Office de la Propriéte Canadian CA 2618472 A1 2007/02/15
Intellectuelle Intellectual Property

du Canada Office (21) 2 61 8 472
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada

CANADIAN PATENT APPLICATION
13) A1

(86) Date de déepot PCT/PCT Filing Date: 2006/07/26

(87) Date publication PCT/PCT Publication Date: 200/7/02/15
(85) Entree phase nationale/National Entry: 2008/02/06

(86) N° demande PCT/PCT Application No.: EP 2006/064 705
(87) N° publication PCT/PCT Publication No.: 200//017391
(30) Priorité/Priority: 2005/08/11 (US11/201,651)

51) Cl.Int./Int.Cl. GO67T 15/00(2006.01)

(71) Demandeur/Applicant:
INTERNATIONAL BUSINESS MACHINES
CORPORATION, US

(72) Inventeurs/Inventors:
MINOR, BARRY, US;
FOSSUM, GORDON CLYDE, US;
TO, VANDUNG DANG, US

(74) Agent: WANG, PETER

54) Titre : SYSTEME ET PROCEDE POUR LE LANCER DE RAYONS AVEC AFFICHAGE A TAMPON DE
PROFONDEUR
54) Title: SYSTEM AND METHOD FOR RAY TRACING WITH DEPTH BUFFERED DISPLAY

Broadband Processor Architacture (BPA)

Synergistic
Processing Unit
(SPU)

110

Rendering
Algonithm
120

Ray Traced Data
Color/Depth

150

Model Data
140 Systam
Memory
130

Color Buffer
160

Depth Buffer
155

IO

165
P ety || || Re2tactand Dete Ray Traced Phcl Dat
Valuos - - Rasterized Pivel Data
170
Rasterizer
175

(57) Abréegée/Abstract:

A system and method for generating an image that includes ray traced pixel data and rasterized pixel data Is presented. A
synergistic processing unit (SPU) uses a rendering algorithm to generate ray traced data for objects that require high-quality image

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2618472 A1 2007/02/15

ey 2018 472
13) A1

(57) Abrege(suite)/Abstract(continued):

rendering. The ray traced data Is fragmented, whereby each fragment includes a ray traced pixel depth value and a ray traced pixel
color value. A rasterizer compares ray traced pixel depth values to corresponding rasterized pixel depth values, and overwrites ray
traced pixel data with rasterized pixel data when the corresponding rasterized fragment Is "closer” to a viewing point, which results
IN composite data. A display subsystem uses the resultant composite data to generate an image on a user's display.

woO 2007/017391 A1 I D000 DR A O R A

CA 02618472 2008-02-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization %

International Burcau

(43) International Publication Date
15 February 2007 (15.02.2007)

(51) International Patent Classification:
GO6T 15/00 (2006.01)

(21) International Application Number:

PCT/EP2006/064705
(22) International Filing Date: 26 July 2006 (26.07.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/201,651 11 August 2005 (11.08.2005) US

(71) Applicant (for all designated States except US): INTER -
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; P.O. Box 41, Portsmouth Hampshire
PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): MINOR, Barry

(74)

(81)

(84)

(10) International Publication Number

WO 2007/017391 Al

[US/US]; 5501 Merrywing Circle, Austin, Texas 78730
(US). FOSSUM, Gordon, Clyde [US/US]; 12315 Willow
Wild Drive, B, Austin, Texas 78758-2725 (US). TO, Van-
Dung, Dang [US/US]; 12608 Uvalde Creek Dr., Austin,
Texas 78732 (US).

Agent: SEKAR, Anita; IBM United Kingdom Limited,
Intellectual Property Law, Winchester Hampshire SO21
2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR RAY TRACING WITH DEPTH BUFFERED DISPLAY

Broadband Processor Architecture (BPA)
— . 100
Synergistic
Processing Unit
(SPU)
I 110
Rendering
Algorithm
120 Ray Traced Data
— | Color/Depth
—\ 120
Model Data - l
140 System
Memory
130
Depth Buffer || Color Buffer|
155 160 |
""") 10
165
] Ray Traced || || Rasterized Data Composite Data |
. Pixel Depth - Ray Traced Pixel Data :
. Fixel Uep Color/Depth . . g
j - Rasterized Pixel Data
Values 180 i
‘ 170 L | 185 |
Display
t
Rasterizer Subsystem
175

(57) Abstract: A system and method for generating an
image that includes ray traced pixel data and rasterized
pixel data is presented. A synergistic processing unit
(SPU) uses a rendering algorithm to generate ray traced
data for objects that require high-quality image rendering.
The ray traced data is fragmented, whereby each fragment
includes a ray traced pixel depth value and a ray traced
pixel color value. A rasterizer compares ray traced
pixel depth values to corresponding rasterized pixel
depth values, and overwrites ray traced pixel data with
rasterized pixel data when the corresponding rasterized
fragment is "closer" to a viewing point, which results in
composite data. A display subsystem uses the resultant
composite data to generate an image on a user’s display.

CA 02618472 2008-02-06

WO 2007/017391 A1 THILVA!R DR TN 10 0 O AR A

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — with international search report

European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, 1,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, Fortwo-letter codes and other abbreviations, refer to the "Guid-
RO, SE, SI, SK, TR), OAPI (BF, BJ, CFE, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

SYSTEM AND METHOD FOR RAY TRACING
WITH DEPTH BUFFERED DISPLAY

FIELD OF THE INVENTION

The present 1nvention relates 1n general to a system and method for
ray tracing with depth buffered display. More particularly, the present
invention relates to a system and method for compositing a ray traced

image with a rasterized 1mage using a shared depth buffer.

BACKGROUND OF THE INVENTION

Today’s computer 1mage generation technologies produce realistic
images 1n applications such as computer games and flight simulations. The
increase of computer system processing speeds 1s one of the main enablers
to generate realistic computer images. A computer 1mage, especially 1n
gaming applications, typically includes many objects that are rendered to
generate the i1mage. For example, a gaming application may include objects
such as landscaping, mountains, sky, clouds, vehicles and people.

Many approaches are avallable for generating computer 1mages. Ray tracing
18 a popular approach to render objects. Ray tracing may be optimized to
render an 1mage based upon a specific type of primitive, such as a height
field, thereby producing views of a virtual 3-dimensional scene 1n the
form of 2-dimensional images from any view point. As one skilled in the

art can appreciate, ray tracing as discussed herein 1includes other similar

rendering techniques, such as ray casting. Ray tracing provides a
high-quality i1mage rendering solution but, however, a challenge found 1s
that ray tracing may not meet a user’s performance requilirements because of
its high floating point computation requirements and i1ts irregular and

high-bandwidth memory access patterns.

Another popular approach for generating computer i1mages 1s polygon

rendering. With this approach, a rasterizer decomposes polygons 1nto

fragments and determines which fragments are visible to a viewer using a

depth buffer that stores depth values corresponding to the distance from

the viewer to a “fragment” 1n screen space. For example, some rasterized

fragments may correspond to a vehicle and other rasterized fragments may

correspond to a pedestrian standing 1n front of the vehicle. 1In this

example, the rasterizer determines, based upon the depth buffer’s wvalues,

which rasterized fragments to use at particular screen locations that show

the pedestrian standing i1n front of the vehicle. Polygon rendering

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

provides a high-performance i1mage rendering solution but, however, a
challenge found 1s that polygon rendering produces 1mages that may not

meet a user’s 1mage quallity requirements.

What 1s needed, therefore, 1s a system and method that 1ncorporates
the high-gquality benefits of ray tracing rendering with the
high-performance benefits of polygon rendering to efficiently produce

realistic computer generated 1mages.

DISCLOSURE OF THE INVENTION

There 1s provided a method, a computer program product and a system
for compositing a ray traced 1mage with a rasterized image using a shared
depth buffer. A synergistic processing unit (SPU) uses a rendering

algorithm to generate ray traced data that 1ncludes ray traced color data

and ray traced depth data. A rasterizer generates, for other objects,
rasterized data that 1ncludes rasterized color data and rasterized depth
data. At each segmented location, such as each pixel, the rasterizer
compares the ray traced depth data with the rasterized depth data, and, at
particular locations, replaces the ray traced data with rasterized data
based upon the comparison. The result 1s composite data that i1ncludes ray
traced data and rasterized data. In turn, a display subsystem uses the

composite data to generate an 1mage for a user to view.

An SPU retrieves 3-dimensional model data from system memory that

corresponds to particular objects that require high-quality image

rendering. A rendering algorithm, such as ray casting or ray tracing,
uses the model data to generate ray traced data, which 1s stored 1n ray

traced pixel data “fragments.” As one skilled in the art can appreciliate,

these pixel fragments may correspond to screen pixel locations or

locations based upon other i1mage-partitioning techniques.

Fach ray traced pixel data fragment includes a ray traced pixel

depth value and a ray traced pixel color value. The ray traced pixel

depth value 1s stored i1n a depth buffer and corresponds to the distance

from a viewer to the fragment 1n screen space. For example, a ray traced
pixel depth value may be “80” which corresponds to the fragment appearing
80 units away from the user relative to the overall image that 1is

displayed. The ray traced pixel color value 1s stored 1n a color buffer

and i1ncludes color i1nformation corresponding to the fragment.

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

A rasterizer renders polygons for particular objects, and decomposes

one of the polygons 1nto screen space fragments, which 1s stored as

“rasterized pixel data.” Each rasterized pixel data fragment includes a

rasterized pixel depth value and a rasterized pixel color value. The
rasterized pixel depth value 1s the distance from a viewer to the fragment

1n screen space. For example, a rasterized pixel depth value may be “20”

which corresponds to the rasterized fragment appearing 20 units away from

the user relative to the overall image that 1s displayed. The rasterized

pixel color value includes color information corresponding to the

fragment.

The rasterizer points to system memory and retrieves one of the ray
traced pixel depth values from the depth buffer. The rasterizer compares
the ray traced pixel depth value to a rasterized pixel depth value that
corresponds to the same screen space 1n order to determine whether the
rasterized pixel data should be displaved instead of the corresponding ray
traced pixel data. For example, for a particular screen location, a
rasterized pixel depth value may be 20 and the corresponding ray traced

pixel depth value may be 40, such as with a vehicle 1n front of a

mountain. In this example, the rasterized fragment 1s “closer” to the

viewer than the ray traced fragment and thus, the rasterized pixel data
should be displayed instead of the ray traced pixel data at the particular

screen location.

When the rasterizer determines that rasterized pixel data should be
displayed in front of 1ts corresponding ray traced pixel data, the
rasterizer overwrites the ray traced pixel depth value 1n the depth buffer
with the rasterized pixel depth value, and overwrites the ray traced pixel
color value 1n the color buffer with the rasterized pixel color value.

For each rasterized fragment, the rasterizer compares 1ts rasterized pixel
depth value to a corresponding ray traced pixel depth value, and
overwrites the existing data 1n system memory with rasterized data

accordingly.

The rasterizer proceeds to decompose other polygons 1nto screen

space fragments and compare thelr rasterized pixel depth values with depth
values that reside 1n the depth buffer. At particular screen locations,

the rasterizer may overwrite existing data multiple times. For example,

for a particular screen location, the rasterizer may overwrite ray traced

pixel data with rasterized pixel data that corresponds to a vehicle, and

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

then overwrite the rasterized pixel data with other rasterized pixel data

that corresponds to a person standing i1n front of the vehicle.

Once the rasterizer finishes with fragment comparison for each

fragment of each polygon, the depth buffer and color buffer 1nclude
“composite” data that represents an i1mage to display on a screen that
includes ray traced pixel data and rasterized pixel data. A display
subsystem scans out the composite data and generates an 1mage on a user’s

display.

The foregolng 1s a summary and thus contains, by necessity,
simplifications, generalizations, and omissions of detail; consequently,
those skilled 1n the art will appreciate that the summary 1s 1llustrative
only and 1s not i1ntended to be 1n any way limiting. Other aspects,
inventive features, and advantages of the present invention, as defined
solely by the claims, will become apparent i1n the non-limiting detailed

description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described, by way of example only,
with reference to preferred embodiments thereof, as i1llustrated in the

following drawlngs:

Figure 1 is a diagram showing a rasterizer overwriting ray traced

pixel data with rasterized pixel data based upon corresponding depth

values;

Figure 2 is a high-level flowchart showing steps taken in generating

ray traced data from model data and overwriting portions of the ray traced

data with rasterized data based upon particular depth wvalues;

Figure 3 is a flowchart showing steps taken in comparing ray traced

pixel depth values to corresponding rasterized pixel depth values and
overwriting ray traced pixel data with rasterized pixel data based upon

the comparison; and

Figure 4 1s a diagram showling a broadband processor architecture

(BPA), which 1s a simplified example of a computer system capable of

performing the computing operations described herein.

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following 1s 1ntended to provide a detailed description of an
example of the invention and should not be taken to be limiting of the
invention 1tself. Rather, any number of variations may fall within the
scope of the i1nvention, which 1s defined i1n the claims following the

description.

Figure 1 is a diagram showing a rasterizer overwriting ray traced
pixel data with rasterized pixel data based upon corresponding depth
values. Broadband processor architecture 100 includes synergistic
processing unit (SPU) 110 and system memory 130. SPU 110 is a processing

core, such as a digital signal processor, a microcontroller, a

microprocessor, or a comblnation of these cores. 1In a preferred
embodiment, SPU 1l1l0 includes a local memory, registers, four floating
polnt units, and four 1nteger units. As one skilled in the art can
appreciate, depending upon the processing power required, SPU 110 may

include a greater or lesser number of floating points units and integer

units.

SPU 110 includes rendering algorithm 120 that renders color values
and depth values for particular objects, such as with ray casting or ray

tracing. For example, rendering algorithm 120 is capable of 1) generating

rays from a view point through pixels of a screen, 2) tracing the rays
through a scene and delivering triangle hit points, and 3) shading the ray

based upon the hit point. As one skilled 1n the art can appreciate, SPU

110 may also be an off-the-shelf device that is capable of supporting

rendering algorithm 120.

SPU 110 retrieves model data 140 from system memory 1l30. Model data

140 is 3-dimensional data that corresponds to high-quality image rendering
objects. For example, a user may wish to render a building as a

high-quality i1mage 1n order to produce a realistic 1mage for a user to

view. Rendering algorithm 120 uses model data 140 to generate ray traced
data 150 that includes color values and depth values representing the

objects. Once generated, SPU 1ll1l0 stores ray traced data 150 as ray traced

pixel data “fragments” in system memory 1l30. Each ray traced pixel data

includes a ray traced pixel depth value and a ray traced pixel color
value. The ray traced pixel depth value is stored in depth buffer 155 (a

memory area in system memory 1l30) and corresponds to the distance from a

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

viewer to the fragment 1n screen space. For example, a ray traced pixel

depth value may be “80” which corresponds to the fragment appearing 80

units away from the user relative to the overall 1mage that 1s displayed.

The ray traced pixel color value is stored in color buffer 160 and
includes color information corresponding to the fragment. System memory
130 may be stored on a volatile or nonvolatile storage area, such as

computer memory or a computer hard drive.

Rasterizer 175 may be an off the shelf rasterizer device or
software/firmware that is capable of polygon rendering. Rasterizer 175

renders polygons for particular objects and decomposes one of the polygons

into screen space fragments, which 1s stored as “rasterized pixel data”

fragments. Each rasterized pixel data fragment i1ncludes a rasterized

pixel depth value and a rasterized pixel color value. The rasterized

plixel depth value corresponding to the distance from a viewer to the

fragment 1n screen space. For example, a rasterized pixel depth value may
be “20” which corresponds to the rasterized fragment appearing 20 units
away from the user relative to the overall image that 1s displayed. The
rasterized pixel color value 1ncludes color information and may also

include ancillary information that corresponds to the rasterized fragment.

Rasterizer 175 points to system memory 130 and retrieves a first ray
traced pixel data (ray traced pixel depth value 170), which corresponds to
a screen space location, from depth buffer 155 through input/output 165.

Rasterizer 175 compares ray traced pixel depth value 170 to a rasterized
pixel depth value corresponding to the same screen space location 1n order
to determine whether rasterized pixel data should be displayed 1nstead of
ray traced pixel data at the particular screen location. For example, for
a particular screen location, a rasterized pixel depth value may be 20 and

the corresponding ray traced pixel depth value may be 40, such as with a

vehicle 1n front of a mountalin. In this example, the rasterized fragment

1s “closer” to the viewer than the ray traced fragment and thus, the

rasterized pixel data should be displayved i1nstead of the ray traced pixel

data at the particular screen location.

When rasterizer 175 determines that rasterized pixel data should be
displayed instead of ray traced pixel data at a screen location,

rasterizer 175 overwrites ray traced data with rasterized pixel data 180,
which entails overwriting rasterized pixel depth value 170 in depth buffer

155 with a rasterized pixel depth value, and overwriting the ray traced

10

15

20

25

30

35

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

pixel color value in color buffer 160 with a rasterized pixel color value.
For each rasterized fragment, rasterizer 175 compares its rasterized pixel
depth value to a corresponding ray traced pixel depth value and overwrites
ray traced pixel data in system memory 130 with rasterized pixel data

accordingly.

Rasterizer 175 proceeds to decompose other polygons into screen

space fragments and compare thelr rasterized pixel depth values with depth

values located in depth buffer 185. At particular screen locations,

rasterizer 175 may overwrite existing data multiple times with rasterized

data. For example, for a particular screen location, rasterizer 175 may
overwrite ray traced pixel data with rasterized pixel data that
corresponds to a vehicle, and then overwrite the rasterized pixel data
with other rasterized pixel data that corresponds to a person standing 1n

front of the wvehicle.

Once rasterizer 175 finishes with fragment comparison for each

fragment of each polygon, system memory 130 now includes “composite” data

185 that represents an image to display on a screen that includes ray
traced pixel data and rasterized pixel data. Display subsystem 190 scans

out composite data 185 from system memory 130 and generates an image on a

display 195.

Figure 2 is a high-level flowchart showing steps taken in generating
ray traced data from model data and overwriting portions of the ray traced
data with rasterized data based upon particular depth values. A

synergistic processing unit (SPU) uses a rendering algorithm, such as ray

tracing or ray casting, to generate ray traced data from model data and a
rasterizer overwrites portions of the ray traced data with rasterized data
based upon whether the rasterized data 1s “closer” to a viewling point than

the ray traced data.

Processing commences at 200, whereupon processing retrieves model
data 140 from system memory 130 (step 210). Model data 140 is data that

corresponds to a particular objects, such as grass and mountains. At step

220, processing uses a rendering algorithm to generate ray traced data

from model data 140. System memory 130 and model data 140 are the same as

that shown in Figure 1.

10

15

20

25

30

35

40

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

At step 225, processing stores ray traced data 150 in system memory

130. Ray traced data 150 is stored in ray traced pixel data fragments,

whereby each fragment includes a ray traced pixel depth value and a ray

traced pixel color value. The ray traced pixel depth value corresponds to

the depth of the particular fragment. The ray traced pixel color value

includes a color value and may 1nclude ancillary information. Ray traced

data 150 is the same as that shown in Figure 1.

A rasterizer retrieves ray traced pixel depth value 170 from system

memory 130, and, on a fragment-by-fragment basis, compares ray traced

pixel data with rasterized pixel data. For rasterized fragments that

“overlay” ray traced fragments, processing overwrites the corresponding

ray traced pixel data with rasterized pixel data 180 (pre-defined process
block 230, see Figure 3 and corresponding text for further details). Once
the rasterizer 1s finished processing rasterized fragments, system memory
130 includes ray traced data and rasterized data, which results in
composite data 185. Composite data 185 is the same as that shown in

Figure 1.

At step 240, a display subsystem retrieves composite data 185 from
system memory 130 and displays an image on display 195, which is the same

as that shown in Figure 1. Processing ends at 260.

Figure 3 is a flowchart showing steps taken in comparing ray traced

pixel depth values to corresponding rasterized pixel depth values and
overwriting ray traced pixel data with rasterized pixel data based upon

the comparison.

Processing commences at 300, whereupon the rasterizer renders
polygons corresponding to objects (e.g., vehicles, persons, etc.) and
stores the polygons in polygon store 308 (step 305). Polygon store 308
may be stored on a volatilile storage area, such as computer memory. At

step 310, processing selects a first polygon from polygon store 308 and,

at step 320, processing fragments the selected polygon into screen space

fragments, or “rasterized pixel data” fragments.

Each rasterized pixel data fragment includes a rasterized pixel

depth value and a rasterized pixel color value. The rasterized pixel

depth value corresponding to the distance from a viewer to the fragment 1in

screen space. For example, a rasterized pixel depth value may be “20”

10

15

20

25

30

35

CA 02618472 2008-02-06
WO 2007/017391 PCT/EP2006/064705

which corresponds to the fragment appearing 20 units away from the user

relative to the overall i1mage that 1s displayed. The rasterized pixel

color value 1ncludes color information and may also include ancillary

information that corresponds to the polygon fragment.

At step 330, processing selects a rasterized pixel data fragment
corresponding to a screen location and, at step 340, retrieves a ray
traced pixel depth value from depth buffer 180 that corresponds to the
same screen location. Depth buffer 180 is the same as that shown in
Figure 1. Processing compares the selected rasterized pixel data’s depth

value to the ray traced pixel depth value at step 350.

A determination 1s made as to whether the rasterized pixel data

should appear 1n front of ray-traced pixel data based upon the depth wvalue
comparison (decision 360). For example, for a particular screen location,

a rasterized pixel depth value may be 20 and the corresponding ray traced

pixel depth value may be 40, such as with a vehicle in front of a

mountain. In this example, the rasterized fragment 1s “closer” to the

viewer than the ray traced fragment and thus, the rasterized pixel data

should appear 1nstead of the ray traced pixel data.

If the rasterized pixel data should appear 1nstead of the ray traced
pixel data, decision 360 branches to "Yes" branch 368 whereupon processing
overwrites the ray traced pixel depth value in depth buffer 180 with the
rasterized pixel depth value, and overwrites the corresponding ray traced

pixel color value in color buffer 160 with a corresponding rasterized
pixel color value (step 370). Color buffer 160 is the same as that shown

in Figure 1.

On the other hand, 1f the rasterized fragment i1s “behind” the ray

traced fragment, decision 360 branches to "No" branch 362 whereupon
processing disregards the rasterized pixel data (step 365), which

preserves the ray traced pixel data in system memory 130.

A determination 1s made as to whether there are more fragments to

process corresponding to the selected polygon (decision 380). If there

are more fragments to process, decision 380 branches to "Yes" branch 382,

which loops back to select (step 385) and process the next rasterized

pixel data. This looping continues until each of the rasterized fragments

10

15

20

25

30

35

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
10

corresponding to the selected polygon are processed, at which point

decision 380 branches to "No" branch 388.

A determination 1s made as to whether there are more polygons 1n
polygon store 308 to break into fragments and process (decision 390). If
there are more polygons to process, decision 390 branches to "Yes" branch
392, which loops back to select (step 395) and process the next polygon.
This looping continues until there are no more polygons to process, at
which point decision 390 branches to "No" branch 397 whereupon processing

returns at 399.

Figure 4 1s a diagram showling a block diagram of a broadband
processor architecture, which 1s a computing device capable of
implementing the present invention. BPA 100 includes a plurality of
heterogeneous processors, a common memory, and a common bus. The
heterogeneous processors are processors with different instruction sets

that share the common memory and the common bus. For example, one of the
heterogeneous processors may be a digital signal processor and the other
heterogeneous processor may be a microprocessor, both sharing the same

memory space.

BPA 100 is the same as that shown in Figure 1, and includes
heterogeneous processors that share a common memory and a common bus. BPA

100 sends and receives information to/from external devices through input
output 165, and distributes the information to control plane 410 and data
plane 440 using processor element bus 460. Control plane 410 manages BPA
100 and distributes work to data plane 440. Input/output 165 is the same

as that shown in Figure 1.

Control plane 410 includes processing unit 420 which runs operating
system (0OS) 425. For example, processing unit 420 may be a Power PC core
that is embedded in BPA 100 and OS 425 may be a Linux operating system.
Processing unit 420 manages a common memory map table for BPA 100. The
memory map table corresponds to memory locations included in BPA 100, such
as L2 memory 430 as well as non-private memory included in data plane 440.

L2 memory may correspond to system memory 130 that is shown in Figure 1.

Data plane 440 includes synergistic processing complex’s (SPC) 445,

450, and 455. Each SPC is used to process data information and each SPC

10

15

20

25

30

35

40

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
11

may have different instruction sets. For example, BPA 100 may be used in
a wireless communications system and each SPC may be responsible for
separate processing tasks, such as modulation, chip rate processing,
encoding, and network interfacing. In another example, each SPC may have

identical i1nstruction sets and may be used 1n parallel to perform

operations benefiting from parallel processes. FEach SPC includes a

synergistic processing unit (SPU), which 1s a processing core, such as a

digital signal processor, a microcontroller, a microprocessor, Or a

combination of these cores, such as SPU 110 shown in Figure 1.

SPC 445, 450, and 455 are connected to processor element bus 460
which passes information between control plane 410, data plane 440, and
input/output 165. Rasterizer 175 includes a polygon engine for rendering
polygons, and receives data from and provides data to BPA 100 through

input/output 165. Rasterizer 175 is the same as that shown in Figure 1.

Bus 460 is an on-chip coherent multi-processor bus that passes
information between I/0O 165, control plane 410, and data plane 440.
Input/output 165 includes flexible input-output logic, which dynamically

assigns 1nterface pins to input output controllers based upon peripheral

devices that are connected to BPA 100.

While the computer system described 1in Figure 4 1s capable of
executing the processes described herein, this computer system 1s simply
one example of a computer system. Those skilled 1n the art will
appreciate that many other computer system designs are capable of

performing the processes described hereiln.

One of the preferred implementations of the invention 1s a client
application, namely, a set of i1nstructions (program code) 1n a code module
that may, for example, be resident i1n the random access memory of the
computer. Until required by the computer, the set of i1nstructions may be
stored 1n another computer memory, for example, 1n a hard disk drive, or
in a removable memory such as an optical disk (for eventual use i1n a CD
ROM) or floppy disk (for eventual use 1n a floppy disk drive), or
downloaded via the Internet or other computer network. Thus, the present
invention may be implemented as a computer program product for use 1n a
computer. In addition, although the various methods described are
conveniently 1mplemented 1n a general purpose computer selectively

activated or reconfigured by software, one of ordinary skill 1n the art

10

15

20

25

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
12

would also recognize that such methods may be carried out 1n hardware, 1in
firmware, or 1n more specilialized apparatus constructed to perform the

requlired method steps.

While particular embodiments of the present i1nvention have been
shown and described, 1t will be obvious to those skilled i1in the art that,
based upon the teachings hereilin, that changes and modifications may be
made without departing from this invention and 1ts broader aspects.
Therefore, the appended claims are to encompass within their scope all
such changes and modifications as are within the scope of this invention.
Furthermore, 1t 1s to be understood that the invention 1s solely defined

by the appended claims. It will be understood by those with skill in the

art that 1f a specific number of an introduced claim element 1s i1ntended,
such 1ntent will be explicitly recited in the claim, and 1n the absence of
such recitation no such limitation 1s present. For non-limiting example,
as an aid to understanding, the following appended claims contaln usage of
the i1ntroductory phrases %“at least one” and “one or more” to introduce
claim elements. However, the use of such phrases should not be construed
to 1mply that the introduction of a claim element by the i1indefinite

articles “a” or “an” limits any particular claim contalining such

introduced claim element to i1nventions contalining only one such element,
even when the same claim includes the introductory phrases “one or more”
or “at least one” and indefinite articles such as “a” or “an”; the same

holds true for the use 1n the claims of definite articles.

10

15

20

25

30

33

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
13
CLAIMS

1. A computer-implemented method comprising:

selecting rasterized pixel data corresponding to a screen location;
retrieving a first ray traced pixel data corresponding to the screen
location, the first ray traced pixel data included i1in a plurality of ray

traced pixel data;

comparing the first ray traced pixel data with the rasterized pixel
data;

replacing the first ray traced pixel data with the rasterized pixel

data based upon the comparing; and

generating an image using the remaining plurality of ray traced

pixel data and the rasterized pixel data.

2. The method of claim 1 wherein the comparing further comprises:
retrieving a ray traced pixel depth value that i1is included in the first

ray traced pixel data;

retrieving a rasterized pixel depth value that 1s included 1n the
rasterized pixel data; and

determining whether the rasterized pixel depth value relative to the ray
traced pixel depth value positions the rasterized pixel data 1in

front of the ray traced pixel data at the screen location.

3. The method of claim 2 wherein the replacing further comprises:

overwriting the ray traced pixel depth value located 1n a depth buffer
with the rasterized pixel depth value; and

overwriting a ray traced pixel color value 1ncluded 1n the first ray

traced pixel data with a rasterized pixel color value that 1is

included 1n the rasterized pixel data.

4. The method of claim 2 further comprising:

retrieving model data that corresponds to a high-gquality 1mage

rendering object;

using a rendering algorithm to render ray traced data from the model

data; and

segmenting the ray traced data into the plurality of ray traced
pixel data.

D. The method of any preceding claim further comprising:

using a rasterizer to render a polygon; and

10

15

20

25

30

35

40

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
14

segmenting the polygon into a plurality of rasterized pixel data,

wherein the rasterized pixel data 1s included 1n the plurality of

rasterized pixel data.

0. The method of any preceding claim wherein the plurality of ray

traced pixel data 1s generated using a rendering algorithm that 1s

selected from the group consisting of a ray casting algorithm and a ray

tracing algorithm.

7. The method of any preceding claim further comprising:
wherein the method 1s performed using a broadband processor
architecture, the broadband processor architecture including a plurality
of heterogeneous processors, a common memory, and a common bus; and
wherein the plurality of heterogeneous processors use different

instruction sets and share the common memory and the common bus.

8. A computer program product comprising:

a computer operable medium having computer readable code, the
computer readable code being effective to:

select rasterized pixel data corresponding to a screen location;
retrieve a first ray traced pixel data corresponding to the screen
location, the first ray traced pixel data i1ncluded in a plurality of ray
traced pixel data;

compare the first ray traced pixel data with the rasterized pixel
data;

replace the first ray traced pixel data with the rasterized pixel
data based upon the comparing; and
generate an i1mage using the remalining plurality of ray traced pixel data

and the rasterized pixel data.

9. The computer program product of claim 8 wherein the computer
readable code 1s further effective to:

retrieve a ray traced pixel depth value that 1s included 1n the
first ray traced pixel data;

retrieve a rasterized pixel depth value that 1s 1ncluded 1n the
rasterized pixel data; and

determine whether the rasterized pixel depth value relative to the
ray traced pixel depth value positions the rasterized pixel data in front

of the ray traced pixel data at the screen location.

10

15

20

25

30

35

40

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
13

10. The computer program product of claim 9 wherein the computer

readable code 1s further effective to:

overwrite the ray traced pixel depth value located 1n a depth buffer

with the rasterized pixel depth value; and
overwrite a ray traced pixel color value included 1n the first ray
traced pixel data with a rasterized pixel color wvalue that 1s included 1n

the rasterized pixel data.

11. The computer program product of claim 9 wherein the computer
readable code 1s further effective to:
retrieve model data that corresponds to a high-quality 1mage

rendering object;

use a rendering algorithm to render ray traced data from the model

data; and

segment the ray traced data into the plurality of ray traced pixel

data.

12. The computer program product of any of claims 8 to 11 wherein the
computer readable code 1s further effective to:

use a rasterizer to render a polygon; and

segment the polygon into a plurality of rasterized pixel data,

wherein the rasterized pixel data 1s included 1n the plurality of

rasterized pixel data.

13. The computer program product of any of claims 8 to 12 wherein the

plurality of ray traced pixel data 1s generated using a rendering

algorithm that 1s selected from the group consisting of a ray casting

algorithm and a ray tracing algorithm.

14. The computer program product of any of claims 8 to 13 wherein the
computer readable code 1s executed using a broadband processor
architecture, the broadband processor architecture including a plurality
of heterogeneous processors, a common memory, and a common bus; and
wherein the plurality of heterogeneous processors use different

instruction sets and share the common memory and the common bus.

15. An information handling system comprising:
one Or more pProcessors;
a memory accessible by the processors;
one or more nonvolatile storage devices accessible by the

processors; and

10

15

20

25

30

35

40

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
16

an 1mage generation tool for traversing a linked data structure, the
image generation tool being effective to:

select rasterized pixel data corresponding to a screen
location;

retrieve a first ray traced pixel data from one of the
nonvolatile storage devices corresponding to the screen location,
the first ray traced pixel data included i1n a plurality of ray
traced pixel data;

compare the first ray traced pixel data with the rasterized
pixel data;

replace the first ray traced pixel data 1n one of the
nonvolatile storage devices with the rasterized pixel data based
upon the comparing; and

generate an i1mage on a display using the remaining plurality

of ray traced pixel data and the rasterized pixel data.

16. The information handling system of claim 15 wherein the i1image
generation tool 1s further effective to:
retrieve a ray traced pixel depth value from one of the nonvolatile
storage devices that 1s 1ncluded 1n the first ray traced pixel data;
retrieve a rasterized pixel depth value from one of the nonvolatile
storage devices that 1s included 1n the rasterized pixel data; and
determine whether the rasterized pixel depth value relative to the
ray traced pixel depth value positions the rasterized pixel data i1in front

of the ray traced pixel data at the screen location.

17. The information handling system of claim 16 wherein the 1image
generation tool 1s further effective to:

overwrite the ray traced pixel depth value located 1n a depth buffer
with the rasterized pixel depth value, the depth buffer located i1n one of
the nonvolatile storage devices; and

overwrite, 1n one of the nonvolatile storage devices, a ray traced
pixel color value included in the first ray traced pixel data with a
rasterized pixel color value that 1s 1ncluded i1n the rasterized pixel

data.

18. The information handling system of claim 16 wherein the i1image
generation tool 1s further effective to:
retrieve model data from one of the nonvolatile storage devices that

corresponds to a high-gquality 1mage rendering object;

10

15

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
17

use a rendering algorithm to render ray traced data from the model

data; and

segment the ray traced data into the plurality of ray traced pixel

data.

19. The information handling system of any of claims 15 to 18 whereiln
the i1mage generation tool i1is further effective to:

use a rasterizer to render a polygon; and

segment the polygon into a plurality of rasterized pixel data,

wherein the rasterized pixel data 1s included 1n the plurality of

rasterized pixel data.

20. The information handling system of any of claims 15 to 19 wherein
the plurality of ray traced pixel data 1s generated using a rendering

algorithm that 1s selected from the group consisting of a ray casting

algorithm and a ray tracing algorithm.

CA 02618472 2008-02-06

WO 2007/017391

1/4

PCT/EP2006/064705

i

Broadband Processor Architecture (BPA)
100

Synergistic
Processing Unit
(SPU)

110

Rendering
Algorithm

120

Ray Traced Data
Color/Depth

150

Model Data
140

System
Memory

130

Color Buffer
160

Depth Buffer

/

)\

Composite Data
- Ray Traced Pixel Data
- Rasterized Pixel Data

189

Ray Traced Rasterized Data
Pixel Depth Color/Depth
Values 180
170
Rasterizer
175

Figure 1

Display
Subsystem
190

WO 2007/017391

CA 02618472 2008-02-06

PCT/EP2006/064705
2/4
Start
200
\ 4
Model Data |- - Retneveﬂzdel Data
140 i
Generate Ray Traced Data
220
Ray Traced
-1 Data l
150 \ Store Ray Traced Data
1 229
Ray Traced
Pixel Depth v
Values T~
I 170 Rasterizer
Processing
Rasterized (See Figure 3)
Pixel Data 230
180
Composite
Data v

182 \ Display Image

>

240

«»

——_——_-—.-———_1

Figure 2

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
3/4

Rasterizer Start
300

Render Polygons
309

4| Select First Polygon
310

Select Next
» Polygon » Break Into Fragments

205 320

Select First Rasterized Pixel Data System
330 Memory

130
Retrieve Depth Value Corresponding to

> Selected Rast. Pixel Data Depth Buffer
340 155

Select Next Compare Rast. Pixel Depth Value to Color Buffer
Pixel Data Ray Traced Pixel Depth Value

389 350

n 362
Rast Frag.
v NO in Front of Ray Traced Frag.?

Disregard Selected 360 i
Pixel Data 368 E
i

Yes
365 b

Overwrite Ray Traced Depth/Color Values
with Rasterized Frag. Depth/Color Values ----------

370

More
Fragments?

380

Yes
(Loop)

382

More
Polygons?

390

Yes
(Loop)

392

397

No
v

Return
399

Figure 3

CA 02618472 2008-02-06

WO 2007/017391 PCT/EP2006/064705
4/4

Broadband Processor Architecture (BPA)
100
r—-—— - — — - - - - - - Qa ., -~ /= -]
Control Plane	Data Plane		
	SPC A SPC B sPCn		
Procezséiag Unit			445 450 455
-	I— — ——‘ ————— A _____ _Q		
0S			
429	4 Y		
i	™ Processor Element Bus		
—» 460			
L2 Memory		i	
430 1			
_______ N
4
/O
165
n
Rasterizer

175

o

Broadband Processor Architecture (BPA)

100

Synergistic
Processing Unit
(SPU)

110

Rendering
Algorithm

120 Ray Traced Data
Color/Depth
150
Model Data
140 System
Memory
130
Depth Buffer || Color Buffer
199 160
/10
165
Ray Iraced Rasterized Data : Ra(a: oﬁggesc:tgi?;tgata
Pixel Depth Color/Depth y Y ioriad Pheal Dat
170 189
Display
t
Rasterizer Subzg; om

175

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - abstract drawing

