WO 2004/010341 A1 ||| 000 00 000 O Ol

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 January 2004 (29.01.2004)

(10) International Publication Number

WO 2004/010341 A1l

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2003/022888

(22) International Filing Date:
(25) Filing Language:

(26) Publication Language:

21 July 2003 (21.07.2003)
English

English

(30) Priority Data:

(71) Applicant:

60/398,211
10/273,670

23 July 2002 (23.07.2002)
18 October 2002 (18.10.2002)

Us
Us

LIGHTSURF TECHNOLOGIES, INC.
[US/US]; 110 Cooper Street, 4th Floor, Santa Cruz, CA
95060-3901 (US).

(72) Inventor: EASWAR, Venkat; 10736 Linda Vista Drive,

Cupertino, CA 95014 (US).

(74)

(81)

(84)

Agent: SMART, John, A.; 708 Blossom Hill Road, #201,
Los Gatos, CA 95032-3503 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: IMAGING SYSTEM PROVIDING DYNAMIC VIEWPORT LAYERING OPTIMISED FOR A SPECIFIC CLIENT
DEVICE TYPE

(57) Abstract: A system including methodology for optimizing/customizing dis-

BEGIN 00
f 601

A STOCKHTTP SERVER (E G, .APACHE SERVER]) IS INVOKED
WITH A URL FROM A (BROWSER) CLIENT

l K 602

APLUG-IN MODULE (ESWITCH HANDLER) IS USED TO FORK THE

INCOMING REQUEST |

l /— 603

THE HANDLER EXAMINES THE HTTP GET HEADERS TO IDENTIFY
THE BROWSER CLIENT, AND FROM THIS IDENTIFICATION, THE

THE HANDLER CONS!JLTE A DEVICE DATABASE TO MATCH THE

HANDLER MAY INFER THE IDENTITY OF THE CLIENT DEVICE

HEADERS WITH AN APPROPRIATE DEVICE

l F 604
| THE HANDLER PRCCEEDS TO FETCH AN XML FILE
l s

THE XML FILE THAT IS FETCHED MAY NOW BE PARSED, USING A

ATTRIBUTES ARE THEN USED TO CREATE AN IN-MEMORY COPY

STOCK XML PARSER (E G., LIBXML2) THE PARSED VALUES/

OF THE IMAGE TRANSFORM TREE

l F 608

MERGE VIEWPORT INFORMATION DERIVED FROM THE CLIENT

DATABASE WITH ALL OF THE ATTRIBUTES/ VALUES (E G,
LAYERING INFORMATION) IN THE iIMAGE TRANSFORM TREE

l K €07

RENDER THE IMAGE THE IMAGE OF INTEREST IS RENDERED
‘PURSUANT TO THE LAYERING AND VIEWPORT INFORMATION IN

UPON INVOKING AN IMAGE TRANSFORM MODULE, ACTUALLY
TO THE VIEWPORT OF THE IDENTIFIED CLIENT DEVICE

THE IMAGE TRANSFORM TREE

l / 608

FINALLY, EMIT A FULLY RENDERED IMAGE (PER CONSTRAINTS)

THAT IS THEN TRANSMITTED BACK TO THE CLIENT DEVICE

play or rendering of request images is described. In one embodiment, the system
provides on-demand creation of images that are customized for a particular device
type. The system comprises a module serving as a repository for images, each
image comprising image components arranged into distinct layers; a module for
processing a request from a device for retrieving a particular image from the repos-
itory, the module determining a particular device type for the device based in part
on information contained in the request; and a module individually rendering im-
age components in the distinct layers of a particular image based on the determined
device type, such that at least some of the image components in the distinct layers
of the particular image are customized for the device.



WO 2004/010341 A1 I} 010 08000 00000 000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
—  before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments



10

15

- 20

25

30

WO 2004/010341 PCT/US2003/022888

PATENT
Docket No. LLS0033.01PCT

PATENT APPLICATION

IMAGING SYSTEM PROVIDING DYNAMIC VIEWPORT LAYERING OPTIMISED FOR A SPECIFIC
CLIENT DEVICE TYPE

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to digital image processing and, more
particularly, to improved techniques for rendering digital images on different devices.
2. Description of the Background Art

Today, digital imaging, particularly in the form of digital cameras, is a prevalent
reality that affords a new way to capture photos using a solid-state image sensor instead
of traditional film. A digital camera functions by recording incoming light on some sort
of sensing mechanism and then processes that information (basically, through analog-to-
digital conversion) to create a memory image of the target picture. A digital camera's
biggest advantage is that it creates images digitally thus making it easy to transfer images
between all kinds of devices and applications. For instance, one can easily insert digital
images into word processing documents, send them by e-mail to friends, or post them on
a Web site where anyone in the world can see them. Additionally, one can use photo-
editing software to manipulate digital images to improve or alter them. For example, one
can crop them, remove red-eye, change colors or contrast, and even add and delete
elements. Digital cameras also provide immediate access to one's images, thus avoiding

the hassle and delay of film processing. All told, digital imaging is becoming



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
2

increasingly popular because of the flexibility it gives the user when he or she wants to
use or distribute an image.

Regardless of where they originate, digital images are often manipulated by users.
Using Adobe Photoshop on a desktop computer, for example, a user can manually create
an image by layering different objects on top of one another. For instance, one layer of
an image may contain artwork, another layer may contain text, another layer may contain
a bitmap border, and so forth and so on. The image, with its separate layers, may then be
saved in Photoshop (native) file format, or saved in one of a variety of different file
formats.

Using Photoshop, one could conceivably pre-generate different versions of a
given image (i.e., pre-render the image's different layers) so that the image is correctly
rendered for each possible (display-enabled) device in the world. However, that approach
is not really practical. The various devices have constraints as to file size (e.g., less than
5K bytes), bit depth constraints (e.g., no more than 8 bits per pixel), and image size
constraints (e.g., image cannot be more than 100 by 100 pixels). Thus, the task of
creating an acceptable version of the image for thousands of devices is impractical.

Consider, for example, the task of layering a character (e.g., Disney character) on
top of artwork (e.g., bitmap background), for display on a target device capable of
displaying JPEG. In this case, the artwork would need to be resized to the screen size of
the target device. The character would then have to be overlaid (layered) on top of the
resized artwork, and finally the image would need to be saved to the correct JPEG
quality. If the generated image file were too big for the target device, the process would
have to be repeated, including resizing the background artwork and relayering the
character on top of the artwork. Using currently available tools, the task is at best tedious
and labor-intensive. Further, the foregoing manual (i.e., pre-rendering) approach is only
possible when one is dealing with static images. If a user wants to layer an object on top
of an existing image instantaneously, the manual approach does not offer a possible
solution.

Existing approaches to layering objects rely on browser-based, online techniques.
However, those approaches are basically online versions of the above-described desktop
approach (i.e., Adobe Photoshop approach). In particular, those approaches do not take
into account the various constraints that may be imposed by a given target device, such as
a handheld device. Instead, those approaches rely on an environment with a fixed set of

device constraints (i.e., a fixed viewport). If the image is transferred to a target device,

2



10

15

25

30

WO 2004/010341 PCT/US2003/022888
3

the image may have to be resized. Since the image is not being dynamically re-created,
one cannot take advantage of vector graphics; thus, certain features of the image will be
lost. For example, text that looks good when displayed on a desktop browser at 640 by
480 resolution will look awful when resized for display on a mobile device having a
screen resolution of 100 by 100. Instead, it would be desirable to render the text (as well
as any other graphics) based on the target device's final screen resolution as well as any
other applicable target device constraints. Given these and other limitations of current
approaches, a better solution is sought.

What is needed is a system providing methods that allow dynamic reshaping of a
logical viewport and allow dynamic adjusting of encoding parameters, including file size
constraints, so that rendering of digital images is dynamically optimized or customized

for different target devices. The present invention fulfills this and other needs.
GLOSSARY

The following definitions are offered for purposes of illustration, not limitation, in

order to assist with understanding the discussion that follows.

ColorSpace correction: Color space correction is the process of adjusting the R,G, B
values in an image to suit the color chromaticities of the target display's red, green, and
blue. See, e.g., Poynton, C. A., "A Technical Introduction of Digital Video," Chapter 7,
John Wiley, New York, 1996.

~ Gamma Correction: This is the process of compensating for a display's non-linearity by

applying the inverse of the display's nonlinearity to the source image. See, e. g., Poynton,
C. A., "A Technical Introduction of Digital Video," Chapter 6, John Wiley, New York,
1996.

HTML: Short for HyperText Markup Language, the well-known authoring language used
to create documents on the World Wide Web. HTML is similar to SGML, although it is
not a strict subset. HTML defines the structure and layout of a Web document by using a
Variéty of tags and attributes. See, e.g., RFC 1866: Hypertext Markup Language - 2.0.

HTTP: Short for HyperText Transfer Protocol, this is the underlying protocol used by the
World Wide Web. HTTP defines how messages are formatted and transmitted, and what

actions Web servers and browsers should take in response to various commands. For



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
4

example, when a user enters a URL in his or her browser,\this actually sends an HTTP
command to the Web server directing it to fetch and transmit the requested Web page.
Further description of HTTP is available in RFC 2616: Hypertext Transfer Protocol --
HTTP/1.1. RFC 2616 is available from the World Wide Web Consortium (W3), and is

currently available via the Internet at www.w3.org/Protocols/.

Red eye Compensation: The "red eye" effect is caused by a camera's flash reflecting off
of the retina of the human eye. Computer algorithms that "desaturate" the red to darker
colors can reduce the "redness." See, e.g., U.S. Patent No. 6,278,491, issued to Wang et
al., and entitled "Apparatus and a method for automatically detecting and reducing red-

eye in a digital image".

Sharpen: This is the'process of "crispening” the gray-scale edges in the image for
improved appearance or to compensate for a blurry display. This is typically achieved
through "unsharp masking." See, e.g., Jain, A. K., "Fundamentals of Image Processing",
Prentice Hall, Engelwood Cliffs, NJ, 1989, describing how a low pass filtered version of

an image may be subtracted from the image.

URL: Abbreviation of Uniform Resource Locator, the global address of documents and
other resources on the World Wide Web. The first part of the address indicates what
protocol to use, and the second part specifies the IP address or the domain name where

the resource is located.

Viewport: Viewport refers to a target display that the user will view the final 1mage on.
For example, in the case of a mobile handheld device, the viewport is the device's screen.
However, depending on the individual target device, ‘the viewport is not necessarily
constrained to the screen's physical size. If the device includes scroll capability, for

instance, the viewport's (logical) size may exceed the screen's physical size.

Whitepoint Correction: The whitepoint is the color coordinates of the "reference white"
in a given environment. The human eye is capable of "chromatic adaptation" to the
whitepoint. Whitepoint correction is the process of adjusting the R, G, B color
coordinates to account for the human eye's adjustment to the target display's whitepoint.
See, e.g., Giorgianni, E. J. et al., "Digital Color Management," Addison-Wesley, Reading,
MA, 1998.



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
5

XML: XML stands for Extensible Markup Language, a specification developed by the
W3C. XML is a pared-down version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags, en:elbling the definition,
transmission, validation, and interpretation of data between applications and between
organizations. For further description of XML, see e.g., "Extensible Markup Language
(XML) 1.0," (2nd Edition, October 6, 2000) a-recommended specification from the W3C.
A copy of this specification is currently available on the Internet at

www.w3.0rg/TR/2000/RE C-xmi-20001006.
SUMMARY OF THE INVENTION

A system for on-demand creation of images that are customized for a particular
device type is described. In one embodiment, the system comprises a module serving as a
repository for images, each image comprising image components arranged into distinct
layers; a module for processing a request from a device for retrieving a particular image
from the repository, the module determining a particular device type for the device based
in part on information contained in the request; and a module for creating a copy of the
particular image that is customized for the device, the module individually rendering
image components in the distinct layers of the particular image based on the determined
device type, such that at least some of the image components in the distinct layers of the
particular image are customized for the device.

A method for dynamically optimizing display of an image transmitted to a client
device is also described. In one embodiment, the method includes steps of receiving an
online request from a particular client device for retrieving a target image for display, the
request including information assisting with determination of a device type for the client
device, and the target image comprising image components arranged into individual
layers; based on the request, determining a device type for the particular client device;
based on the determined device tyf)e, retrieving information specifying viewport and
layering information for the particular client device; based on the viewport and layering
information, creating a version of the target image optimized for display at the particular
client device; and transmitting the created version of the target image to the client device

for display.



10

15

20

25

WO 2004/010341 PCT/US2003/022888
' 6

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a very general block diagram of a digital camera suitable for
implementing the present invention.

Fig. 2A is a block diagram of a conventional digital imaging device.

Fig. 2B is a block diagram of a conventional onboard processor or computer
provided for directing the operation of the digital camera and processing image data.

Fig. 3 is a block diagram illustrating an exemplary wireless connectivity
environment in which the present invention is preferably embodied.

Fig. 4 is a diagram illustrating an iterative optimization/customization method of
the present invention that is used to meet target device constraints while maintaining good
image quality.

Fig. 5A is a diagram illustrating a layering API and is provided to describe how to
combine various layers.

Fig. 5B is a diagram illustrating a Viewport coordinate system that is preferably
employed.

Fig. 5C is a graph illustrating the hierarchy of objects that is used in an XML API ,
of the present invention.

Figs. 6A-B comprise a flowchart illustrating the overall methodology employed

by the present invention supporting dynamic viewport layering,.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

The following description will focus on the currently preferred embodiment of the
present invention, which is implemented in a digital imaging environment. The present
invention is not, however, limited to any one particular application or any particular
environment. Instead, those skilled in the art will find that the system and methods of the
present invention may be advantageously employed on a variety of different devices.
Therefore, the description of the exemplary embodiment that follows is for purpose of

illustration and not limitation.



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
7

I. Digital camera-based implementation

A. Basic components of digital camera

The present invention may be implemented on a media capturing and recording
system, such as a digital camera. Fig. 1 is a very general block diagram of a digital
camera 100 suitable for implementing the present invention. As shown, the digital
camera 100 comprises an imaging device 120, a system bus 130, and a processor or
computer 140 (e.g., microprocessor-based unit). Also shown is a subject or object 150
whose image is to be captured by the digital camera 100. The general operation of these
components of the digital camera 100 in capturing an image of the object 150 will now be
described.

As shown, the imaging device 120 is optically coupled to the object 150 in the
sense that the device may capture an optical image of the object. Optical coupling may
include use of optics, for example, such as a lens assembly (not shown) to focus an image
of the object 150 on the imaging device 120. The imaging device 120 in turn
communicates with the computer 140, for example, via the system bus 130. The
computer 140 provides overall control for the imaging device 120. In operation, the
computer 140 controls the ilnaging device 120 by, in effect, telling it what to do and
when. For instance, the computer 140 provides general input/output (I/O) control that
allows one to coordinate control of the imaging device 120 with other electromechanical
peripherals of the digital camera 100 (e.g., flash attachment).

Once a photographer or camera user has aimed the imaging device 120 at the
object 150 (with or without user-operated focusing) and, using a capture button or some
other means, instructed the camera 100 to capture an image of the object 150, the
computer 140 commands the imaging device 120 via the system bus 130 to capture an
image representing the object 150. The imaging device 120 operates, in essence, by
capturing light reflected from the object 150 and transforming that light into image data.
The captured image data is transferred over the system bus 130 to the computer 140
which performs various image processing functions on the image data before storing it in
its internal memory. The system bus 130 also passes various status and control signals
between the imaging device 120 and the computer 140. The components and operations

of the imaging device 120 and the computer 140 will now be described in greater detail.



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
g :

B. Image capture on imaging device

Fig. 2A is a block diagram of a conventional digital imaging device 120. As
shown, the imaging device 120 comprises a lens 210 having an iris, one or more filter(s)
215, an image sensor 230 (e.g., CMOS, CCD, or the like), a focus mechanism (e.g.,
motors) 241, a timing circuit 242, a signal processor 251 (e.g., analog signal processor),
an analog-to-digital (A/D) converter 253, and an interface 255. The operation of these
components will now be described.

In operation, the imaging device 120 captures an image of the object 150 via
reflected light impacting the image sensor 230 along optical path 220. The lens 210
includes optics to focus light from the object 150 along optical path 220 onto the image
sensor 230. The focus mechanism 241 may be used to adjust the lens 210. The filter(s)
215 preferably include one or more color filters placed over the image sensor 230 to
separate out the different color components of the light reflected by the object 150. For
instance, the image sensor 230 may be covered by red, green, and blue filters, with such
color filters intermingled across the image sensor in patterns ("mosaics") designed to
yield sharper images and truer colors.

While a conventional camera exposes film to capture an image, a digital camera
collects light on an image sensor (e.g., image sensor 230), a solid-state electronic device.
The image sensor 230 may be implemented as either a charged-coupled device (CCD) or
a complementary metal-oxide semiconductor (CMOS) sensor. Both CMOS and CCD
image sensors operate by capturing light on a grid of small cells known as photosites (or
photodiodes) on their surfaces. The surface of an image sensor typically consists of
hundreds of thousands of photosites that convert light shining on them to electrical
charges. Depending upon a given image, varying amounts of light hit each photosite,
resulting in varying amounts of electrical charge at the photosites. These charges can
then be measured and converted into digital information. A CCD sensor appropriate for
inclusion in a digital camera is available from a number of vendors, including Eastman
Kodak of Rochester, NY, Philips of The Netherlands, and Sony of Japan. A suitable
CMOS sensor is also available from a variety of vendors. Representative vendors include
STMicroelectronics (formerly VSLI Vision Ltd.) of The Netherlands, Motorola of
Schaumburg, IL, and Intel of Santa Clara, CA.

When instructed to capture an image of the object 150, the image sensor 230
responsively generates a set of raw image data (e.g., in CCD format for a CCD

implementation) representing the captured obiect 150. In an embodiment using a CCD

8



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
9

sensor, for example, the raw image data that is captured on the image sensor 230 is routed
through the signal processor 251, the analog-to-digital (A/D) converter 253, and the
interface 255. The interface 255 has outputs for controlling the signal processor 251, the
focus mechanism 241, and the timing circuit 242. From the interface 255, the image data
passes over the system bus 130 to the computer 140 as previously illustrated at Fig. 1.

The operations of the computer 140 in processing this image data will now be described.

C. Image Processing

A conventional onboard processor or computer 140 is provided for directing the
operation of the digital camera 100 and processing image data captured on the imaging
device 120. Fig. 2B is a block diagram of the processor or computer 140. As shown, the
system bus 130 provides connection paths between the imaging device 120, an (optional)
power management 262, a processor (CPU) 264, a random-access memory (RAM) 266,
an input/output (I/O) controller 280, a non-volatile memory 282, a removable memory
interface 283, and a liquid crystal display (LCD) controller 290. Removable memory 284
connects to the system bus 130 via the removable memory interface 283. Alternately, the
camera 100 (and therefore the onboard computer 140) may be implemented without the
removable memory 284 or the removable memory interface 283. The power management
262 communicates with the power supply 272. Also illustrated at Fig. 2B is a camera
user interface 295 which is electrically connected to the LCD controller 290 and the
input/output controller 280. Each of these components will now be described in more
detail. |

The processor (CPU) 264 typically includes a conventional processor device (e.g.,
microprocessor) for controlling the operation of camera 100. Implementation of the
processor 264 may be accomplished in a variety of different ways. For instance, the
processor 264 may be implemented as a microprocessor (e.g., MPC823 microprocessor,
available from Motorola of Schaumburg, IL) with DSP (digital signal processing) logic
blocks, memory control logic blocks, video control logic blocks, and interface logic.
Alternatively, the processor 264 may be implemented as a "camera on a chip (set)" using,
for instance, a Raptor II chipset (available from Conextant Systems, Inc. of Newport
Beach, CA), a Sound Vision Clarity 2, 3, or 4 chipset (available from Sound Vision, Inc.
of Wayland, MA), or similar chipset that integrates a processing core with image

processing periphery. Processor 264 is typically capable of concurrently running multiple



10

15

20

25

30

WO 2004/010341 ) PCT/US2003/022888
10

software routines to control the various processes of camera 100 within a multithreaded

environment.

The digital camera 100 includes several memory components. The memory
(RAM) 266 is a contiguous block of dynamic memory which may be selectively allocated
to various storage functions. Dynamic random-access memory is available from a variety
of vendors, including, for instance, Toshiba of Japan, Micron Technolo gy of Boise, ID,
Hitachi of Japan, and Samsung Electronics of South Korea. The non-volatile mémory
282, which may typically comprise a conventional read-only memory or flash memory,
stores a set of computer-readable program instructions to control the operation of the
camera 100. The removable memory 284 serves as an additional image data storage area
and may include a non-volatile device, readily removable and replaceable by a camera
100 user via the removable memory interface 283. Thus, a user who possesses several
removable memories 284 may replace a full removable memory 284 with an empty
removable memory 284 to effectively expand the picture-taking capacity of the camera
100. The removable memory 284 is typically implemented using a flash disk. Available
vendors for flash memory include, for example, SanDisk Corporation of Sunnyvale, CA
and Sony of Japan. Those skilled in the art will appreciate that the digital camera 100
may incorporate other memory configurations and designs that readily accommodate the
image capture and processing methodology of the present invention.

The digital camera 100 also typically includes several interfaces for
communication with a camera user or with other systems and devices. For example, the
I/O controller 280 is an interface device allowing communications to and from the
computer 140. The I/O controller 280 permits an external host computer (not shown) to
connect to and communicate with the computer 140. As shown, the I/O controller 280
also interfaces with a plurality of buttons and/or dials 298, and an optional status LCD
299, which in addition to the LCD screen 296 are the hardware elements of the user
interface 295 of the device. The digital camera 100 may include the user interface 295
for providing feedback to, and receiving input from, a camera user, for example.
Alternatively, these elements may be provided through a host device (e.g., personal
digital assistant) for a media capture device implemented as a client to a host device. For
an embodiment that does not need to interact with users, such as a surveillance camera,
the foregoing user interface components may not be required. The L.CD controller 290
accesses the memory (RAM) 266 and transfers processed image data to the LCD screen

296 for display. Although the user interface 295 includes an LCD screen 296, an optical

10



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
11

viewfinder or direct view display may be used in addition to or in lieu of the LCD screen
to provide feedback to a camera user. Components of the user interface 295 are available
from a variety of vendors. Examples include Sharp, Toshiba, and Citizen Electronics of

Japan, Samsung Electronics of South Korea, and Hewlett-Packard of Palo Alto, CA.

The power management 262 communicates with the power supply 272 and
coordinates power management operations for the camera 100. The power supply 272
supplies operating power to the various components of the camera 100. In a typical
configuration, power supply 272 provides operating power to a main power bus 278 and
also to a secondary power bus 279. The main power bus 278 provides power to the
imaging device 120, the I/O controller 280, the non-volatile memory 282, and the
removable memory 284. The secondary power bus 279 provides power to the power
management 262, the processor 264, and the memory (RAM) 266. The power supply 272
1s connected to batteries 275 and also to auxiliary batteries 276. A camera user may also
connect the power supply 272 to an external power source, as desired. During normal
operation of the power supply 272, the main batteries 275 provide operating power to the
power supply 272 which then provides the operating power to the camera 100 via both
the main power bus 278 and the secondary power bus 279. During a power failure mode
in which the main batteries 275 have failed (e.g., when their output voltage has fallen
below a minimum operational voltage level), the auxiliary batteries 276 provide operating
power to the power supply 276. In a typical configuration, the power supply 272
provides power from the auxiliary batteries 276 only to the secondary power bus 279 of
the camera 100.

The above-described system 100 is presented for purposes of illustrating the basic
hardware underlying a media capturing and recording system (e.g., digital camera) that
may be employed for implementing the present invention. The present invention,
however, is not limited to just digital camera devices but, instead, may be advantageously
applied to a variety of devices capable of sﬁpporting and/or benefiting from the

methodologies of the present invention presented in detail below.

D. System environment

Fig. 3 illustrates an exemplary wireless connectivity environment 300 in which the
present invention is preferably embodied. As shown, environment 300 includes an
imaging device 310 (e.g., a digital camera, such as digital camera 100) that includes a

central processing unit (CPU) 320 including a dynamic signal processor (DSP) unit 325, a

11



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
12

random access memory (RAM) 330 (e.g., DRAM, SRAM, or the like), and a flash
memory 340 for storing one or more compressed images. Basic operation of the image
device 310 is as follows. A user operating imaging device 310 may take one or more
digital images (pictures) and store the image files in flash memory 340 on the imaging
device 310. Camera-side processing (e.g., compression) of the image is handled by DSP
unit, working in conjunction with working memory (i.e., RAM 330). After processing,
images may then be sent via wireless network 360 to a server computer 370 (e.g., on the
Internet). At the server 370, the image data received from the imaging device 310 may be
retrieved into memory (RAM) 390 (e.g., DRAM, SRAM, or the like) for additional
processing (e.g., overlaying graphics). The processed image may then be stored on server
370, or transferred back to the original device (e.g., camera 100), or transferred to other

devices, as desired

II. Dynamic viewport layering

A. Introduction

Content creators want to create interesting content to add to user pictures. For
example, content creators may want to layer user pictures with interesting text or
interesting animation. This entails creating content on the fly. However, when a content
creator creates content on the fly, the creator faces the additional problem of correctly
displaying or rendering the content on devices with different display characteristics. The
approach of the present invention is to create a solution that allows one to describe what
has to happen in the final presentation. For example, an exemplary description would
indicate that an image should be displayed with a frame, with animation overlaid on the
image, and with the text "Happy Birthday" displayed on top. In this manner, the solution
allows the image to be correctly displayed on devices with different display
characteristics.

More particularly, the present invention applies a two-pronged approach. First,
the approach of the present invention is to provide a description language that allows one
to specify how the layering is to be performed. In the currently preferred embodiment,
the description language conforms to XML format and provides a hierarchical description
of the layers that form a given image. The different layers include images (e.g., bitmaps),
animations, text, vector graphics, and the like. The description language includes a

syntax that allows one to describe how to compose the different layers together and how

12



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
13

to display those layers in a viewport. The description language does not specify an exact
layout but, instead, accommodates the constraints of the various target devices. A given
description for a particular image is resident on the server; it is not sent to the target
device. Instead, the target device receives the final encoded format (image). Thus, the
description language accommodates for encoding constraints imposed by a particular
target device.

The second prong of the approach of the present invention is to dynamically
reshape or reconfigure the viewport, so that the image is correctly rendered at the target
device. Consider a set of device constraints for a given target device. The constraints
will specify certain limits, such as maximum bits allowed per pixel (e.g., 8 bits per pixel),
maximum screen size (e.g., 100 pixels by 100 pixels), and the like. In accordance with
the present invention, the viewport is dynamically reconfigured to fit the constraints of
the then-current target device. Moreover, multiple constraints must usually be satisfied.
For example, a target device may specify a maximum image size (e.g., SK). In order to
accommodate that constraint, it may be necessary to decrease the bit depth (i.e., bits per
pixel). The approach of the present invention entails satisfying a device's constraints
mutually, so that, for example, an image's bit depth may be varied to 4 bits per pixel to
accommodate the 5K file size constraint. However, the bit depth would not be allowed to
exceed 8 bits per pixel (i.e., the maximum bit depth supported by the target device). All
told, there are é variety of constraints or parameters that could potentially be adjusted to

dynamically match the logical viewports (and therefore the image) to the target device.

B. Basic methodology

The present invention provides an iterative optimization (customization) method
that is used to meet the constraints of target devices while maintaining good image
quality. As shown at 401 in Fig. 4, a layered approach is used where each layer initially
flows through two basic blocks: Enhance and Viewport preprocessing. The former
represents enhancements like red-eye reduction, contrast adjustments, and the like. The
latter represents logic where the viewport color and appearance constraints are
compensated for by the use of color corrections, gamma, sharpening, and the like.

At the end of the foregoing, the layers (e.g., Layer 0 and Layer 1) are ready to be
mapped to the Viewport, as shown at 403. A File Size Control block 405, which
comumunicates with a Viewport Specification component 417, specifies the Viewport Size

407 for this mapping. The Viewport size may be larger than the target display (e.g., due

13



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
14

to scrolling capability). The layers are merged after mapping, as indicated at 409. The
next step in the process is clipping the Viewport to a clip-path, at 411. The clip-path
corresponds to the Viewport unit rectangle (0.0,0.0,1.0,1.0), but it can also be specified to
be one of the rendered layers. The clipped rectangle is then encoded per the device
constraints, such as color-depth, encoding method, system palette, and the like. Mapping
413 represents this operation. If the resultant file size meets the file size constraints
(tested at 415), then the image is returned to the target (e.g., mobile) display. Otherwise
the file size control block re-sizes the viewport and reinitiates, viewport mapping,

merging, and the like, as indicated by the loop back to the File Size Control block 405.

C. Image transform API

The following describes the interface for specifying image transformations. To
make effective use of the interface, it is useful to understand the imaging model used by
the current invention which is based on a layering paradigm. The layers may include, for
example, image, text, and vector graphics layers. Layers have spatial and temporal
attributes.

1) Spatial layering: The layers have an "order" spatial attribute that specifies
how they are stacked relative to each other. Additionally, a Viewport_map
child-element specifies the sub-region of the Viewport that the layer is
mapped to.

2) Temporal layering: The layers have temporal attributes, such as start time

time, duration, etc. that describe how they are arranged in time.

1. Spatial Layering
The image transformation API is a layering API that describes how to combine
various layers (image, text, animation, etc.) to create special effects. Fig. SA shows the

layering pipeline (ignoring temporal layering for now):

1) First the layers are rendered.

2) The layers are then mapped and stacked on the Viewport. The Viewport is
a virtual rectangle whose dimensions are determined by the target display
dimensions and the layers' mapping method.

3) The layer stack is merged in the Viewport.

14



10

15

25

30

WO 2004/010341 PCT/US2003/022888
15

4) The merged Viewport image is formatted to match the requesting client's
display constraints (like bit-depth, palette, file format, etc.).
5) The formatted image is then returned to the client.

6) The client displays the formatted image on its display.

The Viewport coordinate system is a "normalized" system (Fig. 5B), wherein:

The origin is in the top left corner of the Viewport.
The X axis advances to the right.

The Y axis advances down.

The X coordinates are normalized to Viewport width.

The Y coordinates are normalized to Viewport height.

A "Viewport Unit Rectangle" 551 is defined to be a rectangle that spans the coordinates
(0.0, 0.0), (1.0,1.0). Each layer is mapped to the sub-region of the Viewport, per its
Viewport_map. An example Viewport map sub-region or window is shown at 553 in Fig.

5B.

2. Temporal Layering
In addition to the spatial "order" attribute, layers also have temporal attributes (all
expressed in milliseconds):
1) start time: This specifies the start time that the layer is presented. The
" default is 0 ms.

2) duration: The duration for which a layer is presented. The default value
is infinity ("INF"). A value of 0 is also interpreted as infinite duration.

3) repeat_period: The periodic rate at which the presentation is repeated.
The default value is infinity ("INF"). A value of 0 is also interpreted as

infinity. Both values will result in the animation never getting repeated.

3. XML Approach ‘
Layering is achieved using an XML API. In this method the(arg,val) pair
"enh=<XML_URL>" specifes an XML URL to use.

Example:
http://eswitch.foo.com/es?src=http://source.foo.com/images/imgl.jpg&enh=

http://source.foo.com/templates/enhance.xml.

15



WO 2004/010341 PCT/US2003/022888
16

1) The src image (http://source.foo.com/ ima‘ges /imgl.jpg) becomes
the source layer which is inserted between any background layer (layer
number 0) and other layers specified in the XML enhancements file.

2) The XML (configuration) file describes the other layers. Additionally it

5 describes Viewport constraints.
3) The XML enhancement method cannot be used in conjunction with the

URL line (arg,val) pairs (i.e., the two methods are mutually exclusive).

4. XML Hierarchy
The hierarchy of objects that is used in the XML API is shown in Fig. 5C. The
10  gray lines point to attributes. The dark lines point to elements. In this hierarchy attributes
represent simple types and elements represent complex types. Subsequent sections will
describe the elements and attributes in the hierarchy in more detail. Certain elements and
attributes in the hierarchy are for advanced users and are shown in gray (deemphasized) ‘

text.

15 5. Image Transform
The image transform consists of an element tag to wrap the details of the image

layering operation.

Table: Image Transform

Attribute Valid Values Description 4

xmlins "http//www.lightsurf.com/eswitch2/image_ | The namespace and revision of the Image Transform
transform/1.0" Markup.

Child- Description

element

image_layer An image layer

text_layer A text layer

bezier Layer A layer for defining shapes with Bezier curves

Viewport The Viewport constraints and capabilities that determine how it is mapped to the output.

6. Common Properties of Layers
20 The layers have common properties that describe spatial and temporal behavior.
a) Spatial Properties
A Layer's spatial properties are determined by the "order" attribute and the

"viewport map" child-element.

Table: Spatial attributes of a layer

Attribute Valid Values Description
order 1ton. This is a relative number that denotes the spatial order of
presentation on the Viewport. Layers with larger order are stacked

16



WO 2004/010341 PCT/US2003/022888
17

| on top of layers with smaller order.

Child Element Description

Viewport_map This describes how to map the layer to the Viewport

Viewport map is a common element for all layers. This determines how the layer
is mapped to the Viewport. The mapping is based on:

Window: This is the region in the Viewport where the layer has to be mapped. By

default the window spans the Viewport.

Mode: This describes how to fit the layer into the window. The default is "fit".

The following (advanced) elements are useful to re-position the image after the
mapping.

Align: This describes how to align the layer within the window. If not specified —

a center alignment is assumed.

Offset: This describes if any offset has to be applied to the layer after it is mapped

to the window. If not specified, an offset of (0.0,0.0) is assumed.

Table 1 Viewport_map

Attribute Valid Values Description
mode One of; A method for mapping a layer to the window. The method defines how the
«  Fit (default) initial mapping of the layer to the window should occur. Areas of the layer
e Fil that fall outside the window are clipped to the window.
e Force e  Fit: means the layer is scaled so as to fit within the window The layer's
e Asdis aspect ratio is preserved. The image will fill the window only along one
dimension.
«  Fill: Fill scales the image to fill the window. Portions of the image may
get cropped.
e Force: will scale and alter the aspect ratio of the layer to fill the window.
e  As-is: will not perform any scaling during the mapping.
¢  Fit-to-width: means that the layer's width is resized to Viewport width.
The layer's aspect ratio is preserved. The layer may overflow the
Viewport along the height (and thereby get cropped
Child Element Usage Description
window <window A sub-region of the Viewport in which to map a
X =" T X>" layer. The (x,y) attributes define top-left
y ="<LT_Y> corner, and the width and height attributes
width ="<WIDTH>" define the size.
height ="<HEIGHT>" e <LT_X>: The left-top x coordinate.
> Defaults to 0.0
e  <LT_Y>:The left-top y coordinate.
Defaults to 0.0
e <WIDTH>: width of window. Defaults
to 1.0
e  <HEIGHT>: height of window.
Defaults to 1.0
Align <align This child element describes how the layer
xalign ="<ALIGNX>" should be aligned in the window in the X and Y
yalign ="<ALIGNY>" . axes during mapping.
/> o <ALIGNX>: can be one of "left","right", or
"center". Defaults to "center".
e <ALIGNY> can be one of "top", "bottom",
or "center". Defaults to "center".

17



WO 2004/010341

PCT/US2003/022888

18
Offset <offset The amount to offset the layer after mapping
X = "<OFFSET_X>" and alignment.
y ="<OFFSET_Y> e <OFFSET_X>: Amount to offset in X
/> direction. Defaults to 0.0.
e <OFFSET_Y>: Amount to offsetin Y
direction. Defaults to 0.0
NQOTE: The layer is clipped to the viewport
mao window after mapping, alignment, and
offset, i.e., any portion of the layer that falls
outside the window will not be visible.
b) Temporal properties
The temporal attributes: start_time, duration, and repeat_period, are supported by
all layers.
Table: Temporal properties of a layer
Attribute Valid Default Description
Values
start_time >=0ms | Oms Start time of layer's presentation.
duration >0ms . | INFINITY Duration of presentation.

repeat_period

Oms

Layers should satisfy the following
constraint.
e Start_time + duration <=
repeat_period

7. Image Layer

The image layer's attributes and child-elements determine how it is:

Created

Mapped to a window within the Viewport.

Table: Attributes and elements of ah image layer

Attribute Valid Values | Default | Description
order See Section 6

start_time

duration

repeat_period

Src

A URL |

The source image

Child
Element

Description

Viewport_map

This describes how to map the layer to the
Viewport

a) Source image layer

The image specified by the "sre=<IMAGE_URL>" (arg,val) pair becomes the

“source" layer. This layer is inserted between any background (layer order 0) and the

remaining layers. This layer has default attribute and child-element values for the

Viewport_map.

18




WO 2004/010341

8. Text Layer

This layer supports text rendition.

19

PCT/US2003/022888

Table: Attributes and elements of Text layer

Attribute Valid Default Description
Values
order See above
start_time
duration
repeat_period
text UTF-8 None The text string is defined as an UTF-8 string. This
unicode format can support any character defined by the
string unicode standard. As long as the font file specified
provides a character for the unicode value, the
character is supported.
centerx Yes,No Yes Centering in the X direction.
e  Avalue of "No" will align text to the left border.
centery Yes,No Yes Centering in the Y direction.
e A value of "No" will align the text to the bottom
border.
font_file A TrueType | None The font file must be a TrueType file. This file may
file name in be a single face file (*.tif) or a multiple face
the Font TrueType collection (*.ttc) file.
Directory.
font_color A color 0x000000 (black) Color is specified in hex format as 0OXRRGGBB
(RR=Red, GG=Green,BB=Blue)
font_mode ¢ Auto Auto e auto:
e fixed o The font size is auto determined so as to
fit the specified text in the window
o The font_size_min attribute is enforced.
o fixed:
o The font_size is specified in "points" (1
point = 1/64 ")
o The font_size_min attribute is ignored.
font_size 4-128 12 The size of the font to use for fixed mode fonts.
Specified in points
font_size_min 4+ 6 This parameter is useful with the "auto" mode,
wherein it can be used to ensure that the font size
does not fall below this level, resulting in
"intelligible" text even for devices with small
displays.
Child Element Description
Viewport_map Map, align, and offset are ignored (i.e. only window element is used).

9. Bezier Layer

The Bezier Layer is used to overlay vector graphics. The intent of this layer is to

support vector graphics with dynamic text insertion capabilities.

Table: Attributes and elements of Bezier layer

Attribute Valid Default Description
Values

order See above.

start_time

duration

repeat_period

19




WO 2004/010341 PCT/US2003/022888
20

src AURL Must be specified | A pathname to a file that specifies Bezier curves in Adobe
lllustrator Al8 EPS file format. The pathname should have the .eps
extension.

order 1ton Must be specified | The order defines the stacking of the layers when the final output is
generated. Higher numbers are rendered on top of lower numbers.

Opacity 0-100 100 The overall opacity of the graphic

Child Description

Element

Text_box This describes the text that has to be inserted into the Bezier layer

Viewport_map Same as Image Layer

Table: Text_box element of Bezier Layer

Attribute

Valid
Values

Default Description

text

centerx

cantery

font_file

Same as corresponding attributes in Text Layer.

font_color

font_mode

font_size

font_size_min

Child Element

Description

bounding_box

This is the bounding box for the text, specified in the point co-ordinate space of the Adobe
lllustrator file.
s Usage: <bounding_box x="<lIx>" y="<ury> width="<width>" height="<height>".

o <lIx>: The lower left X coordinate in points.

o <ury>: The upper right Y coordinate in points.

o <width>: The width of the bounding box in points

o <height>: The height of the bounding box in points.

Procedure for determining text bounding box:

»  Open the graphic of interest in Adobe lllustrator.

e Choose: File->Document Setup->Units->Points

e Draw the text bounding box area with the Rectangle tool.
e  Select the rectangle with the Selection tool.

o  This highlights the rectangle and shows the bounding box information in the "info:
palette. This is the bounding box information that has to be entered in the XML
layer specification. The (X,Y,W,H) in the info palette correspond to lix, lly, width,
height.
» Delete the rectangle — it is no longer needed (it was only useful to determine the text
bounding box).

10. Viewport

Once the layers are mapped onto the Viewport and merged, the resultant image is

mapped to the client's preferred image format per constraints specified in the Viewport

element.

Table: Viewport element

Attribute

Valid
Values

Default Description

20




WO 2004/010341 PCT/US2003/022888

21

aspect_layer

An image Lowest The aspect (or "anchor") layer determines the layer that is used as an
layer order image layer | anchor when positioning all the other layers. The aspect layer
number or — determines the aspect ratio of the Viewport (see above).

1

force_colors

A URL Colors are This element defines the color to be forced. The set of colors to be
not forced. forced is specified in one of the following formats (see above)::

e ACT (.act): Adobe Active Table Format (.act).

e  GIF (.gif)

e PNG (.png

a) Aspect/Anchor Layer

The current invention sets the Viewport's width to the target device's width. But

the Viewport height is determined based on the aspect ratio as defined by the

aspect layer.

e aspect_layer == -1: This is the simplest case. In this case the aspect ratio

is the same as that of the target device's display.

Example: The target mobile device is 100x120. The current invention will then

create a Viewport that is 100x120.

e aspect_layer == order number of some image layer: The image layer's

aspect ratio determines the height of the Viewport.

Example: The image is 640x480. The mobile device is 100x100. The current

invention will then create a Viewport that is 100x75. Since the coordinate system is

normalized to the Viewport, all layering will be then relative to this image layer.

e aspect_layer unspecified (default): If the aspect layer is unspecified the
"lowest" (in terms of "order") image layer is used as the aspect layer. If

there are no image layers, the aspect_layer is set to —1.

Though initially the Viewport dimensions are determined per the method

described above, the dimensions may be adjusted to satisfy file size constraints. The

aspect ratio is preserved when the Viewport is resized.

b) Force_ colors

The set of colors to be forced is specified in one of the following formats:

1) ACT (.act): Adobe Active Table Format (.act). This defines a color table.
The set of colors in the color table are used.

2) GIF (.gif): The set of colors is the first color palette that is present in the
GIF image. .

3) PNG (.png): The set of colors is the first color palette that is present in the
PNG image.

21




10

15

20

25

30

35

WO 2004/010341 PCT/US2003/022888
22

Mobile devices typically have one of the following color modes:

7) True Color: In this mode the system is capable of displaying any color.
Force_colors has no effect in this case.

8) Indexed Color: In this mode the system is capable of displaying a limited
number of colors. There are two sub-modes withing the indexed color
mode:

a. Fixed palette: Devices with a fixed palette are inflexible and cannot
accommodate "force_colors".‘ The force_colors directive is ignored
for these devices.

b. Adaptive palette: A large class of devices can accommodate a
small set of colors (say, 256), but the colors can be any color.
Force_colors is most useful in this case.

If the system can support more colors than force colors, then all of the colors in
force_colors are used. If the system can support fewer colors than force colors then a

subset of the force colors are used.

11. Class definitions
The C++ class definitions of the ImageTransform class, the ImageLayer class and
Viewport class are shown here.

a) ImageTransform
/x*

* class ImageTransform
*%/
class ImageTransform
{
friend class Layer;
friend class Viewport;
public:
/// Comstructor
ImageTransform() ;
/// Destructor .
~ImageTransform() ;
/// Get the viewport object
Viewport* GetViewport();
/// Set the Output File Name
ITERR SetOutputFileName (const std::string & outFileName) ;

/// Creating a layer

22



‘10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888

23
ImagelLayer* CreateImagelayer (int32_t StackOrder);
TextLayer* CreateTextLayer (int32_t StackOrder) ;
BezierLayer* CreateBezierlLayer (int32 t StackOrder);

/// Get the aspect/anchor layer. This is the layer that determines

/// "anchor" when displaying all other layers.
Layer *GetAspectLayer () ;

/// Enable (or disable) encoding MIME type image/gif images
/// compressed with the LZW algorithm
void EnableLzwGifEncoding (bool enable = true) ;
/// Enable (or disable) decoding MIME type image/gif images
/// compressed with the LZW algorithm
void EnablelLzwGifDecoding (bool enable = true) ;

/[/] ====--- Rendering--=-—-weoo oo

/// Render the image transform

ITERR Render () ;

/// Getting rendered parameters

int32_ t GetRenderedWidth () ;
int32_t GetRenderedHeight () ;
int32_t GetRenderedContentLength () ;

std::string GetRenderedMimeType () ;
/// Typedef for a UrlAccess call-back which is plugged into the
/// image transform object to access media by URL - It returns the
/// HTTP status code from‘the access.
typedef int32_t (UrlAccessFunction) (std::string url,
std::ostream * fromUrlStream,
void * ref,
std::string * resStr = NULL);
/// Set the Url Accessor funciton which is called to accessing
/// media by URL

void SetUrlAccessFunction (UrlAccessFunction * fxn, void * ref =

NULL) ;

// BAnchor to Display Mapping Mode. This mode decides how an anchor
// layer is mapped to the display:

// CLAMP_TO_WINDOW: Clamp to fit withing display window

// CLAMP_TO _WIDTH: Allow height to exceed display height,

/7 but clamp to Width

typedef enum

{

23



10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888

24

CLAMP_TO_WINDOW,

CLAMP_TO WIDTH
} AnchorToDisplayMapMode;
ITERR SetAnchorToDisplayMapMode (AnchorToDisplayMapMode Mode) ;
AnchorToDisplayMapMode GetAnchorToDisplayMapMode () const;

private:

// Fetch a "media" or other object and return a temp file name

std::string FetchUrlObject (const std::string& url) ;
// Private rendering functions:

// Load the layers

ITERR LoadLayers () ;

// Just size the layers

ITERR SizeLayers () ;

// Compute Viewport size - previous to enforcing file size

constraint

ITERR ComputeViewportSize (int32_t *pWidth, int32 t *pHeight);

// Do the actual rendering to output
ITERR RenderOutput () ;

// Internal rendering to memory

ITERR  RenderToMemory (IMG_IOHANDLER *pIO) ;

// Render with no output: Useful to compute Rendered parameters

ITERR RenderParameters () ;

// Setting rendered parameter values

ITERR SetRenderedWidth (int32 t Width);

ITERR SetRenderedHeight(int32_t Height) ;

ITERR SetRenderedContentLength (int32_t ContentLength) ;
ITERR SetRenderedMimeType (IMG_type MimeType) ;

/// Animation
void SetAnimatedFlag (bool AnimatedFlag) ;
bool GetAnimatedFlag() const;

/// The -layers to be stacked

24



10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888
25

typedef std::map<int32_t,Layer *> LayerMap;
LayerMap mLayerMap ;

/// Viewport
Viewport mViewport;

/// Output filename

std: :string moutFileName;

/// Parameters that are set after rendering

int32_t mRenderedWidth;

int32 t mRenderedHeight;
int32_t mRenderedContentLength;
IMG_type mRenderedMimeType;

/// temporary file streams for input media

std: :vector<LSCC: :FileStream> mFileStreams;

UrlAccessFunction * mUrlAccessFxn;

void * mUrlAccessRef;

// The enable which allows MIME types of image/gif to be decoded
// using LZW decompression

bool mEnableLzwGifDecode;

// animation

bool mAnimatedFlag;

// Anchor to display mapping mode
AnchorToDisplayMapMode mAnchorToDisplayMapMode;

b) Layer class
The layer class is the base class from which all layers (image, text, etc.) are

derived.

/**
* class Layer
*% [/

class Layer

{

25



10

15

20

25

30

35

40

WO 2004/010341

public:

PCT/US2003/022888

26

/// Layer Type

typedef

{

enum

LAYER TYPE_ IMAGE,

LAYER_TYPE_ TEXT,

LAYER TYPE BEZIER,

LAYER TYPE ANIMATION,

LAYER_TYPE_UNKNOWN

} LayerType;

/// Constructor

Layer(class ImageTransform * imgXfm) ;

/// Destructor

virtual

/11 Get

virtual

/1] set

~Layer () ;

the type of layer
LayerType GetLayerType () const;

the layer order - layers with a larger order number will

/// be more visible when the layers are stacked (i.e. stacked
/// later)
void SetLayerNumber (int16_t number) ;

/1] Get

int32_t

/// set
ITERR

/// Get
double

/// Get

virtual

/1] Get

virtual

the layer order number.

GetLayerOrder () const;

opacity
SetOpacity (double OpacityPercent) ;

Opacity
GetOpacity () const;

aspect ratio

ITERR GetAspectRatio(double *pAspectRatio) const;

the layers size (width and height)
ITERR GetSize (int32 t +*pwidth, int32_t *pHeight) comnst;

/// Decode a layer

26



10

15

20

25

30

35

40

WO 2004/010341

27

virtual ITERR Load (const Viewport & viewport);

/// 8ize a layer
virtual ITERR Size (const Viewport & viewport);

/// Enhance
virtual ITERR Enhance();

/// EnhanceSize

virtual ITERR EnhanceSize () ;

/// Rpply PreProcessing to accomodate viewport constraints

virtual ITERR PreProcess (const Viewport & viewport);

/// Render all the frames in a Layer

virtual ITERR Render (const Viewport & viewport);

/// Get the count of the number if frames this layer has

virtual uint32_t GetFrameCount () const;

/// Get a pointer to a particular frame

virtual const ImageFrame * GetFrame (uint32_t index) const;

/// Get the viewport Map
ViewportMap * GetViewportMap () ;

/// Set the identifier for this layer
void SetId(const std::string & id);

/// Get the identifier for this layer
std::string GetId() const;

/// Set the time to start displaying this frame (aka Time of
/// arrival [TOA]) - time is in ms

void SetStartTime (int32_t time);

/// Get the time to set for starting to displaying the frame
int32_t GetStartTime () const;

/// Set the duration this frame will be displayed for - time is
/// ms

27

PCT/US2003/022888

in



10

15

20

30

35

40

PCT/US2003/022888

WO 2004/010341

28

void SetDuration(int32_t time);

/// Get the duration this frame will be displayed for.

int32_t GetDuration() const;

/// Set the display count for how many times to display this frame
void SetDisplayCount(intBZ_t count) ;

/// Get the display count for this frame.
int32_t GetDisplayCount() const;

/// Set the repeat period which is the duration between starting to
/// reshow this frame

void SetRepeatPeriod(int32 t time);

/// Get the repeat period for this frame.
int32 t GetRepeatPeriod() const;

/// Is the layer "animated"
bool IsAnimated() const;

protected:

// Is it okay to Load a LZW GIF file
bool IsLzwGifDecodeOK() ;

// Fetch a "media" or other object and return a temp file name

std::string FetchUrlObject (const std: :string& url) ;

/// Opacity of a layer
double mOpacity;

/// Viewport mapping parameters
ViewportMap mViewportMap;

private:

ImageTransform* mParentTransformOb] ;

std: :string mbayerId;

intlé_t mLayerNumber;

uint32_t mStartTime; /// display start (presentatin) time
uint32_t mDuration; /// display duration (in ms)

28



10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888
29
uint32_t mRepeatPeriod; /// repeat period (in ms)

uint32_t mDisplayCount; /// display count

¢) Image Layer class
The ImageLayer is derived from the Layer class.
VAL
* class Imagelayer
*%/
class Imagelayer : public Layer
{
public:
/// Constructor
Imagelayer (class ImageTransform * imgXfm) ;
/// Destructor
~ImagelLayer () ;

/// return the layer type (i.e. LAYER TYPE IMAGE)

LayerType GetlayerType() const;

//] ======= Setting of parameters -------------
/// Set the source file name

ITERR SetSrc(const std::string & srcFileName) ;
/// Set enhancement string

ITERR SetEnhance (const std::string & enhanceString) ;

/] —=-=---- Getting of parameters -------------

/// Get aspect ratio. Call only after image

/// has been loaded.

ITERR GetAspectRatio(double *pAspectRatio) comnst;
ITERR GetSize(int32_t *pWidth, int32 t *pHelght) const;

/// ------- Processing -------------

/// Set the Load Clamp Rectangle, i.e. the image that is loaded
/// will be pre-clamped to ClampWidth, ClampHeight. This function
/// is typically used to minimize processing overhead, as fewer
/// pixels need be processed during subsequent processing.

ITERR SetlLoadClamp (int32_t ClampWidth, int32 t ClampHeight=0);
/// Load a source image

ITERR Load (const Viewport & viewport);

29



10

15

20

25

30

35

40

WO 2004/010341

30

/// Size a layer
ITERR Size (const Viewport & viewport);

/// Bpply enhancements
ITERR Enhance () ;
/// Compute the size effects of enhancements

ITERR EnhanceSize() ;

/// Rpply PreProcessing to accomodate viewport "appearance"
/// constraints, like color etc.

ITERR PreProcess(const Viewport & viewport) ;

/// Render a ImagelLayer

ITERR Render (const Viewport & viewport);

/// Get the count of the number if frames this layer has

uint32_t GetFrameCount () const;

/// Get a pointer to a particular frame

const ImageFrame * GetFrame (uint32_t index) const;

private:

/// Is this an LZW TIF Image?

bool IsLzwTIF (const std::string &filenam) ;

/// Verify if this is a valid "allowed" image (fof e.g. LZW
/// may be disallowed and the image could be LZW GIF

/// Also Compute the "preclamp" dimensions

ITERR VerifyImageAndComputePreclamp (const std::string &pFileName,

int32_t DisplayWidth,
int32_t DisplayHeight,
int32_t *pClampWidth,
int32_t *pClampHeight) ;

std::string mSrcFileName;
int32_ t mLoadClampWidth;
int32_t mhoadClampHeight;
std::string mEnhanceString;
IMG_ image mImg;

ImageFrame mRenderedImage;

30

PCT/US2003/022888



10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888
31

d) The Viewport Class
/ * %
* Class Viewport
* % /

class Viewport

{

public:

/// Constructor

Viewport (class ImageTransform * parent);
/// Destructor

~Viewport () ;

[/] ==-mmmmmmneen Viewport initialization------------------
/// Initialization
ITERR Init () {return ReInit();};

/// Reinitialization

ITERR ReInit () ;

R adaptive vs. custom palette

bool UseAdaptivePalette() ;

[/] =====mmmmmm e Viewport external params ------

/// preprocessing parameter - sharpen
ITERR SetSharpen (double Sharpen);

double GetSharpen() const;

/// adaptation: Variable params

/// Only set the width

ITERR SetDisplaySize (int32 t Width);

/// Set the width and height

ITERR SetDisplaySize (int32_t Width, int32_ t Height);

/// **WARNING*: This returns the raw device display size without

/// considering any scaling.

void GetDisplaySize (int32_t *pWidth, int32 t *pHeight) const;

/// **WARNING*: This returns the effective display size after

/// comnsidering any scaling.

void GetEffectiveDisplaySize (int32_t *pWidth, int32_t
*pHeight) const;

/// scaling of display

31



WO 2004/010341 PCT/US2003/022888

32
ITERR SetDisplaySizeScale (double ScaleX, double ScaleY);
void GetDisplaySizeScale (double *pScaleX, double *pScaleY)
const;
/// bits per pixel
ITERR SetBitsPerPixel (int32_t BitsPerPixel);
int32 t GetBitsPerPixel() const;

/// Amount of error diffusion
ITERR SetDiffuseLevel (int32_t Diffuselevel);
" int32_t GetDiffuseLevel () const;

/// quality level for JPEG output
ITERR SetJPEGQuality(int32_t JPEGQuality) ;
int32_t GetJPEGQuality () const;

/// Maximum file size allowed

ITERR SetFileSize (int32_t FileSize); '

/// **WARNING*: This returns the raw device file size without
/// considering any scaling.

int32 t GetFileSize () const;

/// **WARNING*: This returns the effective file size after

/// considering any scaling.

ITERR GetEffectiveFileSize (int32_t *pEffFileSize) const;
ITERR SetFileSizeScale (double FileSizeScale) ;
double GetFileSizeScale() const;

/// Mime type for static (un-animated) output
ITERR SetMimeType (const std::string & mimeType) ;
IMG type GetMimeType () const;

/// Dots per inch of device
ITERR SetDPI (double DotsPerInch) ;
double GetDPI () comnst;

/// Color capability of device
ITERR SetColorFlag (bool ColorFlag);

bool GetColorFlag () comst;

/// System Palette
ITERR SetSystemPalette (const std::string & sysPalFileName) ;

32



10

15

20

25

30

35

40

WO 2004/010341 PCT/US2003/022888

33
char *GetSystemPalette () const;
/// Force color palette
ITERR SetForceColorPalette (const std::string & fCPalFileName) ;
char *GetForceColorPalette () const;

/// Bnimation parameter: Mime type for animated output
ITERR SetAnimationMimeType (const std::string & mimeType);
IMG_type GetAnimationMimeType () const;

/// Animation parameter: Animation capable?
void SetAnimationCapable (bool AnimationCapable) ;
bool GetAnimationCapable() const;

/// Animation parameter: Animation Max Frames
ITERR SetAnimationMaxFrames (const std::string & MaxFrames) ;

int32_t GetAnimationMaxFrames () const;

/// Animation parameter: Animation Max Repeat Count

ITERR SetAnimationMaxRepeatCount (const std::string &
MaxRepeatCount) ;

int32 t GetAnimationMaxRepeatCount () const;

//] == - Viewport: internal params ------

ITERR SetViewportSize (int32_t Width, int32 t Height = 0);

void GetViewportSize (int32_t *pWidth, int32_t *pHeight)
const;

ITERR SetIntBitsPerPixel (int32 t BitsPerPixel) ;

int32_t GetIntBitsPerPixel () const;

ITERR SetIntDiffuselLevel (int32_t DiffuseLevel);

int32_t GetIntDiffuselevel () const;

ITERR SetIntJPEGQuality (int32_t JPEGQuality) ;

int32_t GetIntJPEGQuality () const;

/// Aspect Layer
ITERR SetAspectLayerNumber (int32_t LayerNumber) ;
int32_t GetAspectLayerNumber () const;

/// Mime type for output
void SetOutputMimeType (IMG_type mimeType) ;

IMG_type GetOutputMimeType () const;

33



10

15

25

30

35

40

WO 2004/010341 PCT/US2003/022888

34
[/] ====—mmmmmmen Viewport save to memory---------w---wo---
ITERR Save (IMG_IOHANDLER *pIO = NULL) ;

/// Enable (or disable) encoding MIME type image/gif images
/// compressed with the LZW algorithm

void EnablelLzw@ifEncoding(bool enable = true);

/// Is it okay to do LzwGifEncoding Okay?

bool IsLzwGifEncodeOK() const;

/// Add the frame to the image frame held by the viewport

vold AddFrame (const ImageFrame * frame) ;

private:
[/]-==-==--—===- Viewport params: External--------
/17 Preprocessing
double mSharpen;
/// adaptation: variable
int32 t mDisplayWidth;
int32_t mDisplayHeight;
double mDisplayScaleX;
double mDisplayScaleY;
int32_t mReqgBitsPerPixel;
int32_t mRegDiffuselevel;
int32_t mReqJPEGQuality;
/// adaptation: fixed
bool mColorFlag{
int32_t mFileSize;
double mFileSizeScale;
IMG_type mMimeType;
double mDPT;
std::string mFCPalFileName; ///force color palette
std: :string mSysPalFileName;

IMG colorPalette mPalette;

bool mJPEGThumbSave;
int32_t mJIPEGThumbClamp ;
int32_t mJPEGThumbQuality;

/// Animation parameters

bool mAnimationCapable;

34



10

15

20

30

35

40

WO 2004/010341 PCT/US2003/022888

35
uint32 t mAnimationMaxFrames;
uint32_t mAnimationMaxRepeatCount;
IMG_type mAnimationMimeType;

/// Output Mime type: Output mime type is set to one of the
/// mMimeType or mAnimationMimeType based on:

/// If the image seq. to be rendered has more than one frame
//7 and the device is animation capable:

/// then set to mAnimationMimeType

/// else use mMimeType.

IMG_ type mOutputMimeType;

[/ /=== Viewport paraﬁeters:,Internal ———————
/// adaptation: variable

int32_t mViewportWidth;

int32 t mViewportHeight;

int32_t mBitsPerPixel;

int32 t mDiffuselevel;

int32_t mJPEGQuality;

/// The layer that determines the aspect ratio of the viewport.
/// The significance of this is that the viewport coordinates
/// are now effectively normalized relative to this layer.

int32_t mAspectLayerNumber;

/// Substitution for transparency for devices that do not support

transp.

uints mTrans_R;
uintsg mTrans_G;
uints mTrans_B;

/// Drawing Canvas

double mCanvasX;
double mCanvasY;
double mCanvasW;
double mCanvasH;
FrameMap mFrameMap ;

// The enable which allows MIME types of image/gif to be encoded -

// using LZW compression

35



10

15

20

25

30

35

WO 2004/010341 PCT/US2003/022888
36

beool mEnableLzwGifEncode;

class ImageTransform * mParent;

bi

12. Layering Examples
The following sub sections show examples of using the XML based layering API
a) Graphics Overlay
This example shows how to overlay a graphic on a source image under the
following constraints:
o The image is "fit"ted to the Viewport.
o The graphic is pasted as-is on the Viewport in the bottom-right corner.
The requesting URL would be:
http://eswitch.foo.com/es?sre=http://source.foo.com/boy.jpg&enh=http://source.fo
o.com/enhance.xml

The enhancement XML would be:

<image_ transform xmlns:"http://www.lightsurf.com/image_transform/l.O">
<!—- Graphics layer---»>
<image_layer src=http://www.image.com/flower.png order="2">
<Viewport map mode="as-is">
<align xalign="right" yalign="bottom" />
</Viewport_map>
</image_ layers

</image transforms>

b) Framing

This section is an example of overlaying a frame on an image.

The requesting URL would be:
http://eswitch.foo.com/es?enh=http:/source.foo.com/enhance.xml

The enhancement XML is shown below:

The aspect_layer attribute of Viewport is set to 2. This forces the Viewport to

have the same aspect ratio as image layer 2, i.e. image layer 2.

Image layer 2 is mapped to the complete Viewport.

Image layer 1 is mapped to a sub-window that aligns with the transparency in the

"ﬂOWCI'" .

image_transform xmlns="http://www.lightsurf.com/image transform/1.0">

<l—- Image layer---»>

36



10

15

20

25

30

35

WO 2004/010341 PCT/US2003/022888

37

<image_layer src=http://www.image.com/boy.jpg order="1">
<Viewport map mode="fit"s>
<window x="0.45" y="0.16" width="0.37" height="0.29"/>
</Viewport map>

</image_layers

<!—- Graphics layer--->
<image layer srec=http://www.limage.com/frame.gif order="2"s

</image_layers>

<!—- Force the anchor/aspect layer to be the "frame"---»>
<Viewport aspect layer="2" />

</image_transform>

¢) Text Overlay
This example overlays text on the bottom 20% of Viewport

<image_transform xmlns="http://www.lightsurf.com/image_ transform/1.0">
<!-- The text layer --->
<text_layer order="2" text="hello world" fontfile="arial.ttf"
font_color="0x000000" font_size="12" font_ size min="6">
<Viewport_ maps>
<window x="0.0" y="0.8" width="1.0" height="0.2"/>
</Viewport map>
</text_layers

</image_transforms
D. Summary of internal operation

1. Overall operation

Figs. 6A-B comprise a flowchart illustrating the overall methodology 600
employed by the present invention for supporting dynamic viewport layering. At the
outset, a stock HTTP server (e.g., Apache server) is invoked with an online request (e.g.,
HTML request), such as a URL from a (browser) client, for retrieving a target image
(e.g., from an image repository), as indicated at step 601. This HTTP invocation (online
request) from the client includes an HTTP GET command, which comprises a URL plus
headers (including a header identifying client browser type). The URL itself may
comprise a typical Web-based URL, for example specifying a location and accompanying

name/value pairs. As the client invokes the HTTP server directly, the HTTP server may

37



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
38

be thought of as the front end of the system. A plug-in module (eSwitch™ handler) is
used to fork the incoming request, as indicated at step 602. Now, the eSwitch™ handler
may examine the HTTP GET headers to identify the browser client, as indicated at step
603, and from this identification, the handler may infer the type or identity of the client
device (i.e., device type). During operation of the step, the handler consults a device
database to match the headers with an appropriate device, for example, as described in the
above-referenced commonly owned application serial no. 09/588,875, filed June 6, 2000,
and application serial no. 10/010,616, filed November 8, 2001.

After identification of the device, the handler proceeds to fetch an XML
(configuration) file, at step 604. The URL submitted by the client (at step 601) specified,
as one of the name/value pairs, a particular XML file which stores, in a hierarchical
fashion, the values for the image transform tree (which describes both the viewport and
layers). The XML file that is fetched may now be parsed, using a stock XML parser (e.g.,
libXML2), at step 605. The parsed values/attributes are then used to create an in-memory
copy of the image transform tree.

The next step is to merge viewport information derived from the client database
with all of the attributes and their values (e.g., layering information) in the image
transform tree, as shown at step 606. At step 607, upon invoking an image transform
module, the method proceeds to actually render the image (i.e., dynamically create a
version that is optimized or customized for the client). In particular, the image of interest
is rendered to the viewport of the identified client device pursuant to the layering and
viewport information in the image transform tree; any image format considerations of the
client (e.g., JPEG format requirement) may be applied by transforming the image into the
required format. The foregoing process may occur in an iterative fashion. For examiale,
if the dynamically created version is deemed to be too large for the client device or has a
bit depth that exceeds the client's capabilities, the step is repeated to create a version that
is compliant. During a given iteration, encoding/rendering parameters (e.g., image
dimensions) may be dynamically adjusted to achieve on-demand generation of an image
that is optimized for the client device. Finally, as indicated by step 608, the method emits
a fully rendered image (per constraints) that is then transmitted back to the client device
(e.g., via wireless connectivity, via Internet connectivity, via wireless Internet
connectivity, or the like) in an appropriate format. The image may be cached for future

retrieval (e.g., by the same device type), as desired.

38



10

15

20

25

30

WO 2004/010341 PCT/US2003/022888
39

2. Image Transform Object

The Image Transform Object class definition (class ImageTransform), which
closely mirrors the XML description, includes data members responsible for
creating/supporting the various image layers. Each layer itselfis an object in its own
right. When the Image Transform Object is instantiated, all of the embedded objects are
likewise instantiated.

The Image Transform Object includes a "Render” method, Render (). In basic
operation, the "Render" method invokes a corresponding rendering method on each
embedded object so that each layer is correctly rendered. Rendéring occurs against an in-
memory version (e.g., canonical format, such as a bitmap) of the Viewport, that is, a
Viewport object. Ultimately, each embedded object is rendered against the Viewport
object for generating a "candidate" rendered image. Next, the candidate image is encoded
(e.g., JPEG encoded) to a format that is appropriate for the client, for generating a
candidate transformed image. Once the candidate image is transformed, the resulting
image is checked for compliance with applicable constraints (e.g., file size), as previously
illustrated in Fig. 4. For example, if the fully rendered image is transformed to JPEG;, the
resulting JPEG file is not acceptable as the final output if the file exceeds the maximum
specified file size. Therefore, the process may iterate, including "remapping" the
Viewport and re-rendering the image (if necessary), to generate a final image file that
complies with the constraints applicable to the target client. Internally, the File Size
Control block estimates a different set of (control) parameters (e.g., reducing Viewport
size, bit depth, JPEG quality, or the like) to get a new file size. For example, if the file
size of the transformed candidate image is too large, the method may reset the Viewport
with a smaller screen size for generating a transformed candidate image with a smaller
file size.

While the invention is described in some detail with specific reference to a single-
preferred embodiment and certain alternatives, there is no intent to limit the invention to
that particular embodiment or those specific alternatives. For instance, examples have
been presented which focus on "displaying" images at client devices. Those skilled in the
art will appreciate that other client-side outputting or rendering, such as printing, méy
benefit from application of the present invention. Therefore, those skilled in the art will
appreciate that modifications may be made to the preferred embodiment without

departing from the teachings of the present invention.

39



O 00 3 & i ™ W N R

— =
o= O

DN A W N

WO 2004/010341 PCT/US2003/022888

40

WHAT IS CLAIMED IS:

1. A method for dynamically optimizing display of an image transmitted to a
client device, the method comprising:

receiving an online request from a particular client device for retrieving a target
image for display, said request including information assisting with determination of a
device type for the client device, and said target image comprising image components
arranged into individual layers;

based on said request, determining a device type for the particular client device;

based on the determined device type, retrieving information specifying viewport
and layering information for the particular client device;

based on said viewport and layering information, creating a version of the target
image optimized for display at the particular client device; and

transmitting the created version of the target image to the client device for display.

2. The method of claim 1, wherein said step of determining a device type
includes:

consulting a device database to determine a device type for the client device.

3. The method of claim 2, wherein said step of consulting a device database
includes:

retrieving information from the device database that indicates a particular
configuration file available for optimizing dispiay of images for the particular client

device.

4. The method of claim 3, wherein said particular configuration file specifies

display capability information about the particular client device.

5. Themethod of claim 3, wherein said particular configuration file comprises an

XML file specifying viewport and layering information for the particular client device.

6. The method of claim 1, wherein said online request comprises a Web-based

request.

40



WO 2004/010341 PCT/US2003/022888
41

7. The method of claim 1, wherein said online request comprises an HTML-

based request.

8. The method of claim 1, wherein said online request includes information

identifying a particular target image.

9. The method of claim 1, wherein said online request is initiated from a browser
operating at the particular client device and includes information identifying a particular

type of client device.
10. The method of claim 1, wherein said online request comprises a URL.

11. The method of claim 1, wherein said information assisting with determination
of a device type for the particular client device comprises header information transmitted

with said online request.

12. The method of claim 11, wherein said header information transmitted with
said online request is compared against a database of device types for determining which

specific type of device the particular client device is.

13. The method of claim 1, wherein said information assisting with determination

of a device type for the particular client device comprises HTTP header information.

14. The method of claim 1, wherein said information specifying viewport and
layering information for the particular client device is maintained in a hierarchical fashion

in an XML file.

15. The method of claim 14, wherein said XML file includes constraint values

based on device limitations of the particular client device.

16. The method of claim 15, wherein said constraint values indicate a maximum

image size that can be displayed at the particular client device.

17. The method of claim 1, wherein said step of creating a version of the target

image optimized for display at the client device includes:

41



N AR WD =

N o Y T N O R S R

WO 2004/010341 PCT/US2003/022888
42

rendering said image components in the individual layers in a manner that

conforms to said viewport and layering information for the particular client device.

18. The method of claim 1, wherein said step of creating a version of the target
image optimized for display at the client device includes:

iteratively creating different versions of the target image based on said viewport
and layering information until an appropriate target image that is optimized for display at

the client device is found.

19. The method of claim 1, further comprising:
before transmitting the created version of the target image to the particular client

device, transforming the created version into a file format suitable for the client device.

20. The method of claim 19, wherein said file format includes JPEG-compatible

file format.

21. The method of claim 1, wherein each of said layers maintains image

components of a given type.

22. The method of claim 21, wherein a given layer maintains image components

selected from one of bitmaps, animations, text, and vector graphics.

23. A computer-readable medium having processor-executable instructions for

performing the method of claim 1.

24. A downloadable set of processor-executable instructions for performing the

method of claim 1.

25. A system for on-demand creation of images that are customized for a
particular device type, the system comprising:

amodule serving as a repository for images, each image comprising image
components arranged into distinct layers;

amodule for processing a request from a device for retrieving a particular image
from the repository, said module determining a particular device type for the device based

in part on information contained in the request; and

~

42



10
11
12

WO 2004/010341 PCT/US2003/022888
» 43

a module for creating a copy of the particular image that is customized for the
device, said module individually rendering image components in the distinct layers of the
particular image based on said determined device type, such that at least some of the
image components in the distinct layers of the particular image are customized for the

device.

26. The system of claim 25, wherein the copy of the particular image is created in

a manner that conforms to viewport constraints of the device.

27. The system of claim 25, wherein the copy of the particular image is created in

a manner that conforms to image size constraints of the device.

28. The system of claim 25, further comprising:
a module for transforming the copy of the particular image into an image format

that is compatible with the device.

29. The system of claim 25, wherein said module for processing a request operates

on a server computer.

30. The system of claim 29, wherein said server computer includes Internet

connectivity.

31. The system of claim 25, wherein said device communicates with the system

via wireless connectivity.

32. The system of claim 25, wherein said device communicates with the system

via wireless connectivity to the Internet.

33. The system of claim 25, further comprising an image cache for caching the

copy of the particular image that is customized for the device.
34. The system of claim 25, wherein said request comprises an HTML request.
35. The system of claim 25, wherein said request is initiated from a browser

operating at the device.

43



pum—y

O 00 N Y D W

= e e
W NN = O

1

WO 2004/010341 PCT/US2003/022888
44

36. The system of claim 25, wherein said request includes header information

allowing determination of a device type.

37. The system of claim 36, further comprising:
a device database for assisting with identification of the device type based on said

header information.

38. The system of claim 37, wherein said device database indicates an available
configuration file that is useful for creating a copy of the particular image that is

customized for the device.

39. The system of claim 25, wherein said configuration file comprises an XML

file specifying layering and viewport information for the device.

40. The system of claim 25, wherein said module for creating a copy iteratively
creates different candidates of the particular image until an appropriate one that is

optimized for display at the device is created.

41. An image retrieval method including an improvement for optimizing display
of requested images, the improvement comprising:

organizing each image into different layers, with each layer having image
components of a certain type;

storing information indicating how to optimize a given layer for a particular type
of device that the given image is to be displayed at;

when receiving a request for retrieving a particular image, identifying what type
of device is requesting the particular image;

based on the type of device requesting the particular image, retrieving the stored
information that indicates how to optimize a given layer of the image for the device that is
requesting the image; and

based on the retrieved information, rendering individual layers of the image to

dynamically generate a rendered image that is optimized for display at the device.

42. The improvement of claim 41, further comprising:

44



AW =

—_

WO 2004/010341 PCT/US2003/022888
45

maintaining viewport information for different types of devices, so that the
rendering step may be performed in a manner that conforms to constraints appropriate for

the device.

43. The improvement of claim 41, wherein, if the rendered image that is
dynamically generated has an image size that is too large for the device requesting the
particular image, said rendering step is repeated to generate an image having a smaller

image size.

44. The improvement of claim 41, wherein a given layer maintains image

components selected from one of bitmaps, animations, text, and vector graphics.

45. The improvement of claim 44, wherein one layer is dedicated for rendering a

border.

46. The improvement of claim 41, wherein said information indicating how to
optimize each layer for a particular type of device is stored in device type-specific

configuration files.

47. The improvement of claim 46, wherein said device type-specific configuration
files comprise XML files, each file storing information about rendering images for a

particular device type.

48. The improvement of claim 46, wherein each device type-specific

configuration file includes layering and viewport information for a particular device type.

49. The improvement of claim 41, wherein said request comprises a browser

request received from a device connected to the Internet.

50. The improvement of claim 41, wherein said step of identifying what type of
device is requesting the particular image includes parsing the request for obtaining

information that assists in identifying the type of device.

45



WO 2004/010341 PCT/US2003/022888
1/10

100 /—- 120
. IMAGING
DEVICE
130
/’ 140
COMPUTER
(PROCESSOR)
FIG. 1

(PRIOR ART)

1/10



WO 2004/010341

2/10

PCT/US2003/022888

120
/— 210 /_ 215 / 230
LENS FILTER(S)
OPTICAL IMAGE
PATH SENSOR
(e.g., CMOS)
220 T
/— 241 /_ 051
FOCUS )
MECHANISM SIGNAL
(MOTORS) PROCESSOR
y
¢ /— 242 I /_ 253
TIMING A/D
CIRCUIT CONVERTER
i /— 255
—»{ INTERFACE
—
TO
PROCESSOR
FIG. 24 \130

(PRIOR ART)

2/10




WO 2004/010341 PCT/US2003/022888
3/10

LCD SCREEN BUTTONS/DIALS STATUS LCD
296 208 299
1 7y N
140
LCD l/(;
CONTROLLER [&——o <—»| CONTROLLER
v NON-VOLATILE
«<—>» MEMORY
282
Y Y
POWER MEMORY REMOVABLE
MANAGEMENT PRO%EESOR (RAM) MEMORY
262 266 <™ INTERFACE
283
A I
Y
v BATTERIES o REMOVABLE
275 f27 MEMORY
POWER [¢——> 284
SUPPLY
272
————>  AUXILIARY
BATTERIES
276 I130
2781 IMAGING
DEVICE
120

(PRIOR ART)

3/10



WO 2004/010341 PCT/US2003/022888
4/10

300
IMAGING DEVICE 310
~WIRELESS
CPU 320 360
DSP 325 \
SERVER
370
RAM
330
MEMORY
(RAM)
390
FLASH MEMORY
340

FIG. 3

4/10



WO 2004/010341 PCT/US2003/022888
5/10
layer 0 layer 1
Enhance Enhance
- Redeye fix - Redeye fix Tammmm— Viewport
- AutoFix - AutoFix Specification 417
- etc. - elc. - bitdepth
| ' - diffuselevel
401 Viewport Viewport - jpeg_quality
Pre - Processing Pre - Processing . - mime_type
- system palette
- Sharpen - Sharpen ¢ -————————- - force color palette
- Colorspace - Colorspace - whitepoint
- Gamma 4-|. camma 02 [T T - display size
- Whitepoint - Whitepoint ]
— |
: . ﬁ !
— \ A 4 \ A |
Viewport Viewport |
Mapping Mapping |
403 . Mode, Window, . Mode, Window, viewport size :
Align, etc. Align, etc. (407) 1
I i
\ ' l
|
File Size Control
‘___ 405
Viewport Layer Stack A
Merge Viewport
Layer Stack
‘ 409
Clip 411
°P _ bit-depth
- Layer Number (- 1=> display) L diffuseLevel
| - jpeg_quality
Map Viewport to - efc.
Device < ----------
413
Compressed Image
File Size No
optimal? .

= data flow lines
= control flow lines

= parameter input

415

5/10

Final Image for Target (Mobile) Device

FIG. 4




PCT/US2003/022888

WO 2004/010341

6/10

auouyd ajiqow

0000
0000
0000

“0)e
uydep -3g
jewlo
9j9led
a91Aa(q 0}
uodmaip depy

yodmaip

A
\4

AM

AH

VG "Old

3oe1s
Jake

Hodmaip
abispy

)oe)s Johe podmaip

o [ L
Hodmalp
(punoibxoeq) O Jeke

— (L
Hodmalp

(ous) L# Johken
Buiddepy .
uodmalp

Z- N# Jofen
Buiddey

L~ N# 1ohe

6/10



WO 2004/010341

(0.0,0.0)

(0.0,1.0)

PCT/US2003/022888
7/10
(1.0,0.0)
> X
<% >
WV
Hv '\ Viewport Unit
[ Rectangle
(x0, y0) 551
h
'\ Viewport_map
window
"5
v (for a layer)
\4
Y
FIG. 5B

7/10



WO 2004/010341

image_transform

image_layer

text_layer

bezier

viewport

PCT/US2003/022888

8/10

mode

window
viewport_map
align
order

offset
start_time

duration

repeat_period

src

viewport_map ...

order

/ :,,,.f»-'start_time
I I‘;

font_file
font_color
font_size

font_size_min

viewport_map ...

..~order

S ’ A ' start_time
" .duration
_layer

{ .. -repeat_period ;

SIc

T opacity

.5 aspect_layer

.

1 ~force_colors

FIG. 5C

8/10



WO 2004/010341 PCT/US2003/022888
9/10

[}
S

(' BEGIN ) =
601
v -

A STOCK HTTP SERVER (E.G., APACHE SERVER) IS INVOKED
WITH A URL FROM A (BROWSER) CLIENT

602
v -

A PLUG-IN MODULE (ESWITCH HANDLER) IS USED TO FORK THE
' INCOMING REQUEST

603
A 4 /—

THE HANDLER EXAMINES THE HTTP GET HEADERS TO IDENTIFY
THE BROWSER CLIENT, AND FROM THIS IDENTIFICATION, THE
HANDLER MAY INFER THE IDENTITY OF THE CLIENT DEVICE.
THE HANDLER CONSULTS A DEVICE DATABASE TO MATCH THE
HEADERS WITH AN APPROPRIATE DEVICE.

| 604
v -

THE HANDLER PROCEEDS TO FETCH AN XML FILE.

605
v -

THE XML FILE THAT IS FETCHED MAY NOW BE PARSED, USING A
STOCK XML PARSER (E.G., LIBXML2). THE PARSED VALUES/
ATTRIBUTES ARE THEN USED TO CREATE AN IN-MEMORY COPY
OF THE IMAGE TRANSFORM TREE.

606
\ 4 /—

MERGE VIEWPORT INFORMATION DERIVED FROM THE CLIENT
DATABASE WITH ALL OF THE ATTRIBUTES/ VALUES (E.G.,
LAYERING INFORMATION) IN THE IMAGE TRANSFORM TREE.

l

FIG. 6A

9/10



WO 2004/010341 PCT/US2003/022888
10/10

l / 607

UPON INVOKING AN IMAGE TRANSFORM MODULE, ACTUALLY
RENDER THE IMAGE: THE IMAGE OF INTEREST IS RENDERED
TO THE VIEWPORT OF THE IDENTIFIED CLIENT DEVICE
PURSUANT TO THE LAYERING AND VIEWPORT INFORMATION IN
THE IMAGE TRANSFORM TREE.

608
\ -

FINALLY, EMIT A FULLY RENDERED IMAGE (PER CONSTRAINTS)
THAT IS THEN TRANSMITTED BACK TO THE CLIENT DEVICE.

A 4

1 DONE )

FIG. 6B

10/10



INTERNATIONAL SEARCH REPORT

.

Internatié

PCT/US 03/22888

pplication No

CLASSIFICATION OF SUBJECT MATTER

TP G06F17/30

According to International Patent Classification (IPC) or to both natlonal classification and IPC

B. FIELDS SEARCHED

Minimum documentalion searched (classification system followed by classification symbols)

IPC 7  GO6F GO6T

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, IBM-TDB, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 6 226 642 B1 (BERANEK MICHAEL J ET AL)
1 May 2001 (2001-05-01)
the whole document

X WO 01 57718 A (KIEFFER ROBERT ;AMERICA
ONLINE INC (US))

9 August 2001 (2001-08-09)

the whole document

A US 6 023 714 A (DANIELS SIMON J ET AL)
8 February 2000 (2000-02-08)
the whole document

-/

1-50

1-50

1-50

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documenls :

*A' document defining the general staie of the art which is not
considered to be of pariicular relevance

*E" earlier document but published on or afterthe international
filing date

*L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

*P* document published prior to the international filing date but
later than the priority date claimed

*T* later document published after the international filing date
or priority date and not in conflict with the application but
cited o understand the principle or theory underlying the
invention

*X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
menis, such combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Dale of the actual completion of the inlernational search

14 November 2003

Date of mailing of the international search report

27/11/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Emander, K




INTERNATIONAL SEARCH REPORT

Internati lication No

PCT/US 03/22888

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

Us 6 167 441 A (HIMMEL MARIA AZUA)
26 December 2000 (2000-12-26)

column 1, 1ine 44 -column 2, line 51
column 5, T1ine 52 —column 9, line 53
claims 2,3,13,14,20,21

US 6 397 230 B1 (CARMEL SHARON ET AL)
28 May 2002 (2002-05-28)

column 1, Tine 16 -~ Tine 20

column 2, Tine 65 -column 3, Tine 29
column 4, Tine 12 - Tine 25

column 11, line 34 -column 12, line 12

WO 02 15128 A (AMCOR LTD ;FARRAH TIMOTHY
FRANCIS (AU))
21 February 2002 (2002-02-21)

page 1, 1ine 18 -page 3, line 7
page 12, Tine 18 —-page 25, line 31
page 36, 1ine 8 ~ 1ine 16; figures

20-22

1,5,21,
23-25,
41,43,
45,48




INTERNATIONAL SEARCH REPORT

lnternatiJ

PCT/US 03/22888

plication No

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6226642 Bl 01-05-2001 CN 1212401 A 31-03-1999
GB 2329309 A ,B 17-03-1999
JP 11242644 A 07-09-1999
TW 420953 B 01-02-2001

WO 0157718 A 09-08-2001 AU 3125901 A 14-08-2001
CN 1398377 T 19-02~-2003
EP 1256070 A2 13-11-2002
JP 2003521784 T 15-07-2003
WO 0157718 A2 09-08-2001

US 6023714 A 08-02-2000 NONE

US 6167441 A 26-12-2000 CN 1225479 A 11-08-1999
GB 2331600 A ,B 26-05-1999
JP 3184802 B2 09-07-2001
JP 11194983 A 21-07-1999
TW 449707 B 11-08-2001

US 6397230 Bl 28-05-2002 US 5841432 A 24-11-1998
AU 2648597 A 10-09-1997
WO 9731445 A2 28-08-1997

W0 0215128 A 21-02-2002 WO 0215128 A1l 21-02-2002
AU 7560501 A 25-02-2002
EP 1317737 Al 11-06-2003




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

