3/046770 Al

—

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 June 2003 (05.06.2003)

PCT

(10) International Publication Number

WO 03/046770 Al

(51) International Patent Classification”: GO6F 17/30

(21) International Application Number: PCT/US02/38019
(22) International Filing Date:
27 November 2002 (27.11.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
09/997,627 28 November 2001 (28.11.2001) US
(71) Applicant: PAVILION TECHNOLOGIES, INC.
[US/US]; 11100 Metric Boulevard, Suite 700, Austin, TX

78758 (US).

(72) Inventors: FERGUSON, Bruce; 903 Morning View
Place, Round Rock, TX 78664 (US). HARTMAN, Eric;
12703 Foxhound Cove, Austin, TX 78729 (US). JOHN-
SON, Doug; 2729 Fortuna Drive, Austin, TX 78733 (US).
HURLEY, Eric; 3426 Shady Valley, Austin, TX 78748
(US).

(74) Agents: HOOD, Jeffrey, C. et al.; Meyertons, Hood,
Kivlin, Kowert & Goetzel, P.C., P.O. Box 398, Austin, TX
78767-0398 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR HISTORICAL DATABASE TRAINING OF SUPPORT VECTOR MACHINES

Controller

1200
N\ 1202
1207 121
Support Vector Sy
; »! Support Vector
Machine . - Machine 1206 1221
configuration 1204 —
? 1218 Controller
——12?0 ‘ output
o data
!: :: :]J Historical database
:
Lo 1228 1228
mis:,ivals] Pracess | .| Product
1229 1212 1216

(57) Abstract: A system and method for historical database (1210) training of a support vector machine (SVM) (Figure 4) . The
SVM (1204) is trained with training sets from a stream of process data. The system detects availability of new training data, and
constructs a training set from the corresponding input data. Over time, many training sets are presented to the SVM. When multiple
presentations are needed to effectively train the SVM, a buffer of training sets is filled and updated as new training data becomes
available. Once the buffer is full, a new training set bumps the oldest training set from the buffer. The training sets are presented
one or more times (1230) each time a new training set is constructed. A historical database of time-stamped data may be used to
construct training sets for the SVM. The SVM may be trained retrospectively by searching the historical database and constructing

training sets based on the time-stamped data.

wO 03/046770 A1 NI 000 .0 00O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

TITLE: SYSTEM AND METHOD FOR HISTORICAL DATABASE TRAINING OF SUPPORT VECTOR
MACHINES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of non-linear models. More particularly, the present

invention relates to historical database training of a support vector machine.

2. Description of the Related Art

Many predictive systems may be characterized by the use of an internal model which represents a process
or system for which predictions are made. Predictive model types may be linear, non-linear, stochastic, or
analytical, among others. However, for complex phenomena non-linear models may generally be preferred due to
their ability to capture non-linear dependencies among various attributes of the phenomena. Examples of non-linear
models may include neural networks and support vector machines (SVMs).

Generally, a model is trained with training data, e.g., historical data, in order to reflect salient attributes and
behaviors of the phenomena being modeled. In the training process, sets of training data may be provided as inputs
to the model, and the model output may be compared to corresponding sets of desired outputs. The resulting error is
often used to adjust weights or coefficients in the model until the model generates the correct output (within some
error margin) for each set of training data. The model is considered to be in “training mode” during this process.
After training, the model may receive real-world data as inputs, and provide predictive output information which
may be used to control or make decisions regarding the modeled phenomena.

Predictive models may be used for analysis, control, and decision making in many areas, including
manufacturing, process control, plant management, quality control, optimized decision making, e-commerce,
financial markets and systems, or any other field where predictive modeling may be useful. For example, quality
control in a manufacturing plant is increasingly important. The control of quality and the reproducibility of quality
may be the focus of many efforts. For example, in Europe, quality is the focus of the ISO (International Standards
Organization, Geneva, Switzerland) 9000 standards. These rigorous standards provide for quality assurance in
production, installation, final inspection, and testing. They also provide guidelines for quality assurance between a
supplier and customer. ‘

The quality of a manufactured product is a combination of all of the properties of the product which affect
its usefulness to its user. Process control is the collection of methods used to produce the best possible product
properties in a manufacturing process, and is very important in the manufacture of products. Improper process
control may result in a product which is totally useless to the user, or in a product which has a lower value to the
user. When either of these situations occur, the manufacturer suffers (1) by paying the cost of manufacturing useless
products, (2) by losing the opportunity to profitably make a product during that time, and (3) by lost revenue from
reduced selling price of poor products. In the final analysis, the effectiveness of the process control used by a
manufacturer may determine whether the manufacturer's business survives or fails. For purposes of illustration,

quality and process control are described below as related to a manufacturing process, although process control may

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

also be used to ensure quality in processes other than manufacturing, such as e-commerce, portfolio management,

and financial systems, among others.

A. Quality and Process Conditions

Figure 22 shows, in block diagram form, key concepts concerning products made in a manufacturing
process. Referring now to Figure 22, raw materials 1222 may be processed under (controlled) process conditions
1906 in a process 1212 to produce a product 1216 having product properties 1904. Examples of raw materials
1222, process conditions 1906, and product properties 1904 may be shown in Figure 22. It should be understood
that these are merely examples for purposes of illustration, and that a product may refer to an abstract product, such
as information, analysis, decision-making, transactions, or any other type of usable object, result, or service.

Figure 23 shows a more detailed block diagram of the various aspects of the manufacturing of products
1216 using process 1212. Referring now to Figures 22 and 23, product 1216 is defined by one or more product
property aim value(s) 2006 of its product properties 1904. The product property aim values 2006 of the product
properties 1904 may be those which the product 1216 needs to have in order for it to be ideal for its intended end
use. The objective in running process 1212 is to manufacture products 1216 having product properties 1904 which
match the product property aim value(s) 2006.

The following simple example of a process 1212 is presented merely for purposes of illustration. The
example process 1212 is the baking of a cake. Raw materials 1222 (such as flour, milk, baking powder, lemon
flavoring, etc.) may be processed in a baking process 1212 under (controlled) process conditions 1906. Examples of
the (controlled) process conditions 1906 may include: mix batter until uniform, bake batter in a pan at a preset oven
temperature for a preset time, remove baked cake from pan, and allow removed cake to cool to room temperature.

The product 1216 produced in this example is a cake having desired properties 1904. For example, these
desired product properties 1904 may be a cake that is fully cooked but not burned, brown on the outside, yellow on
the inside, having a suitable lemon flavoring, etc.

Returning now to the general case, the actual product properties 1904 of product 1216 produced in a
process 1212 may be determined by the combination of all of the process conditions 1906 of process 1212 and the
raw materials 1222 that are utilized. Process conditions 1906 may be, for example, the properties of the raw
materials 1222, the speed at which process 1212 runs (also called the production rate of the process 1212), the
process conditions 1906 in each step or stage of the process 1212 (such as temperature, pressure, etc.), the duration

of each step or stage, and so on.

B. Controlling Process Conditions

Figure 23 shows a more detailed block diagram of the various aspects of the manufacturing of products
1216 using process 1212. Figures 22 and 23 should be referred to in connection with the following description.

To effectively operate process 1212, the process conditions 1906 may be maintained at one or more
process condition setpoint(s) or aim value(s) (called a regulatory controller setpoint(s) in the example of Figure 17,
discussed below) 1404 so that the product 1216 produced has the product properties 1904 matching the desired
product property aim value(s) 2006. This task may be divided into three parts or aspects for purposes of

explanation.

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

In the first part or aspect, the manufacturer may set (step 2008) initial settings of the process condition
setpoint(s) or aim value(s) 1404 in order for the process 1212 to produce a product 1216 having the desired product
property aim values 2006. Referring back to the example set forth above, this would be analogous to deciding to set
the temperature of the oven to a particular setting before beginning the baking of the cake batter.

The second step or aspect involves measurement and adjustment of the process 1212. Specifically, process
conditions 1906 may be measured to produce process condition measurement(s) 1224. The process condition
measurement(s) 1224 may be used to generate adjustment(s) 1208 (called controller output data in the example of
Figure 4, discussed below) to controllable process state(s) 2002 so as to hold the process conditions 1906 as close as
possible to process condition setpoint 1404. Referring again to the example above, this is analogous to the way the
oven measures the temperature and turns the heating element on or off so as to maintain the temperature of the oven
at the desired temperature value.

The third stage or aspect involves holding product property measurement(s) of the product properties 1904
as close as possible to the product property aim value(s) 2006. This involves producing product property
measurement(s) 1304 based on the product properties 1904 of the product 1216. From these measurements,
adjustment to process condition setpoint 1402 may be made to the process condition setpoint(s) 1404 so as to
maintain process condition(s) 1906. Referring again to the example above, this would be analogous to measuring
how well the cake is baked. This could be done, for example, by sticking a toothpick into the cake and adjusting the
temperature during the baking step so that the toothpick eventually comes out clean.

It should be understood that the previous description is intended only to show the general conditions of
process control and the problems associated with it in terms of producing products of predetermined quality and
properties. It may be readily understood that there may be many variations and combinations of tasks that are -
encountered in a given process situation. Often, process control problems may be very complex.

One aspect of a process being controlled is the speed with which the process responds. Although processes
may be very complex in their response patterns, it is often helpful to define a time constant for control of a process.
The time constant is simply an estimate of how quickly control actions may be carried out in order to effectively
control the process.

In recent years, there has been a great push towards the automation of process control. One motivation for
this is that such automation results in the manufacture of products of desired product properties where the
manufacturing process that is used is too complex, too time-consuming, or both, for people to deal with manually.

Thus, the process control task may be generalized as being made up of five basic steps or stages as follows:

(1) the initial setting of process condition setpoint(s) 2008;

(2) producing process condition measurement(s) 1224 of the process condition(s) 1906;

(3) adjusting 1208 controllable process state(s) 2002 in response to the process condition measurement(s)

1224;

(4) producing product property measurement(s) 1304 based on product properties 1904 of the

manufactured product 1216; and

(5) adjusting 1402 process condition setpoint(s) 1404 in response to the product property measurements

1304.

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

The explanation which follows explains the problems associated with meeting and optimizing these five

steps.

C. The Measurement Problem

As shown above, the second and fourth steps or aspects of process control involve measurement 1224 of
process conditions 1906 and measurement 1304 of product properties 1904, respectively. Such measurements may
be sometimes very difficult, if not impossible, to effectively perform for process control.

For many products, the important product properties 1904 relate to the end use of the product and not to the
process conditions 1906 of the process 1212. One illustration of this involves the manufacture of carpet fiber. An
important product property 1904 of carpet fiber is how uniformly the fiber accepts the dye applied by the carpet
maker. Another example involves the cake example set forth above. An important product property 1904 of a
baked cake is how well the cake resists breaking apart when the frosting is applied. Typically, the measurement of
such product properties 1904 is difficult and/or time consuming and/or expensive to make.

An example of this problem may be shown in connection with the carpet fiber example. The ability of the
fiber to uniformly accept dye may be measured by a laboratory (lab) in which dye samples of the carpet fiber are
used. However, such measurements may be unreliable. For example, it may take a number of tests before a reliable
result may be obtained. Furthermore, such measurements may also be slow. In this example, it may take so long to
conduct the dye test that the manufacturing process may significantly change and be producing different product
properties 1904 before the lab test results are available for use in controlling the process 1212.

It should be noted, however, that some process condition measurements 1224 may be inexpensive, take
little time, and may be quite reliable. Temperature typically may be measured easily, inexpensively, quickly, and
reliably. For example, the temperature of the water in a tank may often be easily measured. But oftentimes process
conditions 1906 make such easy measurements much more difficult to achieve. For example, it may be difficult to
determine the level of a foaming liquid in a vessel. Moreover, a corrosive process may destroy measurement
sensors, such as those used to measure pressure.

Regardless of whether or not measurement of a particular process condition 1906 or product property 1904
is casy or difficult to obtain, such measurement may be vitally important to the effective and necessary control of the
process 1212. It may thus be appreciated that it would be preferable if a direct measurement of a specific process
condition 1906 and/or product property 1904 could be obtained in an inexpensive, reliable, timely and effective

manner.

D. Conventional Computer Models as Predictors of Desired Measurements

As stated above, the direct measurement of the process conditions 1906 and the product properties 1904 is
often difficult, if not impossible, to do effectively.

One response to this deficiency in process control has been the development of computer models (not
shown) as predictors of desired measurements. These computer models may be used to create values used to control
the process 1212 based on inputs that may not be identical to the particular process conditions 1906 and/or product
properties 1904 that are critical to the control of the process 1212. In other words, these computer models may be
used to develop predictions (estimates) of the particular process conditions 1906 or product properties 1904. These

predictions may be used to adjust the controllable process state 2002 or the process condition setpoint 1404.
4

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

Such conventional computer models, as explained below, have limitations. To better understand these
limitations and how the present invention overcomes them, a brief description of each of these conventional models
is set forth.

1. Fundamental Models

A computer-based fundamental model (not shown) uses known information about the process 1212 to
predict desired unknown information, such as product conditions 1906 and product properties 1904. A fundamental
model may be based on scientific and engineering principles. Such principles may include the conservation of
material and energy, the equality of forces, and so on. These basic scientific and engineering principles may be
expressed as equations which are solved mathematically or numerically, usually using a computer program. Once
solved, these equations may give the desired prediction of unknown information.

Conventional computer fundamental models have significant limitations, such as:

(1) They may be difficult to create since the process 1212 may be described at the level of scientific understanding,
which is usually very detailed;

(2) Not all processes 1212 are understood in basic engineering and scientific principles in a way that may be
computer modeled;

(3) Some product properties 1904 may not be adequately described by the results of the computer fundamental
models; and

(4) The number of skilled computer model builders is limited, and the cost associated with building such models is
thus quite high. »

These problems result in computer fundamental models being practical only in some cases where

measurement is difficult or impossible to achieve.

2. Empirical Statistical Models

Another conventional approach to solving measurement problems is the use of a computer-based statistical
model (not shown).

Such a computer-based statistical model may use known information about process 1212 to determine
desired information that may not be effectively measured. A statistical model may be based on the correlation of
measurable process conditions 1906 or product properties 1904 of the process 1212.

To use an example of a computer-based statistical model, assume that it is desired to be able to predict the
color of a plastic product 1216. This is very difficult to measure directly, and takes considerable time to perform.
In order to build a computer-based statistical model which will produce this desired product property 1904
information, the model builder would need to have a base of experience, including known information and actual
measurements of desired unknown information. For example, known information may include the temperature at
which the plastic is processed. Actual measurements of desired unknown information may be the actual
measurements of the color of the plastic.

A mathematical relationship (i.e., an equation) between the known information and the desired unknown
information may be created by the developer of the empirical statistical model. The relationship may contain one or
more constants (which may be assigned numerical values) which affect the value of the predicted information from
any given known information. A computer program may use many different measurements of known information,

with their corresponding actual measurements of desired unknown information, to adjust these constants so that the
5

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

best possible prediction results may be achieved by the empirical statistical model. Such a computer program, for
example, may use non-linear regression.

Computer-based statistical models may sometimes predict product properties 1904 which may not be well
described by computer fundamental models. However, there may be significant problems associated with computer
statistical models, which include the following:

(1) Computer statistical models require a good design of the model relationships (i.e., the equations) or the

predictions will be poor;

(2) Statistical methods used to adjust the constants typically may be difficult to use;

(3) Good adjustment of the constants may not always be achieved in such statistical models; and

(4) As is the case with fundamental models, the number of skilled statistical model builders is limited, and

thus the cost of creating and maintaining such statistical models is high.

The result of these deficiencies is that computer-based empirical statistical models may be practical in only

some cases where the process conditions 1906 and/or product properties may not be effectively measured.

E. Deficiencies in the Related Art

As set forth above, there are considerable deficiencies in conventional approaches to obtaining desired
measurements for the process conditions 1906 and product properties 1904 using conventional direct measurement,
computer fundamental models, and computer statistical models. Some of these deficiencies are as follows:

(1) Product properties 1904 may often be difficult to measure;

(2) Process conditions 1906 may often be difficult to measure;

(3) Determining the initial value or settings of the process conditions 1906 when making a new product

1216 is often difficult; and

(4) Conventional computer models work only in a small percentage of cases when used as substitutes for

measurements.

Although the above limitations have been described with respect to process control, it should be noted that
these arguments apply to other application domains as well, such as plant management, quality control, optimized
decision making, e-commerce, financial markets and systems, or any other field where predictive modeling may be
used.

Therefore, improved systems and methods for historical database training of a support vector machine are

desired.

SUMMARY OF THE INVENTION

A system and method are presented for historical database training of a support vector machine. The
support vector machine may train by retrieving training sets from a stream of process data. The support vector
machine may detect the availability of new training data, and may construct a training set by retrieving the
corresponding input data. The support vector machine may be trained using the training set. Over time, many
training sets may be presented to the support vector machine.

The support vector machine may detect training input data in several ways. In one approach, the support
vector machine may monitor for changes in data values of training input data. A change may indicate that new data

is available. In a second approach, the support vector machine may compute changes in raw training input data from
6

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

one cycle to the next. The changes may be indicative of the action of human operators or other actions in the
process. In a third mode, a historical database may be used and the support vector machine may monitor for
changes in a timestamp of the training input data. Often laboratory data may be used as training input data in this
approach.

When new training input data is detected, the support vector machine may construct a training set by
retrieving input data corresponding to the new training input data. Often, the current or most recent values of the
input data may be used. When a historical database provides both the training input data and the input data, the
input data is retrieved from the historical database for a time period selected using the timestamps of the training
input data.

For some support vector machines or training situations, multiple presentations of each training set may be
needed to effectively train the support vector machine. In this case, a buffer of training sets (e.g., a FIFO-first in,
first out--buffer) is filled and updated as new training data becomes available. The size of the buffer may be
selected in accordance with the training needs of the support vector machine. Once the buffer is full, a new training
set may bump the oldest training set from the buffer. The training sets in the buffer may be presented one or more
times each time a new training set is constructed. It is noted that the use of a buffer to store training sets is but one
example of storage means for the training sets, and that other storage means are also contemplated, including lists
(such as queues and stacks), databases, and arrays, among others.

If a historical database is used, the support vector machine may be trained retrospectively. Training sets
may be constructed by searching the historical database over a time span of interest for training input data. When
training input data are found, an input data time is selected using the training input data timestamps, and the training
set is constructed by retrieving the input data corresponding to the input data time. Multiple presentations may also
be used in the retrospective training approach.

In one embodiment, the method may include building a first training set using training data, where the
training data includes one or more timestamps indicating a chronology of the training data and one or more process
parameter values corresponding to each timestamp. The first training set may include process parameter values
corresponding to a first time period in the chronology. In one embodiment, building the first training set may
include retrieving the training data from a historical database, selecting a training data time period based on the one
or more timestamps, and retrieving the process parameter values from the training data indicated by the training data
time period. Thus, the first training set includes retrieved process parameter values in chronological order over the
selected training data time period. The support vector machine may then be trained using the first training set.

Then, a second training set may be generated by removing at least a subset of the parameter values of the
first training set, preferably the oldest parameter values of the training set, and adding new parameter values from
the training data based on the timestamps to generate a second training set. Thus, the second training set
corresponds to a second time period in the chronology. The support vector machine may then be trained using the
second training set. The process may then be repeated, successively updating the training set to generate new
training sets by removing old data and adding new data based on the timestamps and training the support vector
machine with each training set.

The historical database trained support vector machine may be used for process measurement,
manufacturing, supervisory control, regulatory control functions, optimization, real-time optimization, decision-

making systems, e-marketplaces, e-commerce, data analysis, data mining, financial analysis, stock and/or bond
7

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

analysis/management, as well as any other field or domain where predictive or classification models may be useful.
Using data pointers, easy access to many process data systems may be achieved. A modular approach with natural
language configuration of the support vector machine may be used to implement the support vector machine. Expert
system functions may be provided in the modular support vector machine to provide decision-making functions for

use in control, analysis, management, or other areas of application.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading the following detailed
description and upon reference to the accompanying drawings in which:

Figure 1 illustrates an exemplary computer system according one embodiment of the present invention;

Figure 2 is an exemplary block diagram of the computer system illustrated in Figure 1, according to one
embodiment of the present invention;

Figure 3 is a nomenclature diagram illustrating one embodiment of the present invention at a high level;

Figure 4 is a representation of the architecture of an embodiment of the present invention;

Figure 5 is a high level block diagram of the six broad steps included in one embodiment of a support
vector machine process control system and method according to the present invention;

Figure 6 is an intermediate block diagram of steps and modules included in the store input data and training
input data step or module 102 of Figure 5, according to one embodiment;

Figure 7 is an intermediate block diagram of steps and modules included in the configure and train support
vector machine step or module 104 of Figure 5, according to one embodiment;

Figure 8 is an intermediate block diagram of input steps and modules included in the predict output data
using support vector machine step or module 106 of Figure 5, according to one embodiment;

Figure 9 is an intermediate block diagram of steps and modules included in the retrain support vector
machine step or module 108 of Figure 5, according to one embodiment;

Figure 10 is an intermediate block diagram of steps and modules included in the enable/disable control step
or module 110 of Figure 5, according to one embodiment;

Figure 11 is an intermediate block diagram of steps and modules included in the control process using
output data step or module 112 of Figure 5, according to one embodiment;

Figure 12 is a detailed block diagram of the configure support vector machine step or module 302 of the
relationship of Figure 7, according to one embodiment;

Figure 13 is a detailed block diagram of the new training input data step or module 306 of Figure 7,
according to one embodiment,

Figure 14 is a detailed block diagram of the train support vector machine step or module 308 of Figure 7,
according to one embodiment;

Figure 15 is a detailed block diagram of the error acceptable step or module 310 of Figure 7, according to
one embodiment;

Figure 16 is a representation of the architecture of an embodiment of the present invention having the
additional capability of using laboratory values from a historical database 1210;

Figure 17 is an embodiment of controller 1202 of Figures 4 and 16 having a supervisory controller 1408

and a regulatory controller 1406;

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

Figure 18 illustrates various embodiments of controller 1202 of Figure 17 used in the architecture of Figure
4;

Figure 19 is a modular version of block 1502 of Figure 18 illustrating the various different types of
modules that may be utilized with a modular support vector machine 1206, according to one embodiment;

Figure 20 illustrates an architecture for block 1502 having a plurality of modular support vector machines
1702-1702" with pointers 1710-1710" pointing to a limited set of support vector machine procedures 1704-1704",
according to one embodiment;

Figure 21 illustrates an alternate architecture for block 1502 having a plurality of modular support vector
machines 1702-1702" with pointers 1710-1710" to a limited set of support vector machine procedures 1704-1704",
and with parameter pointers 1802-1802" to a limited set of system parameter storage areas 1806-1806", according to
one embodiment;

Figure 22 is a high level block diagram illustrating the key aspects of a process 1212 having process
conditions 1906 used to produce a product 1216 having product properties 1904 from raw materials 1222, according
to one embodiment;

Figure 23 illustrates the various steps and parameters which may be used to perform the control of process
1212 to produce products 1216 from raw materials 1222, according to one embodiment;

Figure 24 is an exploded block diagram illustrating the various parameters and aspects that may make up
the support vector machine 1206, according to one embodiment;

Figure 25 is an exploded block diagram of the input data specification 2204 and the output data
specification 2206 of the support vector machine 1206 of Figure 24, according to one embodiment;

Figure 26 is an exploded block diagram of the prediction timing control 2212 and the training timing
control 2214 of the support vector machine 1206 of Figure 24, according to one embodiment;

Figure 27 is an exploded block diagram of various examples and aspects of controller 1202 of Figure 4,
according to one embodiment;

Figure 28 is a representative computer display of one embodiment of the present invention illustrating part
of the configuration specification of the support vector machine block 1206, according to one embodiment;

Figure 29 is a representative computer display of one embodiment of the present invention illustrating part
of the data specification of the support vector machine block 1206, according to one embodiment;

Figure 30 illustrates a computer screen with a pop-up menu for specifying the data system element of the
data specification, according to one embodiment;

Figure 31 illustrates a computer screen with detailed individual items of the data specification display of
Figure 29, according to one embodiment;

Figure 32 is a detailed block diagram of an embodiment of the enable control step or module 602 of Figure

10;

Figure 33 is a detailed block diagram of embodiments of steps and modules 802, 804 and 806 of Figure 12;
and

Figure 34 is a detailed block diagram of embodiments of steps and modules 808, 810, 812 and 814 of
Figure 12.

While the invention is susceptible to various modifications and alternative forms, specific embodiments

thereof may be shown by way of example in the drawings and will herein be described in detail. It should be
9

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

understood, however, that the drawing and detailed description thereto are not intended to limit the invention to the
particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives

falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS

Figure 1 - Computer System

Figure 1 illustrates a computer system 82 operable to execute a support vector machine for performing
modeling and/or control operations. One embodiment of a method for creating and/or using a support vector
machine is described below. The computer system 82 may be any type of computer system, including a personal
computer system, mainframe computer system, workstation, network appliance, Internet appliance, personal digital
assistant (PDA), television system or other device. In general, the term "computer system” can be broadly defined
to encompass any device having at least one processor that executes instructions from a memory medium.

As shown in Figure 1, the computer system 82 may include a display device operable to display operations
associated with the support vector machine. The display device may also be operable to display a graphical user
interface of process or control operations. The graphical user interface may comprise any type of graphical user
interface, e.g., depending on the computing platform.

The computer system 82 may include a memory medium(s) on which one or more computer programs or
software components according to one embodiment of the present invention may be stored. For example, the memory
medium may store one or more support vector machine software programs (support vector machines) which are
executable to perform the methods described herein. Also, the memory medium may store a programming development
environment application used to create and/or execute support vector machine software programs. Tﬁe memory
medium may also store operating system software, as well as other software for operation of the computer system.

The term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or
tape device; a computer system memory or random access memory such as DRAM, SRAM, EDO RAM, Rambus
RAM, etc.; or a non-volatile memory such as a magnetic media, e.g., a hard drive, or optical storage. The memory
medium may comprise other types of memory as well, or combinations thereof. In addition, the memory medium may
be located in a first computer in which the programs are executed, or may be located in a second different computer
which connects to the first computer over a network, such as the Internet. In the latter instance, the second computer
may provide program instructions to the first computer for execution.

As used herein, the term “support vector machine” refers to at least one software program, or other executable
implementation (e.g., an FPGA), that implements a support vector machine as described herein. The support vector
machine software program may be executed by a processor, such as in a computer system. Thus the various support
vector machine embodiments described below are preferably implemented as a software program executing on a

computer system.

Ficure 2 - Computer System Block Diagram

Figure 2 is an embodiment of an exemplary block diagram of the computer system illustrated in Figure 1. Itis
noted that any type of computer system configuration or architecture may be used in conjunction with the system and

method described herein, as desired, and Figure 2 illustrates a representative PC embodiment. It is also noted that the
10

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

computer system may be a general purpose computer system such as illustrated in Figure 1, or other types of
embodiments. The elements of a computer not necessary to understand the present invention have been omitted for
simplicity.

The computer system 82 may include at least one central processing unit or CPU 160 which is coupled to a
processor or host bus 162. The CPU 160 may be any of various types, including an x86 processor, e.g., a Pentium
class, a PowerPC processor, a CPU from the SPARC family of RISC processors, as well as others. Main memory
166 is coupled to the host bus 162 by means of memory controller 164. The main memory 166 may store one or
more computer programs or libraries according to the present invention. The main memory 166 also stores
operating system software as well as the software for operation of the computer system, as well known to those
skilled in the art.

The host bus 162 is coupled to an expansion or input/output bus 170 by means of a bus controller 168 or
bus bridge logic. The expansion bus 170 is preferably the PCI (Peripheral Component Interconnect) expansion bus,
although other bus types may be used. The expansion bus 170 may include slots for various devices such as a video

display subsystem 180 and hard drive 182 coupled to the expansion bus 170, among others (not shown).

1. Overview of Support Vector Machines

Figure 3 may provide a reference of consistent terms for describing an embodiment of the present
invention. Figure 3 is a nomenclature diagram which shows the various names for elements and actions used in
describing various embodiments of the present invention. In referring to Figure 3, the boxes may indicate elements
in the architecture and the labeled arrows may indicate actions.

As discussed below in greater detail, one embodiment of the present invention essentially utilizes support
vector machines to provide predicted values of important and not readily obtainable process conditions 1906 and/or
product properties 1904 to be used by a controller 1202 to produce controller output data 1208 used to control the
process 1212,

As shown in Figure 4, a support vector machine 1206 may operate in conjunction with a historical database
1210 which provides input sensor(s) data 1220. It should be noted that the embodiment described herein relates to
process control, such as of a manufacturing plant. It should be understood, however, that the drawings and detailed
description thereto are not intended to limit the invention to process control, but on the contrary, various
embodiments of the invention may be contemplated to be applicable in many other areas as well, such as process
measurement, manufacturing, supervisory control, regulatory control functions, optimization, real-time optimization,
decision-making systems, data analysis, data mining, e-marketplaces, e-commerce, financial analysis, stock and/or
bond analysis/management, as well as any other field or domain where predictive or classification models may be
useful. Thus, specific steps or modules described herein which apply only to process control embodiments may be
different, or omitted as appropriate or desired. It should also be noted that in various embodiments of the present
invention, components described herein as sensors or actuators may comprise software constructs or operations
which provide or control information or information processes, rather than physical phenomena or processes.

Referring now to Figures 4 and 5, input data and training input data may be stored in a historical database
with associated timestamps as indicated by a step or module 102. In parallel, the support vector machine 1206 may
be configured and trained in a step or module 104. The support vector machine 1206 may be used to predict output

data 1218 using input data 1220, as indicated by a step or module 106. The support vector machine 1206 may then
11

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

be retrained in a step or module 108, and control using the output data may be enabled or disabled in a step or
module 110. In parallel, control of the process using the output data may be performed in a step or module 112.
Thus, the system may collect and store the appropriate data, may configure and may train the support vector
machine, may use the support vector machine to predict output data, and may enable control of the process using the
predicted output data.

Various embodiments of the present invention utilize a support vector machine 1206, and are described in
detail below.

In order to fully appreciate the various aspects and benefits produced by the various embodiments of the
present invention, an understanding of support vector machine technology is useful. For this reason, the following
section discusses support vector machine technology as applicable to the support vector machine 1206 of various

embodiments of the system and method of the present invention.

A. Introduction

Historically, classifiers have been determined by choosing a structure, and then selecting a parameter
estimation algorithm used to optimize some cost function. The structure chosen may fix the best achievable
generalization error, while the parameter estimation algorithm may optimize the cost function with respect to the
empirical risk.

There are a number of problems with this approach, however. These problems may include:

1. The model structure needs to be selected in some manner. If this is not done correctly, then even
with zero empirical risk, it is still possible to have a large generalization error.

2. If it is desired to avoid the problem of over-fitting, as indicated by the above problem, by
choosing a smaller model size or order, then it may be difficult to fit the training data (and hence minimize the
empirical risk).

3. Determining a suitable learning algorithm for minimizing the empirical risk may still be quite
difficult. It may be very hard or impossible to guarantee that the correct set of parameters is chosen.

The support vector method is a recently developed technique which is designed for efficient
multidimensional function approximation. The basic idea of support vector machines (SVMs) is to determine a
classifier or regression machine which minimizes the empirical risk (i.e., the training set error) and the confidence
interval (which corresponds to the generalization or test set error), that is, to fix the empirical risk associated with an
architecture and then to use a method to minimize the generalization error. One advantage of SVMs as adaptive
models for binary classification and regression is that they provide a classifier with minimal VC (Vapnik-
Chervonenkis) dimension which implies low expected probability of generalization errors. SVMs may be used to
classify linearly separable data and nonlinearly separable data. SVMs may also be used as nonlinear classifiers and
regression machines by mapping the input space to a high dimensional feature space. In this high dimensional
feature space, linear classification may be performed.

In the last few years, a significant amount of research has been performed in SVMs, including the areas of
learning algorithms and training methods, methods for determining the data to use in support vector methods, and
decision rules, as well as applications of support vector machines to speaker identification, and time series

prediction applications of support vector machines.

12

10

15

20

25

WO 03/046770 PCT/US02/38019

Support vector machines have been shown to have a relationship with other recent nonlinear classification
and modeling techniques such as: radial basis function networks, sparse approximation, PCA (principle components
analysis), and regularization. Support vector machines have also been used to choose radial basis function centers.

A key to understanding SVMs is to see how they introduce optimal hyperplanes to separate classes of data

in the classifiers. The main concepts of SVMs are reviewed in the next section.

B. How Support Vector Machines Work

The following describes support vector machines in the context of classification, but the general ideas

presented may also apply to regression, or curve and surface fitting.

1. Optimal Hyperplanes

Consider an m-dimensional input vector X = [Xiy.oXml' € X © R™and a one-dimensional output y e

{-1,1}. Let there exist n training vectors (x,y;) i = 1,..,n. Hence we may write X =] x;X5._ Xp] Or

1
X11 oo Xin

I
I
)
|
|

L Xml <o Xmn]

A hyperplane capable of performing a linear separation of the training data is described by

wix+b=0)

where w = [ww. Wy] ,Wwe Wc R™

The concept of an optimal hyperplane was proposed by Vladimir Vapnik. For the case where the training
data is linearly separable, an optimal hyperplane separates the data without error and the distance between the

hyperplane and the closest training points is maximal.

2. Canonical Hyperplanes

A canonical hyperplane is a hyperplane (in this case we consider the optimal hyperplane) in which the
parameters are normalized in a particular manner.
Consider (2) which defines the general hyperplane. It is evident that there is some redundancy in this

equation as far as separating sets of points. Suppose we have the following classes

yiiwx#b)> 1 i=l.,n (3

wherey e [-1,1].

13

WO 03/046770 PCT/US02/38019

One way in which we may constrain the hyperplane is to observe that on either side of the hyperplane, we
may have w'x+b>0 or w'x+b<0. Thus, if we place the hyperplane midway between the two closest points to the

hyperplane, then we may scale w,b such that

| wxi+b|=0 (4)
l.n
Now, the distance d from a point X; to the hyperplane denoted by (w,b) is given by

l WTXi+b|
dwbix) = —— (5)

Iwll

5 where ||w|| = w"w. By considering two points on opposite sides of the hyperplane, the canonical hyperplane is
y yp p

found by maximizing the margin

p(wb) = min d(w,b;x)+ min d(w,b;x;)
Lyi=1 hyi=1
(6)
2

lIwll

This implies that the minimum distance between two classes i and j is at least [2/(flwih.

Hence an optimization function which we seek to minimize to obtain canonical hyperplanes, is

1

2
Jw= = [wl])
2
10 Normally, to find the parameters, we would minimize the training error and there are no constraints on w,b.

However, in this case, we seek to satisfy the inequality in (3). Thus, we need to solve the constrained optimization
problem in which we seek a set of weights which separates the classes in the usually desired manner and also
minimizing J(w), so that the margin between the classes is also maximized. Thus, we obtain a classifier with
optimally separating hyperplanes.

15
C. An SVM Learning Rule

For any given data set, one possible method to determine wpy,by such that (8) is minimized would be to use a
constrained form of gradient descent. In this case, a gradient descent algorithm is used to minimize the cost function

J(w), while constraining the changes in the parameters according to (3). A better approach to this problem however,

14

10

WO 03/046770 PCT/US02/38019

is to use Lagrange multipliers which is well suited to the nonlinear constraints of (3). Thus, we introduce the
Lagrangian equation:
1 n
Lowboy= = lwll > X alylwx+bl-1) (8)
2 i=1

where o; are the Lagrange multipliers and ;>0.
The solution is found by maximizing L with respect to o; and minimizing it with respect to the primal

variables w and b. This problem may be transformed from the primal case into its dual and hence we need to solve

max min L(w,b,x))

o w,b

At the solution point, we have the following conditions

OL(wWg,bo,& o)
= 0
ow
(10)
OL(wg,bg,0 o)
= 0
ob

where solution variables wg,bo,0 o are found. Performing the differentiations, we obtain respectively,

n
Z O oiYi 0
i=1
(11)
n
Wo = Z K 0iXiYi

and in each case 0 ¢;>0,i=1,..,n.

These are properties of the optimal hyperplane specified by (wo,bg). From (14) we note that given the
Lagrange multipliers, the desired weight vector solution may be found directly in terms of the training vectors.
To determine the specific coefficients of the optimal hyperplane specified by (wo,by) we proceed as

follows. Substitute (13) and (14) into (9) to obtain

15

WO 03/046770 PCT/US02/38019

n 1 n n
Lp(wb,o)= > &= 2 > 00y % X;) (12)
i=1 2 i=1 j=1
It is necessary to maximize the dual form of the Lagrangian equation in (15) to obtain the required
Lagrange multipliers. Before doing so however, consider (3) once again. We observe that for this inequality, there

will only be some training vectors for which the equality holds true. That is, only for some (x;,y;) will the following

equation hold:
ylwx+bl=1 i=1,.n (13)

5 The training vectors for which this is the case, are called support vectors.

Since we have the Karush-Kiithn-Tucker (KKT) conditions that 0l;>0, i = 1,..,n and that given by (3), from

the resulting Lagrangian equation in (9), we may write a further KKT condition
Ooi(il Wo' Xi#bol-1)=0 i=1,..n (14)

This means, that since the Lagrange multipliers & are nonzero with only the support vectors as defined in (16), the
10 expansion of wy in (14) is with regard to the support vectors only.

Hence we have

wo= X Qoxiyi (19
icS
where S is the set of all support vectors in the training set. To obtain the Lagrange multipliers 0t;, we need to
maximize (15) only over the support vectors, subject to the constraints 0;i>0, i = 1,..,n and that given in (13). This

is a quadratic programming problem and may be readily solved. Having obtained the Lagrange multipliers, the

15 weights wo may be found from (18).

D. Classification of Linearly Separable Data

A support vector machine which performs the task of classifying linearly separable data is defined as
f(x) = sgn{ wix+b} (16)

where w.b are found from the training set. Hence may be written as

r 1
fx)=sgn { 2 Goy(xx)+by } (17)
L icS 4

20 where ot y; are determined from the solution of the quadratic programming problem in (15) and by is found as

16

10

15

WO 03/046770 PCT/US02/38019

1
bo= = (Wo'X;"+wo'x;) (18)

2

where x;* and x; are any input training vector examples from the positive and negative classes respectively. For

greater numerical accuracy, we may also use

1 n
bo= = D (wo'x'+ wo'x;) (19)

2n =1

E. Classification of Nonlinearly Separable Data

For the case where the data is nonlinearly separable, the above approach can be extended to find a
hyperplane which minimizes the number of errors on the training set. This approach is also referred to as soft

margin hyperplanes. In this case, the aim is to
yi[WTXi-i-b] 2 1-2; i= 1,...,1'1 (20)

where >0, 1 = 1,...,n. In this case, we seek to minimize to optimize

i n
IwdH=- wl|+C Yy & @D .
2 i=1

F. Nonlinear Support Vector Machines

For some problems, improved classification results may be obtained using a nonlinear classifier. Consider
(20) which is a linear classifier. A nonlinear classifier may be obtained using support vector machines as follows.

The classifier is obtained by the inner product x;'x where i C S , the set of support vectors. However, it is
not necessary to use the explicit input data to form the classifier. Instead, all that is needed is to use the inner
products between the support vectors and the vectors of the feature space.

That is, by defining a kernel
K(x,%) =X'x (22)

a nonlinear classifier can be obtained as

r 1
fx)=sgn { 2 QoyKxx)+by } (23)
L icS 4

17

10

15

20

25

WO 03/046770 PCT/US02/38019

G. Kernel Functions

A kernel function may operate as a basis function for the support vector machine. In other words, the
kernel function may be used to define a space within which the desired classification or prediction may be greatly
simplified. Based on Mercer’s theorem, as is well known in the art, it is possible to introduce a variety of kernel

functions, including:

1. Polynomial

The p™ order polynomial kernel function is given by
K(x;,x)= (24)

2. Radial basis function

Kx;,x)=¢ (25)

where y>0.

3. Multilayer networks

A multilayer network may be employed as a kernel function as follows. We have
K(x;,x) = 6(8(xi'x) +0) (26)

where o is a sigmoid function.
Note that the use of a nonlinear kernel permits a linear decision function to be used in a high dimensional
feature space. We find the parameters following the same procedure as before. The Lagrange multipliers may be

found by maximizing the functional

n n n
1
Lp(w,b,a) = Z - — Z 2 0405y y;K(x;,x) (27)
2

When support vector methods are applied to regression or curve-fitting, a high-dimensional “tube” with a
radius of acceptable error is constructed which minimizes the error of the data set while also maximizing the flatness
of the associated curve or function. In other words, the tube is an envelope around the fit curve, defined by a
collection of data points nearest the curve or surface, i.e., the support vectors.

Thus, support vector machines offer an extremely powerful method of obtaining models for classification
and regression. They provide a mechanism for choosing the model structure in a natural manner which gives low

generalization error and empirical risk.

H. Construction of Support Vector Machines

Support vector machine 1206 may be built by specifying a kernel function, a number of inputs, and a

number of outputs. Of course, as is well known in the art, regardless of the particular configuration of the support
18

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

vector machine, some type of training process may be used to capture the behaviors and/or attributes of the system
or process to be modeled.

The modular aspect of one embodiment of the present invention as shown in Figure 19 may take advantage
of this way of simplifying the specification of a support vector machine. Note that more complex support vector
machines may require more configuration information, and therefore more storage.

Various embodiments of the present invention contemplate other types of support vector machine
configurations for use with support vector machine 1206. In one embodiment, all that is required for support vector
machine 1206 is that the support vector machine be able to be trained and retrained so as to provide the needed

predicted values utilized in the process control.

1. Support Vector Machine Training

The coefficients used in support vector machine 1206 may be adjustable constants which determine the
values of the predicted output data for given input data for any given support vector machine configuration. Support
vector machines may be superior to conventional statistical models because support vector machines may adjust
these coefficients automatically. Thus, support vector machines may be capable of building the structure of the
relationship (or model) between the input data 1220 and the output data 1218 by adjusting the coefficients. While a
conventional statistical model typically requires the developer to define the equation(s) in which adjustable
constant(s) are used, the support vector machine 1206 may build the equivalent of the equation(s) automatically.

The support vector machine 1206 may be trained by presenting it with one or more training set(s). The one
or more training set(s) are the actual history of known input data values and the associated correct output data
values. As described below, one embodiment of the present invention may use the historical database with its
associated timestamps to automatically create one or more training set(s).

To train the support vector machine, the newly configured support vector machine is usually initialized by
assigning random values to all of its coefficients. During training, the support vector machine 1206 may use its
input data 1220 to produce predicted output data 1218.

These predicted output data values 1218 may be used in combination with training input data 1306 to
produce error data. These error data values may then be used to adjust the coefficients of the support vector
machine.

It may thus be seen that the error between the output data 1218 and the training input data 1306 may be

used to adjust the coefficients so that the error is reduced.

J. Advantages of Support Vector Machines

Support vector machines may be superior to computer statistical models because support vector machines
do not require the developer of the support vector machine model to create the equations which relate the known
input data and training values to the desired predicted values (i.e., output data). In other words, support vector
machine 1206 may learn the relationships automatically in the training step or module 104.

However, it should be noted that support vector machine 1206 may require the collection of training input
data with its associated input data, also called a training set. The training set may need to be collected and properly
formatted. The conventional approach for doing this is to create a file on a computer on which the support vector

machine is executed.
19

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

In one embodiment of the present invention, in contrast, creation of the training set is done automatically
using a historical database 1210 (Figure 4). This automatic step may eliminate errors and may save time, as
compared to the conventional approach. Another benefit may be significant improvement in the effectiveness of the

training function, since automatic creation of the training set(s) may be performed much more frequently.

II. Brief Overview

Referring to Figures 4 and 5, one embodiment of the present invention may include a computer
implemented support vector machine which produces predicted output data values 1218 using a trained support
vector machine supplied with input data 1220 at a specified interval. The predicted data 1218 may be supplied via a
historical database 1210 to a controller 1202, which may control a process 1212 which may produce a product 1216.
In this way, the process conditions 1906 and product properties 1904 (as shown in Figures 22 and 23) may be
maintained at a desired quality level, even though important process conditions and/or product properties may not be
effectively measured directly, or modeled using conventional, fundamental or conventional statistical approaches.

One embodiment of the present invention may be configured by a developer using a support vector
machine configuration and step or module 104. Various parameters of the support vector machine may be specified
by the developer by using natural language without knowledge of specialized computer syntax and training. For
example, parameters specified by the user may include the type of kernel function, the number of inputs, the number
of outputs, as well as algorithm parameters such as cost of constraint violations, and convergence tolerance
(epsilon). Other possible parameters specified by the user may depend on which kernel is chosen (e.g., for gaussian
kernels, one may specify the standard deviation, for polynomial kernels, one may specify the order of the
polynomial). In one embodiment, there may be default values (estimates) for these parameters which may be
overridden by user input.

In this way, the system may allow an expert in the process being measured to configure the system without
the use of a support vector machine expert.

The support vector machine may be automatically trained on-line using input data 1220 and associated
training input data 1306 having timestamps (for example, from clock 1230). The input data and associated training
input data may be stored in a historical database 1210, which may supply this data (i.e., input data 1220 and
associated training input data 1306) to the support vector machine 1206 for training at specified intervals.

The (predicted) output data value 1218 produced by the support vector machine may be stored in the
historical database. The stored output data value 1218 may be supplied to the controller 1202 for controlling the
process as long as the error data 1504 between the output data 1218 and the training input data 1306 is below an
acceptable metric.

The error data 1504 may also be used for automatically retraining the support vector machine. This
retraining may typically occur while the support vector machine is providing the controller with the output data, via
the historical database. The retraining of the support vector machine may result in the output data approaching the
training input data as much as possible over the operation of the process. In this way, an embodiment of the present
invention may effectively adapt to changes in the process, which may occur in a commercial application.

A modular approach for the support vector machine, as shown in Figure 19, may be utilized to simplify
configuration and to produce greater robustness. In essence, the modularity may be broken out into specifying data

and calling subroutines using pointers.
20

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

In configuring the support vector machine, as shown in Figure 24, data pointers 2204 and/or 2206 may be
specified. A template approach, as shown in Figures 29 and 30, may be used to assist the developer in configuring
the support vector machine without having to perform any actual programming.

The present invention in various embodiments is an on-line process control system and method. The term
“on-line" indicates that the data used in various embodiments of the present invention is collected directly from the
data acquisition systems which generate this data. An on-line system may have several characteristics. One
characteristic may be the processing of data as the data is generated. This characteristic may also be referred to as
real-time operation. Real-time operation in general demands that data be detected, processed, and acted upon fast
enough to effectively respond to the situation. In a process control context, real-time may mean that the data may be
responded to fast enough to keep the process in the desired control state.

In contrast, off-line methods may also be used. In off-line methods, the data being used may be generated
at some point in the past and there typically is no attempt to respond in a way that may effect the situation. It should
be understood that while one embodiment of the present invention may use an on-line approach, alternate
embodiments may substitute off-line approaches in various steps or modules.

As noted above, the embodiment described herein relates to process control, such as of a manufacturing
plant, but is not intended to limit the application of the present invention to that domain, but rather, various
embodiments of the invention are contemplated to be applicable in many other areas, as well, such as e-commerce,
data analysis, stocks and bonds management and analysis, business decision-making, optimization, e-marketplaces,
financial analysis, or any other field of endeavor where predictive or classification models may be useful. Thus,
specific steps or modules described herein which apply only to process control embodiments may be different, or

omitted as appropriate or as desired.

II1. Use in Combination with Expert Systems

The above description of support vector machines and support vector machines as used in various
embodiments of the present invention, combined with the description of the problem of making measurements in a
process control environment given in the background section, illustrate that support vector machines add a unique
and powerful capability to process control systems. SVMs may allow the inexpensive creation of predictions of
measurements that may be difficult or impossible to obtain. This capability may open up a new realm of
possibilities for improving quality control in manufacturing processes. As used in various embodiments of the
present invention, support vector machines serve as a source of input data to be used by controllers of various types
in controlling a process. Of course, as noted above, the applications of the present invention in the fields of
manufacturing and process control may be illustrative, and are not intended to limit the use of the invention to any
particular domain. For example, the “process” being controlled may be a financial analysis process, an e-commerce
process, or any other process which may benefit from the use of predictive models.

Expert systems may provide a completely separate and completely complimentary capability for predictive
model based systems. Expert systems may be essentially decision-making programs which base their decisions on
process knowledge which is typically represented in the form of if-then rules. Each rule in an expert system makes a
small statement of truth, relating something that is known or could be known about the process to something that
may be inferred from that knowledge. By combining the applicable rules, an expert system may reach conclusions

or make decisions which mimic the decision-making of human experts.
21

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

The systems and methods described in several of the United States patents and patent applications
incorporated by reference above use expert systems in a control system architecture and method to add this decision-
making capability to process control systems. As described in these patents and patent applications, expert systems
provide a very advantageous function in the implementation of process control systems.

The present system adds a different capability of substituting support vector machines for measurements
which may be difficult to obtain. The advantages of the present system may be both consistent with and
complimentary to the capabilities provided in the above-noted patents and patent applications using expert systems.
The combination of support vector machine capability with expert system capability in a control system may provide
even greater benefits than either capability provided alone. For example, a process control problem may have a
difficult measurement and also require the use of decision-making techniques in structuring or implementing the
control response. By combining support vector machine and expert system capabilities in a single control
application, greater results may be achieved than using either technique alone.

It should thus be understood that while the system described herein relates primarily to the use of support
vector machines for process control, it may very advantageously be combined with the expert system inventions
described in the above-noted patents and patent applications to give even greater process control problem solving
capability. As described below, when implemented in the modular process control system architecture, support
vector machine functions may be easily combined with expert system functions and other control functions to build
such integrated process control applications. Thus, while various embodiments of the present invention may be used
alone, these various embodiments of the present invention may provide even greater value when used in

combination with the expert system inventions in the above-noted patents and patent applications.

IV. One Method of Operation

One method of operation of one embodiment of the present invention may store input data and training

data, may configure and may train a support vector machine, may predict output data using the support vector
machine, may retrain the support vector machine, may enable or may disable control using the output data, and may
control the process using output data. As shown in Figure 5, more than one step or module may be carried out in
parallel. As indicated by the divergent order pointer 120, the first two steps or modules in one embodiment of the
present invention may be carried out in parallel. First, in step or module 102, input data and training input data may
be stored in the historical database with associated timestamps. In parallel, the support vector machine may be
configured and trained in step or module 104. Next, two series of steps or modules may be carried out in parallel as
indicated by the order pointer 122. First, in step or module 106, the support vector machine may be used to predict
output data using input data stored in the historical database. Next, in step or module 108, the support vector
machine may be retrained using training input data stored in the historical database. Next, in step or module 110,
control using the output data may be enabled or disabled in parallel. In step or module 112, control of the process

using the output data may be carried out when enabled by step or module 110.

A. Store Input Data and Training Input Data Step or Module 102
As shown in Figure 5, an order pointer 120 indicates that step or module 102 and step or module 104 may

be performed in parallel. Referring now to step or module 102, it is denoted as “ store input data and training input

data”. Figure 6 may show step or module 102 in more detail.
22

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

Referring now to Figures 5 and 6, step or module 102 may have the function of storing input data 1220 and
storing training input data 1306. Both types of data may be stored in a historical database 1210 (see Figure 4 and
related structure diagrams), for example. Each stored input data and training input data entry in historical database
1210 may utilize an associated timestamp. The associated timestamp may allow the system and method of one
embodiment of the present invention to determine the relative time that the particular measurement or predicted
value or measured value was taken, produced or derived.

A representative example of step or module 102 is shown in Figure 6, which is described as follows. The
order pointer 120, as shown in Figure 6, indicates that input data 1220 and training input data 1306 may be stored in
parallel in the historical database 1210. Specifically, input data from sensors 1226 (see Figures 4 and 16) may be
produced by sampling at specific time intervals the sensor signal 1224 provided at the output of the sensor 1226.
This sampling may produce an input data value or number or signal. Each of data points may be called an input data
1220 as used in this application. The input data may be stored with an associated timestamp in the historical
database 1210, as indicated by step or module 202. The associated timestamp that is stored in the historical
database with the input data may indicate the time at which the input data was produced, derived, calculated, etc.

Step or module 204 shows that the next input data value may be stored by step or module 202 after a
specified input data storage interval has lapsed or timed out. This input data storage interval realized by step or
module 204 may be set at any specific value (e.g., by the user). Typically, the input data storage interval is selected
based on the characteristics of the process being controlled.

As shown in Figure 6, in addition to the sampling and storing of input data at specified input data storage
intervals, training input data 1306 may also be stored. Specifically, as shown by step or module 206, training input
data may be stored with associated timestamps in the historical database 1210. Again, the associated timestamps
utilized with the stored training input data may indicate the relative time at which the training input data was
derived, produced or obtained. It should be understood that this usually is the time when the process condition or
product property actually existed in the process or product. In other words, since it typically takes a relatively long
period of time to produce the training input data (because lab analysis and the like usually has to be performed), it is
more accurate to use a timestamp which indicates the actual time when the measured state existed in the process
rather than to indicate when the actual training input data was entered into the historical database. This produces a
much closer correlation between the training input data 1306 and the associated input data 1220. This close
correlation is needed, as is discussed in detail below, in order to more effectively train and control the system and
method of various embodiments of the present invention.

The training input data may be stored in the historical database 1210 in accordance with a specified
training input data storage interval, as indicated by step or module 208. While this may be a fixed time period, it
typically is not. More typically, it is a time interval which is dictated by when the training data is actually produced
by the laboratory or other mechanism utilized to produce the training input data 1306. As is discussed in detail
herein, this often times takes a variable amount of time to accomplish depending upon the process, the mechanisms
being used to produce the training data, and other variables associated both with the process and with the
measurement/analysis process utilized to produce the training input data.

What is important to understand here is that the specified input data storage interval is usually considerably

shorter than the specified training input data storage interval of step or module 204.

23

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

As may be seen, step or module 102 thus results in the historical database 1210 receiving values of input
data and training input data with associated timestamps. These values may be stored for use by the system and
method of one embodiment of the present invention in accordance with the steps and modules discussed in detail

below.

B. Configure and Train Support Vector Machine Step or Module 104

As shown in Figure 5, the order pointer 120 shows that a configure and train support vector machine step
or module 104 may be performed in parallel with the store input data and training input data step or module 102.
The purpose of step or module 104 may be to configure and train the support vector machine 1206 (see Figure 4).

Specifically, the order pointer 120 may indicate that the step or module 104 plus all of its subsequent steps
and/or modules may be performed in parallel with the step or module 102.

Figure 7 shows a representative example of the step or module 104. As shown in Figure 7, this
representative embodiment is made up of five steps and/or modules 302, 304, 306, 308 and 310.

Referring now to Figure 7, an order pointer 120 shows that the first step or module of this representative
embodiment is a configure support vector machine step or module 302. Configure support vector machine step or
module 302 may be used to set up the structure and parameters of the support vector machine 1206 that is utilized
by the system and method of one embodiment of the present invention. As discussed below in detail, the actual
steps and/or modules utilized to set up the structure and parameters of support vector machine 1206 may be shown
in Figure 12.

After the support vector machine 1206 has been configured in step or module 302, an order pointer 312
indicates that a wait training data interval step or module 304 may occur or may be utilized. The wait training data
interval step or module 304 may specify how frequently the historical database 1210 is to be looked at to determine
if any new training data to be utilized for training of the support vector machine 1206 exists. It should be noted that
the training data interval of step or module 304 may not be the same as the specified training input data storage
interval of step or module 206 of Figure 6. Any desired value for the training data interval may be utilized for step
or module 304.

An order pointer 314 indicates that the next step or module may be a new training input data step or
module 306. This new training input data step or module 306 may be utilized after the lapse of the training data
interval specified by step or module 304. The purpose of step or module 306 may be to examine the historical
database 1210 to determine if new training data has been stored in the historical database since the last time the
historical database 1210 was examined for new training data. The presence of new training data may permit the
system and method of one embodiment of the present invention to train the support vector machine 1206 if other
parameters/conditions are met. Figure 13 discussed below shows a specific embodiment for the step or module 306.

An order pointer 318 indicates that if step or module 306 indicates that new training data is not present in
the historical database 1210, the step or module 306 returns operation to the step or module 304.

In contrast, if new training data is present in the historical database 1210, the step or module 306, as
indicated by an order pointer 316, continues processing with a train support vector machine step or module 308.
Train support vector machine step or module 308 may be the actual training of the support vector machine 1206
using the new training data retrieved from the historical database 1210. Figure 14, discussed below in detail, shows

a representative embodiment of the train support vector machine step or module 308.
24

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

After the support vector machine has been trained, in step or module 308, the step or module 104 as
indicated by an order pointer 320 may move to an error acceptable step or module 310. Error acceptable step or
module 310 may determine whether the error data 1504 produced by the support vector machine 1206 is within an
acceptable metric, indicating error that the support vector machine 1206 is providing output data 1218 that is close
enough to the training input data 1306 to permit the use of the output data 1218 from the support vector machine
1206. In other words, an acceptable error may indicate that the support vector machine 1206 has been "trained" as
training is specified by the user of the system and method of one embodiment of the present invention. A
representative example of the error acceptable step or module 310 is shown in Figure 15, which is discussed in
detail below.

If an unacceptable error is determined by error acceptable step or module 310, an order pointer 322
indicates that the step or module 104 returns to the wait training data interval step or module 304. In other words,
when an unacceptable error exists, the step or module 104 has not completed training the support vector machine
1206. Because the support vector machine 1206 has not completed being trained, training may continue before the
system and method of one embodiment of the present invention may move to a step or module 106 discussed below.

In contrast, if the error acceptable step or module 310 determines that an acceptable error from the support
vector machine 1206 has been obtained, then the step or module 104 has trained support vector machine 1206.
Since the support vector machine 1206 has now been trained, step or module 104 may allow the system and method
of one embodiment of the present invention to move to the steps or modules 106 and 112 discussed below.

The specific embodiments for step or module 104 are now discussed.

1. Configure Support Vector Machine Step or Module 302

Referring now to Figure 12, a representative embodiment of the configure support vector machine step or
module 302 is shown. This step or module 302 may allow the uses of one embodiment of the present invention to
both configure and re-configure the support vector machine. Referring now to Figure 12, the order pointer 120
indicates that the first step or module may be a specify training and prediction timing control step or module 802.
Step or module 802 may allow the person configuring the system and method of one embodiment of the present
invention to specify the training interval(s) and the prediction timing interval(s) of the support vector machine 1206.

Figure 33 shows a representative embodiment of the step or module 802. Referring now to Figure 33, step
or module 802 may be made up of four steps and/or modules 3102, 3104, 3106, and 3108. Step or module 3102
may be a specify training timing method step or module. The specify training timing method step or module 3102
may allow the user configuring one embodiment of the present invention to specify the method or procedure to be
followed to determine when the support vector machine 1206 is being trained. A representative example of this may
be when all of the training data has been updated. Another example may be the lapse of a fixed time interval. Other
methods and procedures may be utilized.

An order pointer indicates that a specify training timing parameters step or module 3104 may then be
carried out by the user of one embodiment of the present invention. This step or module 3104 may allow for any
needed training timing parameters to be specified. It should be realized that the method or procedure of step or
module 3102 may result in zero or more training timing parameters, each of which may have a value. This value
may be a time value, a module number (e.g., in the modular embodiment of the present invention of Figure 19), or a

data pointer. In other words, the user may configure one embodiment of the present invention so that considerable
25

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

flexibility may be obtained in how training of the support vector machine 1206 may occur, based on the method or
procedure of step or module 3102.

An order pointer indicates that once the training timing parameters 3104 have been specified, a specify
prediction timing method step or module 3106 may be configured by the user of one embodiment of the present
invention. This step or module 3106 may specify the method or procedure that may be used by the support vector
machine 1206 to determine when to predict output data values 1218 after the SVM has been trained. This is in
contrast to the actual training of the support vector machine 1206. Representative examples of methods or
procedures for step or module 3106 may include: execute at a fixed time interval, execute after the execution of a
specific module, and execute after a specific data value is updated. Other methods and procedures may also be
used.

An order indicator in Figure 33 shows that a specify prediction timing parameters step or module 3108 may
then be carried out by the user of one embodiment of the present invention. Any needed prediction timing
parameters for the method or procedure of step or module 3106 may be specified. For example, the time interval
may be specified as a parameter for the execute at a specific time interval method or procedure. Another example
may be the specification of a module identifier when the execute after the execution of a particular module method
or procedure is specified. Another example may be a data pointer when the updating of a data value method or
procedure is used. Other operation timing parameters may be used.

Referring again to Figure 12, after the specify training and prediction timing control step or module 802
has been specified, a specify support vector machine size step or module 804 may be carried out. This step or
module 804 may allow the user to specify the size and structure of the support vector machine 1206 that is used by
one embodiment of the present invention.

Specifically, referring to Figure 33 again, a representative example of how the support vector machine size
may be specified by step or module 804 is shown. An order pointer indicates that a specific number of inputs step
or module 3110 may allow the user to indicate the number of inputs that the support vector machine 1206 may have.
Note that the source of the input data for the specific number of inputs in the step or module 3110 is not specified.
Only the actual number of inputs is specified in the step or module 3110.

In step or module 3112, a kernel function may be determined for the support vector machine. The specific
kernel function chosen may determine the kind of support vector machine (e.g., radial basis function, polynomial,
multi-layer network, etc.). Depending upon the specific kernel function chosen, additional parameters may be
specified. For example, as mentioned above, for gaussian kernels, one may specify the standard deviation, for
polynomial kernels, one may specify the order of the polynomial. In one embodiment, there may be default values
(estimates) for these parameters which may be overridden by user input.

It should be noted that in other embodiments, various other training or execution parameters of the SVM
not shown in Figure 33 may be specified by the user (e.g., algorithm parameters such as cost of constraint violations,
and convergence tolerance (epsilon)).

An order pointer indicates that once the kernel function has been specified in step or module 3112, a
specific number of outputs step or module 3114 may allow the user to indicate the number of outputs that the
support vector machine 1206 may have. Note that the storage location for the outputs of the support vector machine
1206 is not specified in step or module 3114. Instead, only the actual number of outputs is specified in the step or

module 3114.
26

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

As discussed herein, one embodiment of the present invention may contemplate any form of presently
known or future developed configuration for the structure of the support vector machine 1206. Thus, steps or
modules 3110, 3112, and 3114 may be modified so as to allow the user to specify these different configurations for
the support vector machine 1206.

Referring again to Figure 12, once the support vector machine size has been specified in step or module
804, the user may specify the training and prediction modes in a step or module 806. Step or module 806 may allow
both the training and prediction modes to be specified. Step or module 806 may also allow for controlling the
storage of the data produced in the training and prediction modes. Step or module 806 may also allow for data
coordination to be used in training mode.

A representative example of the specific training and prediction modes step or module 806 is shown in
Figure 33. It is made up of step or modules 3116, 3118, and 3120.

As shown, an order pointer indicates that the user may specify prediction and train modes in step or module
3116. These prediction and train modes may be yes/no or on/off settings, in one embodiment. Since the system and
method of one embodiment of the present invention is in the train mode at this stage in its operation, step or module
3116 typically goes to its default setting of train mode only. However, it should be understood that various
embodiments of the present invention may contemplate allowing the user to independently control the prediction or
train modes.

When prediction mode is enabled or "on," the support vector machine 1206 may predict output data values
1218 using retrieved input data values 1220, as described below. When training mode is enabled or "on," the
support vector machine 1206 may monitor the historical database 1210 for new training data and may train using the
training data, as described below.

An order pointer indicates that once the prediction and train modes have been specified in step or module
3116, the user may specify prediction and train storage modes in step or module 3118. These prediction and train
storage modes may be on/off, yes/no values, similar to the modes of step or module 3116. The prediction and train
storage modes may allow the user to specify whether the output data produced in the prediction and/or training may
be stored for possible later use. In some situations, the user may specify that the output data is not to be stored, and
in such a situation the output data will be discarded after the prediction or train mode has occurred. Examples of
situations where storage may not be needed include: (1) if the error acceptable metric value in the train mode
indicates that the output data is poor and retraining is necessary; (2) in the prediction mode, where the output data is
not stored but is only used. Other situations may arise where no storage is warranted.

An order pointer indicates that a specify training data coordination mode step or module 3120 may then be
specified by the user. Oftentimes, training input data 1306 may be correlated in some manner with input data 1220.
Step or module 3120 may allow the user to deal with the relatively long time period required to produce training
input data 1306 from when the measured state(s) existed in the process. First, the user may specify whether the most
recent input data is to be used with the training data, or whether prior input data is to be used with the training data.
If the user specifies that prior input data is to be used, the method of determining the time of the prior input data may
be specified in step or module 3120.

Referring again to Figure 12, once the specified training and prediction modes step or module 806 has been
completed by the user, steps and modules 808, 810, 812 and 814 may be carried out. Specifically, the user may

follow specify input data step or module 808, specify output data step or module 810, specify training input data
27

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

step or module 812, and specify error data step or module 814. Essentially, these four steps and/or modules 808-
814 may allow the user to specify the source and destination of input and output data for both the (run) prediction
and training modes, and the storage location of the error data determined in the training mode.

Figure 34 shows a representative embodiment used for all of the steps and/or modules 808-814 as follows.

Steps and/or modules 3202, 3204, and 3206 essentially may be directed to specifying the data location for
the data being specified by the user. In contrast, steps and/or modules 3208-3216 may be optional in that they allow
the user to specify certain options or sanity checks that may be performed on the data as discussed below in more
detail.

Turning first to specifying the storage location of the data being specified, step or module 3202 is called
specify data system. For example, typically, in a chemical plant, there is more than one computer system utilized
with a process being controlled. Step or module 3202 may allow for the user to specify which computer system(s)
contains the data or storage location that is being specified.

Once the data system has been specified, the user may specify the data type using step or module 3204:
specify data type. The data type may indicate which of the many types of data and/or storage modes is desired.
Examples may include current (most recent) values of measurements, historical values, time averaged values,
setpoint values, limits, etc. After the data type has been specified, the user may specify a data item number or
identifier using step or module 3206. The data item number or identifier may indicate which of the many instances
of the specify data type in the specified data system is desired. Examples may include the measurement number, the
control loop number, the control tag name, etc. These three steps and/or modules 3202-3206 may thus allow the
user to specify the source or destination of the data (used/produced by the support vector machine) being specified.

Once this information has been specified, the user may specify the following additional parameters. The
user may specify the oldest time interval boundary using step or module 3208, and may specify the newest time
interval boundary using step or module 3210. For example, these boundaries may be utilized where a time weighted
average of a specified data value is needed. Alternatively, the user may specify one particular time when the data
value being specified is a historical data point value.

Sanity checks on the data being specified may be specified by the user using steps and/or modules 3212,
3214 and 3216 as follows. The user may specify a high limit value using step or module 3212, and may specify a
low limit value using step or module 3214. Since sensors sometimes fail, for example, this sanity check may allow
the user to prevent the system and method of one embodiment of the present invention from using false data from a
failed sensor. Other examples of faulty data may also be detected by setting these limits. '

The high and low limit values may be used for scaling the input data. Support vector machines may be
typically trained and operated using input, output and training input data scaled within a fixed range. Using the high
and low limit values may allow this scaling to be accomplished so that the scaled values use most of the range.

In addition, the user may know that certain values will normally change a certain amount over a specific
time interval. Thus, changes which exceed these limits may be used as an additional sanity check. This may be
accomplished by the user specifying a maximum change amount in step or module 3216.

Sanity checks may be used in the method of one embodiment of the present invention to prevent erroneous
training, prediction, and control. Whenever any data value fails to pass the sanity checks, the data may be clamped
at the limit(s), or the operation/control may be disabled. These tests may significantly increase the robustness of

various embodiments of the present invention.
28

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

It should be noted that these steps and/or modules in Figure 34 apply to the input, output, training input,
and error data steps and/or modules 808, 810, 812 and 814.

When the support vector machine is fully configured, the coefficients may be normally set to random
values in their allowed ranges. This may be done automatically, or it may be performed on demand by the user (for

example, using softkey 2616 in Figure 28).

2. Wait Training Input Data Interval Step or Module 304

Referring again to Figure 7, the wait training data interval step or module 304 is now described in greater
detail.

Typically, the wait training input data interval is much shorter than the time period (interval) when training
input data becomes available. This wait training input data interval may determine how often the training input data
will be checked to determine whether new training input data has been received. Obviously, the more frequently the
training input data is checked, the shorter the time interval will be from when new training input data becomes
available to when retraining has occurred.

It should be noted that the configuration for the support vector machine 1206 and specifying its wait
training input data interval may be done by the user. This interval may be inherent in the software system and
method which contains the support vector machine of one embodiment of the present invention. Preferably, it is
specifically defined by the entire software system and method of one embodiment of the present invention. Next,

the support vector machine 1206 is trained.

3. New Training Input Data Step or Module 306
An order pointer 314 indicates that once the wait training input data interval 304 has elapsed, the new

training input data step or module 306 may occur.

Figure 13 shows a representative embodiment of the new training input data step or module 306. Referring
now to Figure 13, a representative example of determining whether new training input data has been received is
shown. A retrieve current training input timestamp from historical database step or module 902 may first retrieve
from the historical database 1210 the current training input data timestamp(s). As indicated by an order pointer, a
compare current training input data timestamp to stored training input data timestamp step or module 904 may
compare the current training input data timestamp(s) with saved training input data timestamp(s). Note that when
the system and method of one embodiment of the present invention is first started, an initialization value may be
used for the saved training input data timestamp. If the current training input data timestamp is the same as the
saved training input data timestamp, this may indicate that new training input data does not exist. This situation on
no new training input data may be indicated by order pointer 318.

Step or module 904 may function to determine whether any new training input data is available for use in
training the support vector machine. It should be understood that, in various embodiments of the present invention,
the presence of new training input data may be detected or determined in various ways. One specific example is
where only one storage location is available for training input data and the associated timestamp. In this case,
detecting or determining the presence of new training input data may be carried out by saving internally in the
support vector machine the associated timestamp of the training input data from the last time the training input data

was checked, and periodically retrieving the timestamp from the storage location for the training input data and
29

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

comparing it to the internally saved value of the timestamp. Other distributions and combinations of storage
locations for timestamps and/or data values may be used in detecting or determining the presence of new training
input data.

However, if the comparison of step or module 904 indicates that the current training input data timestamp
is different from the saved training input data timestamp, this may indicate that new training input data has been
received or detected. This new training input data timestamp may be saved by a save current training input data
timestamp step or module 906. After this current timestamp of training input data has been saved, the new training
data step or module 306 is completed, and one embodiment of the present invention may move to the train support

vector machine step or module 308 of Figure 7 as indicated by the order pointer.

4. Train Support Vector Machine Step or Module 308

Referring again to Figure 7, the train support vector machine step or module 308 may be the step or module
where the support vector machine 1206 is trained. Figure 14 shows a representative embodiment of the train
support vector machine step or module 308.

Referring now to step or module 308 shown in Figure 14, an order pointer 316 indicates that a retrieve
current training input data from historical database step or module 1002 may occur. In step or module 1002, one or
more current training input data values may be retrieved from the historical database 1210. The number of current
training input data values that is retrieved may be equal to the number of outputs of the support vector machine 1206
that is being trained. The training input data is normally scaled. This scaling may use the high and low limit values
specified in the configure and train support vector machine step or module 104.

An order pointer shows that a choose training input data time step or module 1004 may be carried out next.
Typically, when there are two or more current training input data values that are retrieved, the data time (as
indicated by their associated timestamps) for them is different. The reason for this is that typically the sampling
schedule used to produce the training input data is different for the various training input data. Thus, current
training input data often has varying associated timestamps. In order to resolve these differences, certain
assumptions have to be made. In certain situations, the average between the timestamps may be used. Alternately,
the timestamp of one of the current training input data may be used. Other approaches also may be employed.

Once the training input data time has been chosen in step or module 1004, the input data at the training
input data time may be retrieved from the historical database 1210 as indicated by step or module 1006. The input
data is normally scaled. This scaling may use the high and low limit values specified in the configure and train
support vector machine step or module 104. Thereafter, the support vector machine 1206 may predict output data
from the retrieved input data, as indicated by step or module 406.

The predicted output data from the support vector machine 1206 may then be stored in the historical
database 1210, as indicated by step or module 408. The output data is normally produced in a scaled form, since all
the input and training input data is scaled. In this case, the output data may be de-scaled. This de-scaling may use
the high and low limit values specified in the configure and train support vector machine step or module 104.
Thereafter, error data may be computed using the output data from the support vector machine 1206 and the training
input data, as indicated by step or module 1012. It should be noted that the term error data 1504 as used in step or

module 1012 may be a set of error data value for all of the predicted outputs from the support vector machine 1206.

30

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

However, one embodiment of the present invention may also contemplate using a global or cumulative error data for
evaluating whether the predicted output data values are acceptable.

After the error data 1504 has been computed or calculated in step or module 1012, the support vector
machine 1206 may be retrained using the error data 1504 and/or the training input data 1306. One embodiment of
the present invention may contemplate any method of training the support vector machine 1306.

After the training step or module 1014 is completed, the error data 1504 may be stored in the historical
database 1210 in step or module 1016. It should be noted that the error data 1504 shown here may be the individual
data for each output. These stored error data 1504 may provide a historical record of the error performance for each
output of the support vector machine 1206.

The sequence of steps described above may be used when the support vector machine 1206 is effectively
trained using a single presentation of the training set created for each new training input data 1306.

However, in using certain training methods or for certain applications, the support vector machine 1206
may require many presentations of training sets to be adequately trained (i.e., to produce an acceptable metric). In
this case, two alternate approaches may be used to train the support vector machine 1206, among other approaches.

In the first approach, the support vector machine 1206 may save the training sets (i.e., the training input
data and the associated input data which is retrieved in step or module 308) in a database of training sets, which may
then be repeatedly presented to the support vector machine 1206 to train the support vector machine. The user may
be able to configure the number of training sets to be saved. As new training data becomes available, new training
sets may be constructed and saved. When the specified number of training sets has been accumulated (e.g., in a list
or buffer), the next training set created based on new data may "bump" the oldest training set from the list or buffer.
This oldest training set may then be discarded. Conventional support vector machine training creates training sets
all at once, off-line, and would continue using all the training sets created. It is noted that the use of a buffer to store
training sets is but one example of storage means for the training sets, and that other storage means are also
contemplated, including lists (such as queues and stacks), databases, and arrays, among others.

A second approach which may be used is to maintain a time history of input data and training input data in
the historical database 1210 (e.g., in a list or buffer), and to search the historical database 1210, locating training
input data and constructing the corresponding training set by retrieving the associated input data.

It should be understood that the combination of the support vector machine 1206 and the historical
database 1210 containing both the input data and the training input data with their associated timestamps may
provide a very powerful platform for building, training and using the support vector machine 1206. One
embodiment of the present invention may contemplate various other modes of using the data in the historical
database 1210 and the support vector machine 1206 to prepare training sets for training the support vector machine

1206.

5. Error Acceptable Step or Module 310

Referring again to Figure 7, once the support vector machine 1206 has been trained in step or module 308,
a determination of whether an acceptable error exists may occur in step or module 310. Figure 15 shows a
representative embodiment of the error acceptable step or module 310.

Referring now to Figure 15, an order pointer 320 indicates that a compute global error using saved global

error step or module 1102 may occur. The term global error as used herein means the error over all the outputs
31

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

and/or over two or more training sets (cycles) of the support vector machine 1206. The global error may reduce the
effects of variation in the error from one training set (cycle) to the next. One cause for the variation is the inherent
variation in tests used to generate the training input data.

Once the global error has been computed or estimated in step or module 1102, the global error may be
saved in step or module 1104. The global error may be saved internally in the support vector machine 1206, or it
may be stored in the historical database 1210. Storing the global error in the historical database 1210 may provide a
historical record of the overall performance of the support vector machine 1206.

Thereafter, if an appropriate history of global error is available (as would be the case in retraining), step or
module 1106 may be used to determine if the global error is statistically different from zero. Step or module 1106
may determine whether a sequence of global error values falls within the expected range of variation around the
expected (desired) value of zero, or whether the global error is statistically significantly different from zero. Step or
module 1106 may be important when the training input data used to compute the global error has significant random
variability. If the support vector machine 1206 is making accurate predictions, the random variability in the training
input data (for example, caused by lab variation) may cause random variation of the global error around zero. Step
or module 1106 may reduce the tendency to incorrectly classify as not acceptable the predicted outputs of the
support vector machine 1206.

If the global error is not statistically different from zero, then the global error is acceptable, and one
embodiment of the present invention may move to order pointer 122. An acceptable error indicated by order pointer
122 means that the support vector machine 1206 is trained. This completes step or module 104.

However, if the global error is statistically different from zero, one embodiment of the present invention in
the retrain mode may move to step or module 1108, which is called training input data statistically valid. (Note that
step or module 1108 is not needed in the training mode of step or module 104. In the training mode, a global error
statistically different from zero moves directly to order pointer 322.)

If the training input data in the retraining mode is not statistically valid, this may indicate that the
acceptability of the global error may not be determined, and one embodiment of the present invention may move to
order pointer 122. However, if the training input data is statistically valid, this may indicate that the error is not
acceptable, and one embodiment of the present invention may move back to the wait training input data interval step
or module 304, as indicated in Figure 7.

The steps and/or modules described here for determining whether the global error is acceptable constitute
one example of implementing a global error acceptable metric. It should be understood that different process
characteristics, different sampling frequencies, and/or different measurement techniques (for process conditions and
product properties) may indicate alternate methods of determining whether the error is acceptable. One embodiment
of the present invention may contemplate any method of creating an error acceptable metric.

Thus, step or module 104 may configure and train the support vector machine 1206 for use in one

embodiment of the present invention.

C. Predict Output Data Using Support Vector Machine Step or Module 106

Referring again to Figure 5, the order pointer 122 indicates that there are two parallel paths that one
embodiment of the present invention may use after the configure and train support vector machine step or module

104. One of the paths, which the predict output data using support vector machine step or module 106 described
32

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

below is part of, may be used for: predicting output data using the support vector machine 1206; retraining the
support vector machine 1206 using these predicted output data; and disabling control of the controlled process when
the (global) error from the support vector machine 1206 exceeds a specified error acceptable metric (criterion). The
other path may be the actual control of the process using the predicted output data from the support vector machine
1206.

Turning now to the predict output data using support vector machine step or module 106, this step or
module 106 may use the support vector machine 1206 to produce output data for -use in control of the process and
for retraining the support vector machine 1206. Figure 8 shows a representative embodiment of step or module 106.

Turning now to Figure 8, a wait specified prediction interval step or module 402 may utilize the method or
procedure specified by the user in steps and/or modules 3106 and 3108 for determining when to retrieve input data.
Once the specified prediction interval has elapsed, one embodiment of the present invention may move to a retrieve
input data at current time from historical database step or module 404. The input data may be retrieved at the
current time. That is, the most recent value available for each input data value may be retrieved from the historical
database 1210.

The support vector machine 1206 may then predict output data from the retrieved input data, as indicated
by step or module 406. This output data may be used for process control, retraining, and/or control purposes as
discussed below in subsequent sections. Prediction may be done using any presently known or future developed

approach.

D. Retrain Support Vector Machine Step or Module 108

Referring again to Figure 5, once the predicted output data has been produced by the support vector
machine 1206, a retrain support vector machine step or module 108 may be used.

Retraining of the support vector machine 1206 may occur when new training input data becomes available.
Figure 9 shows a representative embodiment of the retrain support vector machine step or module 108.

Referring now to Figure 9, an order pointer 124 shows that a new training input data step or module 306
may determine if new training input data has become available. Figure 13 shows a representative embodiment of the
new training input data step or module 306. Step or module 306 is described above in connection with Figure 7.

As indicated by an order pointer 126, if new training data is not present, one embodiment of the present
invention may return to the predict output data using support vector machine step or module 106, as shown in Figure
5.

If new training input data is present, the support vector machine 1206 may be retrained, as indicated by
step or module 308. A representative example of step or module 308 is shown in Figure 14. It is noted that training
of the support vector machine is the same as retraining, and retraining is described in connection with Figure 7,
above.

Once the support vector machine 1206 has been retrained, an order pointer 128 may cause one embodiment

of the present invention to move to an enable/disable control step or module 110 discussed below.

E. Enable/Disable Control Module or Step 110
Referring again to Figure 5, once the support vector machine 1206 has been retrained, as indicated by step

or module 108, one embodiment of the present invention may move to an enable/disable control step or module 110.
33

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

The purpose of the enable/disable control step or module 110 may be to prevent the control of the process using
output data (predicted values) produced by the support vector machine 1206 when the error is not unacceptable (i.e.
when the error is "poor").

A representative example of the enable/disable control step or module 110 is shown in Figure 10.
Referring now to Figure 10, the function of module 110 may be to enable control of the controlled process if the
error is acceptable, and to disable control if the error is unacceptable. As shown in Figure 10, an order pointer 128
may move one embodiment of the present invention to an error acceptable step or module 310. If the error between
the training input data and the predicted output data is unacceptable, control of the controlled process is disabled by
a disable control step or module 604. The disable control step or module 604 may set a flag or indicator which may
be examined by the control process using output data step or module 112. The flag may indicate that the output data
should not be used for control.

Figure 32 shows a representative embodiment of the enable control step or module 602. Referring now to
Figure 32, an order pointer 142 may cause one embodiment of the present invention first to move to an output data
indicates safety or operability problems step or module 3002. If the output data does not indicate a safety or
operability problem, this may indicate that the process 1212 may continue to operate safely. Thus, processing may
move to the enable control using output data step or module 3006.

In contrast, if the output data does indicate a safety or operability problem, one embodiment of the present
invention may recommend that the process being controlled be shut down, as indicated by a recommend process
shutdown step or module 3004. This recommendation to the operator of the process 1212 may be made using any
suitable approach. One example of recommendation to the operator is a screen display or an alarm indicator. This
safety feature may allow one embodiment of the present invention to prevent the controlled process 1212 from
reaching a critical situation.

If the output data does not indicate safety or operability problems in step or module 3002, or after the
recommendation to shut down the process has been made in step or module 3004, one embodiment of the present
invention may move to the enable control using output data step or module 3006. Step or module 3006 may set a
flag or indicator which may be examined by step or module 112, indicating that the output data should be used to
control the process.

Thus, it may be appreciated that the enable/disable control step or module 110 may provide the function to
one embodiment of the present invention of (1) allowing control of the process 1212 using the output data in step or
module 112, (2) preventing the use of the output data in controlling the process 1212, but allowing the process 1212
to continue to operate, or (3) shutting down the process 1212 for safety reasons. As noted above, the embodiment
described herein relates to process control, such as of a manufacturing plant, and is not intended to limit the
application of various embodiments of the present invention to that domain, but rather, various embodiments of the
invention may be contemplated to be applicable in many other areas, as well, such as e-commerce, data analysis,
stocks and bonds management and analysis, business decision-making, optimization, e-marketplaces, financial
analysis, or any other field of endeavor where predictive or classification models may be useful. Thus, specific steps
or modules described herein which apply only to process control embodiments may be different, or omitted as

appropriate or as desired.

34

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

F. Control Process Using Output Data Step or Module 112

Referring again to Figure 5, the order pointer 122 indicates that the control of the process using the output
data from the support vector machine 1206 may run in parallel with the prediction of output data using the support
vector machine 1206, the retraining of the support vector machine 1206, and the enable/disable control of the
process 1212.

Figure 11 shows a representative embodiment of the control process using output data step or module 112.
Referring now to Figure 11, the order pointer 122 may indicate that one embodiment of the present invention may
first move to a wait controller interval step or module 702. The interval at which the controller may operate may be
any pre-selected value. This interval may be a time value, an event, or the occurrence of a data value. Other
interval control methods or procedures may be used.

Once the controller interval has occurred, as indicated by the order pointer, one embodiment of the present
invention may move to a control enabled step or module 704. If control has been disabled by the enable/disable
control step or module 110, one embodiment of the present invention may not control the process 1212 using the
output data. This may be indicated by the order pointer marked "NO" from the control enabled step or module 704.

If control has been enabled, one embodiment of the present invention may move to the retrieve output data
from historical database step or module 706. Step or module 706 may show that the output data 1218 (see Figure 4)
produced by the support vector machine 1206 and stored in the historical database 1210 is retrieved (1214) and used
by the controller 1202 to compute controller output data 1208 for control of the process 1212.

This control by the controlier 1202 of the process 1212 may be indicated by an effectively control process
using controller to compute controller output step or module 708 of Figure 11.

Thus, it may be appreciated that one embodiment of the present invention may effectively control the
process using the output data from the support vector machine 1206. It should be understood that the control of the
process 1212 may be any presently known or future developed approach, including the architecture shown in
Figures 18 and 19. It should also be understood that the process 1212 may be any kind of process, including an
analysis process, a business process, a scientific process, an e-commerce process, Or any other process wherein
predictive models may be useful.

Alternatively, when the output data from the support vector machine 1206 is determined to be
unacceptable, the process 1212 may continue to be controlled by the controller 1202 without the use of the output

data,

V. One Structure (Architecture)

Discussed above in Section III (Use in Combination with Expert Systems) is one method of operation of
one embodiment of the presént invention. Discussed in this Section is one structure (architecture) of one
embodiment of the present invention. However, it should be understood that in the description set forth above, the
modular structure (architecture) of the embodiment of the present invention is also discussed in connection with the
operation. Thus, certain portions of the structure of the embodiment of the present invention have inherently been
described in connection with the description set forth above in Section III.

One embodiment of the present invention may comprise one or more software systems. In this context,
software system refers to a collection of one or more executable software programs, and one or more storage areas,

for example, RAM or disk. In general terms, a software system may be understood to comprise a fully functional
35

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

software embodiment of-a function, which may be added to an existing computer system to provide new function to
that computer system.

Software systems generally are constructed in a layered fashion. In a layered system, a lowest level
software system is usually the computer operating system which enables the hardware to execute software
instructions. Additional layers of software systems may provide, for example, historical database capability. This
historical database system may provide a foundation layer on which additional software systems may be built. For
example, a support vector machine software system may be layered on top of the historical database. Also, a
supervisory control software system may be layered on top of the historical database system.

A software system may thus be understood to be a software implementation of a function which may be
assembled in a layered fashion to produce a computer system providing new functionality. Also, in general, the
interface provided by one software system to another software system is well-defined. It should be understood in the
context of one embodiment of the present invention that delineations between software systems may be
representative of one implementation. However, one embodiment of the present invention may be implemented
using any combination or separation of software systems. Similarly, in some embodiments of the present invention,
there may be no need for some of the described components, such as sensors, raw materials, etc., while in other
embodiments, the raw materials may comprise data rather than physical materials, and the sensors may comprise
data sensing components, such as for use in data mining or other information technologies.

Figure 4 shows one embodiment of the structure of the present invention, as applied to a manufacturing
process. Referring now to Figure 4, the process 1212 being controlled may receive raw materials 1222 and may
produce product 1216. Sensors 1226 (of any suitable type) may provide sensor signals 1221, 1224, which may be
supplied to the historical database 1210 for storage with associated timestamps. It should be noted that any suitable
type of sensor 1226 may be employed which provides sensor signals 1221, 1224,

The historical database 1210 may store the sensor signals 1224 that may be supplied to it with associated
timestamps as provided by a clock 1230. In addition, as described below, the historical database 1210 may also
store output data 1218 from the support vector machine 1206. This output data 1218 may also have associated
timestamps provided by the support vector machine 1206.

Any suitable type of historical database 1210 may be employed. Historical databases are generally
discussed in Hale and Sellars, "Historical Data Recording for Process Computers,” 77 Chem. Eng’g Progress 38
AICLE, New York, (1981), which is hereby incorporated by reference.

The historical database 1210 that is used may be capable of storing the sensor input data 1224 with
associated timestamps, and the predicted output data 1218 from the support vector machine 1206 with associated
timestamps. Typically, the historical database 1210 may store the sensor data 1224 in a compressed fashion to
reduce storage space requirements, and will store sampled (lab) data 1304 in uncompressed form.

Often, the historical database 1210 may be present in a chemical plant in the existing process control
system. One embodiment of the present invention may utilize this historical database to achieve the improved
process control obtained by the embodiment of the present invention.

A historical database is a special type of database in which at least some of the data is stored with
associated time stamps. Usually the time stamps may be referenced in retrieving (obtaining) data from a historical

database.

36

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

The historical database 1210 may be implemented as a stand alone software syétem which forms a
foundation layer on which other software systems, such as the support vector machine 1206, may be layered. Such a
foundation layer historical database system may support many functions in a process control environment. For
example, the historical database may serve as a foundation for software which provides graphical displays of
historical process data for use by a plant operator. A historical database may also provide data to data analysis and
display software which may be used by engineers for analyzing the operation of the process 1212. Such a
foundation layer historical database system may often contain a large number of sensor data inputs, possibly a large
number of laboratory data inputs, and may also contain a fairly long time history for these inputs.

1t should be understood, however, that one embodiment of the present invention may require a very limited
subset of the functions of the historical database 1210. Specifically, an embodiment of the present invention may
require the ability to store at least one training data value with the timestamp which indicates an associated input
data value, and the ability to store at least one associated input data value. In certain circumstances where, for
example, a historical database foundation layer system does not exist, it may be desirable to implement the essential
historical database functions as part of the support vector machine software. By integrating the essential historical
database capabilities into the support vector machine software, one embodiment of the present invention may be
implemented in a single software system. It should be understood that the various divisions among software systems
used to describe various embodiments of the present invention may only be illustrative in describing the best mode
as currently practiced. Any division, combination, or subset of various software systems of the steps and elements
of various embodiments of the present invention may be used.

The historical database 1210, as used in one embodiment of the present invention, may be implemented
using a number of methods. For example, the historical database may be built as a random access memory (RAM)
database. The historical database 1210 may also be implemented as a disk-based database, or as a combination of
RAM and disk databases. If an analog support vector machine 1206 is used in one embodiment of the present
invention, the historical database 1210 may be implemented using a physical storage device. One embodiment of
the present invention may contemplate any computer or analog means of performing the functions of the historical
database 1210.

The support vector machine 1206 may retrieve input data 1220 with associated timestamps. The support
vector machine 1206 may use this retrieved input data 1220 to predict output data 1218. The output data 1218 with
associated timestamps may be supplied to the historical database 1210 for storage.

A representative embodiment of the support vector machine 1206 is described above in Section I
(Overview of Support Vector Machines). It should be understood that support vector machines, as used in one
embodiment of the present invention, may be implemented in any way. For example, one embodiment may use a
software implementation of a support vector machine 1206. It should be understood, however, that any form of
implementing a support vector machine 1206 may be used in one embodiment of the present invention, including
physical analog forms. Specifically, as described below, the support vector machine may be implemented as a
software module in a modular support vector machine control system. '

It should also be understood with regard to various embodiments of the present invention that software and
computer embodiments are only one possible way of implementing the various elements in the systems and methods.
As mentioned above, the support vector machine 1206 may be implemented in analog or digital form and also, for

example, the controller 1202 may also be implemented in analog or digital form. It should be understood, with
37

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

respect to the method steps or modules as described above for the functioning of the systems as described in this
section, that operations such as computing (which imply the operation of a digital computer) may also be carried out
in analog equivalents or by other methods.

Returning again to Figure 4, the output data 1214 with associated timestamps stored in the historical
database 1210 may be supplied by a path 1214 to the controller 1202. This output data 1214 may be used by the
controller 1202 to generate controller output data 1208 which, in turn, may be sent to actuator(s) 1228 used to
control a controllable process state 2002 of the process 1212. Representative examples of controller 1202 are
discussed below.

The box labeled 1207 in Figure 4 indicates that the support vector machine 1206 and the historical
database 1210 may, in a variant embodiment of the present invention, be implemented as a single software system.
This single software system may be delivered to a computer installation in which no historical database previously
existed, to provide the functions of one embodiment of the present invention. Alternatively, a support vector
machine configuration module (or program) 1204 may also be included in this software system.

Two additional aspects of the architecture and structure shown in Figure 4 include: (1) the controller 1202
may also be provided with input data 1221 from sensors 1226. This input data may be provided directly to
controller 1202 from these sensor(s); (2) the support vector machine configuration module 1204 may be connected
in a bi-directional path configuration with the support vector machine 1206. The support vector machine
configuration module 1204 may be used by the user (developer) to configure and control the support vector machine
1206 in a fashion as discussed above in connection with the step or module 104 (Figure 5), or in connection with the
user interface discussion contained below.

Turning now to Figure 16, an alternate embodiment of the structure and architecture of the present
invention is shown. Differences between the embodiment of Figure 4 and that of Figure 16 are discussed below.

A laboratory (“lab") 1307 may be supplied with samples 1302. These samples 1302 may be physical
specimens or some type of data from an analytical test or reading. Regardless of the form, the lab 1307 may take the
samples 1302 and may utilize the samples 1302 to produce actual measurements 1304, which may be supplied to the
historical database 1210 with associated timestamps. The actual measurements 1304 may be stored in the historical
database 1210 with their associated timestamps.

Thus, the historical database 1210 may also contain actual test results or actual lab results in addition to
sensor input data. It should be understood that a laboratory is illustrative of a source of actual measurements 1304
which may be useful as training input data. Other sources may be encompassed by one embodiment of the present
invention. Laboratory data may be electronic data, printed data, or data exchanged over any communications link.

The second difference shown in the embodiment of Figure 16 is that the support vector machine 1206 may
be supplied with the actual measurements 1304 and associated timestamps stored in the historical database 1210.

Thus, it may be appreciated that the embodiment of Figure 16 may allow one embodiment of the present
invention to utilize lab data in the form of actual measurements 1304 as training input data 1306 to train the support
vector machine.

Turning now to Figure 17, a representative embodiment of the controller 1202 is shown. The embodiment
may utilize a regulatory controller 1406 for regulatory control of the process 1212. Any type of regulatory
controller may be contemplated which provides such regulatory control. There may be many commercially

available embodiments for such a regulatory controller. Typically, various embodiments of the present invention
38

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

may be implemented using regulatory controllers already in place. In other words, various embodiments of the
present invention may be integrated into existing process control systems, management systems, analysis systems, or
other existing systems.

In addition to the regulatory controller 1406, the embodiment shown in Figure 17 may also include a
supervisory controller 1408. The supervisory controller 1408 may compute supervisory controller output data,
computed in accordance with the predicted output data 1214. In other words, the supervisory controller 1408 may
utilize the predicted output data 1214 from the support vector machine 1206 to produce supervisory controller
output data 1402.

The supervisory controller output data 1402 may be supplied to the regulatory controller 1406 for changing
the regulatory controller setpoint 1404 (or other parameter of regulatory controller 1406). In other words, the
supervisory controller output data 1402 may be used for changing the regulatory controller setpoint 1404 so as to
change the regulatory control provided by the regulatory controller 1406. It should be noted that the setpoint 1404
may refer not only to a plant operation setpoint, but to any parameter of a system or process using an embodiment of
the present invention.

Any suitable type of supervisory controller 1408 may be employed by one embodiment of the present
invention, including commercially available embodiments. The only limitation is that the supervisory controller
1408 be able to use the output data 1408 to compute the supervisory controller output data 1402 used for changing
the regulatory controller setpoint (parameter) 1404.

This embodiment of the present invention may contemplate the supervisory controller 1408 being in a
software and hardware system which is physically separate from the regulatory controller 1406. For example, in
many chemical processes, the regulatory controller 1406 may be implemented as a digital distributed control system
(DCS). These digital distributed control systems may provide a very high level of robustness and reliability for
regulating the process 1212. The supervisory controller 1408, in contrast, may be implemented on a host-based
computer, such as a VAX (VAX is a trademark of DIGITAL EQUIPMENT CORPORATION, Maynard, Mass.), a
personal computer, a workstation, or any other type of computer.

Referring now to Figure 18, a more detailed embodiment of the present invention is shown. In this
embodiment, the supervisory controller 1408 is separated from the regulatory controller 1406. The boxes labeled
1500, 1501, and 1502 shown in Figure 18 suggest various ways in which the functions of the supervisory controller
1408, the support vector machine configuration module 1204, the support vector machine 1206 and the historical
database 1210 may be implemented. For example, the box labeled 1502 shows how the supervisory controller 1408
and the support vector machine 1206 may be implemented together in a single software system. This software
system may take the form of a modular system as described below in Figure 19. Alternatively, the support vector
machine configuration program 1204 may be included as part of the software system, as shown in the box labeled
1501. These various software system groupings may be indicative of various ways in which various embodiments of
the present invention may be implemented. However, it should be understood that any combination of functions into
various software systems may be used to implement various embodiments of the present invention.

Referring now to Figure 19, a representative embodiment 1502 of the support vector machine 1206
combined with the supervisory controller 1408 is shown. This embodiment may be called a modular supervisory
controller approach. The modular architecture that is shown illustrates that various embodiments of the present

invention may contemplate the use of various types of modules which may be implemented by the user (developer)
39

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

in configuring support vector machine(s) 1206 in combination with supervisory control functions so as to achieve
superior process control operation.

Several modules that may be implemented by the user of one embodiment of the present invention may be
shown in the embodiment of Figure 19. Specifically, in addition to the support vector machine module 1206, the
modular embodiment of Figure 19 may also include a feedback control module 1602, a feedforward control module
1604, an expert system module 1606, a cusum (cumulative summation) module 1608, a Shewhart module 1610, a
user program module 1612, and/or a batch event module 1614. Each of these modules may be selected by the user.
The user may implement more than one of each of these modules in configuring various embodiments of the present
invention. Moreover, additional types of modules may be utilized.

The intent of the embodiment shown in Figure 19 is to illustrate three concepts. First, various
embodiments of the present invention may utilize a modular approach which may ease user configuration. Second,
the modular approach may allow for much more complicated systems to be configured since the modules may act as
basic building blocks which may be manipulated and used independently of each other.

Third, the modular approach may show that various embodiments of the present invention may be
integrated into other process control systems. In other words, various embodiments of the present invention may be
implemented into the system and method of the United States patents and patent applications which are incorporated
herein by reference as noted above, among others.

Specifically, this modular approach may allow the support vector machine capability of various
embodiments of the present invention to be integrated with the expert system capability described in the above-
noted patents and patent applications. As described above, this may enable the support vector machine capabilities
of various embodiments of the present invention to be easily integrated with other standard control functions such as
statistical tests, feedback control, and feedforward control. However, even greater function may be achieved by
combining the support vector machine capabilities of various embodiments of the present invention, as implemented
in this modular embodiment, with the expert system capabilities of the above-noted patent applications, also
implemented in modular embodiments. This easy combination and use of standard control functions, support vector
machine functions, and expert system functions may allow a very high level of capability to be achieved in solving
process control problems.

The modular approach to building support vector machines may result in two principal benefits. First, the
specification needed from the user may be greatly simplified so that only data is reqﬁired to specify the
configuration and function of the support vector machine. Secondly, the modular approach may allow for much
easier integration of support vector machine function with other related control functions, such as feedback control,
feedforward control, etc.

In contrast to a programming approach to building a support vector machine, a modular approach may
provide a partial definition beforehand of the function to be provided by the support vector machine module. The
predefined function for the module may determine the procedures that need to be followed to carry out the module
function, and it may determine any procedures that need to be followed to verify the proper configuration of the
module. The particular function may define the data requirements to complete the specification of the support
vector machine module. The specifications for a modular support vector machine may be comprised of

configuration information which may define the size and behavior of the support vector machine in general, and the

40

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

data interactions of the support vector machine which may define the source and location of data that may be used
and created by the system.

Two approaches may be used to simplify the user configuration of support vector machines. First, a limited
set of procedures may be prepared and implemented in the modular support vector machine software. These
predefined functions may define the specifications needed to make these procedures work as a support vector
machine module. For example, the creation of a support vector machine module may require the specification of the
number of inputs, a kernel function, and the number of outputs. The initial values of the coefficients may not be
required. Thus, the user input required to specify such a module may be greatly simplified. This predefined
procedure approach is one method of implementing the modular support vector machine.

A second approach to provide modular support vector machine function may allow a limited set of natural
language expressions to be used to define the support vector machine. In such an implementation, the user or
developer may be permitted to enter, through typing or other means, natural language definitions for the support
vector machine. For example, the user may enter text which might read, for example, "I want a fully randomized
support vector machine." These user inputs may be parsed in search of specific combinations of terms, or their
equivalents, which would allow the specific configuration information to be extracted from the restricted natural
language input.

By parsing the total user input provided in this method, the complete specification for a support vector
machine module may be obtained. Once this information is known, two approaches may be used to generate a
support vector machine module.

A first approach may be to search for a predefined procedure matching the configuration information
provided by the restricted natural language input. This may be useful where users tend to specify the same basic
support vector machine functions for many problems.

A second approach may provide for much more flexible creation of support vector machine modules. In
this approach, the specifications obtained by parsing the natural language input may be used to generate a support
vector machine procedure by actually generating software code. In this approach, the support vector machine
functions may be defined in relatively small increments as opposed to the approach of providing a complete
predefined support vector machine module. This approach may combine, for example, a small function which is
able to obtain input data and populate a set of inputs. By combining a number of such small functional pieces and
generating software code which reflects and incorporates the user specifications, a complete support vector machine
procedure may be generated.

This approach may optionally include the ability to query the user for specifications which have been
neglected or omitted in the restricted natural language input. Thus, for example, if the user neglected to specify the
number of outputs in the network, the user may be prompted for this information and the system may generate an
additional line of user specification reflecting the answer to the query.

The parsing and code generation in this approach may use pre-defined, small sub-functions of the overall
support vector machine module. A given key word (term) may correspond to a certain sub-function of the overall
support vector machine module. Each sub-function may have a corresponding set of key words (terms) and
associated key words and numeric values. Taken together, each key word and associated key words and values may
constitute a symbolic specification of the support vector machine sub-function. The collection of all the symbolic

specifications may make up a symbolic specification of the entire support vector machine module.
41

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

The parsing step may process the substantially natural language input. The parsing step may remove
unnecessary natural language words, and may group the remaining key words and numeric values into symbolic
specifications of support vector machine sub-functions. One way to implement parsing may be to break the input
into sentences and clauses bounded by periods and commas, and restrict the specification to a single sub-function
per clause. Each clause may be searched for key words, numeric values, and associated key words. The remaining
words may be discarded. A given key word (term) may correspond to a certain sub-function of the overall support
vector machine module.

Alternatively, key words may have relational tag words (e.g., "in," "with," etc.) which may indicate the
relation of one key word to another. Using such relational tag words, multiple sub-function specifications may be
processed in the same clause.

Key words may be defined to have equivalents. For example, the user may be allowed, in an embodiment
of this aspect of the invention, to specify the kernel function used in the support vector machine. Thus the key word
may be "kernel" and an equivalent key word may be "kernel function." This key word may correspond to a set of
pre-defined sub-functions which may implement various kinds of kernel functions in the support vector machine.

Another example may be key word "coefficients", which may have equivalent "weights". The associated
data may be a real number which may indicate the value(s) of one or more coefficients. Thus, it may be seen that
various levels of flexibility in the substantially natural language specification may be provided. Increasing levels of
flexibility may require more detailed and extensive specification of key words and associated data with their
associated key words.

The support vector machine itself may be constructed, using this method, by processing the specifications,
as parsed from the substantially natural language input, in a pre-defined order, and generating the fully functional
procedure code for the support vector machine from the procedural sub-function code fragments.

The other major advantage of a modular approach is the ease of integration with other functions in the
application (problem) domain. For example, in the process control domain, it may be desirable or productive to
combine the functions of a support vector machine with other more standard control functions such as statistical
tests, feedback control, etc. The implementation of support vector machines as modular support vector machines in
a larger control system may greatly simplify this kind of implementation.

The incorporation of modular support vector machines into a modular control system may be beneficial
because it may make it easy to create and use support vector machine predictions in a control application. However,
the application of modular support vector machines in a control system is different from the control functions
typically found in a control system. For example, the control functions described in some of the United States
patents and patent applications incorporated by reference above generally rely on the current information for their
actions, and they do not generally define their function in terms of past (historical) data. In order to make a support
vector machine function effectively in a modular control system, some means is needed to train and operate the
support vector machine using the data which is not generally available by retrieving current data values. The
systems and methods of various embodiments of the present invention, as described above, may provide this
essential capability which may allow a modular support vector machine function to be implemented in a modular
control system.

A modular support vector machine has several characteristics which may significantly ease its integration

with other control functions. First, the execution of support vector machine functions, prediction and/or training
42

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

may easily be coordinated in time with other control functions. The timing and sequencing capabilities of a modular
implementation of a support vector machine may provide this capability. Also, when implemented as a modular
function, support vector machines may make their results readily accessible to other control functions that may need
them. This may be done, for example, without needing to store the support vector machine outputs in an external
system, such as a historical database.

Modular support vector machines may run either synchronized or unsynchronized with other functions in
the control system. Any number of support vector machines may be created within the same control application, or
in different control applications, within the control system. This may significantly facilitate the use of support
vector machines to make predictions of output data where several small support vector machines may be more easily
or rapidly trained than a single large support vector machine. Modular support vector machines may also provide a
consistent specification and user interface so that a user trained to use the modular support vector machine control
system may address many control problems without learning new software.

An extension of the modular concept is the specification of data using pointers. Here again, the user
(developer) is offered the easy specification of a number of data retrieval or data storage functions by simply
selecting the function desired and specifying the data needed to implement the function. For example, the retrieval
of a time-weighted average from the historical database is one such predefined function. By selecting a data type
such as a time-weighted average, the user (developer) need only specify the specific measurement desired, the
starting time boundary, and the ending time boundary. With these inputs, the predefined retrieval function may use
the appropriate code or function to retrieve the data. This may significantly simplify the user’s access to data which
may reside in a number of different process data systems. By contrast, without the modular approach, the user may
have to be skilled in the programming techniques needed to write the calls to retrieve the data from the various
process data systems.

A further development of the modular approach of an embodiment of the present invention is shown in
Figure 20. Figure 20 shows the support vector machine 1206 in a modular form.

Referring now to Figure 20, a specific software embodiment of the modular form of the present invention is
shown. In this modular embodiment, a limited set of support vector machine module types 1702 is provided. Each
support vector machine module type 1702 may allow the user to create and configure a support vector machine
module implementing a specific type of support vector machine. Different types of support vector machines may
have different kernel functions, different initial coefficient values, different training methods and so forth. For each
support vector machine module type, the user may create and configure support vector machine modules. Three
specific instances of support vector machine modules may be shown as 1702’, 1702", and 1702™.

In this modular software embodiment, support vector machine modules may be implemented as data
storage areas which contain a procedure pointer 1710’, 1710", 1710™ to procedures which carry out the functions of
the support vector machine type used for that module. The support vector machine procedures 1706" and 1706", for
example, may be contained in a limited set of support vector machine procedures 1704. The procedures 1706,
1706" may correspond one to one with the support vector machine types contained in the limited set of support
vector machine types 1702.

In this modular software embodiment, many support vector machine modules may be created which use the
same support vector machine procedure. In this case, the multiple modules each contain a procedure pointer to the

same support vector machine procedure 1706’ or 1706". In this way, many modular support vector machines may
43

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

be implemented without duplicating the procedure or code needed to execute or carry out the support vector
machine functions.

Referring now to Figure 21, a more specific software embodimerit of the modular support vector machine is
shown. This embodiment is of particular value when the support vector machine modules are implemented in the
same modular software system as modules performing other functions such as statistical tests or feedback control.

Because support vector machines may use a large number of inputs and outputs with associated error
values and training input data values, and also because support vector machines may require a large number of
coefficient values which need to be stored, support vector machine modules may have significantly greater storage
requirements than other module types in the control system. In this case, it is advantageous to store support vector
machine parameters in a separate support vector machine parameter storage area 1804. This structure may allow
modules implementing functions other than support vector machine functions to not reserve unused storage
sufficient for support vector machines.

In this modular software embodiment, each instance of a modular support vector machine 1702’ and 1702"
may contain two pointers. The first pointers (1710’ and 1710") may be the procedure pointer described above in
reference to Figure 20. Each support vector machine module may also contain a second pointer, (1802’ and 1802"),
referred to as parameter pointers, which may point to storage areas 1806’ and 1806", respectively, for support vector
machine parameters in a support vector machine parameter storage area 1804. In this embodiment, only support
vector machine modules may need to contain the parameter pointers 1802’ and 1802", which point to the support
vector machine parameter storage area 1804. Other module types, such as control modules which do not require
such extensive storage, need not have the storage allocated via the parameter pointers 1802 and 1802", which may
be a considerable savings.

Figure 24 shows representative aspects of the architecture of the support vector machine 1206. The
representation in Figure 24 is particularly relevant in connection with the modular support vector machine approach
shown in Figures 19, 20 and 21 discussed above.

Referring now to Figure 24, the components to make and use a representative embodiment of the support
vector machine 1206 are shown in an exploded format.

The support vector machine 1206 may contain a support vector machine model. As stated above, one
embodiment of the present invention may contemplate all presently available and future developed support vector
machine models and architectures.

The support vector machine 1206 may have access to input data and training input data and access to
locations in which it may store output data and error data. One embodiment of the present invention may use an on-
line approach. In this on-line approach, the data may not be kept in the support vector machine 1206. Instead, data
pointers may be kept in the support vector machine. The data pointers may point to data storage locations in a
separate software system. These data pointers, also called data specifications, may take a number of forms and may
be used to point to data used for a number of purposes.

For example, input data pointer 2204 and output data pointer 2206 may be specified. As shown in the
exploded view, each pointer (i.e., input data pointer 2204 and output data pointer 2206) may point to or use a

particular data source system 2224 for the data, a data type 2226, and a data item pointer 2228.

44

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

Support vector machine 1206 may also have a data retrieval function 2208 and a data storage function
2210. Examples of these data retrieval and data storage functions may be callable routines 2230, disk access 2232,
and network access 2234. These are merely examples of the aspects of retrieval and storage functions.

Support vector machine 1206 may also have prediction timing and training timing. These may be specified
by prediction timing control 2212 and training timing control 2214. One way to implement this may be to use a
timing method 2236 and its associated timing parameters 2238. Referring now to Figure 26, examples of timing
method 2236 may include a fixed time interval 2402, a new data entry 2404, an after another module 2406, an on
program request 2408, an on expert system request 2410, a when all training data updates 2412, and/or a batch
sequence methods 2414. These may be designed to allow the training and function of the support vector machine
1206 to be controlled by time, data, completion of modules, or other methods or procedures. The examples are
merely illustrative in this regard.

Figure 26 also shows examples of the timing parameters 2238. Such examples may include a time interval
2416, a data item specification 2418, a module specification 2420, and/or a sequence specification 2422. As is
shown in Figure 26, examples of the data item specification 2418 may include specifying a data source system 2224,
a data type 2226, and/or a data item pointer 2228 which have been described above.

Referring again to Figure 24, training data coordination, as discussed previously, may also be required in
many applications. Examples of approaches that may be used for such coordination are shown. One method may be
to use all current values as representative by reference numeral 2240. Another method may be to use current
training input data values with the input data at the earliest training input data time, as indicated by reference
numeral 2242. Yet another approach may be to use current training input data values with the input data at the latest
training input data time, as indicated by reference numeral 2244. Again, these are merely examples, and should not
be construed as limiting in terms of the type of coordination of training data that may be utilized by various
embodiments of the present invention.

The support vector machine 1206 may also need to be trained, as discussed above. As stated previously,
any presently available or future developed training method may be contemplated by various embodiments of the
present invention. The training method also may be somewhat dictated by the architecture of the support vector
machine model that is used.

Referring now to Figure 25, examples of the data source system 2224, the data type 2226, and the data item
pointer 2228 are shown for purposes of illustration.

With respect to the data source system 2224, examples may be a historical database 1210, a distributed
control system 1202, a programmable controiler 2302, and a networked single loop controller 2304. These are
merely illustrative.

Any data source system may be utilized by various embodiments of the present invention. It should also be
understood that such a data source system may either be a storage device or an actual measuring or calculating
device. In one embodiment, all that is required is that a source of data be specified to provide the support vector
machine 1206 with the input data 1220 that is needed to produce the output data 1218. One embodiment of the
present invention may contemplate more than one data source system used by the same support vector machine
1206.

The support vector machine 1206 needs to know the data type that is being specified. This is particularly

important in a historical database 1210 since it may provide more than one type of data. Several examples may be
45

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

shown in Figure 25 as follows: a current value 2306, a historical value 2308, a time weighted average 2310, a
controller setpoint 2312, and a controller adjustment amount 2314, Other types may be contemplated.

Finally, the data item pointer 2228 may be specified. The examples shown may include: a loop number
2316, a variable number 2318, a measurement number 2320, and/or a loop tag IL.D. 2322, among others. Again,
these are merely examples for illustration purposes, as various embodiments of the present invention may
contemplate any type of data item pointer 2228.

It is thus seen that support vector machine 1206 may be constructed so as to obtain desired input data 1220
and to provide output data 1218 in any intended fashion. In one embodiment of the present invention, this may be
done through menu selection by the user (developer) using a graphical user interface of a software based system on a
computer platform.

The construction of the controller 1202 is shown in Figure 27 in an exploded format. Again, this is merely
for purposes of illustration. First, the controller 1202 may be implemented on a hardware platform 2502. Examples
of hardware platforms 2502 may include: a pneumatic single loop controller 2414, an electronic single loop
controller 2516, a networked single looped controller 2518, a programmable loop controller 2520, a distributed
control system 2522, and/or a programmable logic controller 2524. Again, these are merely examples for
illustration. Any type of hardware platform 2502 may be contemplated by various embodiments of the present
invention.

In addition to the hardware platform 2502, the controllers 1202, 1406, and/or 1408 each may need to
implement or utilize an algorithm 2504. Any type of algorithm 2504 may be used. Examples shown may include:
proportional (P) 2526; proportional, integral (PI) 2528; proportional, integral, derivative (PID) 2530; internal model
2532; adaptive 2534; and, non-linear 2536. These are merely illustrative of feedback algorithms. Various
embodiments of the present invention may also contemplate feedforward algorithms and/or other algorithm
approaches.

The controllers 1202, 1406, and/or 1408 may also include parameters 2506. These parameters 2506 may
be utilized by the algorithm 2504. Examples shown may include setpoint 1404, proportional gain 2538, integral
gain 2540, derivative gain 2542, output high limit 2544, output low limit 2546, setpoint high limit 2548, and/or
setpoint low limit 2550.

The controllers 1202, 1406, and/or 1408 may also need some means for timing operations. One way to do
this is to use a timing means 2508. Timing means 2508, for example, may use a timing method 2236 with
associated timing parameters 2238, as previously described. Again, these are merely illustrative.

The controllers 1202, 1406, and/or 1408 may also need to utilize one or more input signals 2510, and to
provide one or more output signals 2512. These signals may take the form of pressure signals 2552, voltage signals
2554, amperage (current) signals 2556, or digital values 2558. In other words, input and output signals may be in

either analog or digital format.

V1. User Interface

In one embodiment of the present invention, a template and menu driven user interface is utilized (e.g.,
Figures 28 and 29) which may allow the user to configure, reconfigure and operate the embodiment of the present
invention. This approach may make the embodiment of the present invention very user friendly. This approach may

also eliminate the need for the user to perform any computer programming, since the configuration, reconfiguration
46

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

and operation of the embodiment of the present invention is carried out in a template and menu format not requiring
any actual computer programming expertise or knowledge.

The system and method of one embodiment of the present invention may utilize templates. These
templates may define certain specified fields that may be addressed by the user in order to configure, reconfigure,
and/or operate the embodiment of the present invention. The templates may guide the user in using the embodiment
of the present invention.

Representative examples of templates for the menu driven system of various embodiments of the present
invention are shown in Figures 28-31. These are merely for purposes of illustration.

One embodiment of the present invention may use a two-template specification (i.e., a first template 2600
as shown in Figure 28, and a second template 2700 as shown in Figure 29) for a support vector machine module.
Referring now to Figure 28, the first template 2600 in this set of two templates is shown. First template 2600 may
specify general characteristics of how the support vector machine 1206 may operate. The portion of the screen
within a box labeled 2620, for example, may show how timing options may be specified for the support vector
machine module 1206. As previously described, more than one timing option may be provided. A training timing
option may be provided, as shown under the label "train” in box 2620. Similarly, a prediction timing control
specification may also be provided, as shown under the label "run" in box 2620. The timing methods may be chosen
from a pop-up menu of various timing methods that may be implemented in one embodiment. The parameters
needed for the user-selected timing method may be entered by a user in the blocks labeled "Time Interval” and "Key
Block". These parameters may only be required for certain timing methods. Not all timing methods may require
parameters, and not all timing methods that require parameters may require all the parameters shown.

In a box labeled 2606 bearing the headings "Mode" and "Store Predicted Outputs", the prediction and
training functions of the support vector machine module may be controlled. By putting a check or an “X” in the box
next to either the train or the run designation under "Mode", the training and/or prediction functions of the support
vector machine module 1206 may be enabled. By putting a check or an “X” in the box next to either the "when
training" or the "when running" labels, the storage of predicted output data 1218 may be enabled when the support
vector machine 1206 is training or when the support vector machine 1206 is predicting (i.e., running), respectively.

The size of the support vector machine 1206 may be specified in a box labeled 2622 bearing the heading
"support vector machine size". In this embodiment of a support vector machine module 1206, there may be inputs,
outputs, and/or kernel function(s). In one embodiment, the number of inputs and the number of outputs may be
limited to some predefined value.

The coordination of input data with training data may be controlled using a checkbox labeled 2608. By
checking this box, the user may specify that input data 1220 is to be retrieved such that the timestamps on the input
data 1220 correspond with the timestamps on the training input data 1306. The training or learning constant may be
entered in field 2610. This training or learning constant may determine how aggressively the coefficients in the
support vector machine 1206 are adjusted when there is an error 1504 between the output data 1218 and the training
input data 1306.

The user may, by pressing a keypad softkey labeled "dataspec page” 2624, call up the second template
2700 in the support vector machine module specification. This second template 2700 is shown in Figure 29. This
second template 2700 may allow the user to specify (1) the data inputs 1220, 1306, and (2) the outputs 1218, 1504

that may be used by the support vector machine module. Data specification boxes 2702, 2704, 2706, and 2708 may
47

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

be provided for each of the inputs 1220, training inputs 1306, the outputs 1218, and the summed error output,
respectively. These may correspond to the input data, the training input data, the output data, and the error data,
respectively. These four boxes may use the same data specification methods.

Within each data specification box, the data pointers and parameters may be specified. In one embodiment,
the data specification may comprise a three-part data pointer as described above. In addition, various time
boundaries and constraint limits may be specified depending on the data type specified.

In Figure 30, an example of a pop-up menu is shown. In this figure, the specification for the data system
for the network input number 1 is being specified as shown by the highlighted field reading "DMT PACE". The box
in the center of the screen is a pop-up menu 2802 containing choices which may be selected to complete the data
system specification. The templates in one embodiment of the present invention may utilize such pop-up menus
2802 wherever applicable.

Figure 31 shows the various elements included in the data specification block. These elements may include
a data title 2902, an indication as to whether the block is scrollable 2906, and/or an indication of the number of the
specification in a scrollable region 2904. The box may also contain arrow pointers indicating that additional data
specifications may exist in the list either above or below the displayed specification. These pointers 2922 and 2932
may be displayed as a small arrow when other data is present. Otherwise, they may be blank.

The items making up the actual data specification may include: a data system 2224, a data type 2226, a data
item pointer or number 2228, a name and units label for the data specification 2908, a label 2924, a time boundary
2926 for the oldest time interval boundary, a label 2928, a time specification 2930 for the newest time interval
boundary, a label 2910, a high limit 2912 for the data value, a label 2914, a low limit value 2916 for the low limit on
the data value, a label 2918, and a value 2920 for the maximum allowed change in the data value.

The data specification shown in Figure 31 is representative of one mode of implementing one embodiment
of the present invention. However, it should be understood that various other modifications of the data specification
may be used to give more or less flexibility depending on the complexity needed to address the various data sources
which may be present. Various embodiments of the present invention may contemplate any variation on this data
specification method.

Although the foregoing refers to particular embodiments, it will be understood that the present invention is
not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the
disclosed embodiments, and that such modifications are intended to be within the scope of the present invention.
Additionally, as noted above, although the above description of one embodiment of the invention relates to a process
control application, this is not intended to limit the application of various embodiments of the present invention, but
rather, it is contemplated that various embodiments of the present invention may be used in any number of processes
or systems, including business, medicine, financial systems, e-commerce, data-mining and analysis, stock and/or
bond analysis and management, or any other type of system or process which may utilize predictive or classification
models.

While the present invention has been described with reference to particular embodiments, it will be
understood that the embodiments are illustrated and that the invention scope is not so limited. Any variations,
modifications, additions and improvements to the embodiments described are possible. These variations,
modifications, additions and improvements may fall within the scope of the invention as detailed within the

following claims.
48

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

WHAT IS CLAIMED IS:

1. A method for training a support vector machine used to control a process, the method comprising:
(1) training a support vector machine using a first training set, wherein said first training set is based on
first data;
(2) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on second data; and
(3) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on third data;
wherein at least one of (1), (2), and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving input data indicated by said training input data time period.

2. The method of claim 1, wherein at least one of (1), (2), and (3) operates substantially in real-time.

3. The method of claim 1,
wherein (1) is preceded by analyzing a physical specimen from the process; and

wherein (1) further comprises using data representative of said analyzing as said first data.

4. A method for training a support vector machine using real-time data, the method comprising:

(1) detecting first data;

(2) training a support vector machine in response to said detecting first data, using a first training set based
on said first data;

(3) detecting second data;

(4) training said support vector machine in response to said detecting second data, using said first training
set and a second training set, wherein said second training set is based on said second data;

(5) detecting third data;

(6) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;

wherein at least one of (2), (4), and (6) comprises:

(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

5. The method of claim 4, further comprising discarding said first training set between (4) and (5).
49

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

6. The method of claim 4, further comprising discarding said second training set after (6).

7. A method for training a support vector machine, the method comprising:
(1) constructing a list containing at least two training sets;
(2) training the support vector machine using said at least two training sets in said list;
(3) constructing a new training set and replacing an oldest training set in said list with said new training set;
and
(4) repeating (2) and (3) at least once;
wherein at least one of (1) and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one Or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

8. The method of claim 7, wherein (3) comprises:
(a) monitoring substantially in real-time for new training input data; and

(b) retrieving input data indicated by said new training input data to construct said new training set.

9. The method of claim 7, wherein (2) uses said at least two training sets once.

10. The method of claim 7, wherein (2) uses said at least two training sets at least twice.

11. A method for training a support vector machine using data from a physical process, the method
comprising:

(1) operating the physical process and measuring the physical process to produce first data, second data,
and third data;
(2) training a support vector machine using a first training set; wherein said first training set is based on
said first data;
(3) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on said second data; and
(4) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on said third data;
wherein at least one of (2), (3), and (4) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one Or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

12. A method for training a support vector machine for process control, the method comprising:
50

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

(1) training a support vector machine using a first training set, wherein said first training set is based on
first data;
(2) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on second data;
(3) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on third data;
(4) using said support vector machine to predict a first output data using first input data; and
(5) changing a physical state of an actuator in accordance with said first output data;
wherein at least one of (1), (2), and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one Or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

13. A method for training a support vector machine for process control using real-time data, the
method comprising:

(1) detecting first data;

(2) training a support vector machine in response to said detecting first data, using a first training set,
wherein said first training set is based on said first data;

(3) detecting second data;

(4) training said support vector machine in response to said detecting said second data, using said first
training set and a second training set, wherein said second training set is based on said second data;

(5) detecting third data;

(6) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;

(7) using said support vector machine to predict first output data using first input data; and

(8) changing a physical state of an actuator in accordance with said first output data;

wherein at least one of (2), (4), and (6) comprises:

(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(¢) retrieving an input data indicated by said training input data time period.

14. A method for training a support vector machine using real-time data from a physical process, the
method comprising:

(1) operating the physical process and measuring the physical process to produce first data, second data,
and third data;

(2) detecting said first data;

51

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

(3) training a support vector machine in response to said detecting first data, using a first training set,
wherein said first training set is based on said first data;
(4) detecting said second data;
(5) training said support vector machine in response to said detecting second data, using said first training
set and a second training set; wherein said second training set is based on said second data;
(6) detecting said third data; and
(7) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;
wherein at least one of (3), (5), and (7) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(¢) retrieving an input data indicated by said training input data time period.

15. A method for constructing training sets for a support vector machine, the method comprising:
(1) developing a first training set for a support vector machine by:
(a) retrieving first training input data from a historical database, wherein said first training input
data has a first one or more timestamps;
(b) selecting a first training input data time period based on said first one or more timestamps; and
(c) retrieving first input data indicated by said first training input data time period; and
(2) developing a second training set for said support vector machine by:
(a) retrieving second training input data from said historical database, wherein said second
training input data has a second one or more timestamps;
(b) selecting a second training input data time period based on said second one or more
timestamps; and

() retrieving second input data indicated by said second training input data time period.

16. The method of claim 15, further comprising:
(3) searching said historical database in either a forward time direction or a backward time direction so that
said second training input data is the next training input data in time to said first training input data in said forward

time direction or said backward time direction, whichever is used.

17. The method of claim 15, further comprising:

(3) training said support vector machine using said first training set and/or said second training set.

18. A computer support vector machine process control method adapted for predicting output data
provided to a controller used to control a process for producing a product having at least one product property, the
computer support vector machine process control method comprising:

a processor;
52

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

a memory medium coupled to the processor, wherein the memory medium stores a support vector machine
software program, wherein the support vector machine software program comprises:

(1) monitoring for the availability of new training input data by monitoring for a change in an associated
timestamp of said training input data;

(2) constructing a training set by retrieving first input data corresponding to said training input data;

(3) training the support vector machine using said training set; and

(4) predicting the output data from second input data using the support vector machine.

19. The computer support vector machine process control method of claim 18, wherein (2) further

comprises using data pointers to indicate said training input data and said first input data.

20. The computer support vector machine process control method of claim 18, wherein (1) is
preceded by:

(i) presenting to a user a template for a partially specified support vector machine; and

(ii) entering data into said template to create a complete support vector machine specification; and
wherein (3) further comprises using a support vector machine representative of said complete support

vector machine specification.

21. The computer support vector machine process control method of claim 18, wherein (1) is
preceded by:
(i) presenting to a user an interface for accepting a limited set of substantially natural language
format specifications; and
(ii) entering into said interface sufficient specifications in said substantially natural language
format to completely define a support vector machine; and
wherein (3) further comprises using a support vector machine representative of said completely defined

support vector machine.

22, The computer support vector machine process control method of claim 18, wherein (1), (2), and

(3) operate substantially in real-time.

23. A method for constructing training sets for a support vector machine, the method comprising:

(a) retrieving training input data from a historical database, wherein said training input data has one or
more timestamps;

(b) selecting a training input data time period based on said one or more timestamps; and

(¢) retrieving input data indicated by said training input data time period.

24. A computer support vector machine process control method adapted for predicting output data
provided to a controller used to control a process for producing a product having at least one product property, the
computer support vector machine process control method comprising:

(1) monitoring for the availability of new training input data;
53

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

(2) constructing a training set by retrieving first input data corresponding to said training input data
comprising:
(a) selecting a training input data time using a one or more timestamps associated with said
training input data; and
(b) retrieving input data representing measurement(s) at said training input data time, said input
data comprising said first input data;
(3) training the support vector machine using said training set; and

(4) predicting the output data from second input data using the support vector machine.

25. The computer support vector machine process control method of claim 24, wherein (1) comprises

monitoring for a change between two successive training input data values.

26. The computer support vector machine process control method of claim 24,
wherein (1) comprises computing a difference between a most recent training input data value and a next
most recent training input value; and

wherein (3) further comprises using said difference with said first input data for said training.

27. The computer support vector machine process control method of claim 24, wherein (2) further

comprises using data pointers to indicate said training input data and said first input data.

28. The computer support vector machine process control method of claim 24, wherein (1), (2), and

(3) operate substantially in real-time.

29. A computer support vector machine process control method adapted for predicting output data
provided to a controller used to control a process for producing a product having at least one product property, the
computer support vector machine process control method comprising:

(1) presenting to a user a template for a partially specified support vector machine;

(2) entering data into said template to create a complete support vector machine specification;

(3) monitoring for the availability of new training input data;

(4) constructing a training set by retrieving first input data corresponding to said training input data;

(5) training the support vector machine using said training set, said training further comprising using a
support vector machine representative of said complete support vector machine specification; and

(6) predicting the output data from second input data using the support vector machine.

30. The computer support vector machine process control method of claim 29, wherein (3) comprises

monitoring for a change between two successive training input data values.

31. The computer support vector machine process control method of claim 29,
wherein (3) comprises computing a difference between a most recent training input data value and a next

most recent training input value; and
54

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

wherein (5) further comprises using said difference with said first input data for said training.

32. The computer support vector machine process control method of claim 29, wherein (4) further

comprises using data pointers to indicate said training input data and said first input data.

33. The computer support vector machine process control method of claim 29, wherein (3), (4), and

(5) operate substantially in real-time.

34, A computer support vector machine process control method adapted for predicting output data
provided to a controller used to control a process for producing a product having at least one product property, the
computer support vector machine process control method comprising:

(1) presenting to a user an interface for accepting a limited set of substantially natural language format
specifications;

(2) entering into said interface sufficient specifications in said substantially natural language format to
completely define a support vector machine;

(3) monitoring for the availability of new training input data;

(4) constructing a training set by retrieving first input data corresponding to said training input data;

(5) training the support vector machine using said training set, wherein said training comprises using a
support vector machine representative of said completely defined support vector machine; and

(6) predicting the output data from second input data using the support vector machine.

35. The computer support vector machine process control method of claim 34, wherein (3) comprises

monitoring for a change between two successive training input data values.

36. The computer support vector machine process control method of claim 34,
wherein (3) comprises computing a difference between a most recent training input data value and a next
most recent training input value; and

wherein (5) further comprises using said difference with said first input data for said training.

37. The computer support vector machine process control method of claim 34, wherein (4) further

comprises using data pointers to indicate said training input data and said first input data.

38. The computer support vector machine process control method of claim 34, wherein (3), (4), and

(5) operate substantially in real-time.

39. A method for training a support vector machine used to control a process, the method comprising:

building a first training set using training data, wherein said training data includes one or more timestamps
indicating a chronology of said training data and one or more process parameter values corresponding to each
timestamp, and wherein said first training set comprises process parameter values corresponding to a first time

period in said chronology;
55

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

training a support vector machine using said first training set.

40. The method of claim 39, wherein said building a first training set comprises:

retrieving said training data from a historical database;

selecting a training data time period based on said one or more timestamps; and

retrieving said process parameter values from said training data indicated by said training data time period,
wherein said first training set comprises said retrieved process parameter values in chronological order over said

selected training data time period.

41. The method of claim 40, further comprising:
generating a second training set by:
removing at least a subset of the parameter values of said first training set, wherein said at least a
subset of the parameter values comprises oldest parameter values of said training set; and
adding new parameter values from said training data based on said timestamps to generate a
second training set;
wherein said second training set corresponds to a second time period in said chronology; and

training a support vector machine using said second training set.

42. A carrier medium which stores program instructions for training a support vector machine used to
control a process, wherein the program instructions are executable to perform:
(1) training a support vector machine using a first training set, wherein said first training set is based on
first data;
(2) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on second data; and
(3) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on third data;
wherein at least one of (1), (2), and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving input data indicated by said training input data time period.

43. The carrier medium of claim 42, wherein at least one of (1), (2), and (3) operates substantially in real-

time.
44. The carrier medium of claim 42,

wherein (1) is preceded by analyzing a physical specimen from the process; and

wherein (1) further comprises using data representative of said analyzing as said first data.

56

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

45. A carrier medium which stores program instructions for training a support vector machine using real-
time data, wherein the program instructions are executable to perform:

(1) detecting first data;

(2) training a support vector machine in response to said detecting first data, using a first training set based
on said first data;

(3) detecting second data;

(4) training said support vector machine in response to said detecting second data, using said first training
set and a second training set, wherein said second training set is based on said second data;

(5) detecting third data;

(6) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;

wherein at least one of (2), (4), and (6) comprises:

(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(¢) retrieving an input data indicated by said training input data time period.

46. The carrier medium of claim 45, wherein the program instructions are further executable to perform

discarding said first training set between (4) and (5).

47. The carrier medium of claim 45, wherein the program instructions are further executable to perform

discarding said second training set after (6).

48. A carrier medium which stores program instructions for training a support vector machine, wherein the
program instructions are executable to perform:
(1) constructing a list containing at least two training sets;
(2) training the support vector machine using said at least two training sets in said list;
(3) constructing a new training set and replacing an oldest training set in said list with said new training set;
and
(4) repeating (2) and (3) at least once;
wherein at least one of (1) and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

49. The carrier medium of claim 48, wherein (3) comprises:
(a) monitoring substantially in real-time for new training input data; and

(b) retrieving input data indicated by said new training input data to construct said new training set.
57

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

50. The carrier medium of claim 48, wherein (2) uses said at least two training sets once.

51. The carrier medium of claim 48, wherein (2) uses said at least two training sets at least twice.

52. A carrier medium which stores program instructions for training a support vector machine using data
from a physical process, wherein the program instructions are executable to perform:
(1) operating the physical process and measuring the physical process to produce first data, second data,
and third data;
(2) training a support vector machine using a first training set; wherein said first training set is based on
said first data;
(3) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on said second data; and
(4) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on said third data;
wherein at least one of (2), (3), and (4) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(¢) retrieving an input data indicated by said training input data time period.

53. A carrier medium which stores program instructions for training a support vector machine for process
control, wherein the program instructions are executable to perform:
(1) training a support vector machine using a first training set, wherein said first training set is based on
first data;
(2) training said support vector machine using said first training set and a second training set, wherein said
second training set is based on second data;
(3) training said support vector machine using said second training set and a third training set, without
using said first training set, wherein said third training set is based on third data;
(4) using said support vector machine to predict a first output data using first input data; and
(5) changing a physical state of an actuator in accordance with said first output data;
wherein at least one of (1), (2), and (3) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

54. A carrier medium which stores program instructions for training a support vector machine for process
control using real-time data, wherein the program instructions are executable to perform:

(1) detecting first data;
58

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

(2) training a support vector machine in response to said detecting first data, using a first training set,
wherein said first training set is based on said first data;

(3) detecting second data;

(4) training said support vector machine in response to said detecting said second data, using said first
training set and a second training set, wherein said second training set is based on said second data;

(5) detecting third data;

(6) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;

(7) using said support vector machine to predict first output data using first input data; and

(8) changing a physical state of an actuator in accordance with said first output data;

wherein at least one of (2), (4), and (6) comprises:

(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

55. A carrier medium which stores program instructions for training a support vector machine using real-
time data from a physical process, wherein the program instructions are executable to perform:
(1) operating the physical process and measuring the physical process to produce first data, second data,
and third data;
(2) detecting said first data;
(3) training a support vector machine in response to said detecting first data, using a first training set,
wherein said first training set is based on said first data;
(4) detecting said second data;
(5) training said support vector machine in response to said detecting second data, using said first training
set and a second training set; wherein said second training set is based on said second data;
(6) detecting said third data; and
(7) training said support vector machine in response to said detecting third data, using said second training
set and a third training set, without using said first training set, wherein said third training set is based on said third
data;
wherein at least one of (3), (5), and (7) comprises:
(a) retrieving training input data from a historical database, wherein said training input data has
one or more timestamps;
(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving an input data indicated by said training input data time period.

56. A carrier medium which stores program instructions for constructing training sets for a support vector
machine, wherein the program instructions are executable to perform:

(1) developing a first training set for a support vector machine by:
59

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

(a) retrieving first training input data from a historical database, wherein said first training input
data has a first one or more timestamps;

(b) selecting a first training input data time period based on said first one or more timestamps; and

(c) retrieving first input data indicated by said first training input data time period; and

(2) developing a second training set for said support vector machine by:

(a) retrieving second training input data from said historical database, wherein said second
training input data has a second one or more timestamps;

(b) selecting a second training input data time period based on said second one or more
timestamps; and

(c) retrieving second input data indicated by said second training input data time period.

57. The carrier medium of claim 56, wherein the program instructions are further executable to perform:
(3) searching said historical database in either a forward time direction or a backward time direction so that
said second training input data is the next training input data in time to said first training input data in said forward

time direction or said backward time direction, whichever is used.

58. The carrier medium of claim 56, wherein the program instructions are further executable to perform:

(3) training said support vector machine using said first training set and/or said second training set.

59. A carrier medium which stores program instructions for constructing training sets for a support vector
machine, wherein the program instructions are executable to perform:

(a) retrieving training input data from a historical database, wherein said training input data has one or
more timestamps;

(b) selecting a training input data time period based on said one or more timestamps; and

(c) retrieving input data indicated by said training input data time period.

60. A carrier medium which stores program instructions for predicting output data provided to a controller
used to control a process for producing a product having at least one product property, wherein the program
instructions are executable to perform:

(1) monitoring for the availability of new training input data;

(2) constructing a training set by retrieving first input data corresponding to said training input data
comprising:

(a) selecting a training input data time using a one or more timestamps associated with said
training input data; and

(b) retrieving input data representing measurement(s) at said training input data time, said input
data comprising said first input data;

(3) training the support vector machine using said training set; and

(4) predicting the output data from second input data using the support vector machine.

60

10

15

20

25

30

35

WO 03/046770 PCT/US02/38019

61. The carrier medium of claim 60, wherein (1) comprises monitoring for a change between two

successive training input data values.

62. The carrier medium of claim 60,
wherein (1) comprises computing a difference between a most recent training input data value and a next
most recent training input value; and

wherein (3) further comprises using said difference with said first input data for said training.

63. The carrier medium of claim 60, wherein (2) further comprises using data pointers to indicate said

training input data and said first input data.

64. The carrier medium of claim 60, wherein (1), (2), and (3) operate substantially in real-time.

65. A carrier medium which stores program instructions for predicting output data provided to a controller
used to control a process for producing a product having at least one product property, wherein the program
instructions are executable to perform:

(1) presenting to a user a template for a partially specified support vector machine;

(2) entering data into said template to create a complete support vector machine specification;

(3) monitoring for the availability of new training input data;

(4) constructing a training set by retrieving first input data corresponding to said training input data;

(5) training the support vector machine using said training set, said training further comprising using a
support vector machine representative of said complete support vector machine specification; and

(6) predicting the output data from second input data using the support vector machine.

66. The carrier medium of claim 65, wherein (3) comprises monitoring for a change between two

successive training input data values.

67. The carrier medium of claim 65,

wherein (3) comprises computing a difference between a most recent training input data value and a next
most recent training input value; and

wherein (5) further comprises using said difference with said first input data for said training.

68. The carrier medium of claim 65, wherein (4) further comprises using data pointers to indicate said

training input data and said first input data.

69. The carrier medium of claim 65, wherein (3), (4), and (5) operate substantially in real-time.

61

10

15

20

25

30

35

40

WO 03/046770 PCT/US02/38019

70. A carrier medium which stores program instructions for predicting output data provided to a controller
used to control a process for producing a product having at least one product property, wherein the program
instructions are executable to perform:

(1) presenting to a user an interface for accepting a limited set of substantially natural language format
specifications;

(2) entering into said interface sufficient specifications in said substantially natural language format to
completely define a support vector machine;

(3) monitoring for the availability of new training input data;

(4) constructing a training set by retrieving first input data corresponding to said training input data;

(5) training the support vector machine using said training set, wherein said training comprises using a
support vector machine representative of said completely defined support vector machine; and

(6) predicting the output data from second input data using the support vector machine.

71. The carrier medium of claim 70, wherein (3) comprises monitoring for a change between two

successive training input data values.

72. The carrier medium of claim 70,
wherein (3) comprises computing a difference between a most recent training input data value and a next
most recent training input value; and

wherein (5) further comprises using said difference with said first input data for said training.

73. The carrier medium of claim 70, wherein (4) further comprises using data pointers to indicate said

training input data and said first input data.

74. The carrier medium of claim 70, wherein (3), (4), and (5) operate substantially in real-time.

75. A carrier medium which stores program instructions for training a support vector machine used to
control a process, wherein the program instructions are executable to perform:

building a first training set using training data, wherein said training data includes one or more timestamps
indicating a chronology of said training data and one or more process parameter values corresponding to each
timestamp, and wherein said first training set comprises process parameter values corresponding to a first time
period in said chronology;

training a support vector machine using said first training set.

76. The carrier medium of claim 75, wherein said building a first training set comprises:

retrieving said training data from a historical database;

selecting a training data time period based on said one or more timestamps; and

retrieving said process parameter values from said training data indicated by said training data time period,
wherein said first training set comprises said retrieved process parameter values in chronological order over said

selected training data time period.
62

WO 03/046770 PCT/US02/38019

77. The carrier medium of claim 76, wherein the program instructions are further executable to perform:

generating a second training set by:
removing at least a subset of the parameter values of said first training set, wherein said at least a
5 subset of the parameter values comprises oldest parameter values of said first training set; and
adding new parameter values from said training data based on said timestamps to generate said
second training set, wherein said second training set corresponds to a second time period in said chronology; and

training a support vector machine using said second training set.

10

63

WO 03/046770 PCT/US02/38019
1/34

82

Computer System

Figure 1

(LA L R T R LR R LA

[@ ‘

PCT/US02/38019

WO 03/046770

2/34

8l
anL pleH

2 2inbi4

081
O3pIA

0/1 sng uolsuedxgy

~—

891
lgjjonuo) sng

|

j_/-'\

¥or ot
Jajjosjuo) %mw
Aiowep
1
991
Aowsy utey

J_/"\

~

PCT/US02/38019

WO 03/046770

3/34

& ol

510 Uuo1jea0T
Hm|ﬂ abri0)g
utel |
SJUSIIS0D <—o7IeNU|—
dwejsaur}
U8B0 ¢ I joug [e-gnduwo) ndu) | o oay | U020 2088y
1ol13 | mc_c_mﬁll HIgd abeio)g ejeq Induj
Buiuies] si0lg
dwejsatul |
€IEd ;ndinQ je——101paid Indu| [<e—analijay - :0%83 Aﬁllloom@q eleg
indinQ SDEIIS Jndu 84013
0cl
m_oyml-f uoljeo0
onaljey—H 9beiois
¥4’
eleq indinQ
induj l—-andwoy— Idino 190U PUSS

|

N
O
N
~

—

oy

Jio

Jojen)oy

WO 03/046770

4/34

PCT/US02/38019

Controfler

1200\
1202
* A
|
1207 1214
Support Vector _ V.
Machine < vaﬁ?ﬁ; i(;tgé 1221
configuration 1204
? _2__ Controller
——2— $ output
data
H|storlcal database
;
1224
T 1226 1228
m;:::lals > Pracess . Product
1999 1212 1216

FIG. 4

WO 03/046770 PCT/US02/38019
5/34

v
Y v
Store input data and Configure and train Support
training Input data 102 Vector Machine 104
{ * l
122 122
i v
Predict output data using Control process
— 132 —p| Support Vector Machine using ouput data
10 112

I
124
Y

| Retrain Support
—= | Vector Machine 108

|
128
y

Enable/disable
control 11

1
130
|

WO 03/046770 PCT/US02/38019

6/34
TI
120 102
Store input data with Store training input data with
~ —s| associated timestamps in associated timestamps in = |q—
historical database historical database
202 206
Wait specified input data Wait specified training input
storage interval data storage interval
204 208

FIG. 6

WO 03/046770

7/34

N ~—

120
Configure Support
Vector Machine 302

[
312
v
Wait training input data
interval 304
l
314

New
training
input data?
306

Yes

316
| v
Train Support Vector
Machine 308

PCT/US02/38019

WO 03/046770 PCT/US02/38019
8/34

1
122

4, 106

q Wait specified prediction
interval 402

!

132 | |Retrieve input data at current time
from historical database 404
Predict output data from retrieved

input data using Support Vector
Machine 06

Store ouput data in historical
database 08

—

—
- N> —]
2

FIG. 8

WO 03/046770

9/34

training
input data”?

Train Support
Vector Machine
308

Fi

.

|
128
v

PCT/US02/38019

WO 03/046770 PCT/US02/38019
10/34

Error
acceptable?

v v

Enable Control 602 Disable Control 604

| 1
130 130
4 |

130 -

FIG. 10

WO 03/046770 PCT/US02/38019
11/34

N

l
|
122 11

v

| Wait Controller Interval

|

70

Control
enabled?
704

«—————No

Yes

Y

Retrieve output data from

historical database 706
Effectively control process using controller
to compute controller output 708

FiG. 11

WO 03/046770 PCT/US02/38019
12/34

|
]
120 302

120 2
Specifiy training and prediction timing control
802
Specify Support Vector Machine size 804
Specify training and prediction modes g
|
816
v
Specify input data 808
Specify autput data 810
Specify training input data 812
Specify error data 814
l
312

WO 03/046770 PCT/US02/38019
13/34

Retrieve current training input timestamp from
historical database 02

; 0]

Compare current training input data timestamp to

saved fraining input data timestamp 904
No
318
Yes
Save current training input data timestamp 06
|
316

v

FIG. 13

WO 03/046770

14/34

PCT/US02/38019

|
I
16

3
Retrieve current training input data from
historical database 1002
Choose training input data time 1004

Y

Retrieve input data at training input data time
from historical database 1006

v

Predict ouput data from retrieved input data

using Support Vector Machine 406
Store output data in historical database 08

Y

Compute error data using output data and
training input data 101

N

v

Train Support Vector Machine using error data
or training input data 1014

Y

Error data stored in historical database 101

(@)

l
320

Co

-
v
FIG. 14

WO 03/046770

PCT/US02/38019
15/34

1)
O ——
o

'OJ

—

o

Compute global error using saved global error

1102
Y

Save new global error 110

Global error
statistically
different from zero?
1106

—No

Yes

Training input

data statistically
valid? '

1108

—No

Yes

|
l

Glohal etror is Glohal error is
acceptable not acceptable
122 322

s ; ..:,

)
~A
W

WO 03/046770

16/34

PCT/US02/38019

Controller

1202
f A
]
1207 1214
Support Vector S Vet
Machine < > ML;F():Ff)ﬂone 61028(; 1221
configuration 1204 1£U0
| 1 1;%6 1218
1220 = ‘
— Controller
Clock 4930 Historical database output
1210 data
A A 1208
l
1224 1304
|
Lab 1307
— 1226 | 1228
1226 ~Jg] 1302 S ;
Raw *
materials - Process | Product
1222 1212 1216

FIiG. 16

WO 03/046770 PCT/US02/38019
17/34

Supervisory controller

1408

A |
Supervisory

controller
output data
1402

Regulatory
control setpoint
1404

Y

Regulatory

1214 contraller 140
I

g Controller

l output

data
|

Y

FIG. 17

WO 03/046770

18/34

PCT/US02/38019

Support
Vector
Machine
configuration

1204

Supervisory controller

1408 |-

Support Vector
Machine 1206 M

A]
Supervisary
Controller
Output Data

4

1214

1402

Historical database
121

A A

—
(&%)
(e}
N

~

Regulatory
controller
setpoint
1404

v

Regulatory
controller 1406

r
Controller

output
data
1208

1220

Raw
materials
1222

1
S

:
v

Process
1212

Product
1216

FIG. 18

PCT/US02/38019

WO 03/046770

19/34

(]

6/ Old
TS Y S N W Y S I S Y S Y Y S
T S
v v
7191 Ci9l 019} 8091 9091 y091 209t 4 19021
3 L ojnpow
ajnpow ajhpow ajnpow a|npow BINPOW | L——1 BUIUOBI| |
JuaA8 wesboid a|npow ajnpow wejshs |0)u0D [0J]U0D 10108/
yoleg Bsn | | Heymays wnsny yadx3 piemIo}paa ¥oeqpss4 Joddng
L} i i ! t t k) {
919}

suoijoun Buiousnbag puy Buiui |

WO 03/046770 PCT/US02/38019
20/34
Modular Support Vector Machine system 1502

Limited set of Support
Vector Machine module
types 1702
Modular Limited set of Support 1704
g it Vector Machine

Upport | Procedure procedures
Vector pointer
Mf ;g';e 1710° »| Support Vector 1706

A Machine type 1 ——

> Procedure

Modular
Support | procedure Support Vector .,
Vector pointer » Machine type2 ———
Machine | 1740~ Procedure

1702"
Modular
Support | Procedure
Vector pointer
Machine 1710

1702"

FIG. 20

WO 03/046770

PCT/US02/38019
21/34
Modular Support Vector Machine system 1502
Limited set of Support Limited set of Support 1704
Vector Machine module Vector Machine
types 170 procedures
¢ Support Vector
» Machine type 1
Modular procedure 1708
Support Procedure
Vector pointer Su
: , pport Vector
Machine 1710 »| Machine type 2 o
, procedure L0
1702 Parameter
pointer
1802'
Support Vector 1804
Modular Machine parameter
Support | Procedure storage area
Vector pointer
Machine | 1710 Support Vector
» Machine parameter
1702" | Parameter storage area 1806'
pointer
18027 Support Vector
* Machine parameter
storage area 1806"

WO 03/046770

Raw
Materials
1222

22/34

Process
1212

Process
conditions
1906

PCT/US02/38019

Product
1216

Product
properties
1904

FIG. 22

WO 03/046770 PCT/US02/38019
23/34
Product property
aim value
2006
5 A—
L
Adjustment to Product
process condition property
setpoint measurement
1402 1304
Initial settingltgf Process condition
process condition | _ | setpoint (or aim)
setpoint value
2008 1404
Process Adjustment to
condition controllable process
measurement state
1224 1208
, Product
properties
1904
Controllable
Raw Process
: " process Product
materials ——» | conditions ——> o4
1207 1906 state —
— — 2002
Process
1212

FIG. 23

PCT/US02/38019

WO 03/046770

24/34

swn ejep Jndut Buiuiel ysoje
1e ejep ndu| yim ejep
b¥eZ Induj Buiures yuauino as

s ejep ndur Bujures 1Sal|lea
Je ejep induj yum ejep
¢beg Induj Buiutel) Juauno asN

ovee SaNjeA Jualng |je asN

ye Old

8€C¢ sieBWeled Buiwyy
9¢¢e poysw Bujuwy

PECT $S800E YlomjaN
ctee SS822E Y8Ig

0€cc saupnou s|qelien

8lc¢
9la¢c
14244
clee
0l¢
80¢¢
90¢¢
¥0cc

¢0CC 19pow auiyoepy 1ojosp Hoddng

poyisw Bujuies |
uoleulpiooo ejep Buiure) |
[0:3u02 Bujwy Bujures |
[013u02 Buwy uopoipaiy
uonuny sbelo)s eje(y
uoljoun) jeasiyal ejeq
Jsjuiod ejep indino
J8uiod ejep Jnduy

8C¢c Ioyuiod way eleq
922z adA) eje

b2¢z wajshs a0inos eje(

90k
BuIyoB
10J09
Joddng

PCT/US02/38019

WO 03/046770

25/34

0)o
228t al Bey dooT
02€Z #luswainsesi
8leg # 9|qeleA
912 # doo]

4394
cled
0lee
80€¢
90¢¢

Junowe juswisnipe Jg|jouo)
Julodias Jajjonuo)

abelane pajybiem awif|
anjeA jeoLiosiH

anjeA Juaing

G¢ Old

b0eC
c0ed
¢0ch
01¢)

J3jjonuoo dooj-a)buls pexiomsN
13}01)u00 8|gewwefold
Wa}SAs 101u0d payngLIsi(]
9seqejep |BoLoISIH

\
82¢¢ Jsjujod wal ele(

9¢eC adf) eleg

¥27¢ Wa)sAs 8aInos ejeq

¢0ze 'v0Te

PCT/US02/38019

WO 03/046770

26/34

8222 Jsjujod wey) ereq

9zee adf} eleQ

vzee WelsAs 82inos ele(]

9¢ 9ld
Ve uoneoyoads aousnbag
0cve uoneayoads ajnpojy
241374 uonesyloads wey eje
9ve [eAssiul awll |
yLPZ spoylew aousnbas yojed
Z\vg ssiepdn elep el jje USUm
0Lve 1sonbaJ Wa)sAs padxa uQ
80¥Z 1senbay weiboid uQ
90¥¢ 9|NpoW Jsyjoue I18jy
yOve Aijus eep meN
cove |eAsajuf sl paxi4

gezz siejeweled Bujwn g
9ecc poyjew Buitui]

14TAA AN

PCT/US02/38019

8662 anfeA [eybig
966z |eubis abessdwy
GGz [eubis abejjon
7ccz eubis ainssalg /¢ 9Old

gegz sieyeweded Buw]
9€¢ce pouaw Buiwi |

27/34

0552 i) moj Julodies

8v5e i ybiy Jurodies

el*14 Jiwip moj indino ZiGg leubis indingo

P¥GZ Juif ybiy Indino

14414 ureb saeAlsq \-01Gz [eubis indu

0vSe utet esbajul

eloloy/ ureb |euoliodo.d 90GZ Suesw Buiwi |

14914 Julodias J9||0nu0n
————Ag(GZ Siojeweled

[9852 EoUuoN |

€52 anndepy 0G¢ wyHobiy

eS¢ |opoW |eway| . ‘o

0€SC (q1d) ennealaq ‘eabajuj ‘odoid C05¢ SiempleH 807} 90vL c0ch

8S¢ (1d) feaBaju) ‘feuoiodold

9¢5¢ (d4) |euoniodold

WO 03/046770

bZGz Jojjonuos 21Bo) ajqewwelbold
22T Wa}sAs |03U00 paINgUIsIa
0252 18]j04u09 dooj ajqewwelbold
gLGz Jojjonuoo dooj a|buis payiomiaN
916z J8jjoauod dooj a|buls 21u0199|T
vlbz J9jonuoo dooj a|buls onjewnaud

PCT/US02/38019

WO 03/046770

28/34

8¢ 9ld

R 919¢
3OV AR4d || WHOI40dOL || 5o, wm_wmm wivg | | 2H0mo 319001 SIN3I0I44300
~ QVdAI 6 AYdAIN L QYdAIM IZINOANYY
8 QVdAD b OYdAIM
IAILOYNI 'SNLVLS ¥0018— 7192
IWYN 3714 9071 3114 90— 7,97
000005 | INVISNOO ONINIvyE— 019¢C
ONINIVHL NIHM STIL VLY ONINIYML HLIM STIL Y1¥A LNdNI LYNIGY00D | X |- 8092
7292 SINdLNo| z ONINNMY NIHM | X NN | X
NOLLONNS TaNyay [€ | SLndNI| ONINIVHL NIHM | X NIVaL | X
— 909¢
3715 ANIHOYW ¥OLDIA 1H0ddNS SINdLNO G3LOIaTHd FHOLS 300N —
0292 — ¢ MD018 AIX 3OVd MLV NOY NN
0:00:,0 0 3L¥AdN SLNALNO TV NIHM NIvdL
M08 AIM—TAYLNI JWIL SNOILdO ONIWIL-—
arov swig 1o wal 1 #0079 30Yd SNLVLS FdAL HOLIMS TYNYILXT
X8l — ¥09¢
819¢ — . i
JNVYN NOLLYDddY | :3WVN NOILYDIddY TOHLINOD ‘NOILdIMOS3d M08

JNYN J35N | "W3INMO MO0

INIHOVIN JOLO3A 1HOddNS -3dAL HO01d

VA%

TH3GWNN %00 18— ¢09¢

PCT/US02/38019

WO 03/046770

29/34

6¢ Old

-

0b | JONVHO XYW 000 LINNTMOT 0} LINITHOH
80/C—"1 YOouWI TIAOW TOD TAX NN OSO6 # MVA QSHJWOONNINTVAMND FOVINVA LWQ

(318vT1049S LON) LndLNO ¥o¥¥3 aanwnns —-
>|l

005z JONVHOXVIN 0000F LW MOT 0005z LINITHOIH

90/7 —| Wdd BINWLETAXQIIINNGS06 # ¥vA OSHWOONNINTVAMNO FOVINVA LW L #
(379v171049S) SLNdLNO INIHOYA HOLO3A L¥0ddns—
>.v1

0052 JONVHOXVYW 0005, :LIWITMOT 00052 LINITHOIH

b0J7— Wdd 94N SIWLE TOD TAX 180Z # HVA INTIVA INFHEND FOVINVA LWG L #
(378vT1089S) SLNANI ONINIVHL INIHOYIN HO103A L¥0ddNS— —
>.|

062 JONVHO XYW 05 LN MO 005} LIAIT HOIH

00:04:00 0 JWLISIMIN 0000110 0 3IWIL LS3AT0

HddW 0334 102 INTTAX S04 # VA JOVYIAY IMIWIL JOVINVA LNG L #
¢0Le— (F78YTI0H0S) SLANI INIHOVIN HOLDFA LOddns— —

PCT/US02/38019
30/34

WO 03/046770

0€ Ol

0F JONVHD XYW 00 LIAITMOT Ob LIAITHOIH
LIX3 0L 0 Q¥dAIY 38N
9QL HYLSAHO
08¢ —] JOVINVA YVLSAHD
SOd INVTd LN
E $Od INV1d VdL
JOVINVA LN
30vd ING 30I0HD 3INO 10T T3S OL
| NYNLIY ANV SAIY MOMYY 35N
Wdd 84 SWLE 10D TAX 1802 # HYA INIYA INTHEND JOVINVA LNG L #
(3718YTI0H0S) SLNANI ONINIVYL ANIHOYIN HO.LOTA LHOddNS ——
>I|
062 JONVYHO XYW 05 LI MOT 005, LIWMHOIH
00:0:00 0 IWLISIMIN 000040 O IWL LSITIO
HddN 0334700 INTTAXGOLL # MVA JOVYIAY LM JNIL J0vd INalL #

(378YTI040S) SLNANI INIHOYW HOL1D3A L40ddNS——

PCT/US02/38019

WO 03/046770

31/34

L€ OId

A%
J/s

0'GZ JONVHI XYW 05 LN MO 0051 LINIT HOIH
om@mw 876¢ 9¢6¢ v26¢
00:01:00 0 m_\,__tmuéz 8@“5 0 3wl Emaﬁo
HddW 0334 710D ANTTAX SOLL # dVA JOVHIAY LM INIL JOVINVA LG L #
(3719vT17040S) SLNANI INIHOYW HOL1D3A L¥OddNS
¢e6e
: : v16¢
0262 816¢ 9162 2162 016¢
A A A A / .
o.mw. uozéw XYW @ ;_v,_: MO o.ye LINIT HOIH
00:04:00 0 3IWIL ISIMIAN 00:00:40 0 3IWIL 1S3IAT0
HddN 0334700 aNTTAX S0LL # HVA OVYIAY LM INIL JOVINVA LNG L #
\N k (3718vT10408) / SLNGNI ANIHOYIAL ¥OLD3A| 180ddNS
goez— 8¢CC 9222 222 7062
906¢

¢06¢

WO 03/046770

32/34

PCT/US02/38019

|
l
140

Qutput
data indicates
No

safety or operability
problems?
3002

Yes

v

(ep]
N

Recommend process shutdown

y

Enable control using output data

5
v

FIG. 32

WO 03/046770 PCT/US02/38019
33/34

I

i, 802
Specify Training Timing Method 3102
Specify Training Timing Parameters 3104
Specify Prediction Timing Method 3108
Specify Prediction Timing Parameters 3108
804
Y
Specify Number of Inputs 3110
Specify Number of Middle Elements 3112
Specify Number of Outputs 3114
806
4
Specify Prediction and Train Modes 3116
Specify Prediction and Train Storage Modes 444g
Specify Training Cata Coordination Mode 3120

FIG. 33

WO 03/046770

PCT/US02/38019

34/34
|
808, 810,
%6— 812,814
Specify Data System 3202
Specfiy Data Type 3204
Specify Data item Number or Identifier 3206
Specify Oldest Time Interval Boundary 3208
Specify Newest Time Interval Boundary 3210
Specify High Limit Value 3212
Specify Low Limit Value 3214
Specify Maximum Change Amount 3916
T
312
|
:
\/

FIG. 34

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US02/38019

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30
USCL 707/3, 100, 102; 706/12, 16.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 707/3, 100, 102; 706/12, 16.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y, P US 2002/0128989 A1 (THESS et al) 12 September 2002 (12.09.2002), Figure 2, Paragraphs | 1-6, 11-14, 42-47 and
0067 and 0072. 52-55
Y,P US 6,427,141 B1 (BARNHILL) 30 July 2002 (30.07.2002), abstract, column 2, line 63 - 1-6, 11-14, 42-47 and
column §, line 40. 52-55
AP US 2002/0078091 A1 (VU et al) 20 June 2002 (20.06.2002). 1-6, 11-14, 42-47 and
52-55
A US 5,720,003 A (CHIANG et al) 17 February 1998 (17.02.1998). 1-6, 11-14, 42-47 and
52-55
A US 6,026,397 A (SHEPPARD) 15 February 2000 (15.02.2000). 1-6, 11-14, 42-47 and
52-55
Y,P US 6,405,248 B1 (WOOD) 11 June 2002 (11.06.2002), abstract, Figure 11. 7-10, 15-28, 3941, 48-
51, 56-64 and 75-77.
Y US 5,826,249 A (SKEIRIK) 20 October 1998 (20.10.1998), abstract, Figures 4, 10 and 13, | 7-10, 15-28, 3941, 48-
column 6, line 25 - column 7, line 12; column 9, line 47 - column 30, line 67. 51, 56-64 and 75-77
Y US 5,282,261 A (SKEIRIK) 25 January 1994 (25.01.1994), abstract, Figures 10, 12, 13 and 29-38 and 65-74
15, column 6, line 35 - column 7, line 41, column 17, line 50 - column 34, line 12. .
A US 6,047,221 A (PICHE et al) 04 April 2000 (04.04.2000), Abstract. 29-38 and 65-74

& Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand the

“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention

of particular relevance

“Xr document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step

when the document is taken alone

“E” earlier application or patent published on or after the international filing date

“L™ document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannot be

specified)
“Q" document referring to an oral disclosure, use, exhibition or other means

“p document published prior to the international filing date but later than the
priority date claimed

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

22 February 2003 (22.02.2003)

Date of mailing of the international search report

AR 2003

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer
Shahid Al Alam %ﬂm«.‘a ﬁ ng

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

PCT/US02/38019

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AP

HS 6,519,601 B1 (BOSCH) 11 February 2003 (11.02.2003), abstract, column 3, line 65 -

column 7, line 24.

29-38 and 65-74

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US02/38019

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

L[]

2 []

3. [

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

Claim Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box I Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

1 X
2. []
5. [

s [

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.

As all searchable cl2ims could be searched without effort justifying an additional fee, this Authority did not invite
payment of any additional fee.

As only some of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claims Nos.:

No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

l:] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

PCT/US02/38019
INTERNATIONAL SEARCH REPORT

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING
This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group 1, claim(s) 1, 4, 11, 12, 13, 14, 42, 45, 52, 53, 54 and 55, drawn to training a support vector machine using a training set (to
control a process, using real-time data, using data from physical process etc.).

Group I, claim(s) 7, 15, 18, 23, 24, 39, 48, 56, 59, 60 and 75, drawn to constructing a training set for support vector machine.

Group HI, claim(s) 29, 34, 65 and 70, drawn to entering data into a template/a user interface to complete support vector machine
specification.

The inventions listed as Groups I, II and III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT
Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group I teaches general term for training a support vector machine.
Group II teaches constructing a training set for a support vector machine.

Group I teaches entering data into a template and a user interface to complete support vector machine specification.

Form PCT/ISA/210 (second sheet) (Julv 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

