
(12) STANDARD PATENT (11) Application No. AU 2002313826 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Cluster caching with concurrency checking

(51) International Patent Classification(s)
G06F 12/00 (2006.01) G06Q 20/00 (2006.01)
G06F 17/30 (2006.01) H04L 29/08 (2006.01)

(21)

(87)

(31)

Application No: 2002313826

WIPO No: W003/021484

Priority Data

(22) Date of Filing: 2002.08.28

Number
60/316,187
10/211,713
10/211,712
60/316,190

(32) Date
2001.08.30
2002.08.02
2002.08.02
2001.08.30

(33) Country
US
US
US
US

(43)
(43)
(44)

(71)

(72)

(74)

(56)

Publication Date:
Publication Journal Date:
Accepted Journal Date:

2003.03.18
2003.06.05
2008.01.24

Applicant(s)
Bea Systems, Inc.

Inventor(s)
Messinger, Adam;Jacobs, Dean Bernard;White, Seth;Woolen, Rob

Agent Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
US 5805798
US 5452445
US 5926816

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization 111 1111111111111111
International Bureau I 11111111111111111111111111111111I1111111111111111 l ll11111111111111111111 INl

(43) International Publication Date
13 March 2003 (13.03.2003)

(10) International Publication Number

WO 03/021484 A3PCT

(51) International Patent Classification7

(21) International Application Number: PC

(22) International Filing Date: 28 August 200

Filing Language:

(26) Publication Language:

Priority Data:
60/316,187
60/316,190
10/211,713
10/211,712

30 August 2001 (30.0
30 August 2001 (30.0

2 August 2002 (02.0
2 August 2002 (02.0

G06F 17/30 (74) Agent: MEYER, Sheldon, Fliesler Dubb Meyer and
Lovejoy LLP Four Embarcadero center-Fourth Floor, San

T/US02/27315 Francisco, california 94111-4156 (US).

2 (28.08.2002) (81) Designated States (national): AE, AG, AL, AM, AT, AU,

English AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, H, GB, GD, GE, GH,

English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

8.2001) US SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
8.2001) US VN, YU, ZA, ZM, ZW.
8.2002) US
8.2002) US (84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
2315 NorthS rt Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

1747 Madera ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

WOOLEN, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

A 94127 GW, ML, MR, NE, SN, TD, TG).

partment 306,
VHITE, Seth; Published:
cisco, Califor- with international search report

(71) Applicant: BEA SYSTEMS, INC [US/US
First Street, San Jose, California 95131 (US

(72) Inventors: JACOBS, Dean Bernard;
Street, Berkeley, California 94707 (US)
Rob; 2531 14th Avenue, San Francisco, C
MESSINCER, Adam; 317 29th Street-A
San Francisco, California 94131 V
1045 Rivera Street-Apartment B, Sans Fran
nia 94116 (US).

[Continued on next page]

(54) Title: CLUSTER CACHING WITH CONCURRENCY CHECKING

100

108 110

(57) Abstract: Concurrency can be maintained in cluster caching when processing an update request on network server that is
storing a local copy of data item. the request can be processed using the local copy of the data item. A predicated update request can
be sent to a network database storing the data item, wherein the database can commit the update if the local copy is current with the
data item. If the local copy is not current, the network server can request a new copy, process the request using the current copy, and
try another predicated request, the process can continue until the update is committed to the database or aborted. Once committed,
any other servers in the cluster can be notified that the data item has been updated. Those other servers can drop any local copy of
the data item and can request an updated copy of the data item.

W O J3/02 1484 A.3 11 HlD II I 1I DliiIH I111111I1111Hill1

(88) Date of publication of the international search report: For two-letter codes and other abbreviations, refer to the "Guid-
24 July 2003 ance Notes on Codes and.4bbreviations appearing at the begin-

ning of each regular issue cof the PCT Gazette.

P 'OPERKRJCVW7D ,-,b,,2O02313926 Ispr doc14 12,00
7

1^1

C)

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material

IN which is subject to copyright protection. The copyright owner has no objection to

00 the facsimile reproduction by anyone of the patent document of the patent

disclosure, as it appears in the Patent and Trademark Office patent file or records,

but otherwise reserves all copyright rights whatsoever.

CLAIM OF PRIORITY

[0002] This application claims priority to the following applications which,

are incorporated herein by reference: [0003] U. S. Provisional Patent Application

entitled "CLUSTER CACHING WITH CONCURRENCY CHECKING", Application

No. 60/316, 187, filed August 30, 2001.

[0004] U. S. Patent Application entitled "CLUSTER CACHING WITH

CONCURRENCY CHECKING", Application No. 10/211,713, filed August 2, 2002.

[0005] U. S. Provisional Patent Application entitled "METHOD FOR

MAINTAINING ACCOUNT CONSISTENCY," Application No. 60/316,190, filed

August 30, 2001.

[0006] U. S. Patent Application entitled "METHOD FOR MAINTAINING

ACCOUNT CONSISTENCY, "Application No. 10/211, 712, filed August 2, 2002.

CROSS-REFERENCED CASE:

[0007] The following application is cross-referenced and incorporated herein

by reference:

[0008] U. S. Provisional Application No. 60/305,986 entitled "DATA

REPLICATION PROTOCOL," by Dean Bernard Jacobs, Reto Kramer, and

Ananthan Bala Srinvasan, filed July 16, 2001.

P'Of-ER\RJC\2QO7Dcc,,bc'2002rI326 I Ip, d- 14/1207

C 2

FIELD OF THE INVENTION

[0009] The invention relates generally to a computer implemented method

IDfor maintaining account balance consistency in networked account access

00oO systems; a computer implemented method for providing quick electronic

transactions; a computer implemented system and method for maintaining

C concurrency for account information cached on a network; a computer

Simplemented system for allowing a transaction over an account access system

network; a method for updating a data item in a cluster; a method for maintaining

concurrency for a copy of a data item cached on a cluster server; a computer

program product for execution by a server computer for updating a data item on a

network; and a system for updating a data item on a network. The invention

relates generally to a system for storing data. The invention relates more

specifically to a system and method for caching data and checking concurrency.

BACKGROUND OF THE INVENTION

[0010] When a data item is stored in a single database or data store that is

accessible over a network, it is often the case that multiple servers or clients will

require access to that data item. Traditionally, this requires data be read from the

database each time the data item is accessed. Each read from the database is

relatively resource intensive and may be relatively inefficient.

[00111 One way of overcoming some of the efficiency and scalability

problems, associated with requiring a server or client to read from the database

each time a data item is to be accessed, is to store the data item in cache

memory. In this way, once a server or client has read a data item from the

database it may simply store a copy of that item in a local cache. That local copy

of the data item can then be used if future access is needed. This process may be

appropriate and efficient for data items that never change, but problems arise

when a data item is updated in the database.

[0012] If a data item stored in the database is updated, a copy of that data

item stored in a local cache on the network may be different from the item in the

P 'C EK\RJC 07Dcc OI 38\2b o, Irl2207

C 3

database, as it will not automatically receive the update. The problem intensifies

when there are multiple local copies on different servers and/or clients on the

network. Since each of these local copies is created at a different time, there can

(N be multiple versions of the data item on the network. If a user tries to update or
00oO

view the data item, the copy accessed by the user may not be current and/or

rn correct.

0[0013] These problems with concurrency can have drastic consequences,(Ni
such as for example when a user accesses a data item showing a bank account

balance. If the local copy of the bank account balance has not been updated to

show a withdrawal, for example, the bank account balance shown to the user may

in fact show an incorrectly large balance. This could lead the user to unknowingly

overdraw the account. Further, a third party accessing the account balance, or a

device such as an ATM, would have no way of knowing that the balance being

shown is incorrect.

[0013A] It is generally desirable to overcome, or ameliorate, one or more of

the above described difficulties, or to at least provide a useful alternative.

SUMMARY OF THE INVENTION

[0013B] In accordance with one aspect of the present invention, there is

provided a computer implemented method for maintaining account balance

consistency in networked account access systems, comprising:

receiving a request relating to the account balance of a customer,

the request being received by an account access system storing a local copy of

the account balance;

processing the request using the local copy;

verifying that the local copy reflects the current account balance for

the user by sending a conditional update request to an account database; and

whereby, as a result of the conditional update request, the account

database updates the account balance if the local copy is current with the account

balance before the update, and whereby the account database does not update

P '01-ER\RJi'J(d07 Dr oliW%200231316 p, I- 1/12,2O07

C 4

the account balance if the local copy is not current with the account balance before

the update.

IND [0013C] In accordance with a further aspect of the present invention, there is

oo provided a computer implemented method for maintaining account balance

consistency in networked account access systems, comprising:

(Ni processing an update request on an account access system, the

account access system storing a local copy of an account balance to be used in(Ni
processing the request; and

sending a conditional update request to an account database

containing the account balance, whereby, as a result of the conditional update

request, the account database updates the account balance if the local copy is

current with the account balance before the update, and whereby the account

database does not update the account balance if the local copy is not current with

the account balance before the update.

[0013D] In accordance with a further aspect of the present invention, there is

provided a computer implemented method for providing quick electronic

transactions, comprising:

receiving a transaction request from a participant in a transaction to

an electronic transaction system, the electronic transaction system storing a local

copy of information related to a participant in the transaction;

processing the request with the local copy;

verifying that the local copy reflects the current information for the

participant in a main database with a conditional update request; and

whereby, as a result of the conditional update request, the main

database updates the account balance if the local copy is current with the account

balance before the update, and whereby the main database does not update the

account balance if the local copy is not current with the account balance before the

update.

P 'OPE\RJC%2007'D-c nkb\200231 326 I d14,12I,'2007

C

[0013E] In accordance with a further aspect of the present invention, there is

provided a computer implemented method for maintaining concurrency for account

information cached on a network, comprising:\D
N receiving an update request to a network server, the network server
00
Mq 5 storing a local copy of a account information in a local cache;

q processing the request using the local copy of the account

O information;

c- sending a conditional update request to a network database storing

an original copy of the account information whereby, as a result of the conditional

update request, the database updates the account information if the local copy is

current with the account information, and whereby the database does not update

the account information if the local copy is not current with the account

information;

receiving a current copy of the account information to the network

server and sending another conditional update if the local copy was not the same

version as the original copy; and

notifying from the network server any other servers on the network

storing a local copy of the account information that the original copy has been

updated.

[0013F] In accordance with a further aspect of the present invention, there is

provided a computer implemented system for assuring concurrency among

account access systems on a network, comprising:

an account access system adapted to receive a transaction request

from a customer and process the request using a local copy of the account

information for the customer, the account information being stored in an account

database;

P 'tPERMJC\2OO\DcD b,\2D023 13B96 1 so d-1.'I212OO
7

C-I

wherein the account access system is adapted to send a conditional

update request to the account database whereby, as a result of the conditional

D update request, whereby the account database updates the account information if

N0q the local copy is current with the account information before the update, and0o

5 whereby the account database does not update the account

CS information if the local copy is not current with the account information before the

update.

[0013G] In accordance with a further aspect of the present invention, there is

provided a computer implemented system for allowing a transaction over an

account access system network, comprising:

an ATM terminal adapted to allow a customer to make a transaction

request involving bank account information;

an account access system adapted to store a copy of the bank

account information for the customer and process the transaction request; and

a bank account database adapted to store bank account information

for the customer and provide access to that bank account information over the

network;

wherein the account access system is adapted to send a conditional

update request to the bank account database after processing the request

whereby, as a result of the conditional update request, the bank account database

is adapted to update the bank account information if the local copy is current with

the bank account information before the update, and whereby the bank account

database does not update the bank account information if the local copy is not

current with the bank account information before the update.

[0013H] In accordance with a further aspect of the present invention, there is

provided a method for updating a data item in a cluster, comprising:

processing an update request on a cluster server, the cluster server

storing a local copy of a data item at a local cache to be used in processing the

request;

P 'PEIRJCQ 7 bcf,2002 3 1326 1 yp dm- 1411212 007

U

'q

sending a predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the local

D copy at the local cache is current with the data item before the update, and
(N
00 whereby the database does not update the data item if the local copy is not current

with the data item before the update.

(Ni

[00131] In accordance with a further aspect of the present invention, there is

C provided a method for maintaining concurrency for a copy of a data item cached

on a cluster server, comprising:

receiving an update request, the update request being received by a

cluster server storing a local copy of a data item in local cache;

processing the request using the local copy of the data item;

sending a predicated update request to a cluster database storing

the data item, whereby the cluster database updates the data item if the data item

is current with the local copy, and whereby the database does not update the data

item if the data item is not current with the local copy;

requesting a current copy of the data item for the cluster server and

sending another predicated update if the local copy is not current with the data

item in the cluster database, the step of requesting a current copy and sending

another predicated update continuing until one of the cluster database updating

the data item and the method being aborted; and

notifying other servers in the cluster that the data item in the

database has been updated.

[0013J] In accordance with a further aspect of the present invention, there is

provided a computer-readable medium, comprising:

means for processing an update request on a cluster server, the

cluster server storing a local copy of a data item to be used in processing the

requestat a local cache;

V Qi'rRRJl 7 I 313 I SDI d 14I 2112007

U

means for sending a predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the local

o copy is current with the data item before the update, and whereby the database

idoes not update the data item if the local copy is not current with the data item0O

S 5 before the update.

C [0013K] In accordance with one aspect of the present invention, there is

Sprovided a computer program product for execution by a server computer for

updating a data item on a network, comprising:

computer code that can process an update request on a cluster server, the

cluster server storing a local copy of a data item to be used in processing the

request at a local cache;

computer code that can send a predicated update request to a cluster

database containing the data item, whereby the database updates the data item if

the local copy is current with the data item before the update, and whereby the

database does not update the data item if the local copy is not current with the

data item before the update.

[0013L] In accordance with a further aspect of the present invention, there is

provided a system for updating a data item on a network, comprising:

means for processing an update request on a cluster server, the

cluster server storing a local copy of a data item to be used in processing the

request at a local cache;

means for sending a predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the local

copy is current with the data item before the update, and whereby the database

does not update the data item if the local copy is not current with the data item

before the update.

[0013M] In accordance with a further aspect of the present invention, there is

provided a computer system comprising:

a processor;

P 'OERRJCIO007 Dcc b\2023I 3826 I, dpdl-41i2'OO

object code executed by said processor, said object code configured

to:

process an update request on a cluster server, the cluster server

C storing a local copy of a data item to be used in processing the request at a local
00dO

cache;

Ssend a predicated update request to a cluster database containing

the data item, whereby the database updates the data item if the local copy is

current with the data item before the update, and whereby the database does not

update the data item if the local copy is not current with the data item before the

update.

[0014] It is therefore desirable to develop a system and method for caching

data items and data objects that ensures the accuracy of the cached copy.

[0015] It is further desirable to develop a system and method to ensure that

any change to a copy of a data item is not allowed unless that copy reflects the

current state of the data item in the database.

[0016] Systems and methods in accordance with the present invention

preferably provide a way to maintain concurrency in data item caching. A request

to update an item is received by a network server, which can store a local copy of

the data item, such as in local cache. The network server can process the request

using the local copy of the data item. A "conditional" or "predicated" update

request can be sent from the network server to a network database, whereby the

database can update the data item if the data item contains the same version of

the data as the local copy. The database may not update the data item if the data

item is not the same version as the local copy.

[0017] If the copies do not contain the same version, the network server can

request a current copy of the data item, and can process the update request using

the new copy of the data item. The network server can send another predicated

update to the database. This process continues until the data item in the database

is updated. Once the data item is updated, the other network servers, such as

P)0IER'RJC)2007 Dac,,tb 20 I2p3 dcI'4122007

servers in a common cluster, can be notified that the data item has been updated.

At this point, those network servers can drop any local copy of the data item and

can request a new copy to store in local cache.
(-i

o00 [0018] The notification to the network servers can be done by any of several

appropriate methods, such as by multicasting an update message or version

number to any other servers on the network. The network servers can also

Sconnect to each other directly, such as by a point- to-point protocol, or can(-i

heartbeat information to the other servers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Preferred embodiments of the present invention are hereafter

described, by way of non-limiting example only, with reference to the

accompanying drawings, in which:

[0020] Figure 1 is a diagram of the first part of an approach in accordance

with one embodiment of the present invention.

[0021] Figure 2 is a diagram of the first and second parts of an approach in

accordance with one embodiment of the present invention.

[0022] Figure 3 is a flowchart for an update process in accordance with one

embodiment of the present invention.

[0023] Figure 4 is a flowchart for a process for updating a data item when

the local copy and original copy are out-of-sync, in accordance with one

embodiment of the present invention.

[0024] Figure 5 is a flowchart for a process for updating network servers on

the network, in accordance with one embodiment of the present invention.

[0025] Figure 6 is a flowchart for a one phase process in accordance with

one embodiment of the present invention. [0026] Figure 7 is a

flowchart for a two phase process in accordance with one embodiment of the

present invention.

P 'OPER'RIC%200T)ic,,bD\2O23I18?80 IP ,II 1r12207

C SF

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE

INVENTION

[0027] Systems in accordance with a preferred embodiment of the present

00 invention allow for the caching of data while maintaining concurrency across a

S 5 network, such as a local area network (LAN), ethernet, or Internet. Such a system

can utilize one or both of a two-part approach to updating data items while

N maintaining concurrency. Such systems can implement concurrent caching

through any software or hardware means known or used in the computer arts, or

hereinafter developed. These systems can also utilize any appropriate software

applications, objects, languages, or executables, such as may be designed to

utilize, for example, Java, HTML, and XML.

[0028] In the first part of one such approach in accordance with the present

invention, a client or server on a network reads a data item from a database and

stores a copy of the data item in a local cache. If the server or client wishes to

update the data item in the database, the update can be "conditioned" or

"predicated" on whether the data item stored in local cache corresponds to the

current version of the data item stored in the database. This approach maintains

concurrency between the client/server desiring to update the data item and the

database. The caching of data in this manner can also improve performance and

scalability.

[0029] One example of a first part of an approach 100 is shown in Figure 1.

Here, a client 102 makes an update request 104 to a network server 106. The

network server 106 in this example stores a copy of the data item 110 to be

updated in a local cache 108. When the network server 106 receives the update

request 104, the server 106 checks the local copy of the item 110 to see if the

update may be processed. If the server 106 determines that the update may be

processed using information in the local copy of the data item 110, the server 106

sends a predicated

WO 03/021484 PCT/USO2/27315

6

update 112 to the database 114 storing the original copy of the data item

116. If the information in the original copy of the data item 116 is the same

as the information in the local copy 110, the update may be committed to

the database. If the information is different, the update is not committed.

The server 106 receives an update status message 118 from the database

114, indicating whether the update was committed.

[0030] If the update was committed, the server can also commit the

update to the copy of the data item 110 in local cache 108. If the update

was not committed, because the data items 110, 116 were out of sync, the

server can drop its copy of the data item 110 from local cache 108 and

request a new copy from the database 114.

[0031] Once the server 106 has the new data item, it can again send

a predicated update 112 to the database 114. Alternatively, the server can

send a message to the client 102 asking whether or not to attempt an

update on the new data item. The server 106 can either abort the update,

or continue the process of trying a predicated update and getting new

copies of the data item as needed until the update is committed. Once the

update is committed or aborted, the server 106 can send an update

response 120 to the client, indicating the end result of the update attempt.

[0032] The second part of this approach occurs after a client/server

has updated a data item in the database. Since other clients and/or

servers on the network may also have a copy of the data item stored in

local cache, the client/server making the update can contact the other

servers on the network to let them know that the data item has been

updated. The other clients and/or servers on the network can then update

a copy of the data item stored in a local cache, request a current copy of

the data item, or simply drop the local copy of the data item and request a

copy from the database if and when it is needed. If a copy is later

requested, the copy can be stored in local cache at that time.

WO 03/021484 PCT/US02/27315

7

[0033] Figure 2 shows the second stage of the approach 100

described with respect to Figure 1. In Figure 2, once server 106 updates

the data item 116 in the database 114 and the copy of the data item 110

in local cache 108, server 106 sends update messages 128, 130 to the

other servers 122, 124 in the cluster 126. These messages can take the

form of point-to-point messages or multicast heartbeats, such as is

described above.

[0034] For example, in a banking system, each server on the

banking system network can potentially store a copy of a user's bank

account balance in local cache. Each local cache can include other

information about a user account, such as account information and

transaction history. This information can be cached, in whole or in part, on

each server on the network.

[0035] In such a system, a transaction may occur such as an ATM

transaction. A server in communication with the ATM can store a cached

copy of the account balance of the user initiating the transaction. If a user

of the ATM wishes to withdraw $100 from a user account, for example, the

server could read the balance from memory, determine whether the

account contains sufficient funds forthe transaction, and subtract the $100

from the account balance either before or after disbursing the funds.

[0036] In order to prevent the user from overdrawing the account,

the server can first verify that the local copy of the user account balance is

current with the balance stored in the database. For example, if the

previous balance stored locally was $500, the server could send an update

message to the database such as "update balance $400", which could

also include the current value of the account in local cache, and make the

update predicated on the fact that the current account balance in the

database is the same as the current balance of the account in local cache.

[0037] If the account balance stored in the database is not the same

as the balance in local cache, the server may roll back the update. Once

an update is rolled back, the server can drop its copy in local cache, read

WO 03/021484 PCT/US02/27315

8

the account information from the database, then attempt the update again.

For example, if the local copy of the account balance said that the balance

was $500, and the database reflected a balance of $1000, the server

would roll back the $400 update attempt and try a predicated $900 update,

subtracting the $100 withdrawal from the current $1000 balance. This

second update can again be predicated on the fact that the account

balance has not changed since it was last read by the server. This process

continues until either the account balance is updated appropriately, or the

transaction is aborted due to insufficient funds, etc.

[0038] If a server succeeds in updating a data item in the database,

it can also update the copy in local cache, such that the local copy is

current with the version of the data item in the database. For a network in

which multiple servers (or clients) can have a copy of the data item in a

local cache, the server updating the data item can notify the other servers

that the data item has been updated. This can include any or all other

servers or clients on a network, in a domain, in a cluster, or in any other

network grouping. This notification can be accomplished in any of a

number of ways, such as by a point-to-point connection with each

server/client, by multicasting, by a one-phase distribution method, by a two-

phase distribution method, by heartbeating an update or a delta, or any

other appropriate messaging technique.

[0039] It may be desirable that the sending of the notification is both

reliable in the face of failures and scalable, such that the process makes

efficient use of the network. One simple approach is to have the server

updating the data item ("updating server") individually contact each server

or client on the network ("network server") and transfer a message over a

point-to-point link, such as a TCP/IP connection. The message can tell

these network servers that the data item has been updated, and that the

network servers should drop any copy of this data item in local cache. This

approach may lead to inconsistent copies of the data if one or more of the

WO 03/021484 PCT/US02/27315

9

network servers are temporarily unreachable, or if the network servers

encounter an error in processing the update.

[0040] Steps in a general process that can be used in accordance

with the present invention are shown in Figures 3-5. In the process 200

of Figure 3, an update request is received, such as from a client, to a

network server storing a local copy of the data item to be updated 202.

The update is processed by the network server using the local copy of the

data item 204. A predicated update request is sent from the network

serverto the network database containing the original copy of the data item

206. If the original copy and local copy of the data item contain the same

version of the data item, the update request is committed 208. If not, the

predicated update request is aborted 210.

[0041] Figure 4 shows a process 300 that can be used if the

predicated update request is aborted. The network server can request a

current copy of the data item 302. The network server can then process

the update request using the current copy of the data item 304. A

predicated update request is again sent from the network server to the

network database containing the original copy of the data item 306. If the

original copy and current copy of the data item contain the same version

of the data item, the update request is committed 308. If not, the

predicated update request is again aborted 310 and the process 300 may

be repeated until the update is committed.

[0042] Figure 5 shows a process 400 that may be used once the
update is committed. Any other servers on the network, such as servers

in the scope of an update or servers in a common cluster or domain, are

notified that the data item is being updated 402. Any server that is notified

then drops any local copy of the data item being stored, such as in a local

cache 404. Those servers may choose to request an updated copy of the

data item, either soon after dropping the local copy or upon receiving a

subsequent request relating to that data item 406.

WO 03/021484 PCT/US02/27315

[0043] In the case of a two-phase commit, any other servers on the

network, such as in the scope of an update or in the same cluster, can be

notified that an item is being updated during the commit. For example, an

update can first go through a prepare stage in which it is determined

whether or not the update can be successfully committed. During this

phase, or at least before the update is committed, any server that is

notified of the update can veto the commit. By vetoing the commit, any

preparation is rolled back and the update does not get written to the

database. If the update successfully goes through a prepare phase, and

does not get vetoed by a server, the update can get committed to the data

item in the database.

[0044] The sending of the notification can also be sent by

multicastiig the notification to the other servers/clients that might be

caching a local copy of the data item. Multicasting in this instance may

comprise the updating server sending the notification once to the

network/cluster/domain, which is then passed to the network

servers/clients. In simple multicasting, the message is only sent once,

such that a server that does not receive the update may fail to drop the

outdated copy of the item. This can result in that server having to go

through two or more iterations of predicated update attempts for that data

item when processing a subsequent request.

[0045] The sending of the notification can also be sent through a

"heartbeat." A heartbeat in this approach is a periodic message, typically

multicast although other messaging means may be utilized, that is sent to

servers/clients that might be storing a local copy of the data item. An

updating server can continue to heartbeat the latest update(s) for a given

period of time, for a given number of heartbeats, until each server/client

responds it has received the heartbeat, or any other appropriate measure.

[0046] Each update to a data item can be packaged as an

incremental delta between versions. A protocol in accordance with the

present invention may integrate two methods for the distribution of

WO 03/021484 PCT/US02/27315

11

updates, although other appropriate methods can be used accordingly.

These distribution methods are referred to as a one-phase method and a

two-phase method, and provide a tradeoff between consistency and

scalability. In a one-phase method, which can favor scalability, each of the

network servers obtains and processes updates at its own pace. The

network servers get updates from an updating server at different times, but

commit to each update as soon as the update is received. One of the

network servers can encounteran error in processing an update, but in the

one-phase method this does not prevent the network servers from

processing the update.

[0047] In a two-phase method in accordance with the present

invention, which can favor consistency, the distribution is "atomic," in that

either all or none of the network servers successfully process the update.

There are separate phases, such as prepare and commit phases, which

can allow for a possibility of abort. In the prepare phase, the updating

server determines whether each of the network servers can take the

update. If all the network servers indicate that they can accept the update,

the new data is sent to the network servers to be committed in the commit

phase. If at least one of the network servers cannot take the update, the

update can be aborted, resulting in no commit. In this case, an updating

server is informed that it should roll back the prepare and nothing is

changed. Such a protocol in accordance with the present invention is

reliable, as one of the network servers that is unreachable when an update

is committed, in either method, eventually gets the update.

[0048] A system in accordance with the present invention can also

ensure that a temporarily unavailable server eventually receives all

updates. For example, a server may be temporarily isolated from the

network, then come back into the network without restarting. Since the

server is not restarting, it normally would not check for updates. The server

coming back into the network can be accounted for by having the server

WO 03/021484 PCT/US02/27315

12

check periodically for new updates, or by having an updating server check

periodically to see whether the network servers have received the updates.

[0049] In one embodiment, an updating server regularly sends

multicast "heartbeats" to the network servers, such as for a given period of

time or a given number of heartbeats. Since a multicast approach can be

unreliable, it is possible for one of the network servers to miss arbitrary

sequences of heartbeats. For this reason, heartbeats can contain a

window of information about recent updates. Such information about

previous updates can be used to reduce the amount of network traffic, as

explained below. In an example such as an account balance, historical

information may not be necessary, such that a heartbeat may simply

contain the current balance.

[0050] The updating server can continue to periodically send a

multicast heartbeat containing the version number to the network servers.

This allows any server that was unavailable, or unable to receive and

process a delta, to determine that it is not on the current version of the data

item and request a delta or update at a later time, such as when the slave

comes back into the system. If the current value is contained in the

heartbeat, the server may simply commit the new value.

[0051] For an update in a one-phase method, these heartbeats can

cause each of the network servers to request a delta starting from that

server's current version of the data item. Such a process is shown in the

flowchart of Figure 6. In this basic process 500 a version number for the

current data item on the updating server, or in the database, is sent from

the updating server to one of the other network servers 502. The network

server determines whether it has been updated to the current version

number 504. If the network server is not on the current version, it requests

that a delta be sent from the updating server containing the information

needed to update the data item 506. When the delta is sent, the network

server processes the delta in order to update to the current version 508.

WO 03/021484 PCT/US02/27315

13

The network server also updates its version numberforthe data item to the

current version number 510.

[0052] For an update in a two-phase method, the updating server

can begin with a prepare phase in which it pro-actively sends each of the

network servers a delta from the immediately-previous version. Such a

process is shown in the flowchart of Figure 7. In this basic process 600,

a packet of information is sent from the updating server to at least one

other network server 602. Each of the network servers receiving the

packet determines whether it can process that packet and update to the

current version 604. Each server receiving the packet responds to the

updating server, indicating whether the network server can process the

packet 606. If all the network servers (to which the delta is sent)

acknowledge successful processing of the delta within some timeout

period, the updating server can decide to commit the update. Otherwise,

the updating server can decide to abort the update. Once this decision is

made, the updating server sends a message to the network server(s)

indicating whether the update should be committed or aborted 608. If the

decision is to commit, each of the network servers processes the commit

610. Heartbeats can further be used to signal whether a commit or abort

occurred, in case the command was missed by one of the slaves.

[0053] In addition to the ability of a serverto pull a delta, an updating

server can have the ability to push a delta during two-phase distribution.

In one embodiment, these deltas are always between successive versions

of the data. This two-phase distribution method can minimize the likelihood

of inconsistencies between participants. Servers can process a prepare

as far as possible without exposing the update to clients or making the

update impossible to roll back. This may include such tasks as checking

the servers for conflicts. If any of the servers signals an error, such as by

sending a "disk full" or "inconsistent configuration" message, the update

can be uniformly rolled back.

WO 03/021484 PCT/USO2/27315

14

[0054] It is still possible, however, that inconsistencies may arise.

For instance, there may be errors in processing a commit, for reasons such

as an inability to open a socket. Servers may also commit and expose the

update at different times. Because the data cannot reach every managed

server at exactly the same time, there can be some rippling effect. The

use of multicasting provides for a small time window, in an attempt to

minimize the rippling effect. In one embodiment, a prepared server will

abort if it misses a commit, whether it missed the signal, the master

crashed, etc.

[0055] A best-effort approach to multicasting can cause a server to

miss a commit signal. If an updating server crashes part way through the

commit phase, there may be no logging or means for recovery. There may

be no way for the updating server to tell the remaining servers that they

need to commit. Upon abort, some servers may end up committing the

data if the version is not properly rolled back. In one embodiment, the

remaining servers could get the update using one-phase distribution. This

might happen, for example, when a server pulls a delta in response to a

heartbeat received from an updating server. This approach may maintain

system scalability, which might be lost if the system tied down distribution

in order to avoid any commit or version errors.

[0056] If the information regarding the previous versions was not

included in a delta, a server might have to abort and restart if that server

was prepared but missed a commit. With the inclusion of older version

information, the server can commit that portion of the update it was

expecting upon the prepare, and askfora new delta to handle more recent

updates. Information about a given version can be included for at least

some fixed, configurable numberof heartbeats, although rapid-fire updates

may cause the window to increase to an unacceptable size. In another

embodiment, information about an older version is discarded once an

updating server determines that all network servers have received the

update.

WO 03/021484 PCT/USO2/27315

[0057] Multicast heartbeats can have several properties that need

to be taken into consideration. These heartbeats can be asynchronous or
"one-way". As a result, by the time a server responds to a heartbeat, the
updating server or database may have advanced to a new state. Further,
not all servers respond at exactly the same time. As such, an updating

server can assume that a server has no knowledge of its state, and can
include that which the delta is intended to update.

[0058] These heartbeats can also be unreliable, as a slave may miss
arbitrary sequences of heartbeats. This can again lead to the inclusion of
older version information in the heartbeats. In one embodiment,

heartbeats are received by a server in the order in which they were sent.
For example, a server may not commit version seven until it has committed

version six. The server can wait until it receives six, or it can simply throw
out six and commit seven. This ordering eliminates the possibility for
confusion that might be created by versions going backwards.

[0059] The foregoing description of the preferred embodiments of
the present invention has been provided for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. Embodiments were chosen
and described in order to best describe the principles of the invention and
its practical application, thereby enabling others skilled in the art to
understand the invention, the various embodiments and with various
modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the following claims
and their equivalents.

P'OPEkC\2OO710c7DcbrV ,kO02313S26 I pI d- 1 4112120

Throughout this specification and claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or

NC "comprising", will be understood to imply the inclusion of a stated integer or group
00oO
M 5 of integers or steps but not the exclusion of any other integer or group of integers.

2 The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken

as an acknowledgment or admission or any form of suggestion that that prior

publication (or information derived from it) or known matter forms part of the

common general knowledge in the field of endeavour to which this specification

relates.

P YIERRJC'2007\Dc ,.K,,M2o231a 3122 dS 'I 122007

(NI 16

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer implemented method for maintaining account balance
IN
N consistency in networked account access systems, comprising:
00gO
rn 5 receiving a request relating to the account balance of a customer, the

q request being received by an account access system storing a local copy of the(Ni
account balance;

processing the request using the local copy;

verifying that the local copy reflects the current account balance for the user

by sending a conditional update request to an account database; and

whereby, as a result of the conditional update request, the account

database updates the account balance if the local copy is current with the account

balance before the update, and whereby the account database does not update

the account balance if the local copy is not current with the account balance before

the update.

2. A computer implemented method according to claim 1, further comprising:

notifying other account access systems on the network that the account

balance has been updated.

3. A computer implemented method according to claim 1, further comprising:

requesting the account balance if the local copy is not current with the

account balance.

4. A computer implemented method for maintaining account balance

consistency in networked account access systems, comprising:

processing an update request on an account access system, the account

access system storing a local copy of an account balance to be used in processing

the request; and

sending a conditional update request to an account database containing the

account balance, whereby, as a result of the conditional update request, the

P 3'PERI\KOOcn0 0c,'X231 3826 tIp 14't22007

C 17

account database updates the account balance if the local copy is current with the

account balance before the update, and whereby the account database does not

update the account balance if the local copy is not current with the account

C balance before the update.
00

M
oo

M 5. A computer implemented method according to claim 4, further comprising:

receiving a message from the account database to the account access

C system indicating whether the account balance has been updated.

6. A computer implemented method according to claim 4, further comprising:

reading the account balance from the account database and storing a local

copy of the account balance on the account access system.

7. A computer implemented method according to claim 4, further comprising:

receiving an update request from a client to the account access system, the

client specifying the account balance to be updated.

8. A computer implemented method according to claim 4, further comprising:

checking the local copy to determine whether the update request can be

processed.

9. A computer implemented method according to claim 4, further comprising:

updating the local copy on the account access system if the account

balance in the account database is updated.

A computer implemented method according to claim 4, further comprising:

deleting the local copy and storing a new copy of the account balance on

the account access system if the local copy is not current with the account

balance.

11. A computer implemented method according to claim 10, further comprising:

P 'OPER\RJC00OO7D b -2313S26 Ip, d- '4112C007

C 18

sending an additional predicated update request to the account database

containing the account balance, whereby the account database updates the

account balance if the new copy is current with the account balance before the

N update, and whereby the account database does not update the account balance
00cO
M 5 if the new copy is not current with the account balance before the update.

(Ni

0 12. A computer implemented method according to claim 10, further comprising:

C-I determining whether the client initiating the update request wishes to

attempt the update with the account balance current with the new copy.

13. A computer implemented method according to claim 4, further comprising:

notifying another account access system on the network that the account

balance in the account database has been updated.

14. A computer implemented method according to claim 4, further comprising:

multicasting an update message to other account access systems on the

network.

A computer implemented method according to claim 4, further comprising:

multicasting a version number for the updated account balance to other

account access systems on the network.

16. A computer implemented method according to claim 4, further comprising:

heartbeating the version number for the updated account balance to other

account access systems on the network.

17. A computer implemented method according to claim 4, further comprising:

dropping a local copy of the account balance on any other account access
system on the network after the account balance is updated.

18. A computer implemented method according to claim 4, further comprising:

P 1O'EIR\RJC2 7 OL)ccobc 0023 3826 I sn d-6I.I12f2007

C1 19

requesting an updated copy of the account balance on any other account

access system on the network.

S19. A computer implemented method according to claim 13, further comprising:(O
00

deleting a local copy of the account balance on any other account access
q system on the network being notified the account balance has been updated.

C 20. A computer implemented method according to claim 4, further comprising:
notifying another account access system on the network that the account

balance in the database is going to be updated.

21. A computer implemented method according to claim 20, further comprising:

allowing said another account access system to veto the update of the

account balance in the database.

22. A computer implemented method according to claim 4, further comprising:
sending a packet of information to another account access system on the

network, the packet of information containing changes to the account balance due

to the update.

23. A computer implemented method according to claim 22, wherein:

the packet of information contains changes between the state of the

account balance after the update and the prior state of the account before the

update.

24. A computer implemented method according to claim 4, further comprising:

determining whether other account access systems on the network can

accept the update to the account balance; and

committing the update to the other account access systems if the other

account access systems can accept the update.

P 'OI'E\R C"2Q 70c,Db~O O 313 1.6 I spa dK. 14/12f2007

A computer implemented method according to claim 24, further comprising:

rolling back the update if the other account access systems cannot accept

the update.

00(3O
M_ 5 26. A computer implemented method for providing quick electronic

Cc transactions, comprising:

Sreceiving a transaction request from a participant in a transaction to an

C- electronic transaction system, the electronic transaction system storing a local

copy of information related to a participant in the transaction;

processing the request with the local copy;

verifying that the local copy reflects the current information for the

participant in a main database with a conditional update request; and

whereby, as a result of the conditional update request, the main database

updates the account balance if the local copy is current with the account balance

before the update, and whereby the main database does not update the account

balance if the local copy is not current with the account balance before the update.

27. A computer implemented method for maintaining concurrency for account

information cached on a network, comprising:

receiving an update request to a network server, the network server storing

a local copy of a account information in a local cache;

processing the request using the local copy of the account information;

sending a conditional update request to a network database storing an

original copy of the account information whereby, as a result of the conditional

update request, the database updates the account information if the local copy is

current with the account information, and whereby the database does not update

the account information if the local copy is not current with the account

information;

receiving a current copy of the account information to the network server

and sending another conditional update if the local copy was not the same version

as the original copy; and

P VOPEkRJC\200n ai .2O23S1)826 I ps dm- 14l1212D07

21

notifying from the network server any other servers on the network storing a

local copy of the account information that the original copy has been updated.

N 28. A computer implemented system for assuring concurrency among account
00
M 5 access systems on a network, comprising:

an account access system adapted to receive a transaction request from a
0 customer and process the request using a local copy of the account information for

C~ the customer, the account information being stored in an account database;

wherein the account access system is adapted to send a conditional update

request to the account database whereby, as a result of the conditional update

request, whereby the account database updates the account information if the

local copy is current with the account information before the update, and whereby

the account database does not update the account information if the local copy is

not current with the account information before the update.

29. A computer implemented system according to claim 28, further comprising:

an account database adapted to contain the account information for the

customer.

30. A computer implemented system according to claim 28, further comprising:

a client terminal adapted to allow a customer to initiate the transaction

request.

31. A computer implemented system according to claim 28, wherein:

the account access system is adapted to receiving a message from the

account database indicating whether the account information has been updated.

32. A computer implemented system according to claim 28, wherein:

the account access system is further adapted to check the local copy to

determine whether the update request can be processed.

P OPERRJC2007D ol.,bl-VIO231326 Isp4 dc14II2O007

22
U

33. A computer implemented system according to claim 28, wherein:

the account access system is further adapted to update the local copy if the

account information in the account database is updated.
IND
oO00

34. A computer implemented system according to claim 28, wherein:

q the account access system is further adapted to delete the local copy and

Sstore a new copy of the account information if the local copy is not current with the

Saccount information.

35. A computer implemented system according to claim 34, wherein:

the account access system is further adapted to send an additional

predicated update request to the account database, whereby the account

database updates the account information if the new copy is current with the

account information before the update, and whereby the account database does

not update the account information if the new copy is not current with the account
information before the update.

36. A computer implemented system according to claim 28, further comprising:

additional account access systems on the network capable of storing a local
copy of the data item.

37. A computer implemented system according to claim 36, wherein:

the account access system is further adapted to notify the additional

account access systems that the account information in the account database has

been updated.

38. A computer implemented system according to claim 37, wherein:

the account access system is further adapted to notify the additional

account access systems by one of multicasting and point-to-point messaging.

39. A computer implemented system according to claim 37, wherein:

P O'ER (72O)1 ,b12o2 3SIa I ,P1 d-cI41i12;2DO

C 23

the account access system is further adapted to include a version number

for the account information when notifying the additional account access systems.

A computer implemented system according to claim 39, wherein:
oO00

the account access system is further adapted to heartbeat the version

Snumber for the account information after the update to the additional account

access systems.

41. A computer implemented system according to claim 36, wherein:

the additional account access systems are each adapted to do at least one
of delete a local copy of the account information and request an updated copy of
the account information.

42. A computer implemented system according to claim 36, wherein:

the account access system is further adapted to notify the additional

account access systems that the account information in the account database is

going to be updated.

43. A computer implemented system according to claim 36, wherein:
the additional account access systems are each capable of vetoing the

update of the account information in the database.

44. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to send a packet of

information to the additional account access systems, the packet of information

containing changes to the account information due to the update.

A computer implemented system according to claim 36, wherein:
the account access system is further adapted to determine whether the

additional account access systems can accept the update to the account

P OPER1RJC .(l7D c lC2) 180 I r, d.-14,12.12DO7

C-I 24

information and commit the update to the additional account access systems if the

additional account access systems can accept the update.

N46. A computer implemented system according to claim 36, wherein:
00oO

5 the account access system is further adapted to roll back the update if the

eq additional account access systems cannot accept the update.

C 47. A computer implemented system for allowing a transaction over an account

access system network, comprising:

an ATM terminal adapted to allow a customer to make a transaction request

involving bank account information;

an account access system adapted to store a copy of the bank account

information for the customer and process the transaction request; and

a bank account database adapted to store bank account information for the

customer and provide access to that bank account information over the network;

wherein the account access system is adapted to send a conditional update

request to the bank account database after processing the request whereby, as a

result of the conditional update request, the bank account database is adapted to

update the bank account information if the local copy is current with the bank

account information before the update, and whereby the bank account database

does not update the bank account information if the local copy is not current with

the bank account information before the update.

48. A method for updating a data item in a cluster, comprising:

processing an update request on a cluster server, the cluster server storing

a local copy of a data item at a local cache to be used in processing the request;

sending a predicated update request to a cluster database containing the

data item, whereby the database updates the data item if the local copy at the

local cache is current with the data item before the update, and whereby the

database does not update the data item if the local copy is not current with the

data item before the update.

P 'OPER'RJC200fDcc tom,'2002313S26 Ip Om I4I/212OO7

C

49. A method according to claim 48, further comprising:

receiving a message from the database to the cluster server indicating

c whether the data item has been updated.oo00
M,

M 50. A method according to claim 48, further comprising:

Sreading a data item from the database and storing a local copy of the data

c- item in local cache on the cluster server.

51. A method according to claim 48, further comprising:

receiving an update request from a client to the cluster server.

52. A method according to claim 48, further comprising:

checking the local copy to determine whether the update request can be

processed.

53. A method according to claim 48, further comprising:

updating the local copy on the cluster server if the data item in the database

is updated.

54. A method according to claim 48, further comprising:

deleting the local copy and storing a new copy of the data item on the

cluster server if the local copy is not current with the data item.

55. A method according to claim 54, further comprising:

sending an additional predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the new

copy is current with the data item before the update, and whereby the database

does not update the data item if the new copy is not current with the data item

before the update.

P OPERCRJ27tUl),Dcc I(n)2311 26 I sp o c- I/212007

S26

56. A method according to claim 54, further comprising:

determining whether the client initiating the update request wishes to

attempt the update with the data item current with the new copy.

(NO
00
m 5 57. A method according to claim 48, further comprising:

¢q notifying another server in the cluster that the data item in the database has

O been updated.

58. A method according to claim 48, further comprising:

multicasting an update message to other servers in the cluster.

59. A method according to claim 48, further comprising:

multicasting a version number for the data item to other servers in the

cluster after updating the data item.

A method according to claim 48, further comprising:

contacting each server in the cluster directly to indicate that the data item

has been updated.

61. A method according to claim 48, further comprising:

heartbeating the version number for the updated data item to any other

servers on the network.

62. A method according to claim 57, further comprising:

dropping a local copy of the data item stored on any cluster server being

notified the data item has been updated.

63. A method according to claim 57, further comprising:

requesting an updated copy of the data item on any cluster server being

notified the data item has been updated.

P 'OERKRJCC,27D c -b-223 1 2 6 I ,p d 14'1 2' W7

C 27

64. A method according to claim 57, further comprising:

deleting a local copy of the data item on any cluster server being notified

the data item has been updated.

00

\O

oO
65. A method according to claim 48, further comprising:

Snotifying another server in the cluster that the data item in the database is

Sgoing to be updated.

66. A method according to claim 65, further comprising:

allowing said another server to veto the update of the data item in the

database.

67. A method according to claim 48, further comprising:

sending a packet of information to another server in the cluster, the packet

of information containing changes to the data item due to the update.

68. A method according to claim 67, wherein:

the packet of information contains changes between the state of the data

item after the update and the prior state of the data item before the update.

69. A method according to claim 48, further comprising:

determining whether other servers in the cluster can accept the update to

the data item; and

committing the update to the other servers if the other servers can accept

the update.

A method according to claim 69, further comprising:

rolling back the update if the other server cannot accept the update.

71. A method for maintaining concurrency for a copy of a data item cached on a

cluster server, comprising:

P 'OPEWRIRCk20070-ti \2002 13926 1 gpd 14112/'2 07

C 28

receiving an update request, the update request being received by a cluster

server storing a local copy of a data item in local cache;

processing the request using the local copy of the data item;
IDsending a predicated update request to a cluster database storing the data
00
oO

M 5 item, whereby the cluster database updates the data item if the data item is

q current with the local copy, and whereby the database does not update the data

0item if the data item is not current with the local copy;

crequesting a current copy of the data item for the cluster server and sending

another predicated update if the local copy is not current with the data item in the
cluster database, the step of requesting a current copy and sending another
predicated update continuing until one of the cluster database updating the data

item and the method being aborted; and

notifying other servers in the cluster that the data item in the database has

been updated.

72. A method according to claim 71, wherein the step of notifying other servers

in the cluster further comprises:

multicasting an update message to other servers in the cluster that might be

storing a local copy of the data item.

73. A method according to claim 71, wherein the step of notifying other servers

in the cluster further comprises:

multicasting a version number for the data item to other servers in the

cluster after the data item is updated.

74. A method according to claim 71, wherein the step of notifying other servers

in the cluster further comprises:

contacting another server in the cluster by a point-to-point connection to

indicate that the data item has been updated.

P 'OPER3FURJ 7 Dm ,lbC,\2DO23 13326 I ilp dmcI 411212OO7

c 29

A method according to claim 71, wherein the step of notifying other servers

in the cluster further comprises:

heartbeating the version number for the data item to other servers in the
IDcluster after the data item is updated.
00oo
M,

M 76. A method according to claim 71, further comprising:c-i
dropping a local copy of the data item on any other server in the cluster

C being notified that the data item has been updated.

77. A method according to claim 71, further comprising:

requesting an updated copy of the data item to any other server in the

cluster being notified that the data item has been updated.

78. A computer-readable medium, comprising:

1 5 means for processing an update request on a cluster server, the cluster

server storing a local copy of a data item to be used in processing the requestat a

local cache;

means for sending a predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the local
copy is current with the data item before the update, and whereby the database

does not update the data item if the local copy is not current with the data item

before the update.

79. A computer program product for execution by a server computer for

updating a data item on a network, comprising:

computer code that can process an update request on a cluster server, the

cluster server storing a local copy of a data item to be used in processing the

request at a local cache;

computer code that can send a predicated update request to a cluster
database containing the data item, whereby the database updates the data item if
the local copy is current with the data item before the update, and whereby the

P 'OPERl RJC, 00 7lDp d00l23132p6 desp 1412r007

database does not update the data item if the local copy is not current with the

data item before the update.

C 80. A system for updating a data item on a network, comprising:
00oO
M' 5 means for processing an update request on a cluster server, the cluster

Sserver storing a local copy of a data item to be used in processing the request at a

O local cache;

means for sending a predicated update request to a cluster database

containing the data item, whereby the database updates the data item if the local

copy is current with the data item before the update, and whereby the database

does not update the data item if the local copy is not current with the data item

before the update.

81. A computer system comprising:

a processor;

object code executed by said processor, said object code configured to:

process an update request on a cluster server, the cluster server storing a

local copy of a data item to be used in processing the request at a local cache;

send a predicated update request to a cluster database containing the data

item, whereby the database updates the data item if the local copy is current with

the data item before the update, and whereby the database does not update the

data item if the local copy is not current with the data item before the update.

82. A computer implemented method for maintaining account balance

consistency in networked account access systems, substantially as hereinbefore

described with reference to the accompanying drawings.

83. A computer implemented method for maintaining account balance

consistency in networked account access systems, substantially as hereinbefore

described with reference to the accompanying drawings.

P 'OIERMR t2L)O Dctc bcQ002311926 II P d. 14112!2007

C- 31

84. A computer implemented method for providing quick electronic

transactions, substantially as hereinbefore described with reference to the

accompanying drawings.

00
c 5 85. A computer implemented method for maintaining concurrency for account

m information cached on a network, substantially as hereinbefore described with

Sreference to the accompanying drawings.

86. A computer implemented system for assuring concurrency among account

access systems on a network, substantially as hereinbefore described with

reference to the accompanying drawings.

87. A computer implemented system for allowing a transaction over an account

access system network, substantially as hereinbefore described with reference to

the accompanying drawings.

88. A method for updating a data item in a cluster, substantially as hereinbefore

described with reference to the accompanying drawings.

89. A method for maintaining concurrency for a copy of a data item cached on a

cluster server, substantially as hereinbefore described with reference to the

accompanying drawings.

A computer program product for execution by a server computer for

updating a data item on a network, substantially as hereinbefore described with

reference to the accompanying drawings.

100

106

14112 -114

Server Predicated
Update request update

Client Database

Update Local Cache Update status
responseI

118
120

116

108 11

Figure!1

100

102I
K~ OAA

I
.122

Server

Local A
Cache M

1(1
120

I 108

130

L

118

126

Server

LocalA
CacheA

116

124-

Figure 2

WO 03/021484

200-
PCT/US02/27315

Receiving an update request to a network server
storing a local copy of the data item to be

updated

Processing the update request using the local
copy of the data item

Sending a predicated update request to the
database containing the data item

Committing the update to the data item in the
database if the data item is the same version as

the local copy of the data item

Aborting the update request if the data item is
not the same version as the local copy of the

data item

202

204

206

208

210

Figure 3

WO 03/021484

300-

1

PCT/US02/27315

Requesting a current copy of the data item to be
sent to the network server

Processing the update request using the current
copy of the data item

Sending a predicated update request to the
database containing the data item

Committing the update to the data item in the
database if the data item is the same version as

the local copy of the data item

Aborting the update request if the data item is
not the same version as the local copy of the

data item

302

304

306

308

310

Figure 4

WO 03/021484 PCT/US02/27315

5/7

400

Notifying any other servers on the network 402
containing a local copy of the data item that the

data item has been updated

404
Dropping the local copy of the data item on any

other server in the network

406
Requesting an updated copy of the data item to

be sent to any other server on the network

Figure

WO 03/021484

500

PCT/US02/27315

Send a version number for an update from an
updating server to one of the other network

servers in the cluster

Determine whether the network server has been
updated to the current version number

Request that a delta be sent from the updating
server to the network server

Process the delta on the network server to
update the local copy of the data item for the

network server

Update the version number of the local copy of
the data item for the network server

502

504

506

508

510

Figure 6

WO 03/021484 PCT/US02/27315

600.7 /7

Send a packet of information from an updating 602
server to one of the other network servers in a

cluster

604
Determine whether the network server can

process the packet of information

Send a response from the network server to the 606
updating server indicating whether the network

server can process the packet of information

Send a message from the updating server to the 608
other server indicating whether the network

server should commit the updating data in the
packet of information

610

Process the commit on the network server if so
directed by the updting server

Figure 7

	Abstract
	Description
	Claims
	Drawings

