(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A0 0 0 O

(43) International Publication Date (10) International Publication Number
26 September 2002 (26.09.2002) PCT WO 02/075474 A2
(51) International Patent Classification’: GO6F (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/EP02/02766 CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(22) International Filing Date: 13 March 2002 (13.03.2002) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(25) Filing Language: English SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.
(26) Publication Language: English
L. (84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
0106439.3 15 March 2001 (15.03.2001) GB Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
.) European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
(71) Appllcant (for all deSignated States except US): GB, GR, l-E, IT, LU, MC, NL, PT, SE, TR), OAPI patent
SMITHKLINE BEECHAM P.L.C. [GB/GB]; New (BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

Horizons Court, Brentford, Middlesex TW8 9EP (GB). NE, SN, TD, TG).
(72) Inventor; and .
(75) Inventor/Applicant (for US only): HUNTER, John, FPublished:
Robin [GB/GB]; Computer Resource Management UK without international search report and to be republished
Ltd., 24 High Street, Newmarket, Suffolk CBS 9T (GB). upon receipt of that report

(74) Agent: DOLTON, Peter, L.; GlaxoSmithKline, Corporate For two-letter codes and other abbreviations, refer to the "Guid-
Intellectual Property (CN9.25.1), 980 Great West Road, ance Notes on Codes and Abbreviations" appearing at the begin-
Brentford, Middlesex TW8 9GS (GB). ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER APPLICATION FRAMEWORK

64
A
621 (7 72 68 78y 8 eo
: Application ‘J

1 Compoanent y EE]

¢ R Code Segment F; “m \Ev 8
70 y
(76
PI C

Directory » MF

8|

{g2

(57) Abstract: An application framework supports at least one application that includes one or more application components. The
ramework includes a directory providing a logical definition of the application. The logical definition is referenced by an applica-
tion context identifier and provides logical definitions of the application components that make ap the application. It further includes
references to physical instances of the application components. An application component includes a harness that contains an ap-
- plication component code segment for a predetermined application context. The harness forms an interface between the application
component code segment and an exterior of the application component. The harness is operable to apply a predetermined mapping for
the application context to map between an external format for communication external to the application component and an internal
format understandable to the application component code segment. In a particular example, LDAP is used as the directory protocol
and XML is used to communicate between the framework and the application components and between application components.

2/075474 A2

10

15

20

25

WO 02/075474 PCT/EP02/02766

1

COMPUTER APPLICATION FRAMEWORK
BACKGROUND OF THE INVENTION

The invention relates to a framework for supporting computer applications that
are based on application components.

Object oriented programming and other component-based software programming
approaches are well established in the computing industry. A difficuity with any
programming approach is the problem of ensuring that various parts of a
potentially complex software system are compatible and inter-operable. This is
particularly the situation where various programming languages may be used for
different parts of the system and/or different parts are designed by different
programmers. Indeed, it is the usual situation that the many software component
parts of an application system will have been developed at different times, using
different languages and/or platforms and/or by different programmers or
programming teams. Also, as a result of continued development, the individual
components may change with time as new versions become available.

The integration of components. is very time consuming task and forms a major
part of today's software development efforts. It would be desirable to reduce the
amount of time needed to integrate software components to form a desired
application and to reduce the total effort involved in maintaining applications
through their life cycle. Accordingly, an aim of the present invention is to facilitate
the integration of software components forming parts of software applications.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

SUMMARY OF THE INVENTION

Particular and preferred aspects of the invention are set out in the accompanying
independent and dependent claims. Combinations of features from the
dependent claims may be combined with features of the independent claims as
appropriate and not merely as explicitly set out in the claims.

An aspect of the invention provides an application framework for supporting at
least one application that includes one or more application components. The
framework comprises a directory providing a logical definition of the application.
The logical definition is referenced by an application context identifier and
provides logical definitions of the application components that make up the
application. It further includes references to physical instances of the application
components.

In this manner the framework is useable by a component of an application to
reference a further component of the application with the same application
context without needing to know about that further component. The use of a
framework in accordance with the invention can provide the basis of an
architecture that facilitates the building of componentized applications. It enables
individual components to be linked to form an application without those
components needing knowledge of context of their application. The context of
the application will depend, for example, on the type of application. Thus, for
example, the application context may be a word processing application, a
spreadsheet application, a chemical database application, etc.

For example, in an embodiment of the invention, the directory can include an
entry identified by the application context identifier, which entry references logical
definitions of the application components for that application and physical
references to physical instances of the application components. The reference to
a physical instance of the application component can identify a physical location
for the application component. The logical definitions of the application
components and/or their location facilitate the independence and extensibility of
an embodiment of the invention.

The logical definitions of the application can further identify information for
mapping between a data format internal to the application component and a data
format external to the application component. This means that format conversion
information would not need to be held by the application component. Similarly,
the logical definition of the application can identify a connection method to be
used to connect to the application component. As a result of this, this information
would not need to be held by the application component. These features help to
avoid unnecessary replication of information and enhance the flexibility of the

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

3

invention. By holding such information in a directory, rather than in individual
application components, the integrity of the system can be enhanced as less data
needs to be changed when elements of a system are upgraded or moved. By
collecting such information in the directory, management and maintenance of the
information becomes much more straightforward and less prone to error.

In one embodiment of the invention, the directory is configured as a hierarchy of
entries that define an order of operation of the application components. [n the
embodiment the directory is configured using the Lightweight Directory Access
Protocol (LDAP).

In an embodiment of the invention communication between components via the
framework is effected using, for example, a markup language, for example the
eXtensible Mark-up Language (XML).

Another aspect of the invention provides a computer system comprising the
application framework discussed above. The processing system could be a
single processor with a memory in which the directory is configured.
Alternatively, the system could comprise a plurality of computers connected via a
network. In the latter case, multiple instances of the application framework could
be provided in respective computers.

A further aspect of the invention provides an application component for such a
system. The application component comprises a harness that contains an
application component code segment for a predetermined application context.
The harness forms an interface between the application component code
segment and the outside of the application component. The harness is operable
to apply a predetermined mapping for the application context to map between an
external format for communication external to the application component and an
internal format understandable to the application component code segment.

The use of the harness means that an interface can be provided between an
application code segment and the outside world, minimizing any changes needed
to an application code segment of an existing application for use with an
embodiment of the invention. The use of the application context identifier
provides a consistent link between the directory structure mentioned earlier and
the application components.

The harness can be operable to extract an application context identifier for the
application context from a received message and to obtain information for
mapping between the external format and the internal format according to the
application context.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

4

The harness. can be operable to identify and to obtain information for mapping
between the internal format and the external format according to the application
context for a message to be sent from the application component. It can further
be operable to map data output from an application component code segment in
the internal format to the external format and to add an application context
identifier to the outgoing message. The application context identifier thus
accompanies the message to the next recipient.

The harness can be operable to obtain the mapping information by accessing a
directory external to the application component.

The harness could be operable to seek to obtain the mapping information for an
application context from an internal cache using the application context identifier,
and where the mapping information is not available and current, to obtain the
mapping information from a directory external to the application component. This
can reduce the number of directory look-ups needed, but does require the
caching of information and the risk that locally held information may not be valid.

The application component code segment and the harness comprise computer
code. This could be provided on a carrier medium, for example a storage or a
transmission medium.

Yet a further aspect of the invention provides a method of supporting computer
applicationé that include one or more application components, the method
comprising:

defining an application framework for supporting the application, the framework
comprising a directory providing a logical definition of the application;

referencing the logical definition using an application context identifier; and
providing logical definitions of the application components that make up the
application to the application components including references to physical
instances of the application components.

An aspect of the invention also provides a method of supporting computer
applications that include one or more application components, the method
comprising:

forming an application component in which the application component includes a
harness that contains an application component code segment;

operating the harness as an interface between the application component code
segment and an exterior of the application component; and

the harness mapping between an external format for communication between
application components and an internal format understandable to the component.

10

15

20

25

30

WO 02/075474 PCT/EP02/02766

5

An embodiment of the invention can thus facilitate the building of distributed,
componentized applications. Individual components within the application do not
need to have knowledge of the context of their application and the code in the
component does not need to know who called it or who to call. The context is
derived from the logical information, which could also be described as metadata,
from a directory. As a result, the components are more easily re-usable, and
more easily reconfigurable to respond to changing needs.

It can be seen that all of the various aspects of the invention mentioned above
are linked by the use of the application context. This means that application
components can be logically grouped even if they are distributed physically
throughout a network. It further provides an efficient, reliable and low
maintenance approach to supporting multiple applications over a non-
homogenous network, that is readily adaptable and extensible as systems and
applications develop over time.

Thus, an embodiment of the invention enables the flexible, adaptable,
maintainable and scaleable applications to be developed that can use off-the-
shelf and/or custom-developed software components. It effectively forms a glue
layer that handles the interconnection of the code components, allowing
application developers to concentrate on tackling the application problems and
not have to worry about integrating the various parts of an application.

Development times can be reduced as a result of the invention reducing the
difficulty of integrating software components. Maintenance problems caused by
dependencies between different components can be reduced. Also, the
improved approach to integration has the further advantage that resulting
applications will be more supportable in the years after release. The invention is
operable to enable the connection of software components on open platforms
such as the Windows NT operating system, the Unix operating system, etc. and
can enable the connection of components across platforms. It also allows the
use of any of a wide variety of known protocols and protocols yet to be developed
to be used for the interconnection of the application components, for example the
protocols such as HTTP, [IOP, message queues, etc.

10

15

20

25

30

WO 02/075474 PCT/EP02/02766

6

BRIEF INTRODUCTION TO THE DRAWINGS
Exemplary embodiments of the present invention will be described hereinafter, by
way of example only, with reference to the accompanying drawings in which like

reference signs relate to like elements and in which:

Figure 1 is a schematic representation of a computer workstation for an
exemplary implementation of the invention;

Figure 2 is schematic block diagram illustrating an exemplary configuration of a
computer workstation as shown in Figure 1;

Figure 3 is schematic representation of a network for a networked
implementation of the invention;

Figure 4 is a conceptual representation of application components for an
application context in an embodiment of the invention;

Figure 5 is a schematic representation of components related to the operation of
a harness of the application component of Figure 4;

Figure 6 is flow diagram giving an overview of the operation of the application
component of Figure 5;

Figure 7 illustrates an example of a directory structure;

Figures 8 to 10 are class diagrams illustrating classes of objects for an
embodiment of the invention; and

Figures 11 — 15 are sequence diagrams illustrating in more detail aspects of the
operation of the application component of Figure 4.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

7

DESCRIPTION OF PARTICULAR EMBODIMENTS

Exemplary embodiments of the present invention are described in the following
with reference to the accompanying drawings.

Figure 1 is a schematic representation of a computer workstation on which an
exemplary embodiment of the invention can be implemented. As shown in
Figure 1, a computer workstation 10 includes a system unit 12, user input
devices, for example in the form of a keyboard 14 and a mouse 16, and a display
18. Removable media devices in the form, for example, of a floppy disk drive 20
and an optical and/or magneto-optical drive (e.g. a CD, a DVD ROM, a CDR
drive) 22 can also be provided.

Figure 2 is schematic block diagram illustrating an exemplary configuration of a
computer workstation 10 as shown in Figure 1.

As shown in Figure 2, the computer workstation 10 includes a bus 30 to which a
number of units are connected. A microprocessor (CPU) 32 is connected to the
bus 30. Main memory 34 for holding computer programs and data is also
connected to the bus 30 and is accessible to the processor. A display adapter 36
connects the display 18 to the bus 30. A communications interface 38, for
example a network interface and/or a telephonic interface such as a modem,
ISDN or optical interface, enables the computer workstation 10 to be connected
40 to other computers via, for example, an intranet or the Internet. An input
device interface 42 connects one or more input devices, for example the
keyboard 14 and the mouse 16, to the bus 30. A floppy drive interface 44
provides access to the floppy disk drive 20. An optical drive interface 46 provides
access to the optical or magneto-optical drive 22. A storage interface 48 enables
access to a hard disk 50. Further interfaces, not shown, for example for
connection of a printer (not shown), may also be provided. Indeed, it will be
appreciated that one or more of the components illustrated in Figure 2 may be
omitted and/or additional components may be provided, as required for a
particular implementation.

Although Figures 1 and 2 have illustrated a single computer on which an
application of the present invention may be operable, more typically an
embodiment of the invention will be operable on a distributed processing system,
for example a distributed processing system such as that illustrated schematically
in Figure 3. Figure 3 shows a network (for example, the Internet) 52 that
provides connections between various stations 54, each of those stations
communicating with each other via the network 52 by means of one or more
protocols 56. The individual stations 54 may be stand-alone computers or, as
illustrated at the top left of Figure 3, may in fact represent a network of computers

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

8

including a gateway 55 that provides a connection via an internal network 58 to a
plurality of computers 59 or other devices. In such an environment, it is often the
case that multiple protocols may be used at different parts of the system.

More particularly, different software components that may form a complex
application may have been written using different programming languages and/or
on different platforms and/or by different people at varying times. Accordingly,
the exact format of data that any particular component expects to receive, and is
able to transmit, may vary. Particularly where the communication between
components is over a network as illustrated, for example, in Figure 3, this
provides enormous complexity in order to provide integration of the various
components of a complex application. The present invention is intended to
address this.

To assist in an understanding of the following description, there follows a brief
summary of some of the terms used herein.

An embodiment of the invention provides a “harness” around individual
“application component code segments”. The combination of an application
component code segment and a harness is known as an “application
component”. An application component code segment is a segment of code that
forms part of a user application. Examples of applications can be word
processing applications, spreadsheet applications, chemical database
applicationé, to name but a few. The harness buffers an individual application
component code segment from the outside and takes care of identifying how to
communicate with other application components and where to find them.

The harness includes only a small amount of code and is operable to reference a
“directory” that holds or in turn references information needed by the application
component code segments. The combination of the harness and the directory
forms a “framework” for linking application component code segments.

An embodiment of the invention links respective elements by an “application
context”, that is information defining the application. The application context can
link application components that together form, for example, a word processing
application, a spreadsheet application, a chemical database application, and so
on.

The application context is identified in the envelope of a “common messaging
protocol” used between application components etc. and also forms entries in the
directory, which is organised hierarchically in a preferred exemplary embodiment.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

9

Figure 4 is a.schematic representation of a number of application components 70
linked together within an application context, say as distributed components of a
word processing application.

Figure 4 illustrates three application component code segments 64. It is
assumed that each of these application component code segments provides
different functions which, when combined together, provide the complete *
application for the application context.

It will be noted that each application component code segment 64 is provided
with a respective harness 60 to form respective application components 70. As
mentioned above, each harness 60 buffers its application component code
segment 64 from needing to know about the "outside world" and thus forms an
interface between that application component code segment 64 and the "outside
world". Figure 4 illustrates connection components (hereinafter connectors) 62
within the harnesses 60. These connectors 62 provide messaging between
application components 70 in accordance with a standardised protocol 66. In an
embodiment of the invention a mark-up language, for example an eXtensible
Markup Language (XML), is used as a standardised communication protocol 66
for communication between the connectors 62 of the respective application
components 70.

Figure 5 is a schematic diagram illustrating an example of functional elements
that are associated with the operation of the application component 70 in more
detail. It should be understood that the functional elements illustrated in Figure 5
do not necessarily correspond to separate physical elements of program objects,
but relate to separate functions that are performed. Examples of software
objects used in a specific example of the invention will be described in more
detail with reference to Figures 8 to 15.

Figure 5 illustrates an input connector (IC) 62.1 that receives an external
message (in the present example an XML message).

A receiver (R) 74 (which can be implemented by an object called “receiver”
described with reference to Figures 8 to 15) unwraps a received message and
extracts an application context from a message envelope. The application
context can be held as XML data for an XML “application context” tag. The
application context is passed to a protocol interface (Pl) 68 (which can be
implemented by an object called “SoftBrix” described with reference to Figures 8
to 15) that derives information for the application context, either from a local
cache (C) 76 (if such information for the application context is already held in the
cache) or from an external directory 80.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

10

In a preferred embodiment of the invention the external directory is implemented
under the Lightweight Directory Access Protocol (LDAP), which provides a
hierarchical directory. The application context forms an entry in the directory,
and access to that entry provides access via the hierarchy to further entries that
provide references to information needed by the harness 60. This information
includes links to mapping files 82 that are supplied to the protocol interface 68
and are used by a mapper (M) 72 to map data from the received message to a
format required by the application component code segment 64. For example, if
the application component code segment is implemented in Java, XML data
received in the XML message can be mapped into a set of Java objects in a form
suitable for the task being undertaken by the application component code
segment 64. The same principle holds for other programming environments such
as C++, Visual Basic, etc.

Information received back from the directory 80 and the mapping files 82 is
cached 76 by the harness 60.

When the application component code segment has finished its processing,
information is output to the protocol interface 68, which then uses application
context information and data stored in the cache 76 and/or retrieved by
accessing the directory 80, to instantiate a data formatter 78 to map data output
by the application component code segment 64 into XML. An envelope wrapper
84 (which can be implemented by an object called “sender” described with
reference to Figures 8 to 15) then wraps the output data (which could be
described as a letter) into an envelope. The envelope includes addressing
information and an “application context” tag that defines the application context
so that this information is available for a subsequent recipient.

One or more output connectors (OC) 62.2 receive the wrapped message for
transmission and transmit this to the appropriate recipients identified in the
envelope.

Figure 6 is a flow diagram giving an overview of the operation of the application
component 70.

In step 100, an XML message is received by the first connector 62.1.

In step 102, the XML message is unwrapped by the protocol interface 68. The
first protocol interface 68 is operable to unwrap the XML message by removing
an "envelope" to expose a "letter" therein, the letter containing XML data. The
envelope includes an application context identifier (e.g. a context type identifier
as XML data to an XML “application context” tag).

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

1

In step 104, the protocol interface 68 uses the application context identifier as a
key for accessing an internal cache 76 to find application context information
referenced by the application context identifier. If the data is not held in the
cache or has expired because it is older than a given age, the protocol interface
68 then uses the application context identifier to reference an entry in the
external directory 80 labelled by the same application context identifier. The
directory 80 includes references to further entries in the directory or to mapping
files 82 external to the directory to provide information for mapping data in the
received message to a format acceptable to the application component code
segment 64 according to the application context concerned. The information
retrieved from the directory is used to update the cache 76. Optionally, the
mapping files could be held in the cache 76, or alternatively, the cache 76 could
merely hold links to the mapping files 82.

In step 106, the mapper 72 is instantiated for mapping the XML data in the
received XML message to the format acceptable to the application component
code segment 64. It does this using mapping information for the application
context from the mapping files 82 referenced by the directory or cache entries, as
appropriate, for the application context.

In step 108, the application component code segment performs its processing
tasks (the processing that the application code segment does), dependent on the
application concerned. After carrying out the appropriate processing in step 108,
the application code segment 64 then outputs data to the harness 60.

In step 110, a data mapper 78 maps the output data into XML using mapping
information retrieved from the mapping files 82 using the entries in the cache 76
for the application context concerned. One or more mappings may be employed
if plural messages are to be sent. The one or more XML messages are then
wrapped by the envelope wrapper 84. The envelope wrapper includes in the
envelope an “application context” tag with the application context as data
therefor.

In step 112, one or more output connectors 62.2 transmit(s) the XML message(s)
using a transmission protocol such as, for example, the well-known CORBA IIOP
protocol.

With further reference to Figure 6, three types of application components can be
defined.

There are application components that only send data to other application
components. These provide the functionality of steps 106 to 112. This type of

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

12

application component typically gathers data, often as user input, and is
analogous to a client application in a client/server environment.

There are application components that only receive data. These provide the
functionality of steps 100 to 108. This type of application component typically
consumes or stores data, possibly also passing back results, and is analogous to
a server application in a client/server environment.

There are also application components that both send and receive data. These
provide the functionality of steps 100 to 112.

Figure 7 is a schematic representation of an exemplary directory 80, which, in
one embodiment, is implemented using the Lightweight Directory Access
Protocol (LDAP). In other implementations, another directory protocol could be
used.

For illustrative purposes, the directory is used to implement a simple echo name
application that is represented by the XML code segment in Table 1. The echo
name application forms a test application that echos a name.

TABLE 1

<?xml version="1.0"?>
<XOML EJB="">
<OBJECT TYPE="SoftBrix.test. EchoDataMap">
<MAP FIELD="echoData" ELEMENT="ECHODATA"/>
</OBJECT>
</XOML>

The directory is arranged as a hierarchy starting with a root node (Directory Root)
120. Different classes of nodes depend from the root node 120. An application
node 122 has an application instance in the form of the EchoNameApplication
node 124. “EchoNameApplication” is the name of this application and this is an
example of an “application context identifier”. Everything below this node 124 in
the hierarchy is within the application context. An application context may also
include references to other application context identifiers. This allows an
application to consist of many aggregated applications and/or components. This
particular example application context 124 includes nodes 126 and 128 defining
two application components represented by a SendName node 126 and an
EchoName node 128.

The SendName application component is an example of a component that inputs
data, possibly via a GUI client. Items in the directory below the SendName node

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

13

126 represent outputs from this component. Hence SendName has a single
output group, labelled default, which itself contains a single output definition 132
identifying EchoName 128 as the application component to receive data sent by
the SendName Application Component (as represented by the dashed line 134).

The EchoName component node 128 in turn defines a link, represented by the
dashed line 136, to an EchoNameService physical component node 140, that is
an instance of a physical component 138. The EchoNameService node 140,
which defines a physical software component for implementing the application
components 70 includes logical link 142 to a physical machine that runs the
software.

As shown in Figure 7, a server node 144 includes a particular instance in the
form of a node 146 labelled hiwwo223181 that identifies a physical server on
which the EchoNameService physical component software is run and the
protocol used to send the XML message to it (in this example, as shown in Figure
7, the HHOP protocol).

Also shown in Figure 7 is another branch 148 of the tree can include information
relating to other resources such as queues, people, databases, etc.

As will be appreciated from Figure 7, the nodes in the directory tree provide
logical definitions of individual components. This can also be described as
metadata for those components. Although this one simple example is given for
illustrative purposes, it will be appreciated by one skilled in the art how the
principles employed in this example can be employed to define the relationships
for one or more complicated examples.

Figure 8 is an overview of different classes used by an exemplary embodiment of
the invention and the relationship between those classes. Moreover, this
identifies various object classes identified in the subsequent sequence diagrams
forming Figures 11-15.

Thus, a SoftBrix object class 170 provides a head class for the harness (this can
be compared to the protocol interface 68 of Figure 5). Instances of a sender
object class 172 are responsible for packaging messages for sending from an
application component 70. Instances of an envelope object class 174 provide
envelopes to contain a letter (data) for transmission. Instances of a receiver
object class 190 provide for reception of data. Instances of a listening class 182
provide listeners for listening for component parts of an XML message.
Instances of a mapper class 194 provide mappers for mapping. Instances of a
data mapper 184 and object mapper 188 classes enable mapping of data and
objects, respectively. The object mapper class 188 and data mapper class 184

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

14

play different roles in the mapping of marked up data, such as XML. Within a
markup language, such as XML, data of relevance to an application component
code segment 64 is identified by markup tags. The application component code
segment 64 may have interest in both individually marked up data and groups of
marked up data. It is the responsibility of the data mapper 184 to extract
individual marked up data items. It is the responsibility of the object mapper 188
to identify groups of marked up data of relevance.

Also shown in Figure 8 are a connection pool object class 178, a package of
connection object classes 62 (see Figure 9), a component entry properties class
176, and a package of directory object classes 80 (see Figure 10), instances of
which will be described later with respect to Figures 11 to 15.

Figure 9 illustrates various sub-classes of the package of connection classes 62
for providing instances of connections under different protocols. Thus, Figure 9
ilustrates an HTTP connection class 621, an [IOP connection class 622, an entity
connection class 623, an SMTP connection class 624, an MQ connection class
625 and a file connection class 626. Further sub-classes can be defined to
accommodate such further connection protocols as are required for a given
implementation.

Figure 10 illustrates in more detail the sub-classes related to the directory class
800. This includes the directory itself 80, a component entry class 176, a
component output class 177, a component input class 179, a component class
640, an e-mail class 181, an application class 175, a queue class 183 and a host
server class 185. ‘

In the following, the operation of an embodiment of the invention will be
described in more detail with reference to Figures 11-15. In those Figures,
various instances of the classes identified in Figures 8-10 are shown. The same
reference signs as used for the classes in Figures 8-10 are used to identify
instances of those classes in Figures 11-15. It should, however, be appreciated
that in Figures 11-15 instances of objects, rather than the classes themselves,
are identified.

Figure 11 is a sequence diagram illustrating in more detail the handling of data
output by an application component code segment 64.

In step 150, the application component 64 simply sends its output fo the protocol
interface 68 (the SoftBrix object 170) of the harness 60. The application
component code segment 64 does not need to know anything about any other
components of the application (i.e., within the application context). The SoftBrix
object 170 then outputs the data to a sender object 172.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

15

In step 152, the sender 172 creates an envelope 174 that identifies the
application by including an application context identifier as described earlier. The
data output by the application component is then held in the “letter” within the
envelope 174.

In step 154, the sender 172 then asks which outputs are needed for the current
application and component by querying the directory 80. The information from
the directory 80 is cached and a component entry 176 is generated.

In step 156, the sender 172 further identifies how to make a connection, with
details of this being cached from the directory 80.

In step 158, a connection pool 178 queries the directory 80 to find physical
connection parameters, these parameters also being cached, and this providing
a component output 180.

In step 160, the sender 172 makes a connection, adds the “TO" field to the
envelope 174 and identifies a subject for the connection.

In step 162, the sender 172 obtains data from the envelope 174 and then writes
to the connection 62.

In step 164, this operation loops for the next output. In step 166, the next
application component now has all the information needed to proceed, and in
step 168 the sender causes closing of any connections made.

Within the framework, all inter-component communication is handled by the
framework. The passing of information between application components is
achieved in the present embodiment using XML. Event-based XML parsing
using a conventional XML parser known as SAX is used to interpret received
XML.

An embodiment of the invention has been implemented to utilize a third party
environment for the generalized receipt of messages from a network. While this
implementation utilizes the SUN Microsystems Enterprise Java Beans (EJB)
environment, the invention is not limited to this environment. It is envisaged that
custom and commercially available environments could be used. Examples of
commercial environments further include the Unix INETD subsystem, the
Microsoft COM+ subsystem, the IBM MQSeries subsystem as well as others.

Figure 12 illustrates how the framework sets up the context for receiving an
application component 70. In particular, Figure 12 illustrates how an application

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

16

context tag. identifying an application context is handled. This includes
application identification, but could also be modified to include security
verification. An event-based parser (SAX) reads a received XML message (as
part of the connector 62) and handles it appropriately.

In particular, following receipt of an object at 200, in step 202 a receiver 190
recreates an envelope 174 and sets as an application name the received
application context identifier. In step 204 the protocol interface 68 (SoftBrix
object 170) then loads the application details. It initially looks in the cache 76 of
the harness 60 for the appropriate application details, but refers to the external
directory 80 when the cache details are absent or have expired.

Figure 13 illustrates how the framework handles a “TO” tag within a received
XML message. The “TO” tag identifies a component that should be called within
the context of the specified application.

Thus, when an XML message is received at 208, an event-based parser (SAX)
reads a received XML message and handles it appropriately.

In step 210, a receiver 190 identifies which component should receive the data
from the “TO” tag. Details about the “TO” component entry for the current
application context are identified from the harness cache 76, or from the directory
80 as has been described earlier for other cache/directory accesses.

In step 212, an application identifier 175 identifies the component entry 176 for
the current application context. In a manner described earlier for other
cache/directory accesses, the application identifier 175 initially looks in the local
harness cache 76, to find the appropriate information. However, if it is missing or
has expired, the application identifier 175 then looks up the component entry in
the directory 80.

In step 214, a reference to the requested component description is identified from
the component entry in the cache or directory 80 as appropriate.

In step 216, the application component is located within the directory 80 and then
the application component 70 is loaded.

In step 218, a location (URL) for a mapping file that defines how to map XML for
the required component 64, is obtained.

Finally, in step 220, SAX listeners are set up for each of the items identified
within the mapping file and are associated with a mapper object 194.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

17

Figure 14 illustrates how data is received by an application component. The
present embodiment is implemented in a Java environment and a conventional
Java reflection interface is used to map from received XML format into a
dynamically created Java object. At the start of an element, XML attributes are
mapped only. Accordingly, Figure 14 illustrates how data is received by an
application component code segment 64.

In step 230, a receiver 190 finds if there is a listener for the current tag.

If there is a listener, the listener 182 returns a data mapper or an object mapper
object at step 232.

In step 234, a current tag is used to find a target object class for the listener. An
object factory (a conventional Java function) is used to create an object of the
target object class. This object is then set as the target to receive the incoming
data.

In step 236, it is assumed that a new object within the XML data has been
identified which needs to be mapped. The object now becomes active for
incoming XML thanks to an object mapper 188.

In step 238, attributes are set for dynamically created objects and in step 240,
Java reflection is used to invoke a method to set an attribute invocation method
186 to set the attribute.

Finally, in step 242, the object mapper 188 or data mapper 184 is pushed onto a
stack. This allows items to be popped off in a hierarchical-matching XML tag
order.

Figure 15 illustrates how the framework processes the end of an element within
an incoming XML message. At this stage, any XML elements can be mapped to
dynamically created objects.

In step 250, the listeners 182 for the current tag are removed.

In step 252, the previous tag is popped off the element stack 189.

In step 254, the XML element is mapped to the current object using the data
mapper 184.

In step 256, Java reflection is used to set an attribute within the application
component code segment 64 by means of the element invocation method 192.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

18

Accordingly, there has been described an example of a flexible environment that
enables application components to exist independently, yet still to work together
to form an integrated application.

The described environment provided by an embodiment of the invention enables
application component code segments (user code) to be created that do not have
to know all about the overall environment and/or other application component
code segments of the application. Each application type is assigned an
application context, and communication takes place within the system using
application context identifiers. The use of the application context identifiers,
which are passed in messages between application components, enables a
recipient application component to retrieve appropriate information for mapping
the received data to be compatible with an application component code segment
of the application component.

Each application component is formed from an application component code
segment and a harness that forms a buffer between the code segment and the
outside world. The application context identifiers are used by the harness to
access appropriate information via an external directory. The use of the external
directory means that the harness can be kept compact. A common
communication protocol (for example a mark-up language such as XML) is used
for communication between application components.

In connecting components, an embodiment of the invention provides an
infrastructure that can enable the location and connection of components across
an environment, which is potentially distributed, using a directory service (for
example configured under LDAP). A protocol is provided that enables
communication with components that can be user defined within the directory.

An embodiment of the invention can support a wide range of protocols including,
for example, HTTP, CORBA/IIOP, MQSeries, SMTP, etc. Transformation of the
external format (e.g.,, XML) to a format that an application component code
segment can understand can be effected in a flexible and efficient manner
through the storage of processing components accessible by referencing the
directory service. With this configuration, the individual components can exist
totally independently of one another. As effectively only one copy of the
processing components is retained, this provides for easy maintenance and
reliability of those components. It also provides for compact and efficient
transformation engines in the application components.

Although, in the above description, reference is made to a single directory, it
would also be possible for the directory to be mirrored at various locations
throughout a network, in order that local access to the directory may be effected.

10

156

20

25

30

35

WO 02/075474 PCT/EP02/02766

19

Typically, as well as mirroring the directory, the individual processing
components would also be mirrored at the various locations. Such mirroring is
well known in the network arts, and can be effected efficiently and at appropriate
times to ensure that all mirrored versions are consistent with one another. Thus,
although in such an environment there will be multiple copies of the processing
components and the directory, they are effectively the same, as they are merely
direct copies of one another.

As indicated above, the interconnection of the transformation engines and the
connectors is specified using data accessible via the directory. The directory
specifies where a component is found, what data should be sent to it, and what
connection method should be used to connect to it. Providing such information
centrally in the directory means that it is quick and easy to change the connection
details. For example, the system can be configured to provide a form for
effecting this. The application code within the various transformation engines
does not need to know who is calling it or who to call next, this information being
automatically derived from the directory service.

The invention may be implemented using any appropriate programming
language. One embodiment of the invention is implemented using Enterprise
Java Beans. However, other programming languages could be used. Also,
software that is wrapped in a Java Bean can be in many different languages,
including, for example, Javacode C/C++ code, Microsoft COM/ActiveX
components, etc. By using connection methods such as SOAP, HTTP and XML,
an application of the invention can be effectively neutral to a hardware platform,
operating system, etc. Although specific references to programming languages
and platforms have been made, the present invention is not limited thereto and
could be implemented in a wide variety of languages for a wide variety of
platforms. Computer code for implementing the invention can be provided on a
carrier medium, for example a storage medium (e.g., solid state memory, a
magnetic, optical or magneto-optical disk or tape, etc.), or a transmission medium
(e.g., a wired or wireless medium such a telephone line, broadcast waveform,
communication channel etc.).

Although particular embodiments of the invention have been described, it will be
appreciated that many modifications/additions and/or substitutions may be made
within the spirit and scope of the invention as defined in the appended claims.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

20

CLAIMS

1. An application framework for supporting at least one application that includes
one or more application components, the framework comprising a directory
providing a logical definition of the application, the logical definition being
referenced by an application context identifier and providing logical definitions of
the application components that make up the application and references to
physical instances of the application components.

2. The application framework of claim 1, wherein the directory comprises an
entry identified by the application context identifier, which entry references logical
definitions of the application components for that application and physical
references to physical instances of the application components.

3. The application framework of claim 2, wherein said reference to a physical
instance of the application component identifies a physical location for the
application component.

4. The application framework of claim 2 or claim 3, wherein the logical definition
of the application identifies information for mapping between a data format
internal to the application component and a data format external to the
application component.

5. The application framework of any of claims 2 to 4, wherein the logical
definition of the application identifies a connection method to be used to connect
to the application component.

6. The application framework of any preceding claim, wherein the directory is
configured using LDAP.

7. The application framework of any preceding claim, wherein communication
between application components is effected using a markup language.

8. The application framework of any preceding claim, further comprising at least
one application component, wherein the application component comprises a
harness that contains an application component code segment, the harness
forming an interface between the application component code segment and an
exterior of the application component.

9. The application framework of claim 8, wherein the harness is operable to map
between an external format for communication between application components
and an internal format understandable to the component.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

21

10. The application framework of claim 9, wherein the harness is operable to
extract an application context identifier from a received message and to obtain
information for mapping between the external format and the internal format
according to the application context.

11. The application framework of claim 9 or claim 10, wherein the harness is
operable to identify and to obtain information for mapping between the internal
format and the external format according to the application context for a message
to be sent from the application component, to map data output from an
application component code segment in the internal format to the external format
and to add an application context identifier to the outgoing message.

12. The application framework of claim 10 or claim 11, wherein the harness is
operable to seek to obtain the mapping information for an application context
from an internal cache using the application context identifier, and where the
mapping information is not available and current, to obtain the mapping
information from the external directory.

13. A computer system comprising the application framework of any preceding
claim.

14. The system of claim 13, comprising a processor and memory.

15. The syétem of claim 13 or claim 14, comprising a plurality of computers
connected via a network.

16. The system of claim 15, comprising multiple instances of the application
framework.

17. An application component for the system of any of claims 13 to 16, the
application component comprising a harness that contains an application
component code segment for a predetermined application context, the harness
forming an interface between the application component code segment and an
exterior of the application component, the harness being operable to apply a
predetermined mapping for the application context to map between an external
format for communication external to the application component and an internal
format understandable to the application component code segment.

18. The application component of claim 17, wherein the harness is operable to
extract an application context identifier identifying the application context from a
received message and to obtain information for mapping between the external
format and the internal format according to the application context.

10

15

20

25

30

35

40

WO 02/075474 PCT/EP02/02766

22

19. The application component of claim 17 or claim 18, wherein the harness is
operable to identify and to obtain information for mapping between the internal
format and the external format according to the application context for a message
to be sent from the application component, to map data output from an
application component code segment in the internal format to the external format
and to add an application context identifier to the outgoing message.

20. The application component of claim 18 or claim 19, wherein the harness is
operable to obtain the mapping information by accessing a directory external to
the application component.

21. The application component of claim 18 or claim 19, wherein the harness is
operable to seek to obtain the mapping information for an application context
from an internal cache using the application context identifier, and where the
mapping information is not available and current, to obtain the mapping
information by accessing a directory external to the application component.

22. The application component of any of claims 17 to 21, wherein the application
component code segment and the harness comprise computer code.

23. A method of supporting computer applications that include one or more
application components, the method comprising:

- defining an application framework for supporting the application, the
framework comprising a directory providing a logical definition of the application;

- referencing the logical definition using an application context identifier;
and

- providing logical definitions of the application components that make up
the application to the application components including references to physical
instances of the application components.

24. The method of claim 23, wherein providing of logical definitions includes
providing a mapping between a data format internal to the application component
and a data format external to the application component.

25. The method of claims 23 or claim 24, wherein communication between
application component is effected using a markup ianguage.

26. A method of supporting computer applications that include one or more
application components, the method comprising:

- forming an application component in which the application component
includes a harness that contains an application component code segment;

- operating the harness as an interface between the application component
code segment and an exterior of the application component; and

10

15

20

25

30

35

WO 02/075474 PCT/EP02/02766

23

- the harness mapping between an external format for communication
between application components and an internal format understandable to the
component.

27. The method of claim 26, wherein the harness extracts an application context
identifier from a received message and obtains information for mapping between
the external format and the internal format according to the application context.

28. The method of claim 26 or claim 27, wherein the harness identifies and
obtains information for mapping between the internal format and the external
format according to the application context for a message to be sent from the
application component, maps data output from an application component code
segment in the internal format to the external format and adds an application
context identifier to the outgoing message.

29. The method of claim 27 or claim 28, wherein the harness seeks to obtain the
mapping information for an application context by accessing a directory external
to the application component.

30. The method of claim 27 or claim 28, wherein the harness seeks to obtain the
mapping information for an application context from an internal cache using the
application context identifier, and where the mapping information is not available
and current, obtains the mapping information by accessing a directory external to
the application component.

31. An application framework substantially as hereinbefore described with
reference to the accompanying drawings.

32. A computer system substantially as hereinbefore described with reference to
the accompanying drawings.

33. An application component substantially as hereinbefore described with
reference to the accompanying drawings.

34. A method of supporting computer applications substantially as hereinbefore
described with reference to the accompanying drawings.

WO 02/075474
1/20

- :

PCT/EP02/02766

U

12

14

v any,
LT T LT rr

SR tany AV A0 A iy g B ey,

oy, A, A A iy

o o 2 ey 427 e AV AR By A Ay
\‘

10— 16
Fig.2.
|18
40
32, 34, 36y /
30 38
I
|42 445 46y 48y
e o M |
16

SUBSTITUTE SHEET (RULE 26)

WO 02/075474 PCT/EP02/02766
2/20

(54

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

3/20 -

0L

Juawbaes apo)
Juauodwon
uoneoijddy

79

04

(09

Juswbhag apo)
Jusuodwon
uoineoijddy

9

99

0L

Juswibag apo)
Jusuodwion
uonesnddy

kg

¥9

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

4/20

Aoo

28

4N <1 Aioydaag

—A 0O [e—]

¢'¢9

W=

Wa

Nd

Nd

8.

wawbag apon

J 1 W

uauodwio)
uoneolddy

¥9

‘GBI

y1)

129/

0

SUBSTITUTE SHEET (RULE 26)

WO 02/075474

PCT/EP02/02766
520

Fig.6.

Receive 100
Message

2
Unwrap 19
Message

l

Application 104
Context
Look-up

l

Perform 106
Object
Mapping

l

Application | 108
Component
Code Processing

l

Mark-up 110
and Wrap
Message
12
Send —
Message

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

6/20

019 S9Seqejep o[doad *sananb Da S99.N0Sal 19UT) ——

gy’ doji=joaojoid
1'0"891°¢61=1s0Y
9y |—— 8 [ECCOMMIY
4
e SIoNIaS
9% Lyp)

BIEp SOY29 99IAI8S Sy =uondLosap

L8 LECCOMM|U=SIaAI1aS]S0y
ueaq=9adA|ssaooe

UBagSSa99ya9IAIaGaWBNOLIT 1S9) XLIGL0S=0LLBNSSaI9e

x RTINSO TRE
%N 7 o1 S]UBU0aW09 —
mo_EmmmEmze_omuémcogeoo Lesl
4 SWENOUIJ
/7
o=pin’
Juauodwoo=adAy
swenoydsy | |._
rAS _.V “_._Smu_.mﬁll_
el B! Jnejap=sindino
0L=9yoed
9z |—9WeNpPUas
BIEP SOU99 Jeijl uoneojdde 1s9) y=uondiiosap
0l=ayoes
aweNpuas=Anua
uonedddyaureNoyd3
7Alnd

zz1”’ (auns yosess)

02 |—-100Y A1033al1Q

PAE

SUBSTITUTE SHEET (RULE 26)

WO 02/075474

Fig.8.

Fig.8.

Fig.8
(cont).

Fig.8
(cont ii).

7/20

Fig.8.

170%

l

-]

SoftBrix

+SoftBrix
+addUserObject:void
+clearUserObjects:void
+getinputMessageCount:int
+getProperty:String
+inputData:String
+logon:void
+outputData:String
+outputData:String
+processReceived:String
+processReceived:String
+writeDebug:void
+writeError:void
+writeLog:void

PCT/EP02/02766

[

Sender

+Sender
+getinputMessageCount:int

ConnectionPool

+ConnectionPool
+closeConnections:void
+getConnection:Connection
+getConnection:Connection

SUBSTITUTE SHEET (RULE 26)

WO 02/075474

PCT/EP02/02766
8/20

Fig.8 (cont i).

190%

DefaultHandler
Receiver

+Receiver
+characters:void
+endDocument:void
+endElement:void

i__,| +ignorableWhitespace:void
+processReceived:String
+startDocument:void
+startElement:void

Envelope

+Envelope
+setAuditEntry:void

174%

|

182 g

|
Listeners

+Listeners
+addListener:void
+getListener:Object
+getlisteners:Listeners
+getScopeName:java.lang.Strir
+isObjectScoped:boolean
+newScope:Listeners
+removelListeners:Listeners
+resetScope:Listeners
+setObjectScoped:void
+setScopelncrement:void
+setScopeName:void

DefaultHandler
Mapper

+Mapper
+endElement:void
+getListeners:Listeners
+load:void
+startDocument:void
+startElement:void

194%

SUBSTITUTE SHEET (RULE 26)

WO 02/075474

|| 176

9/20

Fig.8 (cont ii).

188%

l

|
ObjectMapper

+0bjectMapper
+getSubObject:Object
+getTargetClass:String
+setElementinvokeMethod:void
+setTargetClass:void
+setTargetObject:void

i

DataMapper

+DataMapper
+getTargetAttributes:Vector
+mapAttribute:void
+mapElement:void
+setTargetAtiribute:void
+writeElementData:void

184%

PCT/EP02/02766

AN
_J—W

connection

+HTTPConnection
+Connection
+EntityConnection
+MQConnection
+SMTPConnection
+FileConnection
+10PConnection

@S
J—_I

directory

3 DefaultHandler
— ComponentEntryProperties

+ComponentEntryProperties
+getProperty:String
+startElement:void

+HostServer
+Application
+ComponentEntry
+Directory
+EMail
+Component
+DirectoryObject
AttributePair
+Componentinput
+Queue
+ComponentOutput

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

10/20

ST

SF

ST

ST

UOR9I3UU0)JLINS+
198[qQ:a)M+
u1:un0nabessapeal+
BuLig:peal+
ploA:uado+

PIOA:3S0[9+

UOROBUUOYJLINS L1

198[00:81M+
:unogabessappeal+
Bung:peal+
pIOA:Uado+

PIOA:9S0J0+
uongauuonAua+

uoposuuogAul

199[qO:a1M+
Ju:uno)ahessaypeal+
Buing:peal+
pioA:uado+

PIOA:9S0]2+
UoRoBUU0NdOII+

uonIsuuo)ddoll 3

198[00:81IM+
ur:uno)abessappes.+
Bug:peal+
pIoA:uado-+

PIOA:8S0|9+
uonoauU0Nd L IH+

UOJOSUUODJLIH T

Jui:unonabessayypeal+

198lq0:a)Im+
burys:peal+

pIoA:uado+
PIOA:8S09+ [~ ﬂ

UONI9UU0Y+

L01}99UU0Y ﬂr

"(uon) 6614|6704

‘6014

'6'614

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

11/20

N

I
l

198[qQ:01IM+
:unonabessappeal+
Buing:pesi+
pIOA:Uado+

PIOA:9S0)9+
uonosuu0)aI4+

UonoaUU0Jald

e

UoNI8UUONPIN+
199[q0:9)IM+
JuI:unonabessajypea.l+
BuLig:peat+
pioA:uado+

PIOA:8S0]0+

UONOSUUOJDN

‘(luoD) 6614

SUBSTITUTE SHEET (RULE 26)

WO 02/075474 PCT/EP02/02766
12/20

Fig.10.

Fig.10.

- Fig.10 | Fig.10 | Fig.10
Fig10-1 cont). | Cont . |(Cont i)

[176 D 77D
| |
- ComponeniEntry ComponentOutput

+clearAuditFlag:void +clearSendTo:void
+clearComponentName:void +clearType:void
+clearExpireTime:void +ComponentOutput
+clearHeight:void

+clearinputs:void
+clearOutputGroup:void
+clearPropertyURL:void
+clearWidth:void

+clearX:void

+clearY:void
+getComponentinput:Componentinput
+getComponentOutputs:Vector
+getinputs:Vector
+getOutputGroup:Vector
+getProperty:String

+setinputs:void
+setOutputGroup:void
+ComponentEntry
+clearRouteBy:void

+load:void

SUBSTITUTE SHEET (RULE 26)

WO 02/075474

PCT/EP02/02766
13/20
Fig.10 (Cont i).
| DirectoryObject
80 ——

} +load:void
+unload:void
+DirectoryObject

NANNANA
6401 (181D
| | !

3 Component J EMail
+clearDescription:void +clearBcc:void
+clearlcon:void +clearCc:void
+clearMappingURL:void +clearFrom:void
+clearName:void +clearSendStyle:void
+Component +clearSMTPHosts:void
+clearAccessName:void +clearSubject:void
+clearAccessType:void +clearTo:void
+clearHostServers:void +getSMTPHosts:Vector
+getHostServers:Vector +setSMTPHosts:void
+setHostServers:void +EMail

SUBSTITUTE SHEET (RULE 26)

WO 02/075474 PCT/EP02/02766
14/20

Fig.10 (Cont ii).
‘@_— +Directory

+createDirectoryObject:void
+deleteEntries:void
+endConnection:void
+establishConnection:void
+locateEntries:NamingEnumeration

Directory

175§ 183%

= Application - Queue

+clearClientDN:void +clearChannel:void
+clearDescription:void +clearHostName:void
+clearExpireTime:void +clearName:void
+getComponentEntry:ComponeniEntry +clearPort:void
+Application +clearQueue:void
+clearQueueManager:void
+closeConnection:void
+getPort:int
+openConnection:void
+readConnection:String
+readMessageCount:int
+setPort:void
+writeConnection:void
+Queue

SUBSTITUTE SHEET (RULE 26)

WO 02/075474 PCT/EP02/02766
15/20

Fig.10 (Cont iii).

185% 179§

| [
E? HostServer Componentinput

+HostServer +clearReadFrom:void
+clearAccessServlet:void +clearType:void
+clearHostName:void +Componentinput
+clearName:void
+clearPort:void
+clearProtocol:void
+getPort:int
+setPort:void

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

16/20

1 1 1 I | |
_ _ | _ | _
_ _ _ _ | _
_ | _ | | _
(P | _ _ |
| 950 i STVIRETTAEEIE) 301 | |
%_ | ! Jndjno xau 386 pue dooj 9L | |
_ m] oaum [e . ! !
. “ S I | A
_ | | Ho8lgnsies _ |
Il " _ “ e | |
“ &A N(@0]198uu09ab “ “ 091 “ “
| [1,_20ALiaD | | | |
_ | olpuagieb || 83l _ _ _ _
! ! _ Eo_ﬁomccoo__@m " 951 | !
| | | _ e TREIGATE] | |
_ _ _ ﬂ sindino |je Joy dooj . _ _
“ “ “ ! wyzgysoyﬁmoasooﬁmm ¥S1 “ “
! ! | ! EENERIES | __
| [| I wold1es | _
_ _ _ _ <}-adA|10s | _
“ ! “ ! auieNuonealddyies ! !
_ _ _ | L |
“ _ “ “ _Aésozbm:oovv&mm_ : _
_ _ _ ! _ _ %Esszoﬂr _._\@E
G ! ! | ! ! [~ eeqndino |
HOoauu0Y): | {Tamouauodwon):| | jooguonsauuoy: | | Afugueuodumo:|| S00[@eAuT: T IERH XUgHoS: 199100
~08} /1 Lo/l (plL Lt N %9

1161

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

17/20

PEo|

0
(uoneardde D

|
_
_
|
_
_
I
|
_
_
_
_
_
1

14

_
_
_
_
_
_
|
_
_
_
|
_
_
_
|
]
|

uoneaiddyiab

Il

|
.
W_A aweNuoneolddyles
T
|
|
|
_

202

— e

pAN R

<<J01oN4SuU09>> m
NOLLYOITddY SI Bel TNX It
T 1uewomeys | 002
: Xguos: ELENTER JETNERETR 199100
7 CozL L1 Co61

LN

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

18/20

[[[I I
] “ | _ “

| | | | j |

m w PEo] w ! !
! ! | <<IGINSiI05>> ! | L “
_ _ _ _ ! | sisuaisrpeslioge _
_ _ _ | _ | T |
R T | “ " |
| | | TenBuddewaB, | | 8Le |
“ _ “ “ -
_ Peo| _ _ _ _
| | <<I009NISU09>S | 9l¢ | “ _ “

|
_ | _ _ _ _
| “ | . I uauodwioD;ah | Ty |
_ _ : _ _ ! _
_ | DA _ _ _
“ “ “ <1019N4)8u09>> | ; “ “ “
| | N | | |
| | _ M“ PEO] 21 | _
“ " “ _A 0]9NJ)SU09>> _uA | 1‘ “
“ “ “ “ “ fnuzusuodwonah L “
_ | _ _ _ _
_ _ | _ _ ﬂA TINES 0iz
| | | | | | oL 51 Be X
_ _ _ | ! ! _ EmEm_m_tﬁw_ 80¢
Teddejy: | | Wstodwon:| |jo0quonoauno): | |AnuIusuodwoyy:| | Tonesnddy: ELWEIER JETIEREI Toalq0
Cy61) (8/1 Lo/1 <G/L W/l ‘061 . .
e1 014

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

19/20

|
|
|
_Jw&
I

_ _ _ | _
_ _ _ | _
_ _ _ _ _
_ _ | | _
| | I I
W_A | | _ |
| | w—._Q | |
| | | 4 | | doo7 pug L
| | _ | |
| | | I
_ _ ﬂ_A SH{OAL 0¥¢ ! _ 50z
| ! ! | " SingLde | |
_ _ _ _ Bl siup ynm payeroosse sanguye X Ife Joj dooT |
_ _ _ _ | dew 0} vlep Sjuasaldal ey Jips
_ _ _ _ |
_ _ _ _ _ [
| DA _ _ | 1198lgp.asnaae|dal
]] | 1 |
| [_ | slgogngied | m 08z
| “ | | 100lqoreb1e138s | dew 0}199[q0 suasaida Bey 41
| _ _ _ _
_ _ [_uA | |
“ “ " “ " 199[qQ196.e bmwn_A
_ _ _ _.n_._A | |~ 198[qQlasniab ez
“ “ “ _ | ssejgiebrelieh | H
| _ _ _ _
| ! ! ! \4_.._._A _
“ " “ “ (444 " Jaug)simeb oee
| | | | | | i
YOeIS: EL [EIRE]]o JITENH ToddeeIRq: SIOUAIST - XUIgHos: JEIVERELN
{681 (881 Co81 “v81 ‘28l 0/ 061’

‘¥ 1014

SUBSTITUTE SHEET (RULE 26)

PCT/EP02/02766

WO 02/075474

20/20

I____.._._.__

_ _ |
_ | _
_ | [
[| |
| _ I
. - | |
9G¢ _ _
“ 3 oAUl .m. “ “
_ e _ ! [¥Ge
“ “ “ Juswisgdew “ “
_ | _ paddeuw eyep sem He] 411
I [_
| “ L |
| _ | dod - ¢G¢
| | [|
| I |
| [| DA N
“ _ “ I sisleisienowial | 06z
_ I I [
| I | _
| | | | T
" “ 8]191dwo9 si elep a_c_Eooc_ 10 Buissa0id-9yL Y31 131=0r] ”__“
I
[VETR Jaddepereq: MOeIS: [SETESEA JEIVERERH
(z61 (yg) (6l (z81 Lo61

‘G161

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

