

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2005/0278838 A1

Shenosky et al.

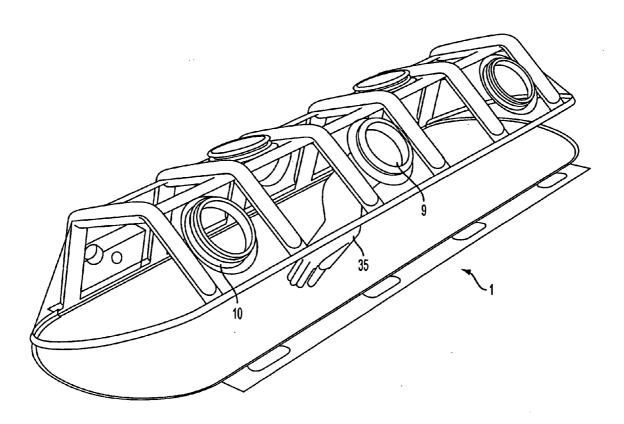
Dec. 22, 2005 (43) Pub. Date:

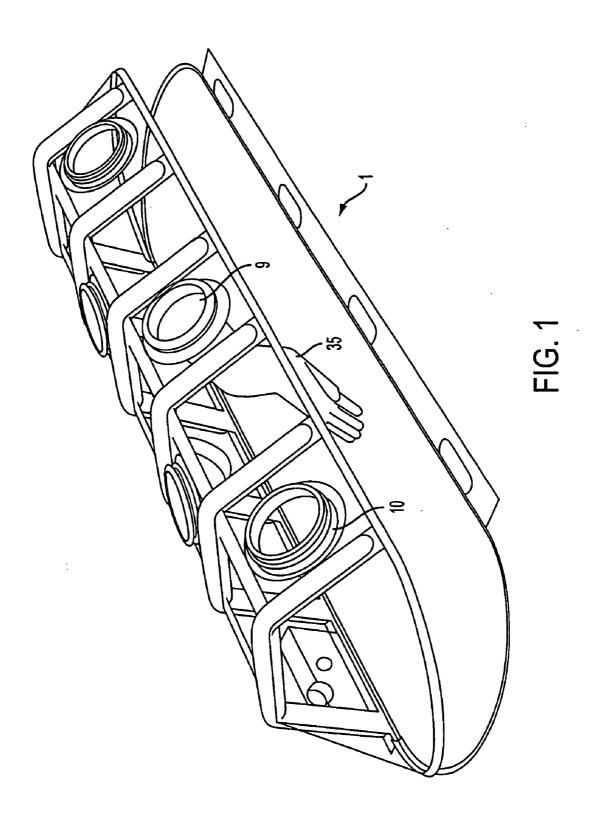
(54) MODULAR PORT SYSTEM AND REPLACEMENT METHOD THEREOF

(75) Inventors: **Joseph T. Shenosky**, Hellam, PA (US); Mark F. Kaye, Falls Church, VA (US); Valerie J. Yoder, Ann Arbor, MI (US)

> Correspondence Address: STAAS & HALSEY LLP **SUITE 700** 1201 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005 (US)

(73) Assignee: Alion Science and Technology, McLean,


(21) Appl. No.: 10/868,197


(22) Filed: Jun. 16, 2004

Publication Classification

(57)**ABSTRACT**

A chemical or biological containment apparatus having a seal to contain contaminants in an inside thereof from passing to an outside, including an outer envelope; a port disposed in the envelope, the port including an outer portion having a circumferential portion extending away from the envelope and a flange extending from the circumferential portion and attached to the envelope, and an inner portion. The inner portion includes a circumferential surface corresponding to the circumferential portion, a plurality of grooves formed in the circumferential surface, and a plurality of O-rings respectively received in the grooves to form the seal with the outer portion.

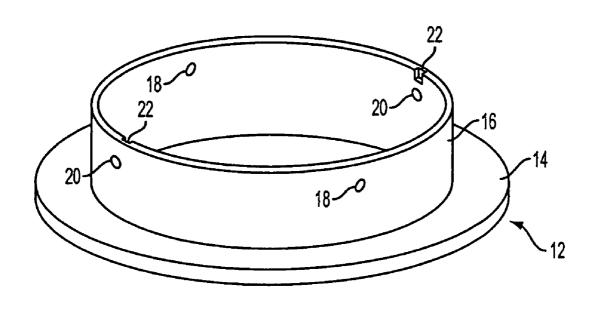


FIG. 2

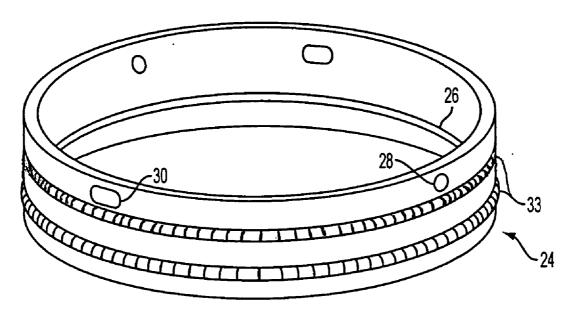


FIG. 3

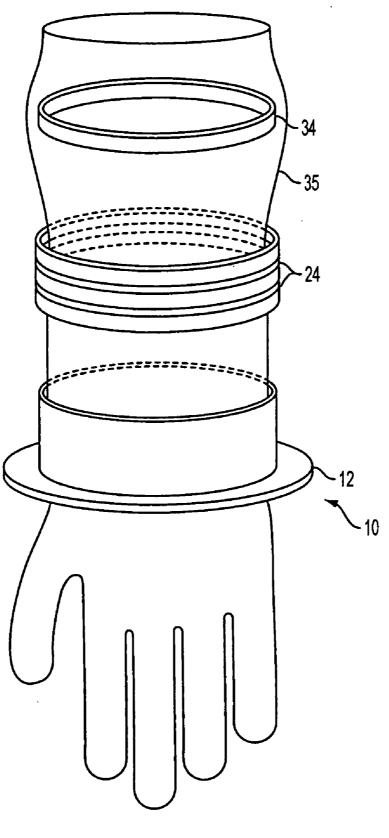
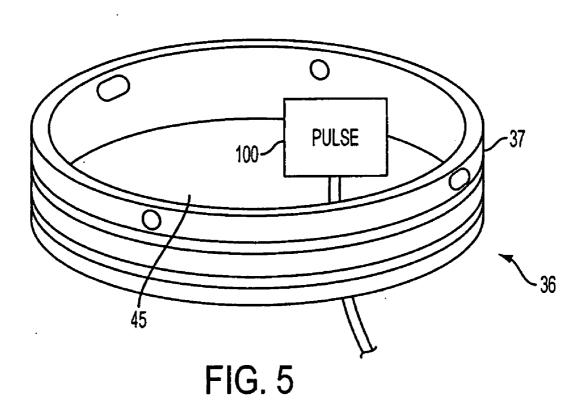



FIG. 4

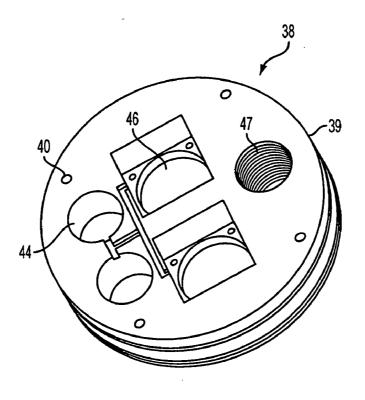


FIG. 6A

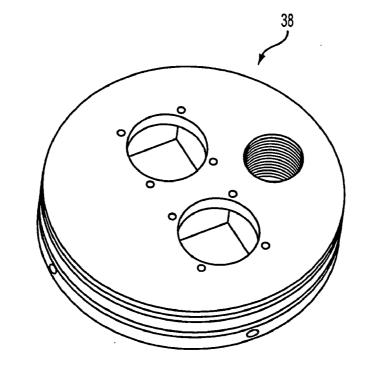


FIG. 6B

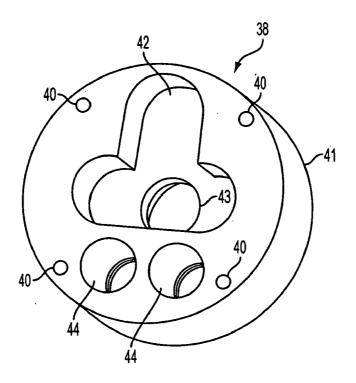


FIG. 7A

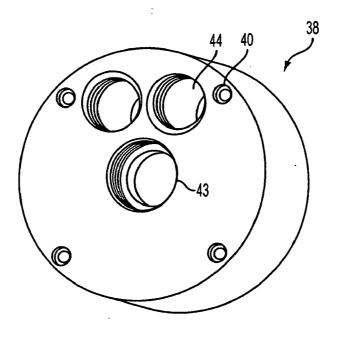


FIG. 7B

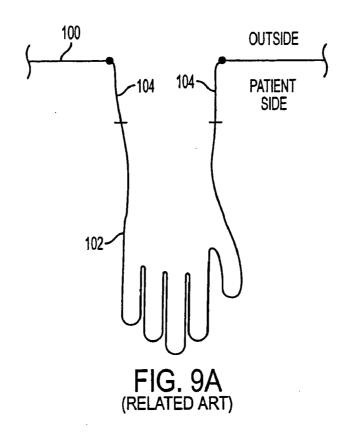
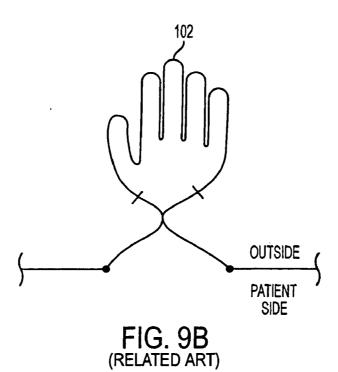




FIG. 8

MODULAR PORT SYSTEM AND REPLACEMENT METHOD THEREOF

BACKGROUND OF THE INVENTION

[0001] In medical situations, it is sometimes necessary to isolate a patient to prevent medical personnel or the environment at large from being contaminated by the patient. For example, victims of chemical or biological attacks, and certain infectious diseases require isolation. This isolation system may be in the form of a pod, with gloves provided therein to allow access by the medical worker without risk of contamination. However, these gloves may require replacement due to failure or contamination. A related replacement operation is illustrated in FIGS. 9A and 9B. During normal operation, a glove 102 is provided in a wall 100 of an isolation device, and is disposed on the inside of the isolation device, where a patient is located. The glove 102 is attached to a flap 104, which is made of a flexible material. During replacement, the glove 102 is pulled to the outside, and portions of the flaps 104 are pulled together below the glove 102 and tied with a rubber band or other sealing member, so that contaminants within the isolation system do not escape to the outside. The glove 102 is separated from the flap 104, and a new glove 102 is attached to the flap 104.

[0002] There are several disadvantages to this operation. First, the glove 102 and the flap 104 may contain contaminants, yet these elements are exposed to the outside during replacement. Thus, workers must be extremely careful to avoid contamination. This may require protective clothing or modified breathing. However, such preventative measures may not be sufficient. Furthermore, the seal formed by tying the flaps 104 may not be sufficient to prevent contaminants from escaping, especially in light of the small size of biological microorganisms and chemical molecules. Also, this operation is cumbersome and time consuming because it requires several steps (tying and untying seals 104, removing and replacing gloves 102). In life and death situations, when time is of the essence, patient safety is compromised. Finally, a thick glove is required, degrading the tactile feel sensed by the worker.

SUMMARY OF THE INVENTION

[0003] To possibly address the above concerns and/or different concerns, the inventors propose an apparatus to interface between an inside and an outside of a sealed environment, including an outer port, and an inner port, disposed in the outer port to provide a seal between the inside and the outside. The inner port is replaceable by a replacement inner port while maintaining the seal during a replacement operation.

[0004] To possibly address the above concerns and/or different concerns, the inventors also propose a chemical or biological containment apparatus having a seal to contain contaminants in an inside thereof from passing to an outside. The apparatus includes an outer envelope, a port disposed in the envelope, the port including an outer portion having a circumferential portion extending away from the envelope and a flange extending from the circumferential portion and attached to the envelope, and an inner portion. The inner portion includes a circumferential surface corresponding to the circumferential portion, a plurality of grooves formed in

the circumferential surface, and a plurality of O-rings respectively received in the grooves to form the seal with the outer portion.

[0005] To possibly address the above concerns and/or different concerns, the inventors also propose a method including providing a first inner port to create a first seal between an inside and an outside of a biological or chemical containment device, and replacing the first inner port with a second inner port. The replacing includes pressing the first inner port with the second inner port while maintaining the first seal, and creating a second seal with the second inner port while maintaining the first seal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] These and other objects and advantages of the present invention will become more apparent and more readily appreciated from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings of which:

[0007] FIG. 1 is an isometric perspective view of an isolation device including the port system according to one aspect of the invention.

[0008] FIG. 2 is a perspective view of an outer port shown in FIG. 1.

[0009] FIG. 3 is a perspective view of an inner port shown in FIG. 1.

[0010] FIG. 4 is an exploded view illustrating the port/glove arrangement of FIG. 1.

[0011] FIG. 5 is a perspective side view of another embodiment of the inner port according to the present invention.

[0012] FIG. 6A is a bottom view of a lower half of the inner port according to still another embodiment of the present invention.

[0013] FIG. 6B is a top view of the lower half of FIG. 6A.

[0014] FIG. 7A is a bottom view of an upper half of the inner port according to the embodiment of FIG. 6A.

[0015] FIG. 7B is a top view of the upper half of FIG. 7A.

[0016] FIG. 8 is a bag which may be used in the isolation device of FIG. 1.

[0017] FIGS. 9A and 9B illustrate a glove replacement operation according to the related art.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0018] Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.

[0019] FIG. 1 is an isometric perspective view of an isolation system 1 including the port system according to one aspect of the invention. The isolation system 1 includes a plurality of access holes 9 to allow access between an inside and outside thereof. Port systems 10 are in the holes 9 and provide for the insertion of devices such as glove 35, which allows a medical worker to operate on a patient. In

FIG. 1, the isolation system 1 is shown as having the glove 35 inserted therein. However, as will be discussed below, a bag, motor, or medical evaluation apparatus may also be inserted in the port systems 10. Furthermore, other devices to allow communication between the inside and outside of the isolation system 1 may be inserted, as well as other devices which allow for the operation of the isolation system 1. Furthermore, the structure of the isolation system 1 is for illustrative purposes only, and the present embodiments of the port systems 10 may be applied to isolation systems 1 having different designs, or other devices which maintain a sealed environment. For example, although the bottom of the isolation system 1 is shown as being formed of different pieces material, it is certainly possible that a single piece of material could function as both the top and bottom.

[0020] A patient is placed within the isolation system 1 in order to prevent the spread of an infectious disease or other hazard. Although the isolation system 1 is shown as being open, the system 1 is closed during actual operation. A positive or a negative pressure may be maintained, depending on the nature of the isolation. The outer port may be made of PVC, polyurethane or similar materials.

[0021] FIG. 2 is a perspective view of an outer port 12 of the port systems 10. The outer port 12 includes a flange 14 which is in contact with the holes 9, and a wall 16 extending outward from the holes 9. Although the holes 9 and outer port 12 are illustrated as having a substantially circular shape, it is noted that different shapes are also possible, provided the integrity of the seal between the inside and outside is maintained. Disposed in the wall 16 are alignment holes 20 which allow for alignment as discussed below. Also in the wall 16 are threaded holes 18 which provide for connection, as discussed below. Slots 22 are also in the wall 16 for alignment, as discussed below.

[0022] FIG. 3 is a perspective view of an inner port 24 of the port systems 10 of FIG. 1. The inner port 24 has an external circumference generally corresponding to the inner circumference of the wall 16 of the outer port 12, to be inserted therein. The inner port 24 includes a retaining stop 26 in the form of a step, which allows the lock unit 34 to rest against and seal the glove 35 between the lock unit 34 and the inner port 24 at all times.

[0023] The inner port 24 further includes a plurality of grooves 32, each of which receives an O-ring 33. The O-rings 33 contact the inner circumference of the wall 16 and the inner port 24, forming a seal therebetween. As discussed below with respect to the replacement operation, the O-rings 33 are spaced such that this seal is not broken during a replacement operation. The inner port 24 further includes a slot 30 which aligns with one of the threaded holes 18 to receive a screw, bolt, or other threaded fastening unit passing through the threaded holes 18. An alignment hole 28 is aligned with one of the alignment holes 20 of the outer port 12.

[0024] FIG. 4 is an exploded view illustrating the arrangement of the outer port 12, inner port 24 and the glove 35. The glove 35 fits between the inner port 24 and a lock unit 34, illustrated herein as a locking ring. The lock unit 34 rests against the stop 26 and there is a very tight fit creating a seal between the glove 35 and the inside wall of the inner port 24. Although FIGS. 1 and 4 illustrate the glove 35 disposed between the lock unit 34 and the inner port 24, other flexible

elements may also be inserted therein, possibly to provide communication between the inside and the outside of the isolation system. Another example of such a flexible element is a bag 48, as illustrated in FIG. 8. The bag 48 includes first and second seals 50, 52. The function of the bag 48 will be discussed below.

[0025] FIG. 5 illustrates another embodiment of an inner port 36, which may be inserted into the outer port 12. The inner port 36 is in the form of a solid plug. Thus, a solid face 45 spans a circumferential wall 37. The solid plug 36 may be used to seal any of the holes 9 which are not in use. Alternately, as shown in FIG. 5, medical monitoring equipment (i.e., to measure pulse rate or body temperature) may pass through or be mounted on the face. Similarly, other devices which allow for communication between the inside and the outside (i.e., IV, O_2 , suction or blood sample lines, or defibrillation lines) may also be mounted on or pass through the inner port 36.

[0026] The solid plug may be modified to include two motors in the bottom wall thereof to pressurize/depressurize the isolation system 1. As shown in FIGS. 6A, 6B, 7A and 7B, a motor and filter port 38 corresponds to the shape of the outer port 12 and includes a similar arrangement of grooves and O-rings on an outside thereof to maintain the seal. The motor and filter port 38 includes an upper half 41 and a lower half 39. Holes 40 pass through the lower half 39 and the upper half 41 to receive a bolt or other fastening unit. The lower half 39 includes a motor cavity 46, wherein a fan motor (not shown) or other type of air-driving unit is disposed. Holes 44 receive a battery (not shown) which drives the fan motor. The battery may have a stepped outer circumference, thus a pill bottle or other cup-shaped element may be inserted into the holes 44 so that the overall shape of the holes 44 and cup conform with the battery, thereby preventing the battery from being inserted backwards. A pressure release valve (not shown) fits into a hole 47 to maintain relative pressure between the inside and the outside of the system 1, for example, in the event of airplane cabin depressurization, or simply to maintain the desired positive or negative pressure under normal circumstances.

[0027] As shown in FIGS. 7A and 7B, the upper half 41 also includes the holes 40 and 44, and an airflow cavity 42 to receive air driven by the fan motor. A filter hole 43 is provided with a filter (not shown), which filters the air driven by the fan motor. The filter may be either an intake or an exhaust filter. The filter may be a standard HEPA filter or other biological or chemical filter. As shown more clearly in FIG. 7B, the filter hole 43 may be threaded, so that the filter may be screwed therein with a seal on the bottom surface of the filter. The seal may be rubber or a similar material. The top half may also have grooves and O-rings.

[0028] A replacement operation according to the embodiments of the present invention will now be described. As an illustrative example, the replacement of the inner port 24/glove 35 combination will be discussed. However, the replacement of the other embodiments is similar. The operation begins with the state illustrated in FIG. 1, in which the glove 35 is already inserted into the isolation system 1, with a seal already existing. It may become necessary to replace the glove 35 with another glove 35, for example, if the old glove 35 becomes worn. In such a case, a replacement module is provided, which includes the inner port 24, the

lock unit 34 and the replacement glove 35 all assembled in one unit. The replacement inner port 24 is simply pressed against the inner port 24 that is already in place until the original inner port 24 drops inside of the isolation system 1. The spacing of the O-rings 33 is such that at some point during the replacement operation, O-rings 33 of both inner ports 24 are providing seals. Thus, when the seal created by the original inner port 24 is lost, the replacement seal has already been established. Thus, the glove 35 can be replaced without compromising the seal, or exposing the original glove 35 to the outside environment. Thus, any contaminants on the original glove 35 are not exposed to the outside. Finally, a thinner glove may be used, thereby improving the tactile feel.

[0029] With respect to the bag 48, a similar pressing operation takes place. After the bag 48 is in place, an object (not shown) may be passed to the inside of the system 1 therethrough. The seal 52 is opened from the outside, and the object is placed between the seals 50 and 52. Then, the seal 52 is re-sealed, and the seal 50 is opened from the inside (with the glove 35) to introduce the object to the inside.

[0030] The invention has been described in detail with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

[0031] For example, similar continuous seal replacement methods may be employed in connection with glove boxes in nuclear, chemical or biological laboratories, portable laboratories for chemical analysis, incubators, or when working behind protective glass for explosives or lasers.

What is claimed is:

1. An apparatus to interface between an inside and an outside of a sealed environment, comprising:

an outer port; and

an inner port, disposed in the outer port to provide a seal between the inside and the outside,

the inner port being replaceable by a replacement inner port while maintaining the seal during a replacement operation.

- 2. The apparatus of claim 1, wherein the inner port comprises first and second seal members disposed on an outside thereof to contact the outer port and thereby form the seal.
- 3. The apparatus of claim 2, wherein the replacement inner port comprises first and second seal members disposed on an outside thereof to contact the outer port and thereby maintain the seal.
- 4. The apparatus of claim 3, wherein at least one of the first and second seal members of the inner port and the replacement inner port contact the outer port at all times during the replacement operation.
- 5. The apparatus of claim 2, wherein the first and second seal members of the inner port are O-rings.
- **6**. The apparatus of claim 3, wherein the first and second seal members of the replacement inner port are O-rings.
- 7. The apparatus of claim 1, wherein the apparatus is a chemical or biological containment device, and the outer port comprises:

- a circumferential surface to receive the inner port and the replacement inner port; and
- a flange portion extending radially from the circumferential surface to attach the outer port to the containment device.
- **8**. The apparatus of claim 1, wherein the inner port comprises:
 - a circumferential outer surface;
 - a plurality of grooves formed in the outer surface; and
 - a plurality of O-rings respectively formed in the plurality of grooves to contact the outer port and thereby form the seal.
- 9. The apparatus of claim 1, wherein the inner port and the outer port each comprise a plurality of holes, the apparatus further comprising a plurality of fastening units to respectively pass through the holes of the outer and inner ports to fasten the outer and inner ports together.
- 10. The apparatus of claim 1, wherein the apparatus is a chemical or biological containment envelope.
- 11. The apparatus of claim 3, wherein one of the seal members of the inner port and one of the seal members of the replacement inner port simultaneously contact the outer port during the replacement operation.
 - 12. The apparatus of claim 1, further comprising:
 - a lock unit disposed within the inner port; and
 - a bag disposed between the lock unit and the inner port.
 - 13. The apparatus of claim 1, further comprising:
 - a lock unit disposed within the inner port; and
 - a glove disposed between the lock unit and the inner port.
- 14. The apparatus of claim 8, wherein the inner port further comprises a face spanning across the outer surface.
- 15. The apparatus of claim 14, wherein the face is a solid face.
- **16**. The apparatus of claim 14, further comprising medical monitoring equipment disposed on the face.
- 17. The apparatus of claim 15, further comprising a fluid communication unit passing through the face, to allow fluid communication between the outside and a patient disposed within the inside.
- **18**. The apparatus of claim 8, further comprising a motor to pressurize/depressurize the sealed environment.
- 19. A chemical or biological containment apparatus having a seal to contain contaminants in an inside thereof from passing to an outside, comprising:

an outer envelope;

- a port disposed in the envelope, the port comprising:
 - an outer portion having a circumferential portion extending away from the envelope and a flange extending from the circumferential portion and attached to the envelope, and
 - an inner portion comprising a circumferential surface corresponding to the circumferential portion, a plurality of grooves formed in the circumferential surface, and a plurality of O-rings respectively received in the grooves to form the seal with the outer portion.
- **20**. The apparatus of claim 19, further comprising a plurality of the ports.

- 21. The apparatus of claim 20, wherein at least one of the ports further comprises a glove between the sealed inner portion.
- 22. The apparatus of claim 20, wherein at least one of the ports further comprises a bag between the sealed inner portion.
- 23. The apparatus of claim 20, wherein the inner portion of at least one of the ports further comprises a face spanning the circumferential surface.
- **24**. The apparatus of claim 20, wherein the inner portion further comprises a motor to pressurize/depressurize the envelope.
 - 25. A method comprising:

providing a first inner port to create a first seal between an inside and an outside of a biological or chemical containment device; and

- replacing the first inner port with a second inner port, comprising:
 - pressing the first inner port with the second inner port while maintaining the first seal, and
 - creating a second seal with the second inner port while maintaining the first seal.
- 26. The method of claim 25, further comprising:
- providing an outer port to receive the first and second inner ports; and
- pressing the first inner port with the second inner port after the creating of the second seal until the first inner port is ejected from the outer port to the inside of the device.

* * * * *