(12) STANDARD PATENT

(19) AUSTRALIAN PATENT OFFICE

(54)

Title
Cluster caching with concurrency checking

International Patent Classification(s)

GO6F 12/00 (2006.01) G06Q 20/00 (2006.01)
GO6F 17/30 (2006.01) HO4L 29/08 (2006.01)
Application No: 2002313826 (22) Date of Filing: 2002.08.28

WIPO No: WO03/021484

Priority Data

Number (32) Date (33) Country
60/316,187 2001.08.30 us
10/211,713 2002.08.02 us
10/211,712 2002.08.02 us
60/316,190 2001.08.30 us
Publication Date: 2003.03.18

Publication Journal Date: 2003.06.05
Accepted Journal Date: 2008.01.24

Applicant(s)
Bea Systems, Inc.

Inventor(s)
Messinger, Adam;Jacobs, Dean Bernard;White, Seth;Woolen, Rob

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
US 5805798
US 5452445
US 5926816

(11) Application No. AU 2002313826 B2

3/021484 A3

=

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
13 March 2003 (13.03.2003)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 03/021484 A3

(51
1
(22)
29
(26)

(30)

(71

(72)

International Patent Classification”; GO6F 17/30

International Application Number: PCT/US02/27315
International Filing Date: 28 August 2002 (28.08.2002)
Filing Language: English
Publication Language: English

Priority Data:

60/316,187 30 August 2001 (30.08.2001) US
60/316,190 30 August 2001 (30.08.2001) US
10/211,713 2 August 2002 (02.08.2002) US
10/211,712 2 August 2002 (02.08.2002) US

Applicant: BEA SYSTEMS, INC [US/US]; 2315 North
First Street, San Jose, California 95131 (US).

Inventors: JACOBS, Dean Bernard; 1747 Madera
Street, Berkeley, California 94707 (US). WOOLEN,
Rob; 2531 14th Avenue, San Francisco, CA 94127 (US).
MESSINCER, Adam; 317 29th Street-Apartment 306,
San Francisco, California 94131 (US). WHITE, Seth;
1045 Rivera Street-Apartment B, Sans Francisco, Califor-
nia 94116 (US).

74

(81)

(84)

Agent: MEYER, Sheldon, R.; Fliesler Dubb Meyer and
Tovejoy LIP, Four Embarcadero center-Fourth Floor, San
Francisco, california 94111-4156 (US).

Designated States (national): AL, AG, AL, AM, AT, AU,
AZ,BA, BB, BG,BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KH, LS, MW, MZ, SD, SL, SZ, 17, UG, ZM, /W),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM),
Luropean patent (AT, BLi, BG, CH, CY, CZ, DL, DK, EL,
HS, HI, FR, GB, GR, IE, Il, LU, MC, NL, P1, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NL, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: CLUSTER CACHING WITH CONCURRENCY CHECKING

100
106
\ 112 114
104
102 \
Server Predicated
Update request‘ update
Client g P Database
Update N Update status 4}
response Local CacK
! 118
120 \ 116

108

110

(57) Abstract: Concurrency can be maintained in cluster caching when processing an updale request on network server that is
storing a local copy of data item. the request can be processed using the local copy of the data item. A predicated update request can
be sent to a network database storing the data item, wherein the database can commit the update if the local copy is current with the
data ilem. If the local copy is not current, the network server can requesl a new copy, process the request using the current copy, and
try another predicated request. the process can continuce until the update is committed to the databasc or aborted. Once committed,
any other servers in the cluster can be notified that the data item has been updated. Those other servers can drop any local copy of
the data item and can request an updated copy ol the data ilem.

woO 03/021484 A3 NN 000N 00 RN AN

(88) Date of publication of the international search report: For two-letter codes and other abbreviations, refer to the "Guid-
24 July 2003 ance Notes on Codes and Abbreviations " appearing at the begin-
ning of each regular issue of the PCT Gazette.

14 Dec 2007

2002313826

10

15

20

25

P \OPER'RIC200T:Decembari2002313826 15pa doc- 141272007

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection to
the facsimile reproduction by anyone of the patent document of the patent
disclosure, as it appears in the Patent and Trademark Office patent file or records,

but otherwise reserves all copyright rights whatsoever.

CLAIM OF PRIORITY

[0002] This application claims priority to the following applications which,
are incorporated herein by reference: [0003] U. S. Provisional Patent Application
entitled "CLUSTER CACHING WITH CONCURRENCY CHECKING", Application
No. 60/316, 187, filed August 30, 2001.

[0004] U. S. Patent Application entitled "CLUSTER CACHING WITH
CONCURRENCY CHECKING", Application No. 10/211,713, filed August 2, 2002.

[0005] U. S. Provisional Patent Application entitled "METHOD FOR
MAINTAINING ACCOUNT CONSISTENCY," Application No. 60/316,190, filed
August 30, 2001.

[0006] U. S. Patent Application entitled "METHOD FOR MAINTAINING
ACCOUNT CONSISTENCY, "Application No. 10/211, 712, filed August 2, 2002.

CROSS-REFERENCED CASE:

[0007] The following application is cross-referenced and incorporated herein

by reference:

[0008] U. S. Provisional Application No. 60/305,986 entitled "DATA
REPLICATION PROTOCOL," by Dean Bernard Jacobs, Reto Kramer, and
Ananthan Bala Srinvasan, filed July 16, 2001.

14 Dec 2007

2002313826

10

15

20

25

P OPERVRICRO0T Decamber' 2002313826 1spa doc- 147422007

FIELD OF THE INVENTION

[0009] The invention relates generally to a computer implemented method
for maintaining account balance consistency in networked account access
systems; a computer implemented method for providing quick electronic
transactions; a computer implemented system and method for maintaining
concurrency for account information cached on a network; a computer
implemented system for allowing a transaction over an account access system
network; a method for updating a data item in a cluster; a method for maintaining
concurrency for a copy of a data item cached on a cluster server; a computer
program product for execution by a server computer for updating a data item on a
network; and a system for updating a data item on a network. The invention
relates generally to a system for storing data. The invention relates more

specifically to a system and method for caching data and checking concurrency.

BACKGROUND OF THE INVENTION

[0010] When a data item is stored in a single database or data store that is
accessible over a network, it is often the case that multiple servers or clients will
require access to that data item. Traditionally, this requires data be read from the
database each time the data item is accessed. Each read from the database is

relatively resource intensive and may be relatively inefficient.

[0011] One way of overcoming some of the efficiency and scalability
problems, associated with requiring a server or client to read from the database
each time a data item is to be accessed, is to store the data item in cache
memory. In this way, once a server or client has read a data item from the
database it may simply store a copy of that item in a local cache. That local copy
of the data item can then be used if future access is needed. This process may be
appropriate and efficient for data items that never change, but problems arise

when a data item is updated in the database.

[0012] If a data item stored in the database is updated, a copy of that data

item stored in a local cache on the network may be different from the item in the

14 Dec 2007

2002313826

10

20

25

PIOPERVRIC 200N Detembe\ 200231 3826 1spa die- 1471272007

database, as it will not automatically receive the update. The problem intensifies
when there are multiple local copies on different servers and/or clients on the
network. Since each of these local copies is created at a different time, there can
be muitiple versions of the data item on the network. If a user tries to update or
view the data item, the copy accessed by the user may not be current and/or

correct.

[0013] These problems with concurrency can have drastic consequences,
such as for example when a user accesses a data item showing a bank account
balance. If the local copy of the bank account balance has not been updated to
show a withdrawal, for example, the bank account balance shown to the user may
in fact show an incorrectly large balance. This could lead the user to unknowingly
overdraw the account. Further, a third party accessing the account balance, or a
device such as an ATM, would have no way of knowing that the balance being

shown is incorrect.

[0013A] It is generally desirable to overcome, or ameliorate, one or more of

the above described difficulties, or to at least provide a useful alternative.

SUMMARY OF THE INVENTION

[0013B] In accordance with one aspect of the present invention, there is
provided a computer implemented method for maintaining account balance
consistency in networked account access systems, comprising:

receiving a request relating to the account balance of a customer,
the request being received by an account access system storing a local copy of
the account balance;

processing the request using the local copy;

verifying that the local copy reflects the current account balance for
the user by sending a conditional update request to an account database; and

whereby, as a result of the conditional update request, the account
database updates the account balance if the local copy is current with the account

balance before the update, and whereby the account database does not update

14 Dec 2007

2002313826

10

15

20

25

P OPERVRICZ00NDeccmber20023 11826 1spa aig- 14712/2007

the account balance if the local copy is not current with the account balance before

the update.

[0013C] In accordance with a further aspect of the present invention, there is
provided a computer implemented method for maintaining account balance
consistency in networked account access systems, comprising:

processing an update request on an account access system, the
account access system storing a local copy of an account balance to be used in

processing the request; and

sending a conditional update request to an account database
containing the account balance, whereby, as a result of the conditional update
request, the account database updates the account balance if the local copy is
current with the account balance before the update, and whereby the account
database does not update the account balance if the local copy is not current with

the account balance before the update.

[0013D] In accordance with a further aspect of the present invention, there is
providled a computer implemented method for providing quick electronic
transactions, comprising:

receiving a transaction request from a participant in a transaction to
an electronic transaction system, the electronic transaction system storing a local
copy of information related to a participant in the transaction;

processing the request with the local copy;

verifying that the local copy reflects the current information for the

participant in a main database with a conditional update request; and

whereby, as a result of the conditional update request, the main
database updates the account balance if the local copy is current with the account
balance before the update, and whereby the main database does not update the
account balance if the local copy is not current with the account balance before the

update.

14 Dec 2007

2002313826

10

20

25

EAQPERVRICI2007Deccttiber\200231 3626 1spa doc- 1471272007

[0013E] In accordance with a further aspect of the present invention, there is
provided a computer implemented method for maintaining concurrency for account
information cached on a network, comprising:

receiving an update request to a network server, the network server
storing a local copy of a account information in a local cache;

processing the request using the local copy of the account
information;

sending a conditional update request to a network database storing
an original copy of the account information whereby, as a result of the conditional
update request, the database updates the account information if the local copy is
current with the account information, and whereby the database does not update
the account information if the local copy is not current with the account
information;

receiving a current copy of the account information to the network
server and sending another conditional update if the local copy was not the same

version as the original copy; and

notifying from the network server any other servers on the network
storing a local copy of the account information that the original copy has been

updated.

[0013F] In accordance with a further aspect of the present invention, there is
provided a computer implemented system for assuring concurrency among
account access systems on a network, comprising:

an account access system adapted to receive a transaction request
from a customer and process' the request using a local copy of the account
information for the customer, the account information being stored in an account

database;

14 Dec 2007

2002313826

10

15

20

25

P OPERRICQ00NDecembir\20023 13826 11pa dix -14712/2007

5A

wherein the account access system is adapted to send a conditional
update request to the account database whereby, as a result of the conditional
update request, whereby the account database updates the account information if
the local copy is current with the account information before the update, and

whereby the account database does not update the account

information if the local copy is not current with the account information before the

update.

[0013G] In accordance with a further aspect of the present invention, there is
provided a computer implemented system for allowing a transaction over an
account access system network, comprising:

an ATM terminal adapted to allow a customer to make a transaction
request involving bank account information;

an account access system adapted to store a copy of the bank
account information for the customer and process the transaction request; and

a bank account database adapted to store bank account information
for the customer and provide access to that bank account information over the

network;

wherein the account access system is adaptéd to send a conditional
update request to the bank account database after processing the request
whereby, as a result of the conditional update request, the bank account database
is adapted to update the bank account information if the local copy is current with
the bank account information before the update, and whereby the bank account
database does not update the bank account information if the local copy is not

current with the bank account information before the update.

[0013H] In accordance with a further aspect of the present invention, there is
provided a method for updating a data item in a cluster, comprising:

processing an update request on a cluster server, the cluster server
storing a local copy of a data item at a local cache to be used in processing the

request,

14 Dec 2007

2002313826

10

15

20

25

P OPERVRICL00 N Docanber' 2002313826 15pa doc- 147122007

5B

sending a predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the local
copy at the local cache is current with the data item before the update, and
whereby the database does not update the data item if the local copy is not current

with the data item before the update.

[0013l] In accordance with a further aspect of the present invention, there is
provided a method for maintaining concurrency for a copy of a data item cached

on a cluster server, comprising:

receiving an update request, the update request being received by a
cluster server storing a local copy of a data item in local cache;

processing the request using the local copy of the data item;

sending a predicated update request to a cluster database storing
the data item, whereby the cluster database updates the data item if the data item
is current with the local copy, and whereby the database does not update the data
item if the data item is not current with the local copy;

requesting a current copy of the data item for the cluster server and
sending another predicated update if the local copy is not current with the data
item in the cluster database, the step of requesting a current copy and sending
another predicated update continuing until one of the cluster database updating

the data item and the method being aborted; and

notifying other servers in the cluster that the data item in the

database has been updated.

[0013J] in accordance with a further aspect of the present invention, there is
provided a computer-readable medium, comprising:

means for processing an update request on a cluster server, the
cluster server storing a local copy of a data item to be used in processing the

request_at a local cache;

14 Dec 2007

2002313826

10

15

20

25

P OFERRICQ00TDecomber 2002313826 15pa doc - 14/1272007

5C

means for sending a predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the local
copy is current with the data item before the update, and whereby the database
does not update the data item if the local copy is not current with the data item

before the update.

[0013K] In accordance with one aspect of the present invention, there is
provided a computer program product for execution by a server computer for
updating a data item on a network, comprising:

computer code that can process an update request on a cluster server, the
cluster server storing a local copy of a data item to be used in processing the

request at a local cache;

computer code that can send a predicated update request to a cluster
database containing the data item, whereby the database updates the data item if
the local copy is current with the data item before the update, and whereby the
database does not update the data item if the local copy is not current with the

data item before the update.

[0013L] In accordance with a further aspect of the present invention, there is
provided a system for updating a data item on a network, comprising:

means for processing an update request on a cluster server, the
cluster server storing a local copy of a data item to be used in processing the

request at a local cache;

means for sending a predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the local
copy is current with the data item before the update, and whereby the database
does not update the data item if the local copy is not current with the data item

before the update.

[0013M] In accordance with a further aspect of the present invention, there is
provided a computer system comprising:

a processaor,

14 Dec 2007

2002313826

20

25

P OPERRIC200\Decamnber\200231 3826 15pa duc - 1471272007

5D

object code executed by said processor, said object code configured

to:

process an update request on a cluster server, the cluster server
storing a local copy of a data item to be used in processing the request at a local

cache;

send a predicated update request to a cluster database containing
the data item, whereby the database updates the data item if the local copy is
current with the data item before the update, and whereby the database does not
update the data item if the local copy is not current with the data item before the

update.

[0014] It is therefore desirable to develop a system and method for caching

data items and data objects that ensures the accuracy of the cached copy.

[0015] It is further desirable to develop a system and method to ensure that
any change to a copy of a data item is not allowed unless that copy reflects the

current state of the data item in the database.

[0016] Systems and methods in accordance with the present invention
preferably provide a way to maintain concurrency in data item caching. A request
to update an item is received by a network server, which can store a local copy of
the data item, such as in local cache. The network server can process the request
using the local copy of the data item. A "conditional” or "predicated" update
request can be sent from the network server to a network database, whereby the
database can update the data item if the data item contains the same version of
the data as the local copy. The database may not update the data item if the data

item is not the same version as the local copy.

[0017] If the copies do not contain the same version, the network server can
request a current copy of the data item, and can process the update request using
the new copy of the data item. The network server can send another predicated

update to the database. This process continues until the data item in the database

is updated. Once the data item is updated, the other network servers, such as

14 Dec 2007

2002313826

10

15

20

25

P OPERVRICI200 M Deccinber\ 2002313826 1spa doc- 1471272007

S5E

servers in a common cluster, can be notified that the data item has been updated.
At this point, those network servers can drop any local copy of the data item and

can request a new copy to store in local cache.

[0018] The notification to the network servers can be done by any of several
appropriate methods, such as by multicasting an update message or version
number to any other servers on the network. The network servers can also
connect to each other directly, such as by a point- to-point protocol, or can

heartbeat information to the other servers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Preferred embodiments of the present invention are hereafter
described, by way of non-limiting example only, with reference to the

accompanying drawings, in which:

[0020] Figure 1 is a diagram of the first part of an approach in accordance

with one embodiment of the present invention.

[0021] Figure 2 is a diagram of the first and second parts of an approach in

accordance with one embodiment of the present invention.

[0022] Figure 3 is a flowchart for an update process in accordance with one

embodiment of the present invention.

[0023] Figure 4 is a flowchart for a process for updating a data item when
the local copy and original copy are out-of-sync, in accordance with one

embodiment of the present invention.

[0024] Figure 5 is a flowchart for a process for updating network servers on

the network, in accordance with one embodiment of the present invention.

[0025] Figure 6 is a flowchart for a one phase process in accordance with
one embodiment of the present invention. [0026] Figure 7 is a
flowchart for a two phase process in accordance with one embodiment of the

present invention.

14 Dec 2007

2002313826

10

15

20

25

P OQPERWRIC200TDecanbe 2002311826 15pa - 14712/2007

SF

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE
INVENTION

[0027] Systems in accordance with a preferred embodiment of the present
invention allow for the caching of data while maintaining concurrency across a
network, such as a local area network (LAN), ethernet, or Internet. Such a system
can utilize one or both of a two-part approach to updating data items while
maintaining concurrency. Such systems can implement concurrent caching
through any software or hardware means known or used in the computer arts, or
hereinafter developed. These systems can also utilize any appropriate software
applications, objects, languages, or executables, such as may be designed to

utilize, for example, Java, HTML, and XML.

[0028] In the first part of one such approach in accordance with the present
invention, a client or server on a network reads a data item from a database and
stores a copy of the data item in a local cache. If the server or client wishes to
update the data item in the database, the update can be "conditioned" or
"predicated” on whether the data item stored in local cache corresponds to the
current version of the data item stored in the database. This approach maintains
concurrency between the client/server desiring to update the data item and the
database. The caching of data in this manner can also improve performance and

scalability.

[0029] One example of a first part of an approach 100 is shown in Figure 1.
Here, a client 102 makes an update request 104 to a network server 106. The
network server 106 in this example stores a copy of the data item 110 to be
updated in a local cache 108. When the network server 106 receives the update
request 104, the server 106 checks the local copy of the item 110 to see if the
update may be processed. If the server 106 determines that the update may be
processed using information in the local copy of the data item 110, the server 106

sends a predicated

10

15

20

25

WO 03/021484

6

update 112 to the database 114 storing the original copy of the data item
116. If the information in the original copy of the data item 116 is the same
as the information in the local copy 110, the update may be committed to
the database. If the information is different, the update is not committed.
The server 106 receives an update status message 118 from the database
114, indicating whether the update was committed.

[0030] If the update was committed, the server can also commit the
update to the copy of the data item 110 in local cache 108. If the update
was not committed, because the data items 110, 116 were out of sync, the
server can drop its copy of the data item 110 from local cache 108 and
request a new copy from the database 114.

[0031] Once the server 106 has the new data item, it can again send
a predicated update 112 to the database 114. Alternatively, the server can
send a message to the client 102 asking whether or not to attempt an
update on the new data item. The server 106 can either abort the update,
or continue th;s process of trying a predicated update and getting new
copies of the data item as needed until the update is committed. Once the
update is committed or aborted, the server 106 can send an update
response 120 to the client, indicating the end result of the update attempt.
[0032] The second part of this approach occurs after a client/server
has updated a data item in the database. Since other clients and/or
servers on the network may also have a copy of the data item stored in
local cache, the client/server making the update can contact the other
servers on the network to let them know that the data item has been
updated. The other clients and/or servers on the network can then update
a copy of the data item stored in a local cache, request a current copy of
the data item, or simply drop the local copy of the data item and request a
copy from the database if and when it is needed. If a copy is later

requested, the copy can be stored in local cache at that time.

PCT/US02/27315

10

15

20

25

30

WO 03/021484

7

[0033] Figure 2 shows the second stage of the approach 100
described with respect to Figure 1. In Figure 2, once server 106 updates
the data item 116 in the database 114 and the copy of the data item 110
in local cache 108, server 106 sends update messages 128, 130 to the
other servers 122, 124 in the cluster 126. These messages can take the
form of point-to-point messages or multicast heartbeats, such as is
described above.

[0034] For example, in a banking system, each server on the
banking system network can potentially store a copy of a user's bank
account balance in local cache. Each local cache can include other
information about a user account, such as account information and
transaction history. This information can be cached, in whole or in part, on
each server on the network.

[0035] [n such a system, a transaction may occur such as an ATM
transaction. A server in communication with the ATM can store a cached
copy of the account balance of the user initiating the transaction. If a user
of the ATM wishes to withdraw $100 from a user account, for example, the
server could read the balance from memory, determine whether the
account contains sufficient funds for the transaction, and subtract the $100
from the account balance either before or after disbursing the funds.
[0036] In order to prevent the user from overdrawing the account,
the server can first verify that the local copy of the user account balance is
current with the balance stored in the database. For example, if the
previous balance stored locally was $500, the server could send an update
message to the database such as “update balance = $400", which could
also include the current value of the account in local cache, and make the
update predicated on the fact that the current account balance in the
database is the same as the current balance of the account in local cache.
[0037] Ifthe account balance stored inthe database is not the same
as the balance in local cache, the server may roll back the update. Once

an update is rolled back, the server can drop its copy in local cache, read

PCT/US02/27315

10

15

20

25

30

WO 03/021484

8

the account information from the database, then attempt the update again.
Forexample, if the local copy of the account balance said that the balance
was $500, and the database reflected a balance of $1000, the server
would roll back the $400 update attempt and try a predicated $900 update,
subtracting the $100 withdrawal from the current $1000 balance. This
second update can again be predicated bn the fact that the account
balance has not changed since it was last read by the server. This process
continues until either the account balance is updated appropriately, or the
transaction is aborted due to insufficient funds, etc.

[0038] If a server succeeds in updating a data item in the database,
it can also update the copy in local cache, such that the local copy is
current with the version of the data item in the database. For a network in
which multiple servers (or clients) can have a copy of the data item in a
local cache, the server updating the data item can notify the other servers
that the data item has been updated. This can include any or all other
servers or clients on a network, in a domain, in a cluster, or in any other
network grouping. This notification can be accomplished in any of a
number of ways, such as by a point-to-point connection with each
server/client, by multicasting, by a one-phase distribution method, by a two-
phase distribution method, by heartbeating an update or a delta, or any
other appropriate messaging technique.

[0039] It may be desirable that the sending of the notification is both
reliable in the face of failures and scalable, such that the process makes
efficient use of the network. One simple approach is to have the server
updating the data item (“updating server”) individually contact each server
or client on the network (“network server”) and transfer a message over a
point-to-point link, such as a TCP/IP connection. The message can tell
these network servers that the data item has been updated, and that the
network servers should drop any copy of this data item in local cache. This
approach may lead to inconsistent copies of the data if one or more of the

PCT/US02/27315

10

15

20

25

30

WO 03/021484

9

network servers are temporarily unreachable, or if the network servers

encounter an error in processing the update.

[0040] Steps in a general process that can be used in accordance

with the present invention are shown in Figures 3-5. In the process 200
of Figure 3, an update request is received, such as from a client, to a
network server storing a local copy of the data item to be updated 202.
The update is processed by the network server using the local copy of the
data item 204. A predicated update request is sent from the network
server to the network database containing the original copy of the data item
206. If the original copy and local copy of the data item contain the same
version of the data item, the update request is committed 208. If not, the
predicated update request is aborted 210.

[0041] Figure 4 shows a process 300 that can be used if the
predicated update request is aborted. The network server can request a
current copy of the data item 302. The network server can then process
the update request using the current copy of the data item 304. A
predicated update request is again sent from the network server to the
network database containing the original copy of the data item 306. If the
original copy and current copy of the data item contain the same version
of the data item, the update request is committed 308. If not, the
predicated update request is again aborted 310 and the process 300 may
be repeated until the update is committed.

[0042] Figure 5 shows a process 400 that may be used once the
update is committed. Any other servers on the network, such as servers
in the scope of an update or servers in a common cluster or domain, are
notified that the data item is being updated 402. Any server that is notified
then drops any local copy of the data item being stored, such as in a local
cache 404. Those servers may choose to request an updated copy of the
data item, either soon after dropping the local copy or upon receiving a
subsequent request relating to that data item 4086.

PCT/US02/27315

10

15

20

25

30

WO 03/021484

10

[0043] In the case of a two-phase commit, any other servers on the
network, such as in the scope of an update or in the same cluster, can be
notified that an item is being updated during the commit. For example, an
update can first go through a prepare stage in which it is determined
whether or not the update can be successfully committed. During this
phase, or at least before the update is committed, any server that is
notified of the update can veto the commit. By vetoing the commit, any
preparation is rolled back and the update does not get written to the
database. If the update successfully goes through a prepare phase, and
does not get vetoed by a server, the update can get committed to the data
item in the database.

[0044] The sending of the notification can also be sent by
multicasting the notification to the other servers/clients that might be
caching a local copy of the data item. Multicasting in this instance may
comprise the updating server sending the notification once to the
network/cluster/domain, which is then passed to the network
servers/clients. In simple multicasting, the message is only sent once,
such that a server that does not receive the update may fail to drop the
outdated copy of the item. This can result in that server having to go
through two or more iterations of predicated update attempts for that data
item when processing a subsequent request.

[0045] The sending of the notification can also be sent through a
‘heartbeat.” A heartbeat in this approach is a periodic message, typically
multicast although other messaging means may be utilized, thatis sent to
servers/clients that might be storing a local copy of the data item. An
updating server can continue to heartbeat the latest update(s) for a given
period of time, for a given number of heartbeats, until each server/client
responds it has received the heartbeat, or any other appropriate measure.
[0046] Each update to a data item can be packaged as an
incremental delta between versions. A protocol in accordance with the
present invention may integrate two methods for the distribution of

PCT/US02/27315

10

15

20

25

30

WO 03/021484

11

updates, although other appropriate methods can be used accordingly.
These distribution methods are referred to as a one-phase method and a
two-phase method, and provide a tradeoff between consistency and
scalability. Inaone-phase method, which can favor scalability, each of the
network servers obtains and processes updates at its own pace. The
network servers get updates from an updating server at different times, but
commit to each update as soon as the update is received. One of the
network servers can encounter an error in processing an update, but in the
one-phase method this does not prevent the network servers from
processing the update.

[0047] In a two-phase method in accordance with the present
invention, which can favor consistency, the distribution is “atomic,” in that
either all or none of the network servers successfully process the update.
There are separate phases, such as prepare and commit phases, which
can allow for a possibility of abort. In the prepare phase, the updating
server determines whether each of the network servers can take the
update. If all the network servers indicate that they can accept the update,
the new data is sent to the network servers to be committed in the commit
phase. If at least one of the network servers cannot take the update, the
update can be aborted, resulting in no commit. In this case, an updating
server is informed that it should roll back the prepare and nothing is
changed. Such a protocol in accordance with the present invention is
reliable, as one of the network servers thatis unreachable when an update
is committed, in either method, eventually gets the update.

[0048] A system in accordance with the present invention can also
ensure that a temporarily unavailable server eventually receives all
updates. For example, a server may be temporarily isolated from the
network, then come back into the network without restarting. Since the
server is notrestarting, it normally would not check for updates. The server
coming back into the network can be accounted for by having the server

PCT/US02/27315

10

15

20

25

30

WO 03/021484

12

check periodically for new updates, or by having an updating server check
periodically to see whether the network servers have received the updates.
[0049] In one embodiment, an updating server regularly sends
multicast “heartbeats” to the network servers, such as for a given period of
time or a given number of heartbeats. Since a multicast approach can be
unreliable, it is possible for one of the network servers to miss arbitrary
sequences of heartbeats. For this reason, heartbeats can contain a
window of information about recent updates. Such information about
previous updates can be used to reduce the amount of network traffic, as
explained below. In an example such as an account balance, historical
information may not be necessary, such that a heartbeat may simply
contain the current balance.

[0050] The updating server can continue to periodically send a
multicast heartbeat containing the version number to the network servers.
This allows any server that was unavailable, or unable to receive and
process a delta, to determine that it is not on the current version of the data
item and request a delta or update at a later time, such as when the slave
comes back into the system. If the current value is contained in the
heartbeat, the server may simply commit the new value.

[0051] For an update in a one-phase method, these heartbeats can
cause each of the network servers to request a delta starting from that
server's current version of the data item. Such a process is shown in the
flowchart of Figure 6. In this basic process 500 a version number for the
current data item on the updating server, or in the database, is sent from
the updating server to one of the other network servers 502. The network
server determines whether it has been updated to the current version
number 504. If the network server is not on the current version, it requests
that a delta be sent from the updating server containing the information
needed to update the data item 506. When the delta is sent, the network

server processes the delta in order to update to the current version 508.

PCT/US02/27315

10

15

20

25

30

WO 03/021484

13

The network server also updates its version number for the data item to the
current version number 510.

[0052] For an update in a two-phase method, the updating server
can begin with a prepare phase in which it pro-actively sends each of the
network servers a delta from the immediately-previous version. Such a
process is shown in the flowchart of Figure 7. In this basic process 600,
a packet of information is sent from the updating server to at least one
other network server 602. Each of the network servers receiving the
packet determines whether it can process that packet and update to the
current version 604. Each server receiving the packet responds to the
updating server, indicating whether the network server can process the
packet 606. If all the network servers (o which the delta is sent)
acknowledge successful processing of the delta within some timeout
period, the updating server can decide to commit the update. Otherwise,
the updating server can decide to abort the update. Once this decision is
made, the updating server sends a message to the network server(s)
indicating whether the update should be committed or aborted 608. If the
decision is to commit, each of the network servers processes the commit
610. Heartbeats can further be used to signal whether a commit or abort
occurred, in case the command was missed by one of the slaves.

[0053] In addition to the ability of a server to pull a delta, an updating
server can have the ability to push a delta during two-phase distribution.
[n one embodiment, these deltas are always between successive versions
ofthe data. This two-phase distribution method can minimize the likelihood
of inconsistencies between participants. Servers can process a prepare
as far as possible without exposing the update to clients or making the
update impossible to roll back. This may include such tasks as checking
the servers for conflicts. If any of the servers signals an error, such as by
sending a “disk full” or “inconsistent configuration” message, the update

can be uniformly rolled back.

PCT/US02/27315

10

15

20

25

30

WO 03/021484

14

[0054] [t is still possible, however, that inconsistencies may arise.
Forinstance, there may be errors in processing a commit, for reasons such
as an inability to open a socket. Servers may also commit and expose the
update at different times. Because the data cannot reach every managed
server at exactly the same time, there can be some rippling effect. The
use of multicasting provides for a small time window, in an attempt to
minimize the rippling effect. In one embodiment, a prepared server will
abort if it misses a commit, whether it missed the signal, the master
crashed, etc.

[0055] A best-effort approach to multicasting can cause a server to
miss a commit signal. If an updating server crashes part way through the
commit phase, there may be no logging or means for recovery. There may
be no way for the updating server to tell the remaining servers that they
need to commit. Upon abort, some servers may end up committing the
data if the version is not properly rolled back. In one embodiment, the
remaining servers could get the update using one-phase distribution. This
might happen, for example, when a server pulls a delta in response to a
heartbeat received from an updating server. This approach may maintain
system scalability, which might be lost if the system tied down distribution
in order to avoid any commit or version errors.

[0056] If the information regarding the previous versions was not
included in a delta, a server might have to abort and restart if that server
was prepared but missed a commit. With the inclusion of older version
information, the server can commit that portion of the update it was
expecting upon the prepare, and ask for a new delta to handle more recent
updates. Information about a given version can be included for at least
some fixed, configurable number of heartbeats, although rapid-fire updates
may cause the window to increase to an unacceptable size. In another
embodiment, information about an older version is discarded once an
updating server determines that all network servers have recsived the

update.

PCT/US02/27315

10

15

20

25

WO 03/021484

15

[0057] Multicast heartbeats can have several properties that need
to be taken into consideration. These heartbeats can be asynchronous or
‘one-way”. As a result, by the time a server responds to a heartbeat, the
updating server or database may have advanced to a new state. Further,
not all servers respond at exactly the same time. As such, an updating
server can assume that a server has no knowledge of its state, and can
include that which the delta is intended to update.

[0058] These heartbeats can also be unreliable, as a slave may miss
arbitrary sequences of heartbeats. This can again lead to the inclusion of
older version information in the heartbeats. In one embodiment,
heartbeats are received by a server in the order in which they were sent.
For example, a server may not commit version seven until it has committed
version six. The server can wait until it receives six, or it can simply throw
out six and commit seven. This ordering eliminates the possibility for
confusion that might be created by versions going backwards.

[0059] The foregoing description of the preferred embodiments of
the present invention has been provided for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. Embodiments were chosen
and described in order to best describe the principles of the invention and
its practical application, thereby enabling others skilled in the art to
understand the invention, the various embodiments and with various
modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the following claims
and their equivalents.

PCT/US02/27315

14 Dec 2007

2002313826

PAOPERMRICL00TDec omnber\200231 3826 1¢pa doc - 147122007

15A

Throughout this specification and claims which follow, unless the context
requires otherwise, the word “comprise”, and variations such as “comprises” or
“comprising”, will be understood to imply the inclusion of a stated integer or group

5 of integers or steps but not the exclusion of any other integer or group of integers.

The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken
as an acknowledgment or admission or any form of suggestion that that prior

10 publication (or information derived from it) or known matter forms part of the
common general knowledge in the field of endeavour to which this specification

relates.

14 Dec 2007

2002313826

10

20

25

30

PAOPERRICZ00 D et ¢y e 2002313820 1spa doe 13/12/2007

16

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer implemented method for maintaining account balance
consistency in networked account access systems, comprising:

receiving a request relating to the account balance of a customer, the
request being received by an account access system storing a local copy of the
account balance;

processing the request using the local copy;

verifying that the local copy reflects the current account balance for the user
by sending a conditional update request to an account database; and

whereby, asa result of the conditional update request, the account
database updates the account balance if the local copy is current with the account
balance before the update, and whereby the account database does not update
the account balance if the local copy is not current with the account balance before

the update.

2. A computer implemented method according to claim 1, further comprising:
notifying other account access systems on the network that the account

balance has been updated.

3. A computer implemented method according to claim 1, further comprising:
requesting the account balance if the local copy is not current with the

account balance.

4. A computer implemented method for maintaining account balance
consistency in networked account access systems, comprising:

processing an update request on an account access system, the account
access system storing a local copy of an account balance to be used in processing
the request; and

sending a conditional update request to an account database containing the

account balance, whereby, as a result of the conditional update request, the

14 Dec 2007

2002313826

10

15

20

25

30

POPERRIC200 N Dccember2002313826 1spa dac- 1471272007

17

account database updates the account balance if the local copy is current with the
account balance before the update, and whereby the account database does not
update the account balance if the local copy is not current with the account

balance before the update.

5. A computer implemented method according to claim 4, further comprising:
receiving a message from the account database to the account access

system indicating whether the account balance has been updated.

6. A computer implemented method according to claim 4, further comprising:
reading the account balance from the account database and storing a local

copy of the account balance on the account access system.

7. A computer implemented method according to claim 4, further comprising:
receiving an update request from a client to the account access system, the

client specifying the account balance to be updated.

8. A computer implemented method according to claim 4, further comprising:
checking the local copy to determine whether the update request can be

processed.

9. A computer implemented method according to claim 4, further comprising:
updating the local copy on the account access system if the account

balance in the account database is updated.

10. A computer implemented method according to claim 4, further comprising:
deleting the local copy and storing a new copy of the account balance on
the account access system if the local copy is not current with the account

balance.

11. A computer implemented method according to claim 10, further comprising:

14 Dec 2007

2002313826

10

15

20

25

30

P *OFERRICQ00M\Decamber 2002313826 1<pa doc-1471 272007

18

sending an additional predicated update request to the account database
containing the account balance, whereby the account database updates the
account balance if the new copy is current with the account balance before the
update, and whereby the account database does not update the account balance

if the new copy is not current with the account balance before the update.

12. A computer implemented method according to claim 10, further comprising:
determining whether the client initiating the update request wishes to

attempt the update with the account balance current with the new copy.

13. A computer implemented method according to claim 4, further comprising:
notifying another account access system on the network that the account

balance in the account database has been updated.

14. A computer implemented method according to claim 4, further comprising:
multicasting an update message to other account access systems on the

network.

15. A computer implemented method according to claim 4, further comprising:
multicasting a version number for the updated account balance to other

account access systems on the network.

16. A computer implemented method according to claim 4, further comprising:
heartbeating the version number for the updated account balance to other

account access systems on the network.
17. A computer implemented method according to claim 4, further comprising:
dropping a local copy of the account balance on any other account access

system on the network after the account balance is updated.

18. A computer implemented method according to claim 4, further comprising:

14 Dec 2007

2002313826

10

15

20

25

30

PROFERRIC200 M Decomber\2002313826 1spa dixc- 147122007

19

requesting an updated copy of the account balance on any other account

access system on the network.

19. A computer implemented method according to claim 13, further comprising:
deleting a local copy of the account balance on any other account access

system on the network being notified the account balance has been updated.

20. A computer implemented method according to claim 4, further comprising:
notifying another account access system on the network that the account
balance in the database is going to be updated.

21. A computer implemented method according to claim 20, further comprising:
allowing said another account access system to veto the update of the
account balance in the database.

22. A computer implemented method according to claim 4, further comprising:
sending a packet of information to another account access system on the
network, the packet of information containing changes to the account balance due

to the update.

23. A computer implemented method according to claim 22, wherein:
the packet of information contains changes between the state of the
account balance after the update and the prior state of the account before the

update.

24. A computer implemented method according to claim 4, further comprising:
determining whether other account access systems on the network can
accept the update to the account balance; and
committing the update to the other account access systems if the other

account access systems can accept the update.

14 Dec 2007

2002313826

10

15

20

25

30

POPERRIC00T:Decemben 2002313826 Ispa doc- 1471272007

20

25. A computer implemented method according to claim 24, further comprising:
rolling back the update if the other account access systems cannot accept

the update.

26. A computer implemented method for providing quick electronic
transactions, comprising:

receiving a transaction request from a participant in a transaction to an
electronic transaction system, the electronic transaction system storing a local
copy of information related to a participant in the transaction;

processing the request with the local copy;

verifying that the local copy reflects the current information for the
participant in a main database with a conditional update request; and

whereby, as a result of the conditional update request, the main database
updates the account balance if the local copy is current with the account balance
before the update, and whereby the main database does not update the account
balance if the local copy is not current with the account balance before the update.

27. A computer implemented method for maintaining concurrency for account
information cached on a network, comprising:

receiving an update request to a network server, the network server storing
a local copy of a account information in a local cache;

processing the request using the local copy of the account information;

sending a conditional update request to a network database storing an
original copy of the account information whereby, as a result of the conditional
update request, the database updates the account information if the local copy is
current with the account information, and whereby the database does not update
the account information if the local copy is not current with the account
information;

receiving a current copy of the account information to the network server
and sending another conditional update if the local copy was not the same version

as the original copy; and

14 Dec 2007

2002313826

10

15

20

25

30

P OPER\RIC\200NDecamnber20023 13826 Ispa doc- 14/12/2007

21

notifying from the network server any other servers on the network storing a

local copy of the account information that the original copy has been updated.

28. A computer implemented system for assuring concurrency among account
access systems on a network, comprising:

an account access system adapted to receive a transaction request from a
customer and process the request using a local copy of the account information for
the customer, the account information being stored in an account database;

wherein the account access system is adapted to send a conditional update
request to the account database whereby, as a result of the conditional update
request, whereby the account database updates the account information if the
local copy is current with the account information before the update, and whereby
the account database does not update the account information if the local copy is

not current with the account information before the update.

29. A computer implemented system according to claim 28, further comprising:
an account database adapted to contain the account information for the

customer.

30. A computer implemented system according to claim 28, further comprising:
a client terminal adapted to allow a customer to initiate the transaction

request.

31. A computer implemented system according to claim 28, wherein:
the account access system is adapted to receiving a message from the

account database indicating whether the account information has been updated.

32. A computer implemented system according to claim 28, wherein:
the account access system is further adapted to check the local copy to

determine whether the update request can be processed.

14 Dec 2007

2002313826

10

15

20

25

30

P OPERVRICI200T\Decerube1\ 2002311826 1spa doc- 1471212007

22

33. A computer implemented system according to claim 28, wherein:
the account access system is further adapted to update the local copy if the

account information in the account database is updated.

34. A computer implemented system according to claim 28, wherein:
the account access system is further adapted to delete the local copy and
store a new copy of the account information if the local copy is not current with the

account information.

35. A computer implemented system according to claim 34, wherein:

the account access system is further adapted to send an additional
predicated update request to the account database, whereby the account
database updates the account information if the new copy is current with the
account information before the update, and whereby the account database does
not update the account information if the new copy is not current with the account

information before the update.

36. A computer implemented system according to claim 28, further comprising:
additional account access systems on the network capable of storing a local

copy of the data item.

37. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to notify the additional
account access systems that the account information in the account database has

been updated.
38. A computer implemented system according to claim 37, wherein:
the account access system is further adapted to notify the additional

account access systems by one of muiticasting and point-to-point messaging.

39. A computer implemented system according to claim 37, wherein:

14 Dec 2007

2002313826

10

20

25

30

P OPERWRICI00TDecomber\ 2102313820 1spa dexc- 147122007

23

the account access system is further adapted to include a version number

for the account information when notifying the additional account access systems.

40. A computer implemented system according to claim 39, wherein:
the account access system is further adapted to heartbeat the version
number for the account information after the update to the additional account

access systems.

41. A computer implemented system according to claim 36, wherein:
the additional account access systems are each adapted to do at least one
of delete a local copy of the account information and request an updated copy of

the account information.

42. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to notify the additional
account access systems that the account information in the account database is

going to be updated.

43. A computer implemented system according to claim 36, wherein:
the additional account access systems are each capable of vetoing the
update of the account information in the database.

44. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to send a packet of
information to the additional account access systems, the packet of information

containing changes to the account information due to the update.

45. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to determine whether the

additional account access systems can accept the update to the account

14 Dec 2007

2002313826

15

20

25

30

PAOPERRICY2007-Decetnber\ 062313820 1spa dix- 1471272007

24

information and commit the update to the additional account access systems if the

additional account access systems can accept the update.

46. A computer implemented system according to claim 36, wherein:
the account access system is further adapted to roll back the update if the

additional account access systems cannot accept the update.

47. A computer implemented system for allowing a transaction over an account
access system network, comprising:

an ATM terminal adapted to allow a customer to make a transaction request
involving bank account information;

an account access system adapted to store a copy of the bank account
information for the customer and process the transaction request; and

a bank account database adapted to store bank account information for the
customer and provide access to that bank account information over the network:
wherein the account access system is adapted to send a conditional update
request to the bank account database after processing the request whereby, as a
result of the conditional update request, the bank account database is adapted to
update the bank account information if the local copy is current with the bank
account information before the update, and whereby the bank account database
does not update the bank account information if the local copy is not current with

the bank account information before the update.

48. A method for updating a data item in a cluster, comprising:
processing an update request on a cluster server, the cluster server storing
a local copy of a data item at a local cache to be used in processing the request;
sending a predicated update request to a cluster database containing the
data item, whereby the database updates the data item if the local copy at the
local cache is current with the data item before the update, and whereby the
database does not update the data item if the local copy is not current with the

data item before the update.

14 Dec 2007

2002313826

10

15

20

25

30

P OPERWRIC\200NDecember 2002313826 1spa doc- 14712/2007

25

49. A method according to claim 48, further comprising:
receiving a message from the database to the cluster server indicating
whether the data item has been updated.

50. A method according to claim 48, further comprising:
reading a data item from the database and storing a local copy of the data

item in local cache on the cluster server.

51. A method according to claim 48, further comprising:

receiving an update request from a client to the cluster server.

52. A method according to claim 48, further comprising:
checking the local copy to determine whether the update request can be

processed.

953. A method according to claim 48, further comprising:
updating the local copy on the cluster server if the data item in the database

is updated.

54. A method according to claim 48, further comprising:
deleting the local copy and storing a new copy of the data item on the

cluster server if the local copy is not current with the data item.

55. A method according to claim 54, further comprising:

sending an additional predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the new
copy is current with the data item before the update, and whereby the database
does not update the data item if the new copy is not current with the data item
before the update.

14 Dec 2007

2002313826

10

15

20

25

30

P AOPERVRICQUUTDccomberi206231 3826 15y anc- 1471272007

26
56. A method according to claim 54, further comprising:
determining whether the client initiating the update request wishes to

attempt the update with the data item current with the new copy.

57. A method according to claim 48, further comprising:

notifying another server in the cluster that the data item in the database has

been updated.

58. A method according to claim 48, further comprising:

multicasting an update message to other servers in the cluster.

59. A method according to claim 48, further comprising:
multicasting a version number for the data item to other servers in the

cluster after updating the data item.

60. A method according to claim 48, further comprising:
contacting each server in the cluster directly to indicate that the data item

has been updated.

61. A method according to claim 48, further comprising:
heartbeating the version number for the updated data item to any other

servers on the network.

62. A method according to claim 57, further comprising:
dropping a local copy of the data item stored on any cluster server being
notified the data item has been updated.

63. A method according to claim 57, further comprising:
requesting an updated copy of the data item on any cluster server being
notified the data item has been updated.

14 Dec 2007

2002313826

10

15

20

25

30

P OPERRICIHOTDecanbesi 2002313826 1apae doc- 14°12:2007

27

64. A method according to claim 57, further comprising:
deleting a local copy of the data item on any cluster server being notified

the data item has been updated.

65. A method according to claim 48, further comprising:
notifying another server in the cluster that the data item in the database is

going to be updated.

66. A method according to claim 65, further comprising:
allowing said another server to veto the update of the data item in the

database.

67. A method according to claim 48, further comprising:
sending a packet of information to another server in the cluster, the packet

of information containing changes to the data item due to the update.

68. A method according to claim 67, wherein:
the packet of information contains changes between the state of the data

item after the update and the prior state of the data item before the update.

69. A method according to claim 48, further comprising:

determining whether other servers in the cluster can accept the update to
the data item; and

committing the update to the other servers if the other servers can accept

the update.

70. A method according to claim 69, further comprising:

rolling back the update if the other server cannot accept the update.

71. A method for maintaining concurrency for a copy of a data item cached on a

cluster server, comprising:

~
-
-
@\l
Q
L
-
v
p—
\O
@\l
o0
on 5
p—
o
[\
-
-
@\l
10
|
15
20

25

30

P OPERVRICQ0071Dccember 2002313826 15pa doc- 1473272007

28

receiving an update request, the update request being received by a cluster
server storing a local copy of a data item in local cache;

processing the request using the local copy of the data item:;

sending a predicated update request to a cluster database storing the data
item, whereby the cluster database updates the data item if the data item is
current with the local copy, and whereby the database does not update the data
item if the data item is not current with the local copy;

requesting a current copy of the data item for the cluster server and sending
another predicated update if the local copy is not current with the data item in the
cluster database, the step of requesting a current copy and sending another
predicated update continuing until one of the cluster database updating the data
item and the method being aborted; and

notifying other servers in the cluster that the data item in the database has

been updated.

72. A method according to claim 71, wherein the step of notifying other servers
in the cluster further comprises:
multicasting an update message to other servers in the cluster that might be

storing a local copy of the data item.

73. A method according to claim 71, wherein the step of notifying other servers
in the cluster further comprises:
multicasting a version number for the data item to other servers in the

cluster after the data item is updated.

74. A method according to claim 71, wherein the step of notifying other servers
in the cluster further comprises:
contacting another server in the cluster by a point-to-point connection to

indicate that the data item has been updated.

14 Dec 2007

2002313826

15

20

25

30

P OPERVRIC2007:Decannber\20023 13826 15pa dox 1471212007

29

75. A method according to claim 71, wherein the step of notifying other servers
in the cluster further comprises:
heartbeating the version number for the data item to other servers in the

cluster after the data item is updated.

76. A method according to claim 71, further comprising:
dropping a local copy of the data item on any other server in the cluster
being notified that the data item has been updated.

77. A method according to claim 71, further comprising:
requesting an updated copy of the data item to any other server in the

cluster being notified that the data item has been updated.

78. A computer-readable medium, comprising:

means for processing an update request on a cluster server, the cluster
server storing a local copy of a data item to be used in processing the request at a
local cache;

means for sending a predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the local
copy is current with the data item before the update, and whereby the database
does not update the data item if the local copy is not current with the data item

before the update.

79. A computer program product for execution by a server computer for
updating a data item on a network, comprising:

computer code that can process an update request on a cluster server, the
cluster server storing a local copy of a data item to be used in processing the
request at a local cache;

computer code that can send a predicated update request to a cluster
database containing the data item, whereby the database updates the data item if
the local copy is current with the data item before the update, and whereby the

14 Dec 2007

2002313826

10

20

25

30

PAOPERVRICQ007\Deccinber2002313826 15pa doc- 144122007

30

database does not update the data item if the local copy is not current with the

data item before the update.

80. A system for updating a data item on a network, comprising:

means for processing an update request on a cluster server, the cluster
server storing a local copy of a data item to be used in processing the request at a
local cache;

means for sending a predicated update request to a cluster database
containing the data item, whereby the database updates the data item if the local
copy is current with the data item before the update, and whereby the database
does not update the data item if the local copy is not current with the data item

before the update.

81. A computer system comprising:
a processor;
object code executed by said processor, said object code configured to:
process an update request on a cluster server, the cluster server storing a
local copy of a data item to be used in processing the request at a local cache;
send a predicated update request to a cluster database containing the data
item, whereby the database updates the data item if the local copy is current with
the data item before the update, and whereby the database does not update the

data item if the local copy is not current with the data item before the update.

82. A computer implemented method for maintaining account balance
consistency in networked account access systems, substantially as hereinbefore

described with reference to the accompanying drawings.

83. A computer implemented method for maintaining account balance
consistency in networked account access systems, substantially as hereinbefore

described with reference to the accompanying drawings.

14 Dec 2007

2002313826

10

15

20

25

POPERWRIC200MNDecemberi2002311826 1spa duc- 1471212007

31

84. A computer implemented method for providing quick efectronic
transactions, substantially as hereinbefore described with reference to the

accompanying drawings.

85. A computer implemented method for maintaining concurrency for account
information cached on a network, substantially as hereinbefore described with

reference to the accompanying drawings.

86. A computer implemented system for assuring concurrency among account
access systems on a network, substantially as hereinbefore described with

reference to the accompanying drawings.

87. A computer implemented system for allowing a transaction over an account
access system network, substantially as hereinbefore described with reference to

the accompanying drawings.

88. A method for updating a data item in a cluster, substantially as hereinbefore

described with reference to the accompanying drawings.

89. A method for maintaining concurrency for a copy of a data item cached on a
cluster server, substantially as hereinbefore described with reference to the

accompanying drawings.

90. A computer program product for execution by a server computer for
updating a data item on a network, substantially as hereinbefore described with

reference to the accompanying drawings.

100

102

Client

104

106

N

112

Update request
>

Update
response

Server

Predicated
update

114

N

Local Cache

&

-
Update status

i AN

120

)

108

Figure 1

118

N

110

Database

&

116

L/

Y8¥120/€0 OM

SI€LT/T0SN/1LDd

100

102

Client

NG

Database

i

| 122
128 - Server /:—_/
\ > Local ‘& |
106 Cache |
| 112
I
|
Server I >
|
Local -t I
Cache @ |
- v
), |
\ 110 :
108 |
Server
/ 7 |
Local I
130 Cache &
124_/ ;\126

Figure 2

— — — — — — —— — — — — — — Wi e ity s st o)

118 /
116

Llz

Y8¥120/€0 OM

SI€LT/T0SN/1LDd

WO 03/021484 PCT/US02/27315
200 3/7

2
Receiving an update request to a network server / 20
storing a local copy of the data item to be
updated

:

' 204
Processing the update request using the local /
copy of the data item

'

206
Sending a predicated update request to the /
database containing the data item

l

208
Committing the update to the data item in the /
database if the data item is the same version as

the local copy of the data item

'

: 210
Aborting the update request if the data item is /
not the same version as the local copy of the

data item

Figure 3

WO 03/021484 PCT/US02/27315
300 417

' 302
Requesting a current copy of the data item to be /
sent to the network server

l

304
Processing the update request using the current _/
copy of the data item

:

306
Sending a predicated update request to the _/
database containing the data item

|

: 308
Committing the update to the data item in the /
database if the data item is the same version as

the local copy of the data item

'

‘ 310
Aborting the update request if the data item is /
not the same version as the local copy of the
data item

Figure 4

WO 03/021484 PCT/US02/27315

5/7

400

402
Notifying any other servers on the network /
containing a local copy of the data item that the

data item has been updated

'

404
Dropping the local copy of the data item on any /
other server in the network

'

406
Requesting an updated copy of the data item to _/
be sent to any other server on the network

Figure 5

WO 03/021484 PCT/US02/27315

o00 6/7

' 502
Send a version number for an update from an /
updating server to one of the other network
servers in the cluster

:

504
Determine whether the network server has been /
updated to the current version number

:

506
Request that a delta be sent from the updating /
server to the network server

l

508
Process the delta on the network server to /
update the local copy of the data item for the
network server

'

510
Update the version number of the local copy of /
the data item for the network server

Figure 6

WO 03/021484) PCT/US02/27315
600 717

602
Send a packet of information from an updating /
server to one of the other network servers in a
cluster

:

604
Determine whether the network server can /
process the packet of information

l

606
Send a response from the network server to the /
updating server indicating whether the network
server can process the packet of information

;

Send a message from the updating server to the 608
other server indicating whether the network /
server should commit the updating data in the
packet of information

'

610
Process the commit on the network server if so /
directed by the updting server

Figure 7

	Abstract
	Description
	Claims
	Drawings

