(54) Title: PRIVACY PROTECTION FOR PARTICIPATORY SENSING SYSTEM

(57) Abstract: Provided is a method that may be used for privacy protection. The method comprises: generating a pseudonym at a user equipment in association with sensed data; calculating a unique value based upon the pseudonym using a first algorithm; sending the unique value and the sensed data to a server; receiving from the server a certificate, wherein the certificate is calculated based at least in part on the unique value using a second algorithm; and sending at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data; wherein the certification center is internal or external to the server. By this method, a user’s identity may be protected.
With international search report (Art. 21(3))
PRIVACY PROTECTION FOR PARTICIPATORY SENSING SYSTEM

FIELD OF THE INVENTION

Example and non-limiting embodiments of this invention relate generally to a communication network and particularly to a privacy protection technology that may be used for participatory sensing systems in the communication networks.

BACKGROUND OF THE INVENTION

Mobile phones of today have evolved from merely being phones to full-fledged computing, sensing, and communication devices. These features of mobile phones coupled with their ubiquity have paved a way for an exciting new paradigm for accomplishing large-scale sensing, i.e. participatory sensing. Participatory sensing is a concept of communities (or other groups of people) contributing sensory information to form a body of knowledge. One key idea of participatory sensing is to empower ordinary persons to collect and share sensed data from surrounding environments using their mobile devices. For example, cameras on mobile phones can be used as video and/or image sensors; embedded Global Positioning System (GPS) receivers on mobile phones can provide location information.

SUMMARY OF THE INVENTION

Example embodiments of the present invention propose an anonymous dynamic identity (ID) privacy protection method for participatory sensing with incentives. In this method, a pseudonym is used to represent a user. When a user wants to provide sensed data to a server, the user may generate a pseudonym and use the pseudonym as his or her identity. Consequently, the server and/or an adversary will not be able to track the user since the user’s identity information is hidden in the whole process of communication.

An aspect of the invention relates to a method. The method comprises: generating a pseudonym, at a user equipment, in association with sensed data; calculating a unique value based upon the pseudonym using a first algorithm; sending the unique value and the sensed data to a server; receiving a certificate from the server, wherein the certificate is calculated based at least in part on the unique value using a second algorithm; and sending at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

A second aspect of the invention relates to another method. The method comprises: receiving, at a server, a unique value and sensed data from a user equipment, wherein the unique value is calculated at the user equipment using a first algorithm based upon a pseudonym generated by the user equipment; calculating a certificate based at least in part on the unique value using a second
algorithm; and sending the certificate to the user equipment so that the certificate may be forwarded to a certification center for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

A third aspect of the invention also relates to a method. The method comprises: receiving, at a certification center, at least a pseudonym and a certificate via a secure channel from a user equipment; calculating a unique value using a first algorithm based upon the pseudonym; calculating at least one reference value based at least in part on the unique value using a second algorithm; comparing the at least one reference value with the received certificate; and if the at least one reference value matches the received certificate, confirming validity of the received certificate so that the user equipment may obtain a reward associated with sensed data; wherein the certification center is internal or external to a server.

A fourth aspect of the invention relates to an apparatus. The apparatus comprises: a sensor arrangement comprising at least one sensor for sensing data; at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: generate a pseudonym in association with sensed data; calculate a unique value based upon the pseudonym using a first algorithm; send the unique value and the sensed data to a server; receive from the server a certificate, wherein the certificate is calculated at the server based at least in part on the unique value using a second algorithm; and send at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

A fifth aspect of the invention relates to another apparatus. The apparatus comprises: at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: receive a unique value and sensed data from a user equipment, wherein the unique value is calculated at the user equipment using a first algorithm based upon a pseudonym generated by the user equipment; calculate a certificate based at least in part on the unique value using a second algorithm; and send the certificate to the user equipment so that the certificate may be forwarded to a certification center for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the apparatus.

A sixth aspect of the invention also relates to an apparatus. The apparatus comprises: at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: receive at least a pseudonym and a certificate via a secure channel from a user equipment; calculate a unique value using a first algorithm based upon the pseudonym; calculate at least one reference value based at least in part on the unique value using a second algorithm; compare the at least one reference value with the received certificate; and if the at least one reference value matches the received certificate, confirm validity of the received certificate so
that the user equipment may obtain a reward associated with sensed data; wherein the apparatus is internal or external to a server.

A seventh aspect of the invention relates to a method, wherein an encryption function is used to calculate a certificate which is used for obtaining a reward by a user.

Further, the proposed method uses a one-way hash function to convert the user's pseudonym into a unique value. The value transmitted between the user and the server is the unique value and the one-way hash function is irreversible, so the adversary is not possible to obtain the user's pseudonym.

The proposed method also uses a certificate-pseudonym pair to verify validity of the certificate. This can ensure effective implementation of the incentive mechanism.

BRIEF DESCRIPTION OF DRAWINGS

The invention itself, the preferable mode of use and further objectives are best understood by reference to the following detailed description of the embodiments when read in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a schematic architecture of a participatory sensing system according to an example embodiment of the present invention;

Figure 2 illustrates interaction between a user equipment and a server (or an application server), and a certification center according to an example embodiment of the present invention;

Figure 3A and 3B show a flowchart illustrating method steps performed on the user equipment to obtain a reward, according to an example embodiment of the present invention;

Figure 4 shows a flowchart illustrating method steps performed on the application server according to an example embodiment of the present invention;

Figure 5 shows a flowchart illustrating method steps performed on the certification center according to an example embodiment of the present invention;

Figure 6 shows a schematic structure of the user equipment according to an example embodiment of the present invention;

Figure 7 shows a schematic structure of the server according to an example embodiment of the present invention; and

Figure 8 shows a schematic structure of the certification center according to an example embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
A typical participatory sensing application operates in a centralized way, i.e., sensed data collected by volunteers' mobile phones/devices are reported (for example, using wireless data communications) to a server or a mobile phone/device acting as a server for processing. The sensing tasks on the phones can be triggered manually, automatically, or based on context. On the server side, the sensed data may be analyzed and presented in various forms, such as graphical representations or maps showing the sensing results in an individual and/or community scale. Simultaneously, the results may be displayed locally on a user's mobile phone or accessed by the public according to different application scenarios.

The participatory sensing technology has the following characteristics:

- Low cost of deployment due to the usage of existing sensors (for example mobile phones) and communication (cellular or WiFi) infrastructure to collect and transmit data.
- The inherent mobility of mobile terminal results in unprecedented spatial and temporal coverage.
- Low degree of difficulty of service development which facilitates large-scale deployment.
- The user may be not only a customer of the participatory sensing system but also a service provider and/or an ultimate beneficiary.

Participatory sensing can be used to retrieve information about the environment, weather, traffic as well as any other sensory information that collectively forms knowledge.

In order to maintain user's enthusiasm to participate in a participatory sensing application, some sort of reward or payment mechanisms may be established to motivate the user to actively participate in the application. To reward the participated user, the user's information, for example, the user's identity information is needed.

On the other hand, when a user provides his/her sensed data, he/she may not want to leak his/her private information (for example, identity information).

A challenge is how to protect the privacy of a user and meanwhile meet the demand for rewarding the user when the user is involved in a participatory sensing system.

Some embodiments will be described in more detail with reference to the accompanying drawings, in which certain embodiments of the present invention have been illustrated. However, the present invention can be implemented in various manners, and thus should not be construed to be limited to the embodiments disclosed herein. On the contrary, those embodiments are provided for the thorough and understanding of the present invention, and completely conveying the scope of the present invention to those skilled in the art.

It is understood in advance that although this disclosure includes a detailed description on a participatory sensing system, implementation of the teachings recited herein are not limited to a participatory sensing system. Rather, embodiments of the present invention are capable of being
implemented in conjunction with any other type of system requiring privacy protection and
incentive mechanisms now known or later developed.

Figure 1 illustrates a schematic architecture of a participatory sensing system 100 according to an
eexample embodiment of the present invention. The participatory sensing system 100 comprises
a server, such as an application server 101, a certification center (CC) 102, and a user equipment
(UE) 103. The application server 101 may also be a user equipment that acts as a server and
runs server application(s). For simplicity, only one UE 103 is shown in Figure 1, however, more
than one UE can be used in the participatory sensing system. The UE 103 may also be referred
to as a user terminal, which comprises a wireless mobile communication device including, but not
limited to, a mobile phone, a smart phone, a personal digital assistant (PDA), a handset, and a
laptop computer. The UE 103 may be provided with one or more sensors and is capable of
sensing the surrounding environment and collecting sensed data \(S_i \). The UE 103 can randomly
generate a pseudonym \(m_i \) and convert it into a value \(h(m_i) \) via a one-way hash function \(h(-) \)
when the user wishes or is required to send the sensed data to the application server 101.

The application server 101 is capable of designing/selecting a suitable one-way hash function
\(h(-) \) and distributing it to all users. Or the one-way hash function \(h(-) \) may be pre-loaded and
agreed between the application server 101 and the UE 103. In one embodiment, the hash
function or a similar function is referred to as a first algorithm. The one-way hash function may
be, for example, but not limited to, MD5 (Message Digest Algorithm 5) or SHA-1 (Secure Hash
Algorithm-1) etc. MD5 is a one-way hash algorithm developed by RSA Data Security Inc., in
which the input can be a character string with any length and the output is always 128-bit encoded
data. SHA-1 is a cryptographic hash function designed by the United States National Security
Agency and published by the United States NIST as a U.S. Federal Information Processing
Standard. SHA-1 can also accept any length of input, and output 160-bit encoded data. SHA-1
is irreversible and has a good avalanche effect (when the input is changed slightly, for example,
flipping a single bit, the output changes significantly, for example, half the output bits flip) to
avoid collision. The application server 101 may also design an encryption function \(f_k(-) \), which
is used to generate a corresponding certificate for the user. In one embodiment, the encryption
function or a similar function is referred to as a second algorithm. The encryption function \(f_k(-) \)
can be chosen from common symmetric encryption functions, such as AES (Advanced Encryption
Standard), Triple DES (Triple Data Encryption Standard) etc. The input of encryption function
\(f_k(-) \) can be a long character string obtained by concatenating a key \(k \) and other parameters.
Alternatively, public-key cryptography algorithms can also be used, such as RSA or ECC (Elliptic
Curve Cryptography), in which the corresponding character string may be mapped into a certain
integer (one-to-one mapping) as the input to the algorithm. The application server 101 may
further define a data format which is required by the user to send a message comprising the sensed
data and the value \(h(m_i) \). The application server 101 may also define a set of grades for the
sensed data and assign the number of the grades according to requirements.
The certification center (CC) 102 may be internal or external to the application server 101 and functions as a verification agency. In one embodiment, the certification center 102 is independent of the application server 101, and the application server 101 may trust the certification center 102 completely in this situation. In another embodiment, the CC 102 is incorporated into the application server 101. The CC 102 is aware of the application server’s master key k, the encryption function \(f_k(\cdot) \) (i.e., a type of the second algorithm) and the one-way hash function \(h(\cdot) \) (i.e., a type of the first algorithm) designed/selected by the application server 101. The certification center 102 can communicate with the user equipment 103 via a secure channel. In one embodiment, the application server 101 sends information associated with the first algorithm and information associated with the second algorithm to the CC 102 so that the CC 102 may perform the first algorithm and the second algorithm when necessary. The information associated with the first algorithm may comprise information for identifying or designating the first algorithm and/or one or more parameters of the first algorithm. The information associated with the second algorithm may comprise information for identifying or designating the second algorithm and/or one or more parameters of the second algorithm.

The proposed method according to an example embodiment of the present invention may generally contain, for example, five phases, i.e. system initialization phase, data collection and uploading phase, data processing phase, certificate obtaining phase and reward obtaining phase.

- System initialization phase

In this phase, the application server 101 designs or selects a suitable one-way hash function \(h(\cdot) \) and distributes/notifies it to all users. The application server 101 may also define the data format which is required when the user sends a message to the application server 101. The application server 101 may further define a set of grades for the sensed data based on, for example, quality, types or amount of the data, and may set the number of the grades according to application requirements. For example, the number of the grades can be set to \(R \) and a set of grades, i.e. \(G_z \in \{G_1, G_2, \ldots, G_R\} \) is obtained. The quality of data may refer to data accuracy. As an example, in a case where several participants provide the data on temperature, if the temperature provided by a new participant is close to the existing others, the quality of the data provided by the new participant is good and thus a higher grade may be assigned to the data. In contrast, if the temperature provided by the new participant is in a big difference from the existing others, the quality of the data provided by the new participant may be not good and thus a lower grade may be assigned to the data. The types of data mainly refer to value of the different types of data which a participant is capable of collecting. For example, if users’ smart phones have temperature sensors, the application server 101 may obtain temperature data from the users. However, maybe only a small amount of the smart phones have humidity sensors, and accordingly the grade assigned to humidity data may be higher than the grade assigned to the temperature data. In another example, if a smart phone can upload PM 2.5 (Particulate Matter 2.5) data that other
smart phones could not provide, the corresponding grade assigned to the data may be even higher. Thus, the parameter \(G_x \) can be flexibly defined according to particular applications.

In addition, the application server 101 designs or selects an encryption function \(f_k(h(m_i), T_i, G_i) \) which may be used to generate a certificate for a user, where \(k \) is the server's master key, \(m_i \) is user's pseudonym, \(T_i \) is a timestamp corresponding to the \(m_i \) and \(G_i \) is the grade of the sensed data.

- Data collection and uploading phase

The user operates the UE 103 to launch a participation sensor program embedded in the UE 103 in accordance with requirements of the system. Then, the UE 103 generates corresponding sensed data \(S_i \). The sensed data \(S_i \) mainly refers to the content related to the data sensed by the UE 103, which may comprise a data type and a particular value, or an approximate area in which the data is collected (in order to protect user's privacy, maybe only an area conforming to certain accuracy instead of an exact position of the user is provided). Then, if the user wishes or is required to send the sensed data \(S_i \), the UE 103 randomly generates a pseudonym \(m_i \). At this point, the UE 103 has already obtained or has pre-loaded an agreed one-way hash function \(h(\cdot) \) from the application server 101, and thus it can convert the pseudonym \(m_i \) using the hash function \(h(\cdot) \) and generate a unique value, i.e., a hash conversion value \(h(m_i) \). The UE 103 then generates a message \(\{h(m_i), S_i, T_i\} \), which includes the hash conversion value \(h(m_i) \) of the pseudonym \(m_i \), the sensed data \(S_i \) and a timestamp \(T_i \) when the data was collected, and then sends this message to the application server 101 in the data format defined by the application server 101 via a common channel.

- Data processing phase

Upon receiving the message \(\{h(m_i), S_i, T_i\} \) from the UE 103, the application server 101 processes the relevant sensed data \(S_i \) and determines the grade of the sensed data \(S_i \). Next, according to the grade of the sensed data \(S_i \), the application server 101 calculates a signature \(\Delta_i \) based on the user's pseudonym, for example, through equation (1) as follows:

\[
A_i = f_k(h(m_i), T_i, G_i)
\]

(1)

where \(k \) is the server's master key, \(G_i \) is the grade of the sensed data and \(T_i \) is the timestamp.

In one embodiment, the signature is also referred to as a certificate, by which the user equipment may obtain, for example, from the application server 101, or from the CC 102, a reward associated with the sensed data \(S_i \). In one embodiment, the certificate is calculated by the application server 101 based upon the above-described unique value \(h(m_i) \) using a second algorithm. In another embodiment, the certificate is calculated by the application server 101 based upon the unique value \(h(m_i) \) and a grade of the sensed data using a second algorithm. In a further embodiment, the certificate is calculated by the application server 101 based upon the unique value \(h(m_i) \), a grade of the sensed data, and a timestamp associated with the sensed data.
using a second algorithm. Once the signature is calculated, the application server 101 generates a message \(\{ h(m_i), \Delta_i, T_i \} \), which comprises the hash conversion value \(h(m_i) \), the signature \(\Delta_i \) and the timestamp \(T_i \), and then sends it to the UE 103 via a common channel.

- **Certificate obtaining phase**

Upon receiving the message \(\{ h(m_i), \Delta_i, T_i \} \), the UE 103 extracts the signature \(\Delta_i \) and stores it in association with the pseudonym \(m_i \) and time stamp \(T_i \) into the UE 103. The UE 103 may store a series of certificate-pseudonym pairs in the format of \(\{ m_i, \Delta_i, T_i \} \).

- **Reward obtaining phase**

The certification center 102 has knowledge of the application server's master key \(k \) and the encryption function \(f_k(\cdot) \) as well as the one-way hash function \(h(\cdot) \) designed/selected by the application server 101. The certification center 102 may also have knowledge of the set of grades of the sensed data. Thus, when the user wants to exchange the certificate for a reward, he/she may send a message \(\{ m_i, \Delta_i, T_i \} \), which may comprise the user's pseudonym \(m_i \), the signature \(\Delta_i \) obtained from the application server 101 and the timestamp \(T_i \), to the certification center 102 via a secure channel. After receiving the message, the certification center 102 calculates \(\Delta_i' = f_s(h(m_i), T_i, G_s) \) using each \(a_s \in \{ a_1, a_2, \ldots, a_G \} \). Next, the certification center 102 compares \(\Delta_i' \) with \(\Delta_i \) so as to determine whether the user with the message \(\{ m_i, \Delta_i, T_i \} \) is qualified to receive a reward. If there is one \(\Delta_i' \) which matches \(\Delta_i \), the certification center 102 confirms that the signature \(\Delta_i \) is a valid certificate and the user who owns \(\Delta_i \) can obtain a reward for the sensed data \(S_i \) that he/she previously provided to the application server 101.

In another embodiment, the certification center 102 calculates \(\Delta_i'^* \) based upon the unique value \(h(m_i) \) using a second algorithm. In a further embodiment, the certification center 102 calculates \(\Delta_i'^* \) based upon the unique value \(h(m_i) \) and a grade of the sensed data using a second algorithm. In a further embodiment, the certification center 102 calculates \(\Delta_i'^* \) based upon the unique value \(h(m_i) \), a grade of the sensed data, and the received timestamp \(T_i \) using a second algorithm. The certification center 102 compares the calculated \(\Delta_i'^* \) with the received \(\Delta_i \). If there is one \(\Delta_i'^* \) which matches \(\Delta_i \), the certification center 102 confirms that the signature \(\Delta_i \) is a valid certificate and the user who owns \(\Delta_i \) can obtain a reward for the sensed data \(S_i \) that he/she previously provided to the application server 101.

In some other examples, the pseudonym \(m_i \) itself may contain timestamp information, and thus it may be unnecessary to either transmit a separate timestamp \(T_i \) or use the timestamp \(T_i \) in certificate \(\Delta_i \) calculating/comparing.

Figure 2 illustrates interaction between a user equipment and a server (or an application server), and a certification center according to an example embodiment of the present invention. In Figure 2, it is assumed that the system initiation has been completed; thus, the user equipment has
knowledge of the suitable hash function \(h(-) \) and the predefined data format, and the
certification center has knowledge of the encryption function \(f_k(-) \), the hash function \(h(-) \), and
the server's master key \(k \), as well as the set of grades of the sensed data.

First, on the user side, the user launches a corresponding sensor program embedded in the UE 103
to generate sensed data \(S_i \). Then, when the user needs to send the sensed data \(S_i \) to the server,
he/she operates the UE 103 to generate a pseudonym \(m_i \) and calculate a hash conversion value \(h(m_i) \). Subsequently, the user sends a message in the predefined format, which
comprises \(h(m_i), s_i \) and a timestamp \(T_i \), to the server. On the server side, upon receiving this
message from the user, the server processes the sensed data \(S_i \) and calculates a signature through,
for example, \(\Delta_i = f_k(h(m_i), T_i, G_i) \), and then sends a message which may comprise \(h(m_i), \Delta_i \), and \(T_i \) to the user. Now back to the user side, the user operates the UE 103 to extract \(\Delta_i \) from
the received message, generate a tuple \(\{m_i, \Delta_i, T_i\} \) and store the tuple in the UE 103. Later,
when the user wishes to obtain a reward, he/she sends a message \(\{m_i, \Delta_i, T_i\} \) that comprises the pseudonym \(m_i \), the signature \(\Delta_i \) and the timestamp \(T_i \) to the certification center via a secure
channel. Upon receiving the message \(\{m_i, \Delta_i, T_i\} \), the certification center extracts the signature
\(\Delta_i \), and then calculates \(\Delta_i^* = f_k(h(m_i), T_i, G_i) \) using each \(G_j \in \{G_n, G_{n+1}, \cdots, G_n\} - N \in X_i \), the
certification center compares \(\Delta_i^* \) with \(\Delta_i \), so as to determine whether the user with the
message \(\{m_i, \Delta_i, T_i\} \) is qualified to receive a reward. If there is one \(\Delta_i^* \) which matches \(\Delta_i \),
the user can be successfully authenticated. On the contrary, if none of \(\Delta_i^* \) matches \(\Delta_i \), the
certification center may reject this process.

Since the user sends to the certification center the message \(\{\eta_i, \Delta_i, T_i\} \) via a secure channel, the
adversary cannot impersonate the user. Meanwhile, the user's pseudonym appears in the
common channel in the form of a hash conversion value \(h(m_i) \). Therefore, the adversary cannot
extract the user's original pseudonym \(m_i \). Without the pseudonym, the adversary cannot be
authenticated by the certification center.

Figures 3A and 3B show flowcharts illustrating method steps performed on the user equipment
103, according to an example embodiment of the present invention. Figure 3A is a simplified
flowchart from Figure 3B. In both figures, reference numbers refer to corresponding steps. As
illustrated in Figure 3A, first, in block 310, the user equipment 103 generates a pseudonym
\(m_i \) and calculates a hash conversion value \(h(m_i) \) of the pseudonym. Then in block 311, the
user equipment 103 sends the hash conversion value \(h(m_i) \), and sensed data \(S_i \) to an application
server 101. Next, in block 312 the user equipment 103 receives a signature \(\Delta_i \) from the server.
Thereafter in block 313, the user equipment 103 sends the pseudonym \(m_i \) and the signature \(\Delta_i \)
to a certification center 102 via a secure channel.

More detailed operations are illustrated in Figure 3B. First, in block 310', the user equipment
103 generates sensed data \(S_i \), a pseudonym \(m_i \), and calculates a hash conversion value \(h(m_i) \) of
the pseudonym. Then in block 311', the user equipment 103 sends a message in a predefined
format, which includes the hash conversion value $h(m_i)$, the sensed data S_i and a timestamp T_i, to an application server 101. Next, upon receiving a message comprising $h(m_j)$, T_i and a signature Δ_i from the server in block 312', the user equipment 103 extracts Δ_i from the received message, generates a tuple $\{m_i, \Delta_i, T_i\}$ and stores the tuple locally in block 312'. Subsequently in block 313', the user equipment 103 sends a message comprising m_i, Δ_i and T_i to a certification center 102 via a secure channel. Thereafter, once the user equipment 103 is successfully authenticated, it can receive a reward from the certification center 102 or from the application server 101 in block 314.

Figure 4 shows a flowchart illustrating method steps performed on the application server 101 according to an example embodiment of the present invention. First in block 410, the application server 101 defines a suitable one-way hash function $h(-)$, an encryption function $f_k(.)$ and a data format, and distributes or notifies the hash function to user equipment(s) 103. Then in block 411, the application server 101 receives a message from the user equipment 103, which comprises a hash conversion value $h(m_i)$, sensed data S_j and a timestamp T_i. Next, the application server 101 processes the sensed data and determines the grade of the sensed data, and then calculates a signature through $\Delta_i = f_k(h(m_i), T_i, G)$ in block 412. Thereafter, in block 413, the application server sends a message comprising $h(m_i)$, Δ_i and T_i to the user equipment 103.

Figure 5 shows a flowchart illustrating method steps performed on the certification center 102 according to an example embodiment of the present invention. The certification center 102 receives a message comprising m_i, Δ_i and T_i from a user equipment 103 in block 510. Then the certification center 102 extracts the signature Δ_i, and calculates $\Delta_i = f_k(h(m_i), T_i, G_j)$ using each $G_j \in \{G_1, G_2, \ldots, G_r\}$ in block 511. Next, the certification center compares Δ_i with Δ_i so as to determine whether the user with the message $\{m_i, \Delta_i, T_i\}$ is qualified to receive a reward. If there is no Δ_i which matches Δ_i, the user can be successfully authenticated and certify the user equipment. On the contrary, if none of Δ_i matches Δ_i, the certification center may reject this process.

As described previously, in some other examples, if the pseudonym m_i itself contains timestamp information, then it may be unnecessary to use additional timestamp information such as a separate timestamp; accordingly, there will be no need to transmit a separate timestamp T_i and/or use the timestamp T_i in certificate Δ_i calculating/ comparing.

Figure 6 shows a schematic structure of the user equipment 103 according to an example embodiment of the present invention, on which the methods as illustrated in Fig. 3A or 3B may be performed. The user equipment or UE 103 comprises a controller 601 operationally connected to a memory 602 and a transceiver 603. The controller 601 controls the operation of the user equipment 103. The memory 602 is configured to store program codes or instructions and data required for implementing the method according to the present invention. The transceiver 603 is
operationally connected to a set of antenna ports 604 connected to an antenna arrangement 605, and is configured to set up and maintain a wireless connection to other network nodes, such as base stations. The user equipment 103 also comprises a sensor arrangement 606, which is operationally connected to the memory 602 and the controller 601 and may obtain sensed data in embodiments of the present invention. The sensor arrangement 606 may comprise at least one sensor, which is for example but not limited to a temperature sensor, a humidity sensor, a motion sensor, a GPS receiver and a camera or the like. In one embodiment, the sensed data comprise one or more of a sensed temperature, a sensed humidity, a sensed motion, a sensed coordinate (longitude, latitude, elevation, etc.), a sensed image, and so on. The user equipment 103 may also comprise various other components, such as a user interface, and media player, which are not shown in Figure 6 due to simplicity purposes.

Figure 7 shows a schematic structure of the server according to an example embodiment of the present invention, on which the method as illustrated in Fig. 4 may be performed. The server, such as the application server 101, comprises a controller 701 operationally connected to a memory 702, and a transceiver 703. The controller 701 controls the operation of the server. The memory 702 is configured to store program codes or instructions and data required for implementing the method according to the present invention. The transceiver 703 is operationally connected to a communication interface 704 and is configured to set up and maintain a connection to other network nodes, such as base stations through the communication interface 704.

Figure 8 shows a schematic structure of the certification center 102 according to an example embodiment of the present invention, on which the method as illustrated in Fig. 5 may be performed. The certification center 102 comprises a controller 801 operationally connected to a memory 802, and a transceiver 803. The controller 801 controls the operation of the certification center. The memory 802 is configured to store program codes or instructions and data required for implementing the method according to the present invention. The transceiver 803 is operationally connected to a communication interface 804 and is configured to set up and maintain a connection to other network nodes, such as base stations through the communication interface 804.

Thus, according to one embodiment of the present invention, there is provided a method for generating a pseudonym in association with sensed data at a user equipment; calculating a unique value based upon the pseudonym using a first algorithm; sending the unique value and the sensed data to a server; receiving from the server a certificate, which is calculated based at least in part on the unique value using a second algorithm; and sending at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

According to another embodiment of the present invention, the first algorithm comprises a hash function.
According to yet another embodiment of the present invention, the second algorithm comprises an encryption function.

According to yet another embodiment of the present invention, the method comprises receiving from the server information associated with the first algorithm prior to calculating the unique value.

According to yet another embodiment of the present invention, the certificate is calculated at the server using the second algorithm based upon the unique value and at least one of a grade of the sensed data and a timestamp associated with the sensed data.

According to yet another embodiment of the present invention, the method comprises saving in the user equipment at least the pseudonym, the certificate, and a timestamp associated with the sensed data prior to sending at least the pseudonym and the certificate.

According to yet another embodiment of the present invention, the certification center is aware of the first algorithm and the second algorithm.

According to yet another embodiment of the present invention, there is provided a computer program product, comprising program code instructions adapted to perform steps of any method as described above when the program is run on a computer.

According to yet another embodiment of the present invention, there is provided a method for receiving, at a server, a unique value and sensed data from a user equipment, wherein the unique value is calculated at the user equipment using a first algorithm based upon a pseudonym generated by the user equipment; calculating a certificate based at least in part on the unique value using a second algorithm; and sending the certificate to the user equipment so that the certificate may be forwarded to a certification center for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

According to yet another embodiment of the present invention, the method comprises determining a first algorithm and sending information associated with the first algorithm to the user equipment prior to receiving the unique value and the sensed data.

According to yet another embodiment of the present invention, the first algorithm comprises a hash function.

According to yet another embodiment of the present invention, the second algorithm comprises an encryption function.

According to yet another embodiment of the present invention, the method comprises determining a grade of the sensed data prior to calculating the certificate.
According to yet another embodiment of the present invention, the method comprises calculating the certificate using the second algorithm based upon the unique value and at least one of the grade of the sensed data and a timestamp associated with the sensed data.

According to yet another embodiment of the present invention, the method comprises defining a data format prior to receiving the unique value and the sensed data.

According to yet another embodiment of the present invention, the user equipment is aware of the data format.

According to yet another embodiment of the present invention, there is provided a computer program product, comprising program code instructions adapted to perform steps of any method as described above when the program is run on a computer.

According to yet another embodiment of the present invention, there is provided a method for receiving, at a certification center, at least a pseudonym and a certificate via a secure channel from a user equipment; calculating a unique value using a first algorithm based upon the pseudonym; calculating at least one reference value based at least in part on the unique value using a second algorithm; comparing the at least reference value with the received certificate; and if the at least one reference value matches the received certificate, confirming validity of the received certificate so that the user equipment may obtain a reward associated sensed data; wherein the certification center is internal or external to a server.

According to yet another embodiment of the present invention, the first algorithm comprises a hash function determined by the server.

According to yet another embodiment of the present invention, the second algorithm comprises an encryption function determined by the server.

According to yet another embodiment of the present invention, calculating the at least one reference value comprises calculating a reference value based upon the unique value and at least one of a timestamp associated with the sensed data and one of a plurality of data grades, the plurality of data grades being predefined by the server.

According to yet another embodiment of the present invention, there is provided a computer program product, comprising program code instructions adapted to perform steps of any method as described above when the program is run on a computer.

According to yet another embodiment of the present invention, there is provided an apparatus comprising a sensor arrangement comprising at least one sensor for sensing data; at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: generate a pseudonym in association with sensed data; calculate a unique value based upon the pseudonym using a first algorithm; send the unique value and the sensed data to a
server; receive from the server a certificate, wherein the certificate is calculated at the server based at least in part on the unique value using a second algorithm; and send at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the server.

According to yet another embodiment of the present invention, the first algorithm comprises a hash function.

According to yet another embodiment of the present invention, the second algorithm comprises an encryption function.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to receive from the server information associated with the first algorithm prior to calculating the unique value.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to save at least the pseudonym, the certificate, and a timestamp associated with the sensed data prior to sending at least the pseudonym and the certificate.

According to yet another embodiment of the present invention, there is provided an apparatus comprising at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: receive a unique value and sensed data from a user equipment, wherein the unique value is calculated at the user equipment using a first algorithm based upon a pseudonym generated by the user equipment; calculate a certificate based at least in part on the unique value using a second algorithm; and send the certificate to the user equipment so that the certificate may be forwarded to a certification center for obtaining a reward associated with the sensed data, wherein the certification center is internal or external to the apparatus.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to determine a first algorithm and send information associated with the first algorithm to the user equipment prior to receiving the unique value.

According to yet another embodiment of the present invention, the first algorithm comprises a hash function.

According to yet another embodiment of the present invention, the second algorithm comprises an encryption function.
According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to determine a grade of the sensed data prior to calculating the certificate.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to calculate the certificate using the second algorithm based upon the unique value and at least one of the grade of the sensed data and a timestamp associated with the sensed data.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: define a data format prior to receiving the unique value and the sensed data.

According to yet another embodiment of the present invention, there is provided an apparatus comprising at least one processor; and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to: receive at least a pseudonym and a certificate via a secure channel from a user equipment; calculate a unique value using a first algorithm based upon the pseudonym; calculate at least one reference value based at least in part on the unique value using a second algorithm; compare the at least one reference value with the received certificate; and if the at least one reference value matches the received certificate, confirm validity of the received certificate so that the user equipment may obtain a reward associated with sensed data; wherein the apparatus is internal or external to a server.

According to yet another embodiment of the present invention, the first algorithm comprises a hash function determined by the server.

According to yet another embodiment of the present invention, the second algorithm comprises an encryption function determined by the server.

According to yet another embodiment of the present invention, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: calculate a reference value based upon the unique value and at least one of a timestamp associated with the sensed data and one of a plurality of data grades, the plurality of data grades being predefined by the server.

Example embodiments of the present invention have been described above with reference to block diagrams and flowchart illustrations of methods, apparatuses (i.e., systems). It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which
execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks.

The foregoing computer program instructions can be, for example, sub-routines and/or functions. A computer program product in one embodiment of the invention comprises at least one computer readable storage medium, on which the foregoing computer program instructions are stored. The computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) or a ROM (read only memory).
WHAT IS CLAIMED IS:

1. A method, comprising:
 generating, at a user equipment, a pseudonym in association with sensed data;
 calculating a unique value based upon the pseudonym using a first algorithm;
 sending the unique value and the sensed data to a server;
 receiving a certificate from the server, wherein the certificate is calculated based at
 least in part on the unique value using a second algorithm; and
 sending at least the pseudonym and the certificate to a certification center via a
 secure channel, for obtaining a reward associated with the sensed data;
 wherein the certification center is internal or external to the server.

2. The method according to Claim 1, wherein the first algorithm comprises a
 hash function.

3. The method according to Claim 1, wherein the second algorithm comprises
 an encryption function.

4. The method according to Claim 1, further comprising: prior to calculating
 the unique value, receiving from the server information associated with the first algorithm.

5. The method according to Claim 1, wherein the certificate is calculated at the
 server using the second algorithm based upon the unique value and at least one of a grade of
 the sensed data and a timestamp associated with the sensed data.

6. The method according to Claim 1, further comprising: prior to sending at
 least the pseudonym and the certificate, saving in the user equipment at least the pseudonym,
 the certificate, and a timestamp associated with the sensed data.

7. The method according to Claim 1, wherein the certification center is aware
 of the first algorithm and the second algorithm.

8. A computer program product, comprising program code instructions adapted
 to perform steps of any of Claims 1 to 7 when the program is run on a computer.

9. A method, comprising:
 receiving, at a server, a unique value and sensed data from a user equipment,
 wherein the unique value is calculated at the user equipment using a first algorithm based
 upon a pseudonym generated by the user equipment;
 calculating a certificate based at least in part on the unique value using a second
 algorithm; and
sending the certificate to the user equipment so that the certificate may be forwarded
to a certification center for obtaining a reward associated with the sensed data;

wherein the certification center is internal or external to the server.

10. The method according to Claim 9, further comprising: prior to receiving the unique value and the sensed data, determining a first algorithm and sending information associated with the first algorithm to the user equipment;

11. The method according to Claim 9, wherein the first algorithm comprises a hash function.

12. The method according to Claim 9, wherein the second algorithm comprises an encryption function.

13. The method according to Claim 9, further comprising: prior to calculating the certificate, determining a grade of the sensed data.

14. The method according to Claim 13, wherein calculating the certificate comprises calculating the certificate using the second algorithm based upon the unique value and at least one of the grade of the sensed data and a timestamp associated with the sensed data.

15. The method according to Claim 9, further comprising: prior to receiving the unique value and the sensed data, defining a data format.

16. The method according to Claim 15, wherein the user equipment is aware of the data format.

17. A computer program product, comprising program code instructions adapted to perform steps of any of Claims 9 to 16 when the program is run on a computer.

18. A method, comprising:

receiving, at a certification center, at least a pseudonym and a certificate via a secure channel from a user equipment;

calculating a unique value using a first algorithm based upon the pseudonym;

calculating at least one reference value based at least in part on the unique value using a second algorithm;

comparing the at least one reference value with the received certificate; and

if the at least one reference value matches the received certificate, confirming validity of the received certificate so that the user equipment may obtain a reward associated with sensed data;

wherein the certification center is internal or external to a server.
19. The method according to Claim 18, wherein the first algorithm comprises a hash function determined by the server.

20. The method according to Claim 18, wherein the second algorithm comprises an encryption function determined by the server.

21. The method according to Claim 18, wherein calculating the at least one reference value comprises calculating a reference value based upon the unique value and at least one of a timestamp associated with the sensed data and one of a plurality of data grades, the plurality of data grades being pre-defined by the server.

22. A computer program product, comprising program code instructions adapted to perform steps of any of Claims 18 to 21 when the program is run on a computer.

23. An apparatus, comprising:
 a sensor arrangement comprising at least one sensor for sensing data;
 at least one processor; and
 at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:
 generate a pseudonym in association with sensed data;
 calculate a unique value based upon the pseudonym using a first algorithm;
 send the unique value and the sensed data to a server;
 receive from the server a certificate, wherein the certificate is calculated at the server based at least in part on the unique value using a second algorithm; and
 send at least the pseudonym and the certificate to a certification center via a secure channel, for obtaining a reward associated with the sensed data;
 wherein the certification center is internal or external to the server.

24. The apparatus according to Claim 23, wherein the first algorithm comprises a hash function.

25. The apparatus according to Claim 23, wherein the second algorithm comprises an encryption function.

26. The apparatus according to Claim 23, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: prior to calculating the unique value, receive from the server information associated with the first algorithm.

27. The apparatus according to Claim 23, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause
the apparatus to: prior to sending at least the pseudonym and the certificate, save at least the pseudonym, the certificate, and a timestamp associated with the sensed data.

28. An apparatus, comprising:

at least one processor; and

at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:

receive a unique value and sensed data from a user equipment, wherein the unique value is calculated at the user equipment using a first algorithm based upon a pseudonym generated by the user equipment;

calculate a certificate based at least in part on the unique value using a second algorithm; and

send the certificate to the user equipment so that the certificate may be forwarded to a certification center for obtaining a reward associated with the sensed data;

wherein the certification center is internal or external to the apparatus.

29. The apparatus according to Claim 28, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: prior to receiving the unique value, determine a first algorithm and send information associated with the first algorithm to the user equipment.

30. The apparatus according to Claim 28, wherein the first algorithm comprises a hash function.

31. The apparatus according to Claim 28, wherein the second algorithm comprises an encryption function.

32. The apparatus according to Claim 28, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: prior to calculating the certificate, determine a grade of the sensed data.

33. The apparatus according to Claim 28, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: calculate the certificate using the second algorithm based upon the unique value and at least one of the grade of the sensed data and a timestamp associated with the sensed data.

34. The apparatus according to Claim 28, wherein the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: prior to receiving the unique value and the sensed data, define a data format.
35. An apparatus, comprising:

at least one processor; and

at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:

receive at least a pseudonym and a certificate via a secure channel from a user equipment;

calculate a unique value using a first algorithm based upon the pseudonym;

calculate at least one reference value based at least in part on the unique value using a second algorithm;

compare the at least one reference value with the received certificate; and

if the at least one reference value matches the received certificate, confirm validity of the received certificate so that the user equipment may obtain a reward associated with sensed data;

wherein the apparatus is internal or external to a server.

36. The apparatus according to Claim 35, wherein the first algorithm comprises a hash function determined by the server.

37. The apparatus according to Claim 35, wherein the second algorithm comprises an encryption function determined by the server.

38. The apparatus according to Claim 35, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the apparatus to: calculate a reference value based upon the unique value and at least one of a timestamp associated with the sensed data and one of a plurality of data grades, the plurality of data grades being predefined by the server.
Figure 1
Certification center

User equipment

generates sensed data S_i, generates a pseudonym m_i, and calculates $h(m_i)$.

\[\{h(m_i), S_i, T_i\} \]

Server

processes the sensed data S_i, determines a grade of the sensed data, and calculates Δ_i.

\[\{h(m_i), \Delta_i, T_i\} \]

extracts Δ_i and stores a tuple $\{m_i, \Delta_i, T_i\}$

\[\{m_i, \Delta_i, T_i\} \]

extracts Δ_i, repeatedly calculates $\Delta^*_i = f_k\{h(m_i), T_i, G_i\}$, compares Δ^*_i and Δ_i, and if there is one Δ^*_i matching Δ_i, confirms validity of Δ_i
Figure 3A

1. Start
2. Generating a pseudonym m_i and calculating $h(m_i)$ using a hash function
3. Sending $h(m_i)$ and sensed data S_i to an application server
4. Receiving $Δ_i$ from the application server
5. Sending m_i and $Δ_i$ to a certification center
6. End
Start

Generating sensor data S_i and a pseudonym m_i and calculating $h(m_i)$

Sending $\{h(m_i), S_i, T_i\}$ to an application server

Receiving $\{h(m_i), A_i, T_i\}$ from the application server

Extracting A_i, generating a tuple $\{m_i, A_i, T_i\}$ and storing the tuple

Sending $\{m_i, A_i, T_i\}$ to a certification center

Receiving a reward if being successfully authenticated

End

Figure 3B
Start

Defining a one-way hash function, an encryption function, and a data format, and distributing the hash function to user equipments

Receiving \{h(m_i), S_i, T_i\} from the user equipment and then processing \(S_i\) and determining a grade \(G_i\) of \(S_i\)

Calculating \(\Delta_i = f_i\{h(m_i), T_i, G_i\}\)

Sending \{h(m_i), \Delta_i, T_i\} to the user equipment

End

Figure 4
Start

Receiving \(\{m_i, \Lambda_i, T_i\} \) from a user equipment

Extracting \(\Lambda_i \) and repeatedly calculating
\[\Lambda^*_i = f_i\{h(m_i), T_i, G_i\} \]

Comparing \(\Lambda^*_i \) and \(\Lambda_i \)

If there is one \(\Lambda^*_i \) matching \(\Lambda_i \), confirming validity of \(\Lambda_i \)

End

Figure 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04L 9/14 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L, G06F, H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC, CNPAT, CNKI: pseudonym, sensed, certificat+, hash, algorithm, reward, secur+, license, private, privacy, secret

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN101834861A (CENTRAL CHINANORMAL UNIVERSITY) 15 Sep. 2010 (15.09.2010) the whole document</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>CN101959183A (INSTITUTE OF SOFTWARE CHINESE ACADEMY OF SCIENCES) 26 Jan. 2011(26.01.2011) the whole document</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>CN101998377A (HUAWEI TECHNOLOGY CO., LTD) 30 Mar. 2011(30.03.2011) the whole document</td>
<td>1-38</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 'A' document defining the general state of the art which is not considered to be of particular relevance
 'E' earlier application or patent but published on or after the international filing date
 'L' document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 'O' document referring to an oral disclosure, use, exhibition or other means
 'P' document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report
14 Mar. 2013 (14.03.2013)

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Authorized officer
LI, Jia
Telephone No. (86-10)62414020

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR20070020466A</td>
<td>21.02.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1961270A</td>
<td>09.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INCHENP200604547E</td>
<td>29.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2008501 177A</td>
<td>17.01.2008</td>
</tr>
<tr>
<td>CN101834861A</td>
<td>15.09.2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CN101959183A</td>
<td>26.01.2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CN101998377A</td>
<td>30.03.2011</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>