Abstract:
The present invention relates to a coated article comprising a partial or complete durable non-fluorinated coating on the surface of an article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of a surface effect agent, both based on the total solids weight of the coating, where the hydrophobic compound is selected from a hydrophobic cyclic or acyclic alcohol.
Hydrophobic substituted ester alcohols are employed as extenders for surface effect agents in coatings to provide enhanced surface effects to various articles.

Various compositions are known to be useful as treating agents to provide surface effects to substrates. Surface effects include repellency to moisture, soil and stain resistance, and other effects which are particularly useful for fibrous substrates such as fibers, fabrics, textiles, carpets, paper, leather and other such substrates. Many such treating agents are partially fluorinated polymers or copolymers.

Fluorinated polymer compositions having utility as fibrous substrate treating agents generally contain pendant perfluoroalkyi groups of three or more carbon atoms, which provide oil- and water-repellency when the compositions are applied to fibrous substrate surfaces. The perfluoroalkyi groups are generally attached by various connecting groups to polymerizable groups not containing fluorine. The resulting monomer is then generally copolymerized with other monomers which confer additional favorable properties to the substrates. Various specialized monomers may be incorporated to impart improved cross-linking, latex stability and substantivity. Since each ingredient may impart some potentially undesirable properties in addition to its desirable ones, the specific combination is directed to the desired use. These polymers are generally marketed as aqueous emulsions for easy application to the fibrous substrates.

Various attempts have been made to increase the oil- and water-repellency imparted to the substrate and its durability while reducing the amount of fluorinated polymer required, i.e., boost the efficiency or performance of the treating agent. One method is to incorporate blocked isocyanates or melamine resins. However, only limited amounts can be used because these ingredients tend to adversely affect the handle (the
feel) of the fibrous substrate. Another approach employs use of various extender polymers. These are typically hydrocarbon polymers in aqueous emulsions, which are blended with the fluorinated polymer emulsion before application to the substrate.

US Patent 7,820,745 discloses aqueous water- and oil-repellent compositions containing a fluorinated copolymer in aqueous medium and a sorbitan ester used in small amounts to act as a surfactant.

BRIEF SUMMARY OF THE INVENTION

There is a need for surface effect compositions which provide hydrophobicity performance with improved fluorine efficiency. The present invention provides such a composition.

The present invention comprises a coated article comprising a partial or complete durable non-fluorinated coating on the surface of an article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic alcohol which is substituted with at least two \(- \text{R}^1, -\text{C(O)R}^1, -(\text{CH}_2\text{CH}_2\text{O})_{n}(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_{m}\text{R}^2, -(\text{CH}_2\text{CH}_2\text{O})_{n}(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_{m}\text{C(O)R}^1, \) or mixtures thereof; where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone; wherein each \(n\) is independently 0 to 20; each \(m\) is independently 0 to 20; \(m+n\) is greater than 0; each \(\text{R}^1\) is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each \(\text{R}^2\) is independently \(-\text{H}, \) a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.

The present invention further comprises a method of imparting a surface effect to an article comprising contacting a the surface of the article with a durable non-fluorinated coating to form a partially or completely coated article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic alcohol which is substituted with at least two \(- \text{R}^1, -\text{C(O)R}^1, -(\text{CH}_2\text{CH}_2\text{O})_{n}(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_{m}\text{R}^2, \)
(CH2CH20)n(CH(CH3)CH20)mC(0)R, or mixtures thereof; where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R is independently a

DETAILED DESCRIPTION OF THE INVENTION

Trademarks are indicated herein by capitalization.

The present invention provides coated articles having improved water repellency, oil or stain repellency, and/or other hydrophobic surface effects. The treated articles provide enhanced performance and durability compared to traditional non-fluorinated commercially available treatment agents. The coating materials of the present invention can be derived from bio-sourced materials. The coatings formed are durable, by which is meant that the coatings are lasting films that are not readily removed by water or cleaning agents. In one aspect, the coatings are not soluble or dispersable in water or cleaning agents once they are dry, and in another aspect, the coatings withstand multiple cleanings without loss of performance. For example, the coating retains some water repellency, oil repellency, or water spray performance after 30 home washes as described in the examples below.

The present invention relates to a coated article comprising a partial or complete coating on the surface of an article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic sugar alcohol which is substituted with at least one -R,-C(0)R,-

(CH2CH20)n(CH(CH3)CH20)mC(0)R, or mixtures thereof; where the cyclic or acyclic sugar alcohol is selected from a saccharide, reduced sugar, aminosaccharide, aldonic acid, or aldonic acid lactone; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R is independently a
linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each R² is independently -H, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond. The -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)ₘR² represents oxyethylene groups (EO) and -(CH(CH₃)CH₂O) represents oxypropylene groups (PO). These compounds can contain only EO groups, only PO groups, or mixtures thereof. These compounds can also be present as a tri-block copolymer designated PEG-PPG-PEG (polyethylene glycol-polypropylene glycol-polyethylene glycol), for example. In one embodiment, n+m is 1 to 20; in another embodiment, n+m is 1 to 15; and in a third embodiment, n+m is 1 to 12.

In another aspect, the invention relates to a coated article comprising a partial or complete durable non-fluorinated coating on the surface of an article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic alcohol which is substituted with at least two - R¹, -C(O)R¹, -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)ₘR², -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)ₘC(O)R¹, or mixtures thereof; where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R¹ is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each R² is independently -H, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.

The hydrophobic compound may be a multi-ester alcohol having at least two hydrophobic substitutions, which originates from a polyl or polycarboxylic acid compound. Examples of suitable polyols include but are not limited to cyclic or acyclic sugar alcohols, or pentaerythritols including dipentaerythritol. Suitable polycarboxylic acid compounds include citric acid. The cyclic or acyclic sugar alcohol is selected from a saccharide, reduced sugar, aminosaccharide, aldonic acid, or aldonic acid...
lactone. Mixtures of these compounds may also be used. The hydrophobic compounds are substituted with at least two \(-R^1; -C(0)R\)
\(-\{(CH2CH2)n(CH(CH3)CH2)mR\}; -\{(CH2CH2)n(CH(CH3)CH2)mC(0)R\}
or mixtures thereof. Such a substitution lends hydrophobic character to the monomer, and to the polymer molecules. In one embodiment, the hydrophobic compound is substituted with at least three \(-R^1; -C(0)R\)
\(-\{(CH2CH2)n(CH(CH3)CH2)mR\}; -\{(CH2CH2)n(CH(CH3)CH2)mC(0)R\}
or mixtures thereof.

These substituted compounds can be made by the reaction of a sugar alcohol with at least one fatty acid or alkoxyalted fatty acid, such as by esterification of a fatty acid; or by esterification of a polycarboxylic acid with a long-chain alcohol. Examples of such sugar alcohols include but are not limited to aldoses and ketoses such as those compounds derived from tetrose, pentose, hexose, and heptose. Specific examples include glucose, 1,4-anhydro-D-glucitol, 2,5-anhydro-D-mannitol, 2,5-anhydro-L-iditol, sorbitan, glyceraldehyde, erythrose, arabinose, ribose, arabinose, allose, altrose, mannose, xylose, lyxose, gulose, glucose, lactose, talose, fructose, ribulose, mannoheptulose, sedohelptulose, threose, erythritol, threitol, glucopyranose, mannopyranose, talopyranose, allopyranose, altropyranose, idopyranose, gulopyranose, glucitol, mannitol, erythritol, sorbitol, arabitol, xylitol, ribitol, galactitol, fucitol, iditol, inositol, pentaerythritol, dipentaerythritol, volemitol, gluconic acid, glycemic acid, xylonic acid, galactaric acid, ascorbic acid, citric acid, gluconic acid lactone, glyceric acid lactone, xylonic acid lactone, glucosamine, galactosamine, or mixtures thereof.

Suitable fatty acids include, but are not limited to, caprylic acid, capric acid, lauric acid, mysterious acid, palmitic acid, steanic acid, arachidic acid, behenic acid, lignoceric acid, palmitoleic acid, lineolic acid, oleic acid, erucic acid, alkoxyalted versions of these acids, and mixtures thereof. In one embodiment, \(R^1\) is a linear or branched alkyl group having 11 to 29 carbons, and in another embodiment, \(R^1\) is a linear or branched alkyl group having 17 to 21 carbons. In one embodiment, \(R^2\) is a linear or branched alkyl group having 12 to 30 carbons, in another embodiment, \(R^2\) is a linear or branched alkyl group having 18 to 30 carbons, and in another
embodiment, R^2 is a linear or branched alkyl group having 18 to 22 carbons. In one embodiment, the fatty acid substitution of the cyclic or acyclic sugar alcohols has a melting point of at least -59 °C. In another embodiment, the fatty acid substitution of the cyclic or acyclic sugar alcohols has a melting point of at least 0 °C, and in a third embodiment, the fatty acid substitution of the cyclic or acyclic sugar alcohols has a melting point of at least 40 °C.

In one embodiment, the hydrophobic compound is selected from Formulas (la), (lb), or (lc):

wherein each R is independently -H; -R^1; -C(0)R^1; -(CH2CH20)n(CH(CH3)CH20)$m$$R^2$; or
-(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)ₘC(0)R¹; each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; r is 1 to 3; a is 0 or 1; p is independently 0 to 2; provided that a is 0 when r is 3; each R¹ is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each R² is independently -H, or a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond; provided when Formula (la) is chosen, then at least one R is -H and at least two R groups are a -R¹; -C(0)R¹; -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²; or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹; each R⁴ is independently -H, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond, or combinations thereof; -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²; or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹; provided when Formula (lb) is chosen, then at least one R or R⁴ is -H; and at least two of R or R⁴ is a linear or branched alkyl group optionally comprising at least 1 unsaturated bond, or combinations thereof; -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²; or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹; and each R¹⁹ is -H, -C(0)R¹, or -CH₂C[CH₂O]₃, provided when Formula (lc) is chosen, then at least one R¹⁹ or R is -H; and at least two of R¹⁹ or R is -C(0)R¹, -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²; or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹. In one aspect, R, R¹, R⁴, and R¹⁹ are saturated linear or branched alkyl groups.

Where the hydrophobic compound is Formula (la), any suitable substituted reduced sugar alcohol may be employed, including esters of 1,4-sorbitan, esters of 2,5-sorbitan, and esters of 3,6-sorbitan. In one embodiment, the hydrophobic compound is selected from Formula (a) to be Formula (la'):
wherein R is further limited to -H; -R¹; or -C(0)R¹ and at least two R groups are -C(0)R¹ or R¹. Compounds used to form residues of Formula (la'), having at least one of R is - H and at least one R is selected from -C(0)R¹, are commonly known as alkyl sorbitans. These sorbitans can be di-substituted or tri-substituted with -C(0)R¹. It is known that commercially available sorbitans, such as SPAN, contain a mixture of the various sorbitans ranging from where each R is H (un-substituted), and sorbitans where each R is -C(0)R¹ (fully substituted); wherein R¹ is a linear or branched alkyl group having 5 to 29 carbons; and mixtures of various substitutions thereof. The commercially available sorbitans may also include amounts of sorbitol, isosorbide, or other intermediates or byproducts.

In one embodiment, at least two R groups are -C(0)R¹, and R¹ is a linear branched alkyl group having 5 to 29 carbons. In another embodiment, R¹ is a linear or branched alkyl group having 7 to 21 carbons, and in a third embodiment, R¹ is a linear or branched alkyl group having 11 to 21 carbons. Preferred compounds used to form these residues include di- and tri-substituted sorbitans derived from caprylic acid, capric acid, lauric acid, mysteric acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, and mixtures thereof. Particularly preferred compounds include di- and tri-substituted sorbitan stearates or sorbitan behenins.

Optionally, R¹ is a linear or branched alkyl group having 5 to 29 carbons comprising at least 1 unsaturated bond. Examples of compounds of Formula (la) wherein at least two R groups are selected from -C(O)R¹; and R¹ contains least 1 unsaturated bond, include, but are not limited to, sorbitan trioleate (i.e., wherein R¹ is -CÔ7H₄CH=CHC₈H₁₇).
Other examples but are not limited to include di- and tri-substituted sorbitans derived from palmitoleic acid, lineolic acid, arachidonic acid, and erucic acid.

In one embodiment, a compound of Formula (1a) is employed,

wherein at least two R groups are independently

\[-(\text{CH}_2\text{CH}_2\text{O})_n(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_m\text{R}_2\text{O} \] or

\[-(\text{CH}_2\text{CH}_2\text{O})_n(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_m\text{C(O)}\text{R}^1\]. Compounds of Formula (1a),

wherein at least two R groups are \[-(\text{CH}_2\text{CH}_2\text{O})_n(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_m\text{R}_2\text{O} \] or \[-(\text{CH}_2\text{CH}_2\text{O})_n(\text{CH}(\text{CH}_3)\text{CH}_2\text{O})_m\text{C(O)}\text{R}^1\], wherein each m is

independently 0 to 20, each n is independently 0 to 20, and n+m is

greater than 0 are known as polysorbates and are commercially available under the tradename TWEEN. These polysorbates can be di-substituted or tri-substituted with alkyl groups R\(^1\) or R\(^2\). It is known that commercially available polysorbates contain a mixture of the various polysorbates ranging from where each R\(^2\) is H (unsubstituted), and polysorbates where each R\(^1\) is a linear or branched alkyl group having 5 to 29 carbons (fully substituted); and mixtures of various substitutions thereof. Examples of compounds of Formula (1a) include polysorbates such as polysorbate tristearate and polysorbate monostearate.

Examples of compounds of Formula (1a) wherein m+n is greater than 0, and wherein R\(^1\) comprises at least 1 unsaturated bond, but not limited to, polysorbate trioleate (wherein R\(^1\) is C\(_{7}\)H\(_{14}\)CH=CHC\(_{8}\)H\(_{17}\)) and are sold commercially under the name Polysorbate 80. Reagents may include mixtures of compounds having various values for R, R\(^1\), and R\(^2\), and may also include mixtures of compounds where R\(^1\) comprises at least one unsaturated bond with compounds where R\(^1\) is fully saturated.

Compounds of Formula (1b) are known as alkyl citrates. These citrates can be present as a di-substituted or tri-substituted with alkyl groups. It is known that commercially available citrates contain a mixture of the various citrates as well as citric acids from where R and each R\(^4\) is -H, ranging to citrates where each R\(^4\) is a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond; and mixtures of various substitutions thereof. Mixtures of citrates having various values for R\(^1\), R\(^2\), and R\(^4\) may be used, and may also
include mixtures of compounds where R¹ comprises at least one unsaturated bond with compounds where R¹ is fully saturated. Alkyl citrates are also commercially available wherein m+n is greater than 0, R⁴ is -(CH₂CH₂O)ₘ(CH(CH₃)CH₂O)ₙR²; or -(CH₂CH₂O)ₘ(CH(CH₃)CH₂O)mC(0)R ¹ and are present in the various substitutions from wherein R and each R² is H to wherein each R¹ and/or R² is a linear or branched alkyl group having 5 to 30 carbons optionally comprising at least 1 unsaturated bond. Examples of compounds of Formula (lb) include, but are not limited to, trialkyl citrates.

Compounds of Formula (lc) are known as pentaerythriol esters. These pentaerythriol esters can be present as a di-substituted or tri-substituted with alkyl groups. Preferred compounds used to form X of Formula (lc) are dipentaerythriol esters, where R¹⁹ is -CH₂C[CH₂O]ₖ. It is known that commercially available pentaerythriol esters contain a mixture of the various pentaerythriol esters where R¹⁹ and each R is -H, ranging to pentaerythriol esters where each R is -C(0)R ¹, and R¹ is a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; and mixtures of various substitutions thereof. The pentaerythriol esters also may contain compounds with mixtures of different chain lengths for R, or mixtures of compounds where R¹ comprises at least one unsaturated bond with compounds where R¹ is fully saturated.

Compounds of Formulas (la), (lb), and (lc) can all be bio-based derived. By "bio-based derived", it is meant that at least 10% of the material can be produced from non-crude oil sources, such as plants, other vegetation, and tallow. In one embodiment, the hydrophobic compound is from about 10% to 100% bio-based derived. In one embodiment, hydrophobic compound is from about 35% to 100% bio-based derived. In another embodiment, hydrophobic compound is from about 50% to 100% bio-based derived. In one embodiment, hydrophobic compound is from about 75% to 100% bio-based derived. In one embodiment, hydrophobic compound is 100% bio-based derived. The average OH value of the hydrophobic compounds can range from just greater than 0 to about 230. In one embodiment, the average OH value is
from about 10 to about 175, and in another embodiment, the average OH value is from about 25 to about 140.

The coating on the article surface comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of a surface effect agent, both based on the total solids weight of the coating. In a second aspect, the coating on the article surface comprises 10 to 90% by weight of a hydrophobic compound, and 10 to 90% by weight of a surface effect agent, both based on the total solids weight of the coating; and in a third aspect, 20 to 80% by weight of a hydrophobic compound, and 20 to 80% by weight of a surface effect agent, both based on the total solids weight of the coating. The term "solids weight of the coating", is used to mean the sum of the coating components that would remain once the aqueous, solvent, or other liquid components evaporated. In other words, it is the sum of the non-aqueous, non-solvent, and non-volatile components of the coating. The coating may further comprise aqueous or organic solvents, polymer resins, pigments, functional additives, and surfactants.

Surface effect agents provide surface effects such as no iron, easy to iron, shrinkage control, wrinkle free, permanent press, moisture control, softness, strength, anti-slip, anti-static, anti-snag, anti-pill, stain repellency, stain release, soil repellency, soil release, water repellency, oil repellency, odor control, antimicrobial, sun protection, and similar effects. Such materials can be in the form of hydrophobic non-fluorinated cationic acrylic polymers, hydrophobic non-fluorinated anionic acrylic polymers, hydrophobic non-fluorinated nonionic acrylic polymers, hydrophobic non-fluorinated urethanes, non-fluorinated organosilanes, silicones, waxes, including parafins, and mixtures thereof. Some stain release and soil release agents are hydrophilic and include compounds such as polymethyl acrylates or hydrophilic urethanes. These compounds may also be used as surface effect agents and combined with the hydrophobic compounds, from about 5.95 to 95:5 in one aspect; from about 10:90 to 90:10 in a second aspect; and from about 20:80 to 80:20 in a third aspect, based on the total solids weight of the coating. In another embodiment, the compounds are used as surface effect agents and combined with the hydrophobic compounds, from about 21:79 to 79:21 in one aspect; from
about 25:75 to 75:25 in a second aspect; and from about 30:70 to 70:30 in a third aspect, based on the total solids weight of the coating.

Superior properties, along with desirable properties of low yellowing and good durability, are imparted to articles by the combination of the hydrophobic compounds to hydrophobic surface effect agents before application to the articles. These combined blends are applied to the articles in the form of a dispersion in water or other solvent either before, after or during the application of other treatment chemicals.

Hydrophobic non-fluorinated acrylic polymers include copolymers of monovinyl compounds, including alkyi (meth)acrylates, vinyl esters of aliphatic acids, styrene and alkyi styrene, vinyl halides, vinylidene halides, alkyi esters, vinyl alkyi ketones, and acrylamides. The conjugated dienes are preferably 1,3-butadienes. Representative compounds within the preceding classes include the methyl, propyl, butyl, 2-hydroxypropyl, 2-hydroxyethyl, isoamyl, 2-ethylhexyl, octyl, decyl, lauryl, cetyl, and octadecyl acrylates and methacrylates; vinyl acetate, vinyl propionate, vinyl caprylate, vinyl laurate, vinyl stearate, styrene, alpha methyl styrene, p-methylstyrene, vinyl fluoride, vinyl chloride, vinyl bromide, vinylidene fluoride, vinylidene chloride, allyl heptanoate, allyl acetate, allyl caprylate, allyl caproate, vinyl methyl ketone, vinyl ethyl ketone, 1,3-butadiene, 2-chloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene, isoprene, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl acrylate, glycidyl methacrylate, amine-terminated (meth)acrylates, and polyoxy(meth)acrylates.

Hydrophobic non-fluorinated urethanes include, for example, urethanes synthesized by reacting an isocyanate compound with the hydrophobic compounds described above as an alcohol reagent. These compounds are described in US2014/0295724 and US2016/0090508. Hydrophobic non-fluorinated nonionic acrylic polymers include, for example, polymers made by polymerizing or copolymerizing an acrylic ester of the hydrophobic compounds described above. Such compounds are described in US2016/0090686.

The coatings of the present invention applied to fibrous substrates optionally further comprise a blocked isocyanate to promote durability,
added after copolymerization (i.e., as a blended isocyanate). An example of a suitable blocked isocyanate is PHOBOL XAN available from Huntsman Corp, Salt Lake City, UT. Other commercially available blocked isocyanates are also suitable for use herein. The desirability of adding a blocked isocyanate depends on the particular application for the copolymer. For most of the presently envisioned applications, it does not need to be present to achieve satisfactory cross-linking between chains or bonding to fibers. When added as a blended isocyanate, amounts up to about 20% by weight are added.

The coating composition of the present invention optionally further comprises additional components such as additional treating agents or finishes to achieve additional surface effects, or additives commonly used with such agents or finishes. Such additional components comprise compounds or compositions that provide surface effects such as no iron, easy to iron, shrinkage control, wrinkle free, permanent press, moisture control, softness, strength, anti-slip, anti-static, anti-snag, anti-pill, stain repellency, stain release, soil repellency, soil release, water repellency, oil repellency, odor control, antimicrobial, sun protection, and similar effects. One or more such treating agents or finishes can be combined with the blended composition and applied to the fibrous substrate. Other additives commonly used with such treating agents or finishes may also be present such as surfactants, pH adjusters, cross linkers, wetting agents, and other additives known by those skilled in the art. Further, other extender compositions are optionally included to obtain a combination of benefits.

For example, when synthetic fabrics are treated, a wetting agent can be used, such as ALKANOL 6112 available from E. I. du Pont de Nemours and Company, Wilmington, DE. As a further example, when cotton or cotton-blended fabrics are treated, a wrinkle-resistant resin can be used such as PERMAFRESH EFC available from Emerald Carolina, LLC, Cahrlotte, NC. As a further example, when nonwoven fabrics are treated, a wax extender can be employed such as FREEPEL 1225WR, available from Omnova Solutions Chester, SC. An antistat such as ZELEC KC, available from Stepan, Northfield, IL, or a wetting agent, such as hexanol, also are suitable. The dispersions are generally applied to
fibrous substrates by spraying, dipping, padding, or other well-known methods. After excess liquid has been removed, for example by squeeze rolls, the treated fibrous substrate is dried and then cured by heating, for example, to from about 100°C to about 190°C, for at least 30 seconds, typically from about 60 to about 240 seconds. Such curing enhances oil-, water- and soil repellency and durability of the repellency. While these curing conditions are typical, some commercial apparatus may operate outside these ranges because of its specific design features.

In one embodiment, the present invention is a method of imparting a surface effect to an article comprising contacting a the surface of the article with a coating to form a partially or completely coated article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic sugar alcohol which is substituted with at least one - R¹, -C(0)R ¹, -(CH₂CH₂O)n(CH(CH₃)CH₂₀)mR², - (CH₂CH₂O)n(CH(CH₃)CH₂₀)mC(0)R ¹, or mixtures thereof; where the cyclic or acyclic sugar alcohol is selected from a saccharide, reduced sugar, aminosaccharide, aldonic acid, or aldonic acid lactone; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R¹ is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each R² is independently -H, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.

In another aspect, the invention is a method of imparting a surface effect to an article comprising contacting a the surface of the article with a durable non-fluorinated coating to form a partially or completely coated article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic alcohol which is substituted with at least two - R¹, -C(0)R ¹, -(CH₂CH₂O)n(CH(CH₃)CH₂₀)mR², - (CH₂CH₂O)n(CH(CH₃)CH₂₀)mC(0)R ¹, or mixtures thereof; where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced
sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone;
wherein each n is independently 0 to 20; each m is independently 0 to 20;
m+n is greater than 0; each R¹ is independently a linear or branched alkyl
group having 5 to 29 carbons optionally comprising at least 1 unsaturated
bond; each R² is independently -H, a linear or branched alkyl group
having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.

The articles may include but are not limited to a fiber, textile, fabric,
fabric blend, paper, nonwoven, leather, proppant particle, inorganic oxide
particle, unglazed concrete, brick, tile, granite, limestone, marble, grout,
mortar, statuary, monument, wood, composite material, terrazzo, glass,
thermoplastic sheet, thermoformed or molded article, foam sheet or article,
metal, seed, painted fabric or canvas, or a combination thereof. The
contacting step may occur by applying the hydrophobic compound in the
form of an aqueous solution, aqueous dispersion, organic solvent solution
or dispersion, or cosolvent solution or dispersion. The contacting step
may occur by any conventional method, including but not limited to
spraying, rolling, dip-squeeze, painting, dripping, powder coating, mixing
the article in a liquid carrier of the hydrophobic compound, tumbling, or
screen printing.

In one aspect, the method further comprises the step of heating the
partially or completely coated article. For example, the hydrophobic agent
may be applied alone or in liquid carrier, and the treated article may be
heated to melt, flow, dry, or otherwise fix the hydrophobic agent onto the
article surface. The final coating on the article surface will be a solidified,
lasting, permanent coating. In another aspect, the method further
comprises the step of solidifying the coating by drying, cooling, or allowing
to cool. The liquid carrier, if used, may be dried by heating or air drying to
allow for evaporation of the liquid carrier, thus leaving a permanent solid
coating.

In one aspect, the contacting step occurs inside a laundry machine.
Specific methods that may be used are described in US2016/0090560.
For example, water is used to help disperse the coating composition, such
as by a wash cycle or rinse cycle of the laundry machine. The water
temperature used in the wash cycle or rinse cycle may be any temperature
including cold, room temperature, warm, or hot. Methods of contacting the additive with the substrate include, but are not limited to, introducing the laundry treatment composition by pouring the treatment composition into the basin of the laundry machine, pouring the treatment composition into a detergent or treating agent reservoir of the laundry machine, adding a dissolvable pouch containing the additive composition, or adding a controlled-release reusable container containing the additive composition. Any of the above methods may also be employed using a laundry additive composition comprising two laundry treatment compositions. Alternatively, the laundry additive composition or laundry treatment composition may be introduced into an aqueous liquor and contacted with a fibrous substrate into a tub, bucket or sink, such as when washing fabrics by hand.

In one embodiment, the laundry treatment composition or laundry additive composition is poured into the wash basin, or into a detergent or treating agent reservoir, of the laundry machine and the machine is programmed to run a wash cycle or rinse cycle. In one embodiment, the wash basin is partially filled with water, the laundry treatment composition or laundry additive composition is poured into the water, and the water is allowed to fill the wash basin. Detergent is then optionally added, the fibrous substrate is added to the wash basin, and the laundry machine is allowed to run a full wash or rinse cycle.

The method may further comprise a step of curing the coating with heat. Any suitable heating method may be used, such as machine drying in a dryer, ironing, steaming, blow drying, drying under a heat lamp, or drying near a radiative source of heat. In one embodiment, the cure step occurs at a temperature of about 30 °C to about 100 °C. In another embodiment, the cure step occurs at a temperature of about 35 °C to about 80 °C, and in another embodiment the temperature is about 40 °C to about 60 °C, for a time of at least 30 minutes, preferably at least 35 minutes, and more preferably at least 40 minutes. Any drying method can be practiced, including air drying, tumbling dry, or heating the substrate to dryness. Such drying cycles are commonly found on clothes drying machines, including a tumble dry cycle, a tumble dry with heat cycle, or a heated non-tumble cycle. In one embodiment, the treated substrate is
tumbled dry with heat. Such curing enhances oil-, water- and soil repellency and durability of the repellency. While these curing conditions are typical, some commercial apparatus may operate outside these ranges because of its specific design features.

In one embodiment, the articles are fibrous substrates, including fibers, textiles, paper, nonwovens, leather, fabrics, fabric blends or a combination thereof. By "fabrics" is meant natural or synthetic fabrics, or blends thereof, composed of fibers such as cotton, rayon, silk, wool, polyester, polypropylene, polyolefins, nylon, and aramids such as "NOMEX" and "KEVLAR." By "fabric blends" is meant fabric made of two or more types of fibers. Typically these blends are a combination of at least one natural fiber and at least one synthetic fiber, but also can be a blend of two or more natural fibers or of two or more synthetic fibers.

In one aspect, the article is a solid proppant particle or inorganic oxide particle. The solid proppant may be coated by any suitable method known to one skilled in the art. One suitable method includes mixing the hydrophobic compound overnight with water at a pH of 5. The solid proppant is then contacted with the liquid hydrophobic compound dispersion and mixed by roll-mill for 5 minutes. The surface-treated proppant is then separated from the excess liquid and dried in an oven at 100 °C to provide a solid surface-treated proppant. Proppant materials to be surface-treated include but are not limited to sand, thermoplastic particles, alumina particles, glass bubble or glass bead particles, and clay particles. Preferably, the proppant material is sand. The surface-treated proppants of the present invention have a mesh size of at least 100 (up to and including 149 micrometers).

Specifically, the treated articles of the present invention are useful to provide enhanced surface properties, especially durability of oil-, water- and soil-repellency, while reducing or eliminating the amount of fluorinated compounds employed. The repellency property is effective with a variety of other surface effects.

TEST METHODS

All solvents and reagents, unless otherwise indicated, were purchased from Sigma-Aldrich, St. Louis, MO, and used directly as
supplied. Sorbitan tristearate, sorbitan trilaurate, and 50:50 sorbitan tribehenate:sorbitan tristearate blend are available from DuPont Nutrition & Health, Copenhagen, Denmark. Decaglycerol decaoleate is available from Lonza, Allendale, NJ. Sorbitan trioelate is available from Oleon, Ghent, Belgium.

ARMEEN DM-18D was obtained from Akzo-Nobel, Bridgewater, NJ. PHOBOL XAN was obtained from Huntsman Corp, Salt Lake City, UT.

STEPOSOL SB-W was obtained from Stepan, Northfield, Illinois.

VMA-70 is available from NOF Corporation.

CHEMIDEX S is a stearaminopropyl dimethylamine surfactant available from Lubrizol, Wickliffe, Ohio.

ETHAL LA-4 is an ethoxylated emulsifier available from Ethox Chemicals, Greenville, South Carolina.

CAPSTONE 6,2-FMA and ZELAN R3 are available from The Chemours Company, Wilmington, DE.

The following tests were employed in evaluating the examples herein.

Test Method 1 - Fabric Treatment

The fabrics treated in this study were 100% by weight polyester fabric available from L. Michael OY, Finland or 100% by weight nylon fabric available from Huntsman Corp, Salt Lake City, UT. The fabric was treated with the aqueous dispersions of hydrophobic compounds and surface effect polymers using a conventional pad bath (dipping) process.

The prepared concentrated dispersions were diluted with deionized water to achieve a pad bath having 60 g/L of the final emulsion in the bath. For the treatment of the cotton fabric, a wetting agent, INVADINE PBN and a catalyzed cross-linking agent, KNITTEX 7636 (all available from Huntsman, Salt Lake City, UT) were also included in the bath at 5 g/L and 30 g/L respectively. The fabric was padded in the bath, and the excess liquid was removed by squeeze rollers. The wet pickup was around 95% on the cotton substrate. The "wet pick up" is the weight of the bath solution of the emulsion polymer and additives applied to the fabric, based on the dry weight of the fabric. The fabric was cured at approximately 165
°C for 3 minutes and allowed to "rest" after treatment and cure for at least 2 hours.

For the treatment of the polyester fabric, a wetting agent, INVADINE® PBN (available from Huntsman, Charlotte, NC, USA) and 60% acetic acid were also included in the bath at 5 g/L and 1 g/L respectively. The fabric was padded in the bath, and the excess liquid removed by squeeze rollers. The wet pickup was around 55% on the polyester substrate. The "wet pick up" is the weight of the bath solution of the emulsion polymer and additives applied to the fabric, based on the dry weight of the fabric. The fabric was cured at approximately 160 °C for 2 minutes and allowed to "rest" after treatment and cure for about 15 to about 18 hours.

Test Method 2 - Water Drop Rating

The water repellency of a treated textile substrate was measured according to AATCC standard Test Method No. 193 and the method outlined in the Teflon® Global Specifications and Quality Control Tests booklet. The higher the water drop rating, the better the resistance the finished substrate has to staining by water-based substances.

Test Method 3 - Water Spray Repellency

Water repellency was further tested by utilizing the spray test method which is a measure of dynamic water repellency. The treated fabric samples were tested for water repellency according to AATCC standard Test Method No. 22 and the method outlined in the Teflon® Global Specifications and Quality Control Tests booklet. A rating of 90 denotes slight random sticking or wetting without penetration; lower values indicate progressively greater wetting and penetration.

Test Method 4 - Oil Rating

The treated fabric samples were tested for oil repellency by a modification of AATCC standard Test Method No. 118, and the method outlined in the Teflon® Global Specifications and Quality Control Tests booklet. The higher the oil drop rating, the better the resistance the finished substrate has to staining by oil-based substances.

Test Method 5 - Bundesmann Absorbency (ABS)
The treated fabric samples were tested for dynamic water absorbency following ISO 9865 standard Test Method.

Test Method 6 - Wash Durability

The fabric samples were laundered according to International Standard specified domestic washing procedure for textile testing. Fabric samples were loaded into a horizontal drum, front-loading type (Type A, WASCATOR FOM 71 MP-Lab) of automatic washing machine with a ballast load to give a total dry load of 4 lb. A commercial detergent was added (AATCC 1993 standard Reference Detergent WOB) and the washer program 6N was used to simulate 20 home washes (20HW) or 30 home washes (30HW). After washing was complete, the entire load was placed into a KENMORE automatic dryer and dried on high for 45-50 min.

EXAMPLES

Examples 1-18 and Comparative Examples A-C

ARMEEN DM18D (24.7 g), DI water (2066 g), 2-ethylhexyl methacrylate (1076 g), 7-EO methacrylate (154 g), N-methylolacrylamide (48%, 31 g), dodecyl mercaptans (1.5 g), 2% NaCl solution (58 g), glacial acetic acid (17 g), and hexylene glycol (308 g) were mixed and later blended in a large commercial blender for 2 minutes. An additional 200 g of DI water was added. The resulting mixture was transferred into a reactor, stirred at 75 °C, and sparged with nitrogen for 30 minutes. VAZO 56 (2.5 g) was added with 61 g of DI water, and the mixture was stirred for 4 hours to yield a non-fluorinated acrylic dispersion product (NFAD) at 33.55% solids.

Into a 4-neck round bottom flask equipped with an overhead stirrer, thermocouple and condenser is added sorbitan tristearate (111 g) and 4-methyl-2-pentanone (MIBK, 274 g). The solution is heated to 80 °C. An aqueous dispersion is then prepared by adding warm water (512 g), CHEMIDEX S (2.4 g), ETHAL LA-4 (3.2 g) and acetic acid (1.6 g) at 65 °C. The mixture is immersion blended (2 min), homogenized at 6000 psi, and the resulting dispersion is distilled under reduced pressure to remove the solvent and yield a non-flammable dispersion at 13.15% solids after cooling and filtering. The resulting dispersion is blended with ZELAN R3 and NFAD and applied to the fabric at 60 g/L of solids content or 40 g/L in
the weight ratios described in Table 1. The samples are tested according to the test methods above.
Table 1. Composition of Examples 1-18 and Comparative Examples A-C

<table>
<thead>
<tr>
<th>Example</th>
<th>Hydrophobic compound dispersion</th>
<th>ZELAN R3</th>
<th>NFAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>0.20</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>0.40</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>0.40</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.80</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>0.17</td>
<td>0.17</td>
<td>0.67</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>--</td>
<td>0.20</td>
</tr>
<tr>
<td>9</td>
<td>0.40</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>0.67</td>
<td>0.17</td>
</tr>
<tr>
<td>11</td>
<td>0.67</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>A</td>
<td>--</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td>B</td>
<td>1.00</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>--</td>
<td>0.60</td>
</tr>
<tr>
<td>13</td>
<td>0.20</td>
<td>--</td>
<td>0.80</td>
</tr>
<tr>
<td>C</td>
<td>--</td>
<td>0.80</td>
<td>0.20</td>
</tr>
<tr>
<td>14</td>
<td>0.20</td>
<td>0.60</td>
<td>0.20</td>
</tr>
<tr>
<td>15</td>
<td>0.20</td>
<td>0.20</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>0.60</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>17</td>
<td>0.60</td>
<td>0.40</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>0.60</td>
<td>--</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Table 2: Performance of Examples 1-18 and Comparative Examples A-C

Applied at 60 g/L

<table>
<thead>
<tr>
<th>Example</th>
<th>Spray Rating</th>
<th>ABS%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial 30HW (60°C)</td>
<td>Initial 30HW (60°C)</td>
</tr>
<tr>
<td>1</td>
<td>100 100</td>
<td>37.5 11.6</td>
</tr>
<tr>
<td>2</td>
<td>100 100</td>
<td>27.7 16.6</td>
</tr>
<tr>
<td>3</td>
<td>100 100</td>
<td>64.4 22.5</td>
</tr>
<tr>
<td>4</td>
<td>100 100</td>
<td>33.8 7.5</td>
</tr>
<tr>
<td>5</td>
<td>100 100</td>
<td>36.2 6.1</td>
</tr>
<tr>
<td>6</td>
<td>100 100</td>
<td>20.5 5.3</td>
</tr>
<tr>
<td>7</td>
<td>100 90</td>
<td>35.1 25.1</td>
</tr>
<tr>
<td>8</td>
<td>100 100</td>
<td>53.6 26.5</td>
</tr>
<tr>
<td>9</td>
<td>100 100</td>
<td>47.2 18.9</td>
</tr>
<tr>
<td>10</td>
<td>100 100</td>
<td>29.3 5.0</td>
</tr>
<tr>
<td>11</td>
<td>100 100</td>
<td>32.2 5.3</td>
</tr>
<tr>
<td>A</td>
<td>80 70</td>
<td>49.7 16.97</td>
</tr>
<tr>
<td>B</td>
<td>70 70</td>
<td>41 36.6</td>
</tr>
<tr>
<td>12</td>
<td>80 70</td>
<td>59.9 31.95</td>
</tr>
<tr>
<td>13</td>
<td>80 70</td>
<td>42.7 21</td>
</tr>
<tr>
<td>C</td>
<td>100 100</td>
<td>15.8 4.9</td>
</tr>
<tr>
<td>14</td>
<td>100 100</td>
<td>28.9 5.1</td>
</tr>
<tr>
<td>15</td>
<td>100 100</td>
<td>40 24.97</td>
</tr>
<tr>
<td>16</td>
<td>100 100</td>
<td>43.6 6.5</td>
</tr>
<tr>
<td>17</td>
<td>100 100</td>
<td>53.3 12.6</td>
</tr>
<tr>
<td>18</td>
<td>100 100</td>
<td>55.1 15.8</td>
</tr>
</tbody>
</table>
Table 3: Performance of Examples 1-18 and Comparative Examples A-C

<table>
<thead>
<tr>
<th>Example</th>
<th>Initial</th>
<th>30HW (60°C)</th>
<th>Initial</th>
<th>30HW (60°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>34.5</td>
<td>12.3</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
<td>39.1</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>53.4</td>
<td>23.2</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>32.1</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>39.9</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>31.1</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>90</td>
<td>42.9</td>
<td>23.8</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>100</td>
<td>49.7</td>
<td>24.8</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>100</td>
<td>43.2</td>
<td>15.96</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
<td>34.9</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>100</td>
<td>50.5</td>
<td>5.3</td>
</tr>
<tr>
<td>A</td>
<td>70</td>
<td>100</td>
<td>60.3</td>
<td>27.1</td>
</tr>
<tr>
<td>B</td>
<td>80</td>
<td>100</td>
<td>48.6</td>
<td>23.7</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>80</td>
<td>47.4</td>
<td>31.6</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>100</td>
<td>22.7</td>
<td>3.7</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>100</td>
<td>35.1</td>
<td>4.7</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>100</td>
<td>40.1</td>
<td>20.1</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100</td>
<td>46.9</td>
<td>9.2</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>100</td>
<td>42.8</td>
<td>25.8</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>100</td>
<td>50.7</td>
<td>22.5</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
<td>100</td>
<td>34.5</td>
<td>12.3</td>
</tr>
</tbody>
</table>
CLAIMS

What is claimed is:

1. A coated article comprising a partial or complete durable non-fluorinated coating on the surface of an article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, where the hydrophobic compound is selected from a cyclic or acyclic alcohol which is substituted with at least two - R\(^1\), -C(0)R\(^1\), -(CH2CH2O)\(^n\)(CH(CH3)CH20)mC(0)R\(^1\), or mixtures thereof;
 where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R\(^1\) is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; and each R\(^2\) is independently -H, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.

2. The coated article of claim 1, where the hydrophobic compound is selected from Formulas (Ia), (Ib), or (Ic):

\[
\begin{align*}
(\text{Ia})
\end{align*}
\]
wherein each R_i is independently $-H$; $-R$; $-C(0)R_1$; $-(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mR_2$; or $-(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mC(0)R_1$;

each n is independently 0 to 20;

each m is independently 0 to 20;

$m+n$ is greater than 0;

r_i is 1 to 3;

a is 0 or 1;

p is independently 0 to 2;

provided that a is 0 when r is 3;

each R_1 is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond;

each R_2 is independently $-H$, or a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond;

provided when Formula (la) is chosen, then at least one R is $-H$ and at least two R groups are a $-R_1$; $-C(0)R_1$;

$-(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mR_2$;

or $-(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mC(0)R_1$;

each R_4 is independently $-H$, a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond,
or combinations thereof; -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²;
or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹;
provided when Formula (lb) is chosen, then at least one R or R⁴ is -H; and at least two of R or R⁴ are a linear or branched alkyl group

optionally comprising at least 1 unsaturated bond, or combinations thereof; -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²;
or -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹; and
each R¹⁹ is -H, -C(0)R¹, or -CH₂C(CH₂OR)₃,
provided when Formula (lc) is chosen, then at least one R¹⁹ or R is -H;

and at least two of R¹⁹ or R are -C(0)R¹,
 -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mR²; or
 -(CH₂CH₂O)ₙ(CH(CH₃)CH₂O)mC(0)R¹.

3. The coated article of claim 2, where the hydrophobic compound is selected from Formula (la) to be Formula (la'):

![Diagram](image)

wherein R is further limited to independently -H; -R¹; or -C(0)R¹.

4. The coated article of claim 2, where the hydrophobic compound is selected from Formula (la) to be Formula (la'):
wherein R is further limited to independently -H; -\((\text{CH}_2\text{CH}_2\text{O})_n\text{(CH}_3\text{CH}_2\text{O})_m\text{R}_2\); or -\((\text{CH}_2\text{CH}_2\text{O})_n\text{(CH}_3\text{CH}_2\text{O})_m\text{C}(\text{O})\text{R}_1\).

5. The coated article of claim 2, where the hydrophobic compound is selected from Formula (lb).

6. The coated article of claim 1, wherein the surface effect is no iron, easy to iron, shrinkage control, wrinkle free, permanent press, moisture control, softness, strength, anti-slip, anti-static, anti-snag, anti-pill, stain repellency, stain release, soil repellency, soil release, water repellency, oil repellency, odor control, antimicrobial, sun protection, anti-blocking, cleanability, dust resistance, leveling, corrosion resistance, acid resistance, anti-fog, anti-ice, or tanning.

7. The coated article of claim 1 wherein the surface effect agent is a hydrophobic polymer selected from the group consisting of non-fluorinated acrylic polymers, non-fluorinated acrylic polymers, non-fluorinated acrylic polymers, non-fluorinated urethanes, silicones, waxes, and mixtures thereof.

8. The coated article of claim 1, where the coating comprises 10 to 90% by weight of a hydrophobic compound, and 10 to 90% by weight of a surface effect agent, both based on the total solids weight of the coating.
9. The coated article of claim 1, where the coating comprises 20 to 80% by weight of a hydrophobic compound, and 20 to 80% by weight of a surface effect agent, both based on the total solids weight of the coating.

10. The coated article of claim 1 wherein the article is a fiber, textile, fabric, fabric blend, paper, nonwoven, leather, proppant particle, inorganic oxide particle, unglazed concrete, brick, tile, granite, limestone, marble, grout, mortar, statuary, monument, glass, thermoplastic sheet, thermoformed or molded article, foam sheet or article, metal, seed, painted fabric or canvas, or a combination thereof.

11. A method of imparting a surface effect to an article comprising contacting a the surface of the article with a durable non-fluorinated coating to form a partially or completely coated article, wherein the coating comprises 5 to 95% by weight of a hydrophobic compound, and 5 to 95% by weight of at least one surface effect agent, both based on the total solids weight of the coating, selected from a cyclic or acyclic alcohol which is substituted with at least two \(-R^1, -\text{C}(\text{O})R^1, -\text{(CH}_2\text{CH}_2\text{O})\text{n(CH}_3\text{CH}_2\text{O})\text{mC}(\text{O})R^1,\) or mixtures thereof;
where the cyclic or acyclic alcohol is selected from a pentaerythritol, saccharide, reduced sugar, aminosaccharide, citric acid, aldonic acid, or aldonic acid lactone; wherein

- each \(n\) is independently 0 to 20;
- each \(m\) is independently 0 to 20;
- \(m+n\) is greater than 0;
- each \(R^1\) is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; and
- each \(R^2\) is independently \(-\text{H},\) a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond.
12. The method of claim 11, where the hydrophobic compound is selected from Formulas (Ia), (Ib), or (Ic):

\[
\begin{align*}
&\text{wherein each } R \text{ is independently } -H; \ -R; \ -C(0)R_1; \\
&\quad -(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mR_2; \text{ or} \\
&\quad -(CH_2CH_2O)_n(CH(CH_3)CH_2O)_mC(0)R_1; \\
&\text{each } n \text{ is independently } 0 \text{ to } 20; \\
&\text{each } m \text{ is independently } 0 \text{ to } 20; \\
&\text{m+n is greater than } 0; \\
&\text{r is } 1 \text{ to } 3; \\
&\text{a is } 0 \text{ or } 1; \\
&\text{p is independently } 0 \text{ to } 2; \\
\end{align*}
\]
provided that a is 0 when r is 3;
each R1 is independently a linear or branched alkyl group having 5
to 29 carbons optionally comprising at least 1 unsaturated bond;
each R2 is independently -H, or a linear or branched alkyl group
having 6 to 30 carbons optionally comprising at least 1 unsaturated bond;
provided when Formula (la) is chosen, then at least one R is -H
and at least two R groups are -R1; -C(0)R 1;
-(CH\textsubscript{2}CH\textsubscript{20})\textsubscript{n}(CH(CH\textsubscript{3})CH\textsubscript{2}0)mR2;
or -(CH2CH20)n(CH(CH3)CH20)mC(0)R 1;
each R4 is independently -H, a linear or branched alkyl group
having 6 to 30 carbons optionally comprising at least 1 unsaturated bond,
or combinations thereof; -(CH\textsubscript{2}CH\textsubscript{20})\textsubscript{n}(CH(CH\textsubscript{3})CH\textsubscript{2}0)mR2;
or -(CH2CH20)n(CH(CH3)CH20)mC(0)R 1;
provided when Formula (lb) is chosen, then at least one R or R4 is -H;
and at least two of R or R4 are a linear or branched alkyl group
optionally comprising at least 1 unsaturated bond, or combinations
thereof; -(CH2CH20)n(CH(CH3)CH20)mR2;
or -(CH2CH20)n(CH(CH3)CH20)mC(0)R 1; and
each R19 is -H, -C(0)R 1, or -CH\textsubscript{2}C[CH\textsubscript{2}OR\textsubscript{13}]
provided when Formula (lc) is chosen, then at least one R19 or R is -H;
and at least two of R19 or R are -C(0)R 1,
-(CH2CH20)n(CH(CH3)CH20)mR2; or -(CH2CH20)n(CH(CH3)CH20)mC(0)R 1.

12. The method of claim 11, further comprising the step of
heating the partially or completely coated article.

13. The method of claim 11, further comprising the step of
solidifying the coating by drying, cooling, or allowing to cool.

14. The method of claim 11, where the step of contacting is by
spraying, rolling, dip-squeeze, painting, sprinkling, dripping, powder
coating, mixing the article in a liquid carrier of the hydrophobic compound,
tumbling, or screen printing.
15. The method of claim 11, where the stop of contacting occurs inside a laundry machine.
A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2013/131226 AI (GOREDEMA ADELA [CA] ET AL) 23 May 2013 (2013-05-23) claims 11,12 ; examples 1,2</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- [X] See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or other special reasons (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search

30 November 2016

Date of mailing of the international search report

07/12/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HJ Rijswijk
Tel. (+31-70) 340-2040, 340-3016
Fax: (+31-70) 340-3016

Authorized officer

Zesl awski, Wojciech
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010/173079 AL (AKIYAMA RYOZO [JP] ET AL) 8 July 2010 (2010-07-08) claims; examples</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>US 2014295724 Al</td>
<td>02-10-2014</td>
<td>CN 105377935 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2978788 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016524628 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150136111 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201443153 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014295724 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014160905 Al</td>
</tr>
<tr>
<td>US 5925698 A</td>
<td>20-07-1999</td>
<td>AU 1547199 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9900406 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2261242 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69910635 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69910635 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0936251 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H11315226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5925698 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011502191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090041874 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010255215 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009054621 A2</td>
</tr>
<tr>
<td>US 2013131226 Al</td>
<td>23-05-2013</td>
<td>CA 2795966 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103131259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102012203054 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5865233 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013108073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130057399 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012149804 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013131226 Al</td>
</tr>
<tr>
<td>US 2010173079 Al</td>
<td>08-07-2010</td>
<td>JP 2010155989 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010173079 Al</td>
</tr>
</tbody>
</table>