 B11)</td>
<td>[M+H]^+ 382.3</td>
</tr>
<tr>
<td>17</td>
<td>397.91</td>
<td>8-(4-氯-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐(中间体 A3)和4-氯-3-乙氧基-苯甲醛(中间体 B1)</td>
<td>[M+H]^+ 398.2</td>
</tr>
<tr>
<td>18</td>
<td>379.46</td>
<td>8-(3-乙氧基-4-羟基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐(中间体 A3)和3-乙氧基-4-羟基-苯甲醛(可商购)</td>
<td>[M+H]^+ 380.3</td>
</tr>
<tr>
<td>19</td>
<td>393.49</td>
<td>8-(3-乙氧基-4-甲氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐(中间体 A3)和3-乙氧基-4-甲氧基-苯甲醛(可商购)</td>
<td>[M+H]^+ 394.3</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>20</td>
<td>407.51</td>
<td>8-(3,4-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和3,4-二乙氧基-苯甲醛 (可商购)</td>
<td>[M+H]^+ 408.3</td>
</tr>
<tr>
<td>21</td>
<td>419.52</td>
<td>8-(4-烯丙氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和4-烯丙氧基-3-乙氧基-苯甲醛 (可商购)</td>
<td>[M+H]^+ 420.4</td>
</tr>
<tr>
<td>22</td>
<td>421.54</td>
<td>8-(3-乙氧基-4-异丙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和3-乙氧基-4-异丙氧基-苯甲醛 (可商购)</td>
<td>[M+H]^+ 422.4</td>
</tr>
<tr>
<td>23</td>
<td>435.57</td>
<td>8-(3-乙氧基-4-异丁氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和3-乙氧基-4-异丁氧基-苯甲醛 (可商购)</td>
<td>[M+H]^+ 436.4</td>
</tr>
<tr>
<td>24</td>
<td>447.58</td>
<td>8-(4-环戊氧基-3-乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和4-环戊氧基-3-乙氧基-苯甲醛 (可商购)</td>
<td>[M+H]^+ 448.4</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>469.58</td>
<td>8-(4-苯氧基-3-乙氧基-苯基)-2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和4-苯氧基-3-乙氧基-苯甲醛(可商购)</td>
<td>[M+H]^+ 470.4</td>
</tr>
<tr>
<td>26</td>
<td>429.47</td>
<td>8-(4-二氯甲氧基-3-乙氧基-苯基)-2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和4-二氯甲氧基-3-乙氧基-苯甲醛(可商购)</td>
<td>[M+H]^+ 430.3</td>
</tr>
<tr>
<td>27</td>
<td>407.51</td>
<td>8-(4-甲氧基-3-丙氧基-苯基)-2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和4-甲氧基-3-丙氧基-苯甲醛(中间体 B12)</td>
<td>[M+H]^+ 408.3</td>
</tr>
<tr>
<td>28</td>
<td>407.51</td>
<td>8-(3-异丙氧基-4-甲氧基-苯基)-2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和3-异丙氧基-4-甲氧基-苯甲醛(可商购)</td>
<td>[M+H]^+ 408.3</td>
</tr>
<tr>
<td>29</td>
<td>411.48</td>
<td>8-[3-(2-氟-乙氧基)-4-甲氧基-苯基]-2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和3-(2-氟-乙氧基)-4-甲氧基-苯甲醛(中间体 B13)</td>
<td>[M+H]^+ 412.3</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]$^+$</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>30</td>
<td>405.50</td>
<td>8-(3-烯丙氧基-4-甲基氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3-烯丙氧基-4-甲基氧基-苯甲醛 (中间体 B14)</td>
<td>[M+H]$^+$ 406.3</td>
</tr>
<tr>
<td>31</td>
<td>421.54</td>
<td>8-(3-丁氧基-4-甲基氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3-丁氧基-4-甲基氧基-苯甲醛 (中间体 B15)</td>
<td>[M+H]$^+$ 422.4</td>
</tr>
<tr>
<td>32</td>
<td>421.54</td>
<td>8-(3-异丁氧基-4-甲基氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3-异丁氧基-4-甲基氧基-苯甲醛 (中间体 B2)</td>
<td>[M+H]$^+$ 422.4</td>
</tr>
<tr>
<td>33</td>
<td>433.55</td>
<td>8-(3-环戊氧基-4-甲基氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3-环戊氧基-4-甲基氧基-苯甲醛 (可商用)</td>
<td>[M+H]$^+$ 434.4</td>
</tr>
<tr>
<td>34</td>
<td>407.51</td>
<td>8-(3,5-二乙氧基-苄基)-2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氮杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3,5-二乙氧基-苯甲醛 (中间体 B16)</td>
<td>[M+H]$^+$ 408.3</td>
</tr>
<tr>
<td>No</td>
<td>MW</td>
<td>化合物名称</td>
<td>原料</td>
<td>ISP [M+H]^+</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>35</td>
<td>435.57</td>
<td>8-(3,5-二异丙氧基-苯基)-2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3,5-二异丙氧基-苯甲醛 (中间体 B3)</td>
<td>[M+H]^+ 436.4</td>
</tr>
<tr>
<td>36</td>
<td>425.50</td>
<td>8-(3,5-二乙氧基-4-氟-苯基)-2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3,5-二乙氧基-4-氟-苯甲醛 (中间体 B8)</td>
<td>[M+H]^+ 426.3</td>
</tr>
<tr>
<td>37</td>
<td>441.96</td>
<td>8-(4-氯-3,5-二乙氧基-苯基)-2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 4-氯-3,5-二乙氧基-苯甲醛 (中间体 B4)</td>
<td>[M+H]^+ 442.3</td>
</tr>
<tr>
<td>38</td>
<td>486.41</td>
<td>8-(4-溴-3,5-二乙氧基-苯基)-2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 4-溴-3,5-二乙氧基-苯甲醛 (中间体 B5)</td>
<td>[M+H]^+ 488.2</td>
</tr>
<tr>
<td>39</td>
<td>472.59</td>
<td>8-(3,5-二乙氧基-4-吡咯-1-基-苯基)-2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮</td>
<td>2-苯基-1,3,8-三氨杂-螺[4.5]癸-1-烯-4-酮盐酸盐 (中间体 A3)和 3,5-二乙氧基-4-吡咯-1-基-苯甲醛 (中间体 B6)</td>
<td>[M+H]^+ 473.4</td>
</tr>
</tbody>
</table>
实施例 40

4-(4-氯-苯甲酰基氨基)-1-(4-氯-3-乙氧基-苯基)-哌啶-4-羧酸酰胺

步骤 1：4-(4-氯-苯甲酰基氨基)-4-氰基-哌啶-1-羧酸叔丁酯

向4-氰基-4-氰基-哌啶-1-羧酸叔丁酯(1.25 g，5.55 mmol，1.0当量)以
如WO 03 / 104 236 A1(Bristol-Myers Squibb Company)中所述制备；[CAS RN 331281-25-5]在二氯甲烷(30 mL)和三乙胺(1.20 mL)中的溶液中，加入
4-氯-苯甲酰氯(1.09 g，6.21 mmol，1.12当量；可商购)，并且将反应物于rt搅拌过夜。加入1 M NaOH溶液(10 mL)，并且将反应混合物用乙酸乙酯萃取。将合并的有机相用水和NaCl饱和溶液洗涤，用MgSO4干燥
并且通过在减压下蒸发而浓缩。将粗制材料从己烷/乙酸乙酯的混合物中
结晶，得到0.71 g(44%)的标题化合物，为白色晶体。1H NMR(300 MHz,
CDCl3)：δ1.46(s，9H)，1.85(t，J = 10.2 Hz，2H)，2.45(br s，2H)，3.24
(t，J = 11.8 Hz，2H)，3.99(br d，J = 13.5 Hz，2H)，6.87(s，1H)，7.36(d,
J = 8.4 Hz，2H)，7.69(d，J = 8.4 Hz，2H)。MS(ISP)：364.4 [M+H]+。

步骤 2：4-氯-N-(4-氰基-哌啶-4-基)-苯甲酰胺盐酸盐(中间体 A4)

将4-(4-氯-苯甲酰基氨基)-4-氰基-哌啶-1-羧酸叔丁酯(0.23 g，0.63
mmol)在4 M HCl的二噁烷溶液(30 mL)中的溶液于rt搅拌2 h。在减压下
除去溶剂，并且将粗制产物在没有进一步纯化的情况下用于后续步骤，假
定定量脱保护并且形成了盐酸盐。注意：产物被一些伯酰胺(脂的部分水解)
污染。MS(ISP)：264.1 [M+H]+。

步骤 3：4-(4-氯-苯甲酰基氨基)-1-(4-氯-3-乙氧基-苯基)-哌啶-4-羧酸酰胺

向4-氯-N-(4-氰基-哌啶-4-基)-苯甲酰胺盐酸盐(45.03 mg，0.15 mmol,
1.0当量)在乙醇(1 mL)，乙酸(72.1 mg，1.2 mmol，8.0当量)和N-乙基二
异丙胺(77.6 mg，0.6 mmol，4.0当量)中的溶液中，加入4-氯-3-乙氧基-
苯甲醛(33.2 mg，0.18 mmol，1.2当量；中间体 B1)，并且将混合物于55℃
搅拌。在 1 h 后，加入溶解于乙醇 (0.5 mL) 中的氰基硼氢化钠 (47.1 mg, 0.75 mmol, 5.0 当量)，并且将混合物于 55 ℃ 搅拌过夜。在减压下除去溶剂和用乙腈 /水梯度洗脱的反相制备型 HPLC 的纯化提供 9.7 mg (14%) 的标题化合物。MS (ISP): 450.2 [M+H]⁺。

实施例 41 和 42

根据用于合成合成实施例 40 / 步骤 3 所述的程序，由 4-氯-N-(4-氰基-哌啶-4-基)-苯甲酰胺盐酸盐 (中间体 A4) 和如表 2 中所示的相应苯甲酰中间体，合成出另外的哌啶-4-羧酸酰胺衍生物。结果编辑于表 2 中并且包括实施例 41 和实施例 42。

<table>
<thead>
<tr>
<th>No</th>
<th>MW</th>
<th>化合物名称</th>
<th>原料</th>
<th>ISP [M+H]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>477.96</td>
<td>4-(4-氯-苯甲酰基氨基)-1-(3,5-二氧基-4-氟-苄基)-哌啶-4-羧酸酰胺</td>
<td>4-氯-N-(4-氰基-哌啶-4-基)-苯甲酰胺盐酸盐 (中间体 A4)和 3,5-二氧基-4-氟-苯甲酰 (中间体 B8)</td>
<td>[M+H]⁺ 478.2</td>
</tr>
<tr>
<td>42</td>
<td>494.42</td>
<td>4-(4-氯-苯甲酰基氨基)-1-(4-氯-3,5-二氧基-苄基)-哌啶-4-羧酸酰胺</td>
<td>4-氯-N-(4-氰基-哌啶-4-基)-苯甲酰胺盐酸盐 (中间体 A4)和 4-氯-3,5-二氧基-苯甲酰 (中间体 B4)</td>
<td>[M+H]⁺ 494.3</td>
</tr>
</tbody>
</table>

实施例 43

N-[4-氰基-1-(3-乙氧基-4-甲基-苄基)-哌啶-4-基]-5-甲基-烟酰胺
步骤 1: 4-氰基-4-[(5-甲基-吡啶-3-羰基)-氨基]-哌啶-1-羧酸叔丁酯

向 4-氨基-4-氰基-哌啶-1-羧酸叔丁酯 (0.485 g, 2.15 mmol, 1.0 当量;
步骤 2：N-(4-氰基-哌啶-4-基)-5-甲基-烟酰胺二盐酸盐 (中间体 A5)

将 4-氰基-4-[(5-甲基-吡啶-3-羰基)-氨基]-哌啶-1-羧酸叔丁酯 (0.48 g, 1.39 mmol) 在 4 M HCl 的二噁烷溶液 (7 mL) 中的溶液于 rt 搅拌 2 h。在减压下除去溶剂，并且将粗制产物在没有进一步纯化的情况下用于后续步骤，假定定量脱保护并且形成了二盐酸盐。注意：产物被一些叔酰胺 (脂的部分水解) 污染。MS (ISP): 245.4 [M+H]^+。

步骤 3：N-[4-氰基-1-(3-乙氧基-4-甲基-苄基)-哌啶-4-基]-5-甲基-烟酰胺

向 N-(4-氰基-哌啶-4-基)-5-甲基-烟酰胺二盐酸盐 (171.0 mg, 0.54 mmol, 1.0 当量) 在异丙醇 (5 mL) 中的溶液中，加入 3-乙氧基-4-甲基-苯甲醛 (88.7 mg, 0.54 mmol, 1.0 当量；中间体 B10)，四异丙醇钛 (766.5 mg, 2.70 mmol, 5.0 当量) 和 N-乙基二异丙胺 (209.5 mg, 1.62 mmol, 3.0 当量)，接着在搅拌 1 h 之后加入氰基硼氢化钠 (67.4 mg, 1.08 mmol, 2.0 当量)。使反应混合物反应过夜，然后直接倾倒到用乙酸乙酯洗脱的二氧化硅柱上。将分离出的粗制产物由用二氯甲烷 / 甲醇 (93: 7) 洗脱的第二二氧化硅柱纯化，最后得到 22.0 mg (24%) 的标题化合物，为无色油状物。MS
(ISP): 393.2 [M+H]^+。

6-氯-N-(4-氰基-哌啶-4-基)-烟酰胺中间体 A6 如下面所述制备
合成将在表 3 中使用的 6-氯-N-(4-氰基-哌啶-4-基)-烟酰胺 (中间体 A6)
6-氯-N-(4-氰基-哌啶-4-基)-烟酰胺二盐酸盐

步骤 1：4-[(6-氯-哌啶-3-羰基)-氨基]-4-氰基-哌啶-1-羧酸叔丁酯

向4-氨基-4-氰基-哌啶-1-羧酸叔丁酯 (0.527 g, 2.34 mmol, 1.0当量;
如WO 03 / 104 236 A1 (Bristol-Myers Squibb Company)中所述制备; [CAS RN 331281-25-5])在无水THF (12 mL)和N-乙基二异丙胺 (0.48 mL)中的溶液中，在(苯并三唑-1-基氧化)-三-(二甲基氨基)膦六氟磷酸盐(1.138 g, 2.58 mmol, 1.1当量; BOP试剂)存在下，加入6-氯-烟酸 (0.369 g, 2.34 mmol, 1.0当量)，并且将反应混合物于rt搅拌12 h。将反应混合物倾倒在碎冰/
NH_4Cl上，用乙酸乙酯萃取 (2 x 200 mL)，并且将合并的有机相用NaCl饱和
溶液 (2 x 100 mL)和水 (2 x 100 mL)洗涤。将有机相用Na_2SO_4干燥，通过
在减压下蒸发而浓缩，并且将粗制材料由用乙酸乙酯 / 三乙胺 (97: 3)
的混合物洗脱的二氧化硅柱色谱纯化，提供0.63 g (74%)的标题化合物，为
灰白色固体。MS (ISP): 365.1 [M+H]^+。

步骤 2：6-氯-N-(4-氰基-哌啶-4-基)-烟酰胺二盐酸盐

将 4-[(6-氯-哌啶-3-羰基)-氨基]-4-氰基-哌啶-1-羧酸叔丁酯 (0.30 g, 0.82 mmol)在 4 M HCl 的二嗯烷溶液 (4 mL)中的溶液于 rt 搅拌 1 h。在减压
下除去溶剂，并且将粗制产物在没有进一步纯化的情况下用于后续步骤，
假定定量脱保护并且形成了二盐酸盐。注意：产物被一些伯酰胺(腈的部分
水解)污染。MS (ISP): 265.3 [M+H]^+。

实施例 44 至 46

根据用于合成合成实施例 43 / 步骤 3 所述的程序，由 N-(4-氰基-哌啶
-4-基)-5-甲基-烟酰胺二盐酸盐 (中间体 A5) 和 6-氯-N-(4-氨基-哌啶-4-基)-烟酰胺二盐酸盐 (中间体 A6) 和如表 3 中所示的相应苯甲醛中间体，合成出另外的 5-甲基-烟酰胺衍生物。结果编辑于表 3 中并且包括实施例 44 至 46。

<table>
<thead>
<tr>
<th>No</th>
<th>MW</th>
<th>化合物名称</th>
<th>原料</th>
<th>ISP [M+H]^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>440.52</td>
<td>N-[4-氨基-1-(3,5-二乙氧基-4-氟-苯基)-哌啶-4-基]-5-甲基-烟酰胺</td>
<td>N-(4-氨基-哌啶-4-基)-5-甲基-烟酰胺二盐酸盐 (中间体 A5) 和 3,5-二乙氧基-4-氟-苯甲醛 (中间体 B8)</td>
<td>[M+H]^+ 441.3</td>
</tr>
<tr>
<td>45</td>
<td>477.39</td>
<td>6-氯-N-[1-(4-氯-3,5-二乙氧基-苯基)-4-氨基-哌啶-4-基]-烟酰胺</td>
<td>6-氯-N-(4-氨基-哌啶-4-基)-烟酰胺二盐酸盐 (中间体 A6) 和 4-氯-3,5-二乙氧基-苯甲醛 (中间体 B4)</td>
<td>[M+H]^+ 477.0</td>
</tr>
<tr>
<td>46</td>
<td>537.03</td>
<td>6-氯-N-[4-氨基-1-(2,6-二乙氧基-4'-氟-联苯-4基)-哌啶-4-基]-烟酰胺</td>
<td>6-氯-N-(4-氨基-哌啶-4-基)-烟酰胺二盐酸盐 (中间体 A6) 和 2,6-二乙氧基-4'-氟-联苯-4-甲醛 (中间体 B7)</td>
<td>[M+H]^+ 537.4</td>
</tr>
</tbody>
</table>
实施例 A

可以以常规方式制备含有下列成分的薄膜包衣片剂：

<table>
<thead>
<tr>
<th>成分</th>
<th>每片</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>核:</td>
<td></td>
</tr>
<tr>
<td>式 I 化合物</td>
<td>10.0 mg</td>
</tr>
<tr>
<td>微晶纤维素</td>
<td>23.5 mg</td>
</tr>
<tr>
<td>含水乳糖</td>
<td>60.0 mg</td>
</tr>
<tr>
<td>聚乙烯吡咯烷酮 K30</td>
<td>12.5 mg</td>
</tr>
<tr>
<td>淀粉羟乙酸钠</td>
<td>12.5 mg</td>
</tr>
<tr>
<td>硬脂酸镁 (核重)</td>
<td>1.5 mg</td>
</tr>
<tr>
<td></td>
<td>120.0 mg</td>
</tr>
<tr>
<td>薄膜包衣:</td>
<td></td>
</tr>
<tr>
<td>羟丙基甲基纤维素</td>
<td>3.5 mg</td>
</tr>
<tr>
<td>聚乙二醇 6000</td>
<td>0.8 mg</td>
</tr>
<tr>
<td>滑石</td>
<td>1.3 mg</td>
</tr>
<tr>
<td>氧化铁 (黄色)</td>
<td>0.8 mg</td>
</tr>
<tr>
<td>二氧化钛</td>
<td>0.8 mg</td>
</tr>
</tbody>
</table>

筛分活性成分，与微晶纤维素混和，并且将混合物用聚乙烯吡咯烷酮的水溶液制粒。将颗粒与淀粉羟乙酸钠和硬脂酸镁混合并且压制，分别获得 120 mg 或 350 mg 的核。将所述核用上述薄膜包衣的水溶液/悬浮液包衣。
实施例 B

可以以常规方式制备含有下列成分的胶囊:

<table>
<thead>
<tr>
<th>成分</th>
<th>每胶囊</th>
</tr>
</thead>
<tbody>
<tr>
<td>式I化合物</td>
<td>25.0 mg</td>
</tr>
<tr>
<td>乳糖</td>
<td>150.0 mg</td>
</tr>
<tr>
<td>玉米淀粉</td>
<td>20.0 mg</td>
</tr>
<tr>
<td>滑石</td>
<td>5.0 mg</td>
</tr>
</tbody>
</table>

筛分各组分并混合和填充到2#胶囊中。

实施例 C

注射液可以具有下列组成:

<table>
<thead>
<tr>
<th>成分</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>式I化合物</td>
<td>3.0 mg</td>
</tr>
<tr>
<td>明胶</td>
<td>150.0 mg</td>
</tr>
<tr>
<td>苯酚</td>
<td>4.7 mg</td>
</tr>
<tr>
<td>碳酸钠</td>
<td>获得最终的pH 7</td>
</tr>
<tr>
<td>注射液用水</td>
<td>加至1.0 ml</td>
</tr>
</tbody>
</table>
实施例 D

可以以常规方式制备含有下列成分的软明胶囊：

<table>
<thead>
<tr>
<th>胶囊内容物</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>式 I 化合物</td>
<td>5.0 mg</td>
</tr>
<tr>
<td>黄蜡</td>
<td>8.0 mg</td>
</tr>
<tr>
<td>氢化大豆油</td>
<td>8.0 mg</td>
</tr>
<tr>
<td>部分氢化植物油</td>
<td>34.0 mg</td>
</tr>
<tr>
<td>大豆油</td>
<td>110.0 mg</td>
</tr>
<tr>
<td>胶囊内容物重量</td>
<td>165.0 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>明胶囊囊</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>明胶</td>
<td>75.0 mg</td>
</tr>
<tr>
<td>甘油 85%</td>
<td>32.0 mg</td>
</tr>
<tr>
<td>Karion 83</td>
<td>8.0 mg (干物质)</td>
</tr>
<tr>
<td>二氧化钛</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>氧化铁黄</td>
<td>1.1 mg</td>
</tr>
</tbody>
</table>

将活性成分溶解在其它成分的温热熔融体中，将混合物填充到适当尺寸的软明胶囊中。按照常用程序处理填充的软明胶囊。
实施例E

可以以常规方式制备含有下列成分的小药囊：

<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>式 I 化合物</td>
<td>50.0 mg</td>
</tr>
<tr>
<td>乳糖，细粉</td>
<td>1015.0 mg</td>
</tr>
<tr>
<td>微晶纤维素 (AVICEL PH 102)</td>
<td>1400.0 mg</td>
</tr>
<tr>
<td>羧甲基纤维素钠</td>
<td>14.0 mg</td>
</tr>
<tr>
<td>聚乙烯吡咯烷酮 K30</td>
<td>10.0 mg</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>10.0 mg</td>
</tr>
<tr>
<td>调味添加剂</td>
<td>1.0 mg</td>
</tr>
</tbody>
</table>

将活性成分与乳糖、微晶纤维素和羧甲基纤维素钠混合，与聚乙烯吡咯烷酮在水中的混合物一起制粒。将颗粒与硬脂酸镁和调味添加剂混合并装入小药囊。