

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/181101 A1

(43) International Publication Date
19 October 2017 (19.10.2017)

(51) International Patent Classification:
C12N 5/0783 (2010.01) *A61K 35/17* (2015.01)
C12N 5/0781 (2010.01)

(21) International Application Number:
PCT/US2017/027754

(22) International Filing Date:
14 April 2017 (14.04.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/322,937 15 April 2016 (15.04.2016) US

(71) Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104 (US). THE CHILDREN'S HOSPITAL OF PHILADELPHIA [US/US]; 3401 Civic Center Boulevard, Philadelphia, PA 19104 (US).

(72) Inventors: MILONE, Michael, C.; 314 Surrey Road, Cherry Hill, NJ 08002 (US). ARRUDA, Valder; 3501 Civic Center Boulevard, 5056 Colket Translational Research Center, Philadelphia, PA 19104 (US). RICHMAN, Sarah; 3501 Civic Center Boulevard, Colket Translational Building, CTRB 4020, Philadelphia, PA 19104 (US). SAMELSON-JONES, Benjamin; 3501 Civic Center Boulevard, CTRB 5016, Philadelphia, PA 19104 (US).

(74) Agents: DOYLE, Kathryn et al.; Saul Ewing LLP, Centre Square West, 1500 Market Street, 38th Floor, Philadelphia, PA 19102 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

WO 2017/181101 A1

(54) **Title:** COMPOSITIONS AND METHODS OF CHIMERIC ALLOANTIGEN RECEPTOR T CELLS

(57) **Abstract:** The invention includes compositions comprising at least one chimeric alloantigen receptor (CALLAR) specific for an alloantibody, vectors comprising the same, compositions comprising CALLAR vectors packaged in viral particles, and recombinant T cells comprising the CALLAR. The invention also includes methods of making a genetically modified T cell expressing a CALLAR, wherein the expressed CALLAR comprises a Factor VIII or fragment thereof extracellular domain.

COMPOSITIONS AND METHODS OF CHIMERIC ALLOANTIGEN RECEPTOR T CELLS

CROSS-REFERENCE TO RELATED APPLICATION

5 This application claims priority to U.S. Provisional Application Serial No. 62/322,937, filed April 15, 2016, the content of which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

10 Hemophilia A is an inherited X-linked disease caused by Factor VIII (FVIII) deficiency and is a serious and life-threatening bleeding disorder. In addition to a ~1% per year risk of death due to intracranial hemorrhage, hemophilia A is associated with frequent hemarthrosis and arthropathy that causes significant morbidity for patients. Factor replacement therapy using recombinant human FVIII (rhFVIII) is the standard of care for patients with hemophilia A. Unfortunately, 10-40% of patients 15 with hemophilia develop antibodies to plasma-derived or recombinant human FVIII protein concentrate that inhibit FVIII function. At low titer, the presence of these inhibitory antibodies necessitates increased FVIII to overcome their effects resulting in markedly increased costs of therapy. At high titer, these inhibitory antibodies can render factor replacement therapy useless placing patients at significantly increased 20 risk of hemarthrosis and catastrophic intracranial bleeding requiring the use of bypass agents.

Currently, there are no FDA-approved therapies for the elimination of FVIII 25 inhibitors. Immune interventions including cyclophosphamide, IVIg, Rituximab (anti-CD20) and plasmapheresis have been evaluated to reduce the level of these inhibitory FVIII antibodies along with attempts to eliminate them by immune tolerance induction. While there has been success in a limited number of patients, these approaches generally lead to only transient reductions in inhibitory antibody titers.

30 Novel strategies are therefore needed to effectively diminish the inhibitory antibodies that represent a major barrier to successful FVIII replacement therapy.

SUMMARY OF THE INVENTION

The invention includes an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain.

Further included is an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an A2 subunit of Factor VIII, a nucleic acid sequence v a transmembrane domain, a nucleic acid sequence v an intracellular domain of a costimulatory molecule, and a nucleic acid sequence encoding an intracellular signaling domain.

In some embodiments, the alloantigen is Factor VIII or fragment thereof and the Factor VIII fragment thereof is selected from the group consisting of an A2 subunit or a C2 subunit of Factor VIII. In other embodiments, the Factor VIII or fragment thereof comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:4. In yet additional embodiments, wherein the nucleic acid sequence of the transmembrane domain encodes a CD8 alpha chain hinge and transmembrane domain. In further embodiments, the CD8 alpha chain hinge comprises an amino acid sequence of SEQ ID NO:7 and transmembrane domain comprises an amino acid sequence of SEQ ID NO:8. In yet other embodiments, the nucleic acid sequence encoding the intracellular domain of the costimulatory molecule comprises a nucleic acid sequence encoding a 4-1BB signaling domain. In further embodiments, the 4-1BB intracellular domain comprises an amino acid sequence of SEQ ID NO:10. In yet other embodiments, the nucleic acid sequence encoding the intracellular signaling domain comprises a nucleic acid sequence encoding a CD3 zeta signaling domain. In additional embodiments, the CD3 zeta signaling domain comprises an amino acid sequence of SEQ ID NO:12.

The invention additionally includes a vector comprising the isolated nucleic acid sequence the invention, wherein, in certain embodiments, the vector is an RNA vector, for example, a lentiviral vector.

Also included is an isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising an alloantigen or fragment thereof, a

transmembrane domain, an intracellular domain of 4-1BB, and a CD3 zeta signaling domain.

5 In one aspect, there is provided an isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising A2 subunit of Factor VIII, a transmembrane domain, an intracellular domain of a costimulatory molecule, and an intracellular signaling domain.

10 Also included is a genetically modified cell comprising the CALLAR of the invention. In some embodiments, the cell expresses the CALLAR and has high affinity to antibodies expressed on B cells. In other embodiments, the cell expresses the CALLAR and induces killing of B cells expressing antibodies. In additional 15 embodiments, the cell expresses the CALLAR and has limited toxicity toward healthy cells. In other embodiments, the cell is selected from the group consisting of a helper T cell, a cytotoxic T cell, a memory T cell, regulatory T cell, gamma delta T cell, a natural killer cell, a monocyte, a cytokine induced killer cell, a cell line thereof, and other effector cell.

20 The invention also includes a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising: administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence 25 encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

30 Additionally, the invention includes a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising: administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2 subunit of Factor VIII, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule, and a nucleic acid sequence

encoding an intracellular signaling domain, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

In some embodiments, the subject is a human. In other embodiments, the modified T cell has high affinity for Factor VIII antibodies. In other embodiments, the modified T cell targets a B cell expressing Factor VIII antibodies.

Also included in the invention is an isolated KIR/DAP12 receptor complex comprising a chimeric alloantigen receptor (CALLAR) comprising an A2 subunit of Factor VIII or C2 subunit of Factor VIII; a linker; and a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and DAP12.

In some embodiments, the KIR is KIRS2 or KIR2DS2. In other embodiments, the linker is a short glycine-serine linker.

Also included is a genetically modified cell comprising an isolated KIR/DAP12 receptor complex.

Further included is a genetically modified cell comprising: an isolated chimeric alloantigen receptor (CALLAR) and DAP12, wherein the CALLAR comprises an extracellular domain comprising A2 subunit of Factor VIII or C2 subunit of Factor VIII, a linker, and a fragment of a KIR, wherein the KIR comprises a transmembrane region and a cytoplasmic domain. In some embodiments, the KIR is KIRS2 or KIR2DS2. In other embodiments, the linker is a short glycine-serine linker.

Also included is a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia. The method comprises administering to the subject an effective amount of a genetically modified T cell comprising: an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR) comprising a nucleic acid sequence encoding A2 subunit of Factor VIII or C2 subunit of Factor VIII; a nucleic acid sequence encoding a linker; a nucleic acid sequence encoding a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and further comprising a nucleic sequence encoding DAP12, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

In some embodiments, the linker is a short glycine-serine linker.

Further included is a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia. The method comprises administering to the subject an effective amount of a genetically modified T cell comprising a chimeric alloantigen receptor (CALLAR) comprising an A2 subunit of Factor VIII or C2

subunit of Factor VIII, a linker, a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and further comprising DAP12, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

5

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description of preferred embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings 10 embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities of the embodiments shown in the drawings.

Figure 1 is an illustration of FVIII chimeric alloantigen receptor (CALLAR).

Figure 2 is an illustration of exemplary CALLAR constructs bearing alternate signaling domains or extracellular hinges as compared to Figure 1.

15

The design on the left side of the figure represents an illustration of a chimeric alloantigen receptor (CALLAR comprising an A2 or C2 subunit of Factor VIII, a transmembrane domain (CD8), an intracellular signaling domain of 4-1BB, and a CD3 zeta signaling domain.

20

The design in the center of the figure represents an illustration of a chimeric alloantigen receptor (CALLAR) comprising an A2 or C2 subunit of Factor VIII, a linker (short glycine-serine linker (gs)), a transmembrane domain (CD8), an intracellular signaling domain of 4-1BB, and a CD3 zeta signaling domain.

25

The design on the right side of the figure represents an illustration of a KIR2DS2-based chimeric immunoreceptor in which the A2 or C2 domain of Factor VIII (FVIII) is fused to the transmembrane and cytoplasmic domains of KIRS2 with a short glycine-serine linker between the FVIII domain and the KIR sequence. This chimeric receptor is expressed with the DAP12 adaptor protein to produce a chimeric KIR/DAP12 receptor complex.

30

Figure 3 is a panel of graphs illustrating surface expression of A2 and C2 CALLAR on human T cells. T cells were activated with CD3/28 beads for 24 hrs followed by lentiviral transduction of an A2- CALLAR or C2-CALLAR utilizing the 4-1BB and Zeta signaling domains (A2bbz and C2bbz, respectively). Lentiviral vectors expressing A2- or C2-CALLAR constructs (A2bbz-mCh or C2bbz-mCh) were also generated and used for transduction. FMC63bbz CAR (anti-CD19 CAR)

was used as a control. T cells were stained with either an A2 or C2 specific antibodies as indicated on day 5 following transduction to detect expression of the A2 and C2 containing CALLARs. Protein L was used to stain for the FMC63bbz CAR.

Flow cytometry was used to analyze A2 and C2-based CARs on primary T-
5 cells. Fresh isolated human T cells from healthy donors were transduced with lentiviral vector supernatants encoding the following CARs: FMC63-bbz, A2-bbz, and C2-bbz. A2bbz-mCh and C2bbz-mCh represent T cells transduced with lentiviral vectors encoding a bi-cistronic construct for expression of the respective CAR and mCherry as separate proteins. CAR expression was evaluated by flow cytometry.
10 Briefly, T cells were cultured in RPMI 1640 medium with 10% FBS and stimulated with anti-CD3/anti-CD28 Dynabeads (Invitrogen). 24 hrs after stimulation, T cells were transduced with the CAR lentiviral vector supernatants. 6-8 days after lentiviral transduction T cells were stained with biotinylated Protein L antibody followed by strepavidin PE (BD Biosciences), anti-A2 followed by or goat-anti mouse-FITC
15 (Jackson ImmunoResearch), or anti-C2 followed by or goat-anti mouse-FITC (Jackson ImmunoResearch) as indicated. CAR expression was evaluated by flow cytometry (LSR-II, BD). Flow cytometry analysis was carried out by using Flowjo (Tree Star Inc). After transduction it was observed that A2 and C2 domain-based CARs were efficiently expressed on the cell surface of the transduced T cells.

20 Figure 4 is a graph illustrating activation of A2 and C2 CALLAR-modified T cells by immobilized anti-A2 or anti-C2 antibodies. T cells transduced with indicated CAR or CALLAR were plated on microwells coated with OKT3 (for polyclonal T cell activation), anti-A2 or anti-C2. Supernatants were harvested at 24 hours, and IFN- γ was measured by ELISA. Results illustrate that all T cells are capable of producing
25 IFN- γ following activation by anti-CD3 antibody. Only A2-BBz transduced T cells produce IFN- γ in response to A2-specific antibody. Only C2-BBz transduced T cells produce IFN- γ in response to C2-specific antibody.

30 Figure 5 is a graph illustrating a CALLAR model system for antigen-specific B cells. CD19+ Nalm6 cells were engineered to express FVIII-specific chimeric immunoglobulin. Human peripheral blood T cells were transduced with A2-FVIII- CALLARs (A2-CALLARs), C2-FVIII-CALLARs (C2-CALLARs), Dsg3-CAAR or CD19-CAR (controls) or non-transduced T cells (NTD). The T cells were mixed with Nalm6 cells engineered to express surface immunoglobulin specific for the A2

domain of FVIII at varying effector to target (E:T) ratios. Percent specific lysis was measured by a ^{51}Cr release assay at 16 hours.

Figure 6 is a set of graphs illustrating antibody-specific cytotoxicity using an A2-domain containing or a C2-domain containing chimeric alloantibody receptor (CALLAR) with a CD8 extracellular spacer. T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with a CD8 extracellular spacer (A2(cd8)BBz) or a C2-domain containing receptor with the same CD8 spacer (C2(cd8)BBz). 19BBz-expressing T cells only show cytotoxicity towards the CD19+ target K562 cells. A2(cd8)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(cd8)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

Figure 7 is a set of graphs illustrating antibody-specific cytotoxicity using an A2-domain containing or a C2-domain containing chimeric alloantibody receptor with (Gly)₄-Ser extracellular spacer or linker. T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with a synthetic (Gly)₄-Ser extracellular spacer (A2(gs)BBz) or a C2-domain containing receptor with the same (Gly)₄-Ser spacer (C2(gs)BBz). 19BBz-expressing T cells only show cytotoxicity towards the CD19+ target K562 cells. A2(gs)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(gs)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

Figure 8 is a set of graphs illustrating antibody-specific cytotoxicity using an A2-domain containing or a C2-domain containing chimeric alloantibody receptor with KIR/DAP12-based signaling. T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with KIR/DAP12 signaling (A2(gs)KIRS2) or a C2-domain containing receptor with the same KIR/DAP12 signaling (C2(gs)KIRS2). 19BBz-expressing T cells only show cytotoxicity towards the CD19+ target K562 cells. A2(gs)KIRS2-transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(gs)KIRS2-transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

Figure 9 is a set of graphs illustrating cytokine production in response to antibody on the cell surface. T cells were transduced with lentiviral vectors encoding

an anti-CD19 CAR (19BBz), A2-domain containing chimeric alloantibody receptors with a CD8 extracellular spacer (A2(cd8)BBz), a synthetic (Gly)₄-Ser (A2(gs)BBz) or with KIR/DAP12 signaling (A2(gs)KIRS2), or C2-domain containing receptor with the same CD8 spacer (C2(cd8)BBz), synthetic (Gly)₄-Ser (C2(gs)BBz) or with KIR/DAP12 signaling (C2(gs)KIRS2). 19BBz-expressing T cells only show enhanced IFN γ production in response to CD19 $+$ target K562 cells or CD3/28 beads. A2(cd8)BBz, A2(gs)BBz and A2(gs)KIRS2 T cells show enhanced IFN γ production in response to K562 target cells expressing anti-A2 surface immunoglobulin or positive control CD3/28 beads. C2(cd8)BBz, C2(gs)BBz and C2(gs)KIRS2 T cells show enhanced IFN γ production in response to K562 target cells expressing anti-C2 surface immunoglobulin or positive control CD3/28 beads.

DETAILED DESCRIPTION

The invention includes compositions and methods of using a chimeric alloantigen receptor (CALLAR) specific for an alloantibody, wherein the expressed CALLAR comprises a Factor VIII or fragment thereof in the extracellular domain.

Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods and materials similar or equivalent to those described herein can be used in the practice of and/or for the testing of the present invention, the preferred materials and methods are described herein. In describing and claiming the present invention, the following terminology will be used according to how it is defined, where a definition is provided.

It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

The articles “a” and “an” are used herein to refer to one or to more than one (*i.e.*, to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.

“About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of $\pm 20\%$ or $\pm 10\%$, in some instances $\pm 5\%$, in some instances $\pm 1\%$, and in some instance $\pm 0.1\%$

from the specified value, as such variations are appropriate to perform the disclosed methods.

The term “antibody,” as used herein, refers to an immunoglobulin molecule binds with an antigen. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins. Antibodies are typically tetramers of immunoglobulin molecules. The antibody in the present invention may exist in a variety of forms where the antibody is expressed as part of a contiguous polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv) and a humanized antibody (Harlow et al., 1999, In: *Using Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: *Antibodies: A Laboratory Manual*, Cold Spring Harbor, New York; Houston et al., 1988, *Proc. Natl. Acad. Sci. USA* 85:5879-5883; Bird et al., 1988, *Science* 242:423-426).

The term “high affinity” as used herein refers to high specificity in binding or interacting or attraction of one molecule to a target molecule.

The term “antigen” or “Ag” as used herein is defined as a molecule that provokes an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both. The skilled artisan will understand that any macromolecule, including virtually all proteins or peptides, can serve as an antigen. Furthermore, antigens can be derived from recombinant or genomic DNA. A skilled artisan will understand that any DNA, which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an “antigen” as that term is used herein. Furthermore, one skilled in the art will understand that an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response. Moreover, a skilled artisan will understand that an antigen need not be encoded by a “gene” at all. It is readily apparent that an antigen can be generated synthesized or can be derived from a biological sample. Such a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a biological fluid.

By “alloantigen” is meant an antigen present only in some individuals (such as a particular blood group) of a species and capable of inducing the production of an alloantibody by individuals that lack the alloantigen.

5 The term “limited toxicity” as used herein, refers to the peptides, polynucleotides, cells and/or antibodies of the invention manifesting a lack of substantially negative biological effects, anti-tumor effects, or substantially negative physiological symptoms toward a healthy cell, non-tumor cell, non-diseased cell, non-target cell or population of such cells either in vitro or in vivo.

10 “Alloantibody” refers to an antibody that is produced by a B cell specific for an alloantigen.

As used herein, the term “autologous” is meant to refer to any material derived from the same individual to which it is later to be re-introduced into the individual.

15 “Allogeneic” refers to a graft derived from a different animal of the same species.

“Xenogeneic” refers to a graft derived from an animal of a different species.

20 “Chimeric alloantigen receptor” or “CALLAR” refers to an engineered receptor that is expressed on a T cell or any other effector cell type capable of cell-mediated cytotoxicity. The CALLAR includes an alloantigen or fragment thereof that is specific for an alloantibody. The CALLAR also includes a transmembrane domain, a costimulatory domain and a signaling domain.

25 As used herein, the term “conservative sequence modifications” is intended to refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.

30 Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and

aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, for example, one or more amino acid residues within the extracellular regions of the CALLAR of the invention can be replaced with other amino acid residues having a similar side chain or charge and the altered CALLAR can be tested for the ability to bind autoantibodies using the functional assays described herein.

“Co-stimulatory ligand,” as the term is used herein, includes a molecule on an antigen presenting cell (e.g., an aAPC, dendritic cell, B cell, and the like) that specifically binds a cognate co-stimulatory molecule on a T cell, thereby providing a signal which, in addition to the primary signal provided by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, mediates a T cell response, including, but not limited to, proliferation, activation, differentiation, and the like.

A “co-stimulatory molecule” refers to the cognate binding partner on a T cell that specifically binds with a co-stimulatory ligand, thereby mediating a co-stimulatory response by the T cell, such as, but not limited to, proliferation. Co-stimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and a Toll ligand receptor.

“Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (*i.e.*, rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.

Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.

“Effective amount” or “therapeutically effective amount” are used interchangeably herein, and refer to an amount of a compound, formulation, material,

or composition, as described herein effective to achieve a particular biological result. Such results may include, but are not limited to, the inhibition of virus infection as determined by any means suitable in the art.

5 The term “effector function” refers to a specialized function of a cell.

As used herein “endogenous” refers to any material from or produced inside an organism, cell, tissue or system.

As used herein, the term “exogenous” refers to any material introduced from or produced outside an organism, cell, tissue or system.

10 The term “expression” as used herein is defined as the transcription and/or translation of a particular nucleotide sequence driven by a promoter.

15 “Expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes), retrotransposons (e.g. piggyback, sleeping beauty), and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.

20 The term “Factor VIII” refers to a blood-clotting protein, also known as anti-hemophilic factor. Factor VIII is encoded by the *F8* gene in humans and produces two alternatively spliced transcripts. Factor VIII is a cofactor of Factor IXa, which forms a complex that converts Factor X to the activated form, Xa. Factor VIII is a non-covalent heterodimer comprised of a heavy chain (A1-A2-B subunits) and light chain (A3-C1-C2 subunits) that circulates as an inactive procofactor in a complex with von Willebrand factor.

25 The term “Factor VIII antibody” refers to an antibody that specifically binds to FVIII blood-clotting protein. The FVIII antibody includes alloantibodies and autoantibodies that are specific for FVIII.

30 The term “hemophilia” refers to a blood clotting disorder. Hemophilia A refers to a recessive, X-linked genetic disorder in individuals that lack functional Factor VIII. Hemophilia B refers to a recessive, X-linked genetic disorder in individuals that lack functional Factor IX.

“Homologous” as used herein, refers to the subunit sequence identity between two polymeric molecules, *e.g.*, between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit; *e.g.*, if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position. The homology between two sequences is a direct function of the number of matching or homologous positions; *e.g.*, if half (*e.g.*, five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (*e.g.*, 9 of 10), are matched or homologous, the two sequences are 90% homologous.

“Identity” as used herein refers to the subunit sequence identity between two polymeric molecules particularly between two amino acid molecules, such as, between two polypeptide molecules. When two amino acid sequences have the same residues at the same positions; *e.g.*, if a position in each of two polypeptide molecules is occupied by an Arginine, then they are identical at that position. The identity or extent to which two amino acid sequences have the same residues at the same positions in an alignment is often expressed as a percentage. The identity between two amino acid sequences is a direct function of the number of matching or identical positions; *e.g.*, if half (*e.g.*, five positions in a polymer ten amino acids in length) of the positions in two sequences are identical, the two sequences are 50% identical; if 90% of the positions (*e.g.*, 9 of 10), are matched or identical, the two amino acids sequences are 90% identical.

The phrase “an immunologically effective amount,” “an anti-alloantibody effective amount,” or “therapeutic amount” as used herein refers to the amount of the composition of the present invention to be administered, determined by a researcher or physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject).

The term “intracellular signaling domain” refers to the portion of a protein which transduces the effector function signal and directs the cell to perform a specialized function. The intracellular signaling domain includes any truncated portion of the intracellular domain sufficient to transduce the effector function signal.

As used herein, an “instructional material” includes a publication, a recording, a diagram, or any other medium of expression that can be used to communicate the

usefulness of the compositions and methods of the invention. The instructional material of the kit of the invention may, for example, be affixed to a container that contains the nucleic acid, peptide, and/or composition of the invention or be shipped together with a container that contains the nucleic acid, peptide, and/or composition.

5 Alternatively, the instructional material may be shipped separately from the container with the intention that the instructional material and the compound be used cooperatively by the recipient.

“Intracellular domain” refers to a portion or region of a molecule that resides inside a cell.

10 “Isolated” means altered or removed from the natural state. For example, a nucleic acid or a peptide naturally present in a living animal is not “isolated,” but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is “isolated.” An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for 15 example, a host cell.

In the context of the present invention, the following abbreviations for the commonly occurring nucleic acid bases are used. “A” refers to adenosine, “C” refers to cytosine, “G” refers to guanosine, “T” refers to thymidine, and “U” refers to uridine.

20 Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or an RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).

25 A “lentivirus” as used herein refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses. Vectors derived from lentiviruses offer 30 the means to achieve significant levels of gene transfer *in vivo*.

The term “operably linked” refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional

relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same 5 reading frame.

“Parenteral” administration of an immunogenic composition includes, *e.g.*, subcutaneous (s.c.), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection, or infusion techniques.

The term “polynucleotide” as used herein is defined as a chain of nucleotides. 10 Furthermore, nucleic acids are polymers of nucleotides. Thus, nucleic acids and polynucleotides as used herein are interchangeable. One skilled in the art has the general knowledge that nucleic acids are polynucleotides, which can be hydrolyzed into the monomeric “nucleotides.” The monomeric nucleotides can be hydrolyzed into nucleosides. As used herein polynucleotides include, but are not limited to, all 15 nucleic acid sequences which are obtained by any means available in the art, including, without limitation, recombinant means, *i.e.*, the cloning of nucleic acid sequences from a recombinant library or a cell genome, using ordinary cloning technology and PCRTM, and the like, and by synthetic means.

As used herein, the terms “peptide,” “polypeptide,” and “protein” are used 20 interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds. A protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein’s or peptide’s sequence. Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. 25 As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. “Polypeptides” include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, 30 variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. The polypeptides include natural peptides, recombinant peptides, synthetic peptides, or a combination thereof.

The term “proinflammatory cytokine” refers to a cytokine or factor that promotes inflammation or inflammatory responses. Examples of proinflammatory

cytokines include, but are not limited to, chemokines (CCL, CXCL, CX3CL, XCL), interleukins (such as, IL-1, IL-2, IL-3, IL-5, IL-6, IL-7, IL-9, IL10 and IL-15), interferons (IFN γ), and tumor necrosis factors (TNF α and TNF β).

5 The term “promoter” as used herein is defined as a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.

10 As used herein, the term “promoter/regulatory sequence” means a nucleic acid sequence that is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements that are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one that expresses the gene product in a tissue specific manner.

15 A “constitutive” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell.

20 An “inducible” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell.

25 A “tissue-specific” promoter is a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.

30 A “signal transduction pathway” refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. The phrase “cell surface receptor” includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.

“Signaling domain” refers to the portion or region of a molecule that recruits and interacts with specific proteins in response to an activating signal.

By the term “specifically binds,” as used herein, is meant an antibody, or a ligand, which recognizes and binds with a cognate binding partner (e.g., a stimulatory

and/or costimulatory molecule present on a T cell) protein present in a sample, but which antibody or ligand does not substantially recognize or bind other molecules in the sample.

5 The term “subject” is intended to include living organisms in which an immune response can be elicited (e.g., mammals).

As used herein, a “substantially purified” cell is a cell that is essentially free of other cell types. A substantially purified cell also refers to a cell that has been separated from other cell types with which it is normally associated in its naturally occurring state. In some instances, a population of substantially purified cells refers to 10 a homogenous population of cells. In other instances, this term refers simply to cells that have been separated from the cells with which they are naturally associated in their natural state. In some embodiments, the cells are cultured *in vitro*. In other embodiments, the cells are not cultured *in vitro*.

15 The term “therapeutic” as used herein means a treatment and/or prophylaxis. A therapeutic effect is obtained by suppression, remission, or eradication of a disease state.

20 The term “transfected” or “transformed” or “transduced” as used herein refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell. A “transfected” or “transformed” or “transduced” cell is one that has been transfected, transformed or transduced with exogenous nucleic acid. The cell includes the primary subject cell and its progeny.

“Transmembrane domain” refers to a portion or a region of a molecule that spans a lipid bilayer membrane.

25 The phrase “under transcriptional control” or “operatively linked” as used herein means that the promoter is in the correct location and orientation in relation to a polynucleotide to control the initiation of transcription by RNA polymerase and expression of the polynucleotide.

30 A “vector” is a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for

example, polylysine compounds, liposomes, and the like. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lentiviral vectors, and the like.

5 By the term “stimulation,” is meant a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex. Stimulation can mediate altered expression of certain molecules, such as downregulation of TGF- β , and/or reorganization of cytoskeletal structures, and the like.

10 A “stimulatory molecule,” as the term is used herein, means a molecule on a T cell that specifically binds with a cognate stimulatory ligand present on an antigen presenting cell.

15 A “stimulatory ligand,” as used herein, means a ligand that when present on an antigen presenting cell (e.g., an aAPC, a dendritic cell, a B-cell, and the like) can specifically bind with a cognate binding partner (referred to herein as a “stimulatory molecule”) on a T cell, thereby mediating a primary response by the T cell, including, but not limited to, activation, initiation of an immune response, proliferation, and the like. Stimulatory ligands are well-known in the art and encompass, *inter alia*, an MHC Class I molecule loaded with a peptide, an anti-CD3 antibody, a superagonist anti-20 CD28 antibody, and a superagonist anti-CD2 antibody.

25 Ranges: throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 30 4, 5, 5.3, and 6. This applies regardless of the breadth of the range.

Description

A method for eliminating FVIII-specific B cells while leaving normal B-cell immunity intact is the most desirable therapeutic approach to treat hemophilia,

because chronic, non-specific immunosuppression using anti-CD20 antibody and other non-specific immunosuppressive modalities are associated with increased risk of serious infection. Chimeric antigen receptor (CAR) technology has been successfully developed for the treatment of B-cell malignancies. While a B-cell specific CAR (such as a CD19 CAR) might be beneficial in eliminating memory B cells that produce Factor VIII (FVIII) antibodies, B cells destined to secrete anti-FVIII alloantibodies express surface anti-FVIII antibody. Targeting this unique and highly restricted marker on these alloantigen-specific B cells provides a therapeutic opportunity to eliminate the B cells producing FVIII-specific antibodies that interfere with FVIII therapy.

Chimeric AlloAntigen Receptor (CALLAR)

The present invention is based in part on the discovery that chimeric alloantigen receptors can be used to target alloantibodies produced in response to FVIII replacement treatment. Alloantibodies are produced in some individuals who receive recombinant or purified FVIII as treatment for their FVIII deficiency. Individuals with hemophilia have a genetic deficiency of FVIII. Since they do not have FVIII due to genetic abnormalities that disrupt the FVIII gene, FVIII appears foreign to their immune system and their cells make antibodies against FVIII. The invention includes compositions comprising a CALLAR specific for an alloantibody, vectors comprising the same, compositions comprising CALLAR vectors packaged in viral particles, and recombinant T cells or other effector cells comprising the CALLAR. The invention also includes methods of making a genetically modified T cell expressing a CALLAR, wherein the expressed CALLAR comprises a factor VIII or fragment thereof in the extracellular domain.

The antigens for many alloantibody-mediated diseases, such as FVIII replacement treatment in hemophilia, have been described. The present invention includes a technology for treating alloantibody-mediated diseases. In particular, technologies that target B cells that ultimately produce the auto- and alloantibodies and display the auto- and alloantibodies on their cell surfaces, mark these B cells as disease-specific targets for therapeutic intervention. The invention therefore includes a method for efficiently targeting and killing the pathogenic B cells by using an auto- and alloantibody-specific (e.g., Factor VIII) chimeric alloantigen receptor (or CALLAR). In one embodiment of the present invention, only specific anti-

autoantibody- and anti-alloantibody-expressing B cells are killed, thus leaving intact the beneficial B cells and antibodies that protect from infection.

The present invention encompasses a recombinant DNA construct comprising nucleic acid sequences that encode an extracellular domain comprising an alloantigen or a fragment thereof, in one aspect, a human Factor VIII or fragment thereof, wherein the sequence of the alloantigen or fragment thereof is operably linked to a nucleic acid sequence encoding an intracellular signaling domain.

In one aspect, the invention includes an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain.

In another aspect, the invention includes an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2 subunit of Factor VIII, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule, and a nucleic acid sequence encoding an intracellular signaling domain.

In yet another aspect, the invention includes an isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising an alloantigen or fragment thereof, a transmembrane domain, an intracellular domain of 4-1BB, and a CD3 zeta signaling domain. In still another aspect, the invention includes an isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising A2 subunit of Factor VIII, a transmembrane domain, an intracellular domain of a costimulatory molecule, and an intracellular signaling domain.

Alloantigen Moiety

In one aspect, the constructs described herein comprise a genetically engineered chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising an alloantigen or fragment thereof. In one embodiment, the alloantigen is a Factor VIII or a fragment thereof. In an exemplary embodiment, the CALLAR comprises a Factor VIII A2 or C2 subunit. In another embodiment, the CALLAR comprises a Factor VIII subunit selected from the group consisting of an A1, an A2, an A3, a B, a C1, and a C2 subunit.

In one embodiment, the isolated nucleic acid sequence encoding the CALLAR comprises a nucleic acid sequence encoding a Factor VIII A2 subunit, comprising

5 GATCCTCAGTTGCCAAGAAGCATCCTAAAACCTGGGTACATTACATTGCTG
CTGAAGAGGAGGACTGGGACTATGCTCCCTAGTCCTCGCCCCCGATGAC
AGAAGTTATAAAAGTCAATATTGAACAATGGCCCTCAGCGGATTGGTAG
GAAGTACAAAAAAAGTCGATTATGGCATACACAGATGAAACCTTAAGA
10 CTCGTGAAGCTATTCAAGCATGAATCAGGAATCTTGGACCTTACTTATG
GGGAAGTTGGAGACACACTGTTGATTATTTAAGAATCAAGCAAGCAGA
CCATATAACATCTACCCTCACGGAATCACTGATGTCGTCCTTGTATTCA
AGGAGATTACCAAAAGGTGTAAAACATTGAAGGATTCCAATTCTGCC
AGGAGAAATATTCAAATATAATGGACAGTGACTGTAGAAGATGGCCA
15 ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTCGTTAAT
ATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCCTCATCTGCTAC
AAAGAATCTGTAGATCAAAGAGGAAACCAAGATAATGTCAGACAAGAGGA
ATGTCATCCTGTTCTGTATTGATGAGAACCGAAGCTGGTACCTCACAG
AGAATATAACACGCTTCTCCCCAATCCAGCTGGAGTGCAGCTGAAGAT
20 CCAGAGTTCCAAGCCTCCAACATCATGCACAGCATCAATGGCTATGTTTT
GATAGTTGCAGTTGTCAAGTTGTCATGAGGTGGCATACTGGTACATT
CTAAGCATTGGAGCACAGACTGACTTCCTTCTGTCTCTCTGGATAT
ACCTTCAAACACAAAATGGTCTATGAAGACACACTCACCCATTCCCATT
25 TCAGGAGAAACTGTCTTCATGTCGATGGAAAACCCAGGTCTATGGATTCT
GGGGTGCACAACTCAGACTTCGGAACAGAGGCATGACCGCCTACTGA
AGGTTCTAGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTAT
GAAGATATT TCAGCATACT TGCTGAGTAA AAACAATGCC ATTGAAC or
SEQ ID NO:1.

In another embodiment, the Factor VIII A2 subunit comprises amino acid sequence comprising

30 SVAKKHPKTWVHYIAAEEEWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKY
KKVRFMAYTDETFKTRAEIQHESGILGPLLYGEVGDTLIIFKNQASRPYNIYP
HGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLT
RYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENR
SWYLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGYVFDSLQLSVCLHEVAY
WYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSMENPGLWI

LGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIIEPR or SEQ ID NO:2.

In another embodiment, the isolated nucleic acid sequence encoding the CALLAR comprises a nucleic acid sequence encoding a Factor VIII C2 subunit comprising

5 GATCCAATAGTTGCAGCATGCCATTGGGAATGGAGAGTAAAGCAATATCA
GATGCACAGATTACTGCTTCATCCTACTTTACCAATATGTTGCCACCTGG
TCTCCTCAAAAGCTGACTTCACCTCCAAGGGAGGAGTAATGCCTGGAG
ACCTCAGGTGAATAATCCAAAAGAGTGGCTGCAAGTGGACTCCAGAAGA
10 CAATGAAAGTCACAGGAGTAACTACTCAGGGAGTAAATCTCTGCTTACC
AGCATGTATGTGAAGGAGTTCCATCTCCAGCAGTCAAGATGGCCATCA
GTGGACTCTCTTTTCAGAATGGCAAAGTAAAGGTTTCAGGGAAATCA
AGACTCCTCACACCTGTGGTGAACTCTAGACCCACCGTTACTGACTCG
15 CTACCTCGAATTCAACCCCCAGAGTTGGGTGCACCAGATTGCCCTGAGGAT
GGAGGTTCTGGGCTGCGAGGCACAGGACC or SEQ ID NO:3.

In another embodiment, the Factor VIII C2 subunit comprises amino acid sequence

20 NSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQV
NNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSQDGHQWTLF
FQNGKVKVFQGNQDSFTPVNVSLDPPLLTRYLRIHPQSWVHQIALR
MEVLGCEAQDLY or SEQ ID NO:4.

In yet another embodiment, the isolated nucleic acid sequence encoding the CALLAR comprises a nucleic acid sequence with at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity or homology to any nucleic acid sequence described herein. In another embodiment, the CALLAR comprises an amino acid sequence with at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity or homology to any amino acid sequence described herein.

30 In a further embodiment, the CALLAR of the invention comprises an alloantibody binding domain otherwise referred to as an alloantigen or a fragment thereof. The choice of alloantigen for use in the present invention depends upon the type of antibody being targeted. For example, the alloantigen may be chosen because it recognizes an antibody on a target cell, such as a B cell, associated with a particular disease state, e.g. FVIII replacement therapy in hemophilia.

5 In some instances, it is beneficial that the alloantibody binding domain is derived from the same species in which the CALLAR will ultimately be used. For example, for use in humans, it may be beneficial that the alloantibody binding domain of the CALLAR comprises an alloantigen that binds the alloantibody or a fragment thereof. Thus, in one embodiment, the alloantibody binding domain portion comprises an epitope of the alloantigen that binds the alloantibody. The epitope is the part of the alloantigen that is specifically recognized by the alloantibody.

Linker

10 In some embodiments, the CALLAR comprises a short glycine-serine linker (gs). In some embodiments, the short glycine-serine linker is an extracellular linker. The short glycine-serine linker can have 0-20 repeats, for example, 1 repeat, 2 repeats, etc., with each repeat having a length of 2-20 amino acids. In some embodiments, a single short glycine-serine linker repeat has a sequence of, e.g., Gly-Gly-Gly-Gly-Ser 15 (SEQ ID NO: 29). Other combinations of glycine and serine repeats may be used for the glycine-serine linker.

Transmembrane domain

20 In one embodiment, the CALLAR comprises a transmembrane domain. In some embodiments, the transmembrane domain comprises a hinge and a transmembrane domain, such as, but not limited to, a human T cell surface glycoprotein CD8 alpha chain hinge and transmembrane domain. The human CD8 chain hinge and transmembrane domain provides cell surface presentation of the chimeric alloantigen receptor.

25 With respect to the transmembrane domain, in various embodiments, the CALLAR comprises a transmembrane domain that is fused to the extracellular domain of the CALLAR. In one embodiment, the CALLAR comprises a transmembrane domain that naturally is associated with one of the domains in the CALLAR. In some instances, the transmembrane domain is selected or modified by amino acid substitution to avoid binding to the transmembrane domains of the same or different surface membrane proteins in order to minimize interactions with other 30 members of the receptor complex.

The transmembrane domain may be derived either from a natural or from a synthetic source. When the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one embodiment, the transmembrane domain may be synthetic, in which case it will comprise predominantly hydrophobic

residues such as leucine and valine. In one aspect a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. Optionally, a short oligo- or polypeptide linker, between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic 5 signaling domain of the CALLAR. A glycine-serine doublet provides a particularly suitable linker.

In some instances, a variety of human hinges can be employed as well including the human Ig (immunoglobulin) hinge.

Examples of the hinge and/or transmembrane domain include, but are not 10 limited to, a hinge and/or transmembrane domain of an alpha, beta or zeta chain of a T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, , CD154, KIR, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, 15 IL7R α , ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), 20 SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and/or NKG2C.

A killer immunoglobulin-like receptor (KIR) includes all KIRs, *e.g.*, KIR2 and KIR2DS2, a stimulatory killer immunoglobulin-like receptor.

In one embodiment, the nucleic acid sequence of the transmembrane domain 25 encodes a CD8 alpha chain hinge comprising
CTAGCACCACGACGCCAGCGCCGCGACCACCAACACCGGGCGCCACCATC
GCGTCGCAGCCCCCTGTCCCTGCGCCAGAGGCGTGCCGGCCAGCGGGCGGG
GGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCT or SEQ ID NO:5 and
transmembrane domain comprising
30 CCGGAATCTACATCTGGGCCCTCTGGCCGGCACCTGTGGCGTGCTGCTGC
TGTCCCTGGTCATCACCCCTGTACT or SEQ ID NO:6.

In another embodiment, the nucleic acid sequence of the transmembrane domain encodes a CD8 alpha chain hinge comprising
TTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD or SEQ ID

NO:7. and a transmembrane domain comprising
IYIWAPLAGTCGVLLSLVITLYCK or SEQ ID NO:8.

In yet another embodiment, the transmembrane domain comprises a CD8 alpha chain hinge and/or transmembrane domain.

5 Cytoplasmic domain

The intracellular signaling domain or otherwise the cytoplasmic domain comprises, a costimulatory signaling domain and an intracellular signaling domain. The costimulatory signaling domain refers to a portion of the CALLAR comprising the intracellular signaling domain of a costimulatory molecule, such as 4-1BB.

10 Costimulatory molecules include cell surface molecules that are required for an efficient T cell activation. The cytoplasmic domain or otherwise the intracellular signaling domain of the CALLAR of the invention, is responsible for activation of at least one of the normal effector functions of the immune cell in which the CALLAR has been placed in. The intracellular signaling domain refers to a portion of the 15 CALLAR comprising the intracellular signaling domain, such as intracellular signaling domain of CD3 zeta.

Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines. While the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire domain. 20 To the extent that a truncated portion of the intracellular signaling domain is used, such truncated portion may be used in place of the intact domain as long as it transduces the effector function signal.

25 Examples of intracellular signaling domains for use in the CALLAR of the invention include, but are not limited to, the cytoplasmic portion of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these elements and any synthetic sequence that has the same functional capability.

30 It is well recognized that signals generated through the TCR alone are insufficient for full activation of the T cell and that a secondary or co-stimulatory signal is also required. Thus, T cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequence: those that initiate antigen-dependent primary activation through the TCR (primary cytoplasmic signaling sequences) and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal (secondary cytoplasmic signaling sequences).

5 Primary cytoplasmic signaling sequences regulate primary activation of the TCR complex either in a stimulatory manner or in an inhibitory manner. Primary cytoplasmic signaling sequences that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.

10 Examples of the intracellular signaling domain includes a fragment or domain from one or more molecules or receptors including, but are not limited to, CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, CD86, common FcR gamma, FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fcgamma RIIa, DAP10, DAP12 (an immunotyrosine-based activation motifs (ITAM)-containing adaptor), T cell receptor (TCR), CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CDS, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD127, CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, 15 CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, any KIR, *e.g.*, KIR2, KIR2DS2, other co-stimulatory molecules described herein, any derivative, variant, or fragment thereof, any synthetic sequence of a co-stimulatory molecule that has the same 20 functional capability, and any combination thereof.

25 In one embodiment, the intracellular signaling domain of the CALLAR comprises the CD3 zeta signaling domain by itself or in combination with one or more desired cytoplasmic domain(s) useful in the context of the CALLAR of the invention. For example, the intracellular signaling domain of the CALLAR can comprise a CD3 zeta chain portion and a costimulatory signaling domain of 4-1BB. The costimulatory signaling domain refers to a portion of the CALLAR comprising the intracellular signaling domain of a costimulatory molecule. A costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen.

In another embodiment, the nucleic acid sequence of the intracellular signaling domain of a costimulatory molecule comprises a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB comprising

GCAAGCGGGCAGAAAGAAGCTGCTGTACATCTTCAAGCAGCCCTCATG

5 CGGCCTGTGCAGACCACACAGGAAGAGGACGGCTGTAGCTGTAGATTCCC
CGAGGAAGAGGAAGGCGGCTGCG or SEQ ID NO:9. In another embodiment,
the nucleic acid sequence of the 4-1BB intracellular signaling domain encodes an
amino acid sequence comprising

GRKKLLYIFKQPFMRPVTTQEDGCSCRFPEEEEGGCEL or SEQ ID NO:10.

10 In another embodiment, the nucleic acid sequence of the signaling domain
comprises a nucleic acid sequence encoding a CD3 zeta signaling domain comprising
AGCTGAGAGTGAAGTTCAGCAGAACGCGCCACGCCCTGCCTATCAGCAG
GCCAGAACCAAGCTGTACAACGAGCTGAACCTGGCAGACGGGAGGAAT
ACGACGTGCTGGACAAGAGAAGAGGCCGGACCCCTGAGATGGGCGGCAA
15 GCCCAGACGGAAGAACCCCCAGGAAGGCCTGTATAACGAACACTGCAGAAA
GACAAGATGGCCGAGGCCTACAGCGAGATCGGCATGAAGGGCGAGCGGA
GAAGAGGCAAGGCCATGACGCCCTGTACCAGGCCCTGAGCACCGCCAC
CAAGGACACCTACGACGCCCTGCACATGCAGGCCCTGCCTC or SEQ ID
NO:11. In another embodiment, the nucleic acid sequence of the CD3 zeta signaling

20 domain encodes an amino acid sequence comprising

VKFSRSADAPAYQQQNQLYNELNLRREEYDVLKRRGRDPEMGGKPRR
KNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTY
DA LHMQALPPR or SEQ ID NO:12.

25 In some embodiments, an isolated KIR/DAP12 receptor complex comprises an
isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR).
The isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2
subunit of Factor VIII or C2 subunit of Factor VIII; a nucleic acid sequence encoding
a linker; a nucleic acid sequence encoding a transmembrane domain of a KIR,
wherein the KIR contains a transmembrane region and a cytoplasmic domain and
30 DAP12. Signaling is derived from the chimeric KIR (KIR-CAR or KIR-CALLAR)
assembling with DAP12 to produce a functional receptor complex. In some
embodiments, the KIR is KIRS2 or KIR2DS2.

In some embodiments, the invention includes a genetically modified cell
comprising an isolated chimeric alloantigen receptor (CALLAR) and DAP12, wherein

the CALLAR comprises an extracellular domain comprising A2 subunit of Factor VIII or C2 subunit of Factor VIII, a linker, and a fragment of a KIR, wherein the KIR contains a transmembrane region and a cytoplasmic domain.

5 In some embodiments, a method is provided for treating a disorder associated with FVIII antibodies in a subject with hemophilia. The method comprises administering to the subject an effective amount of a genetically modified T cell comprising: an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2 subunit of Factor VIII or C2 subunit of Factor VIII; a 10 nucleic acid sequence encoding a linker; a nucleic acid sequence encoding a transmembrane domain of a KIR; a nucleic acid sequence encoding a fragment of a KIR, wherein the KIR contains a transmembrane region and a cytoplasmic domain; and a nucleic acid sequence encoding DAP12, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

15 In some embodiments, the KIR of the isolated KIR/DAP12 receptor complex is KIR2 or KIR2DS2. In some embodiments, the linker is a short glycine-serine linker. In some embodiments, the linker of the isolated KIR/DAP12 receptor complex is a short glycine-serine linker.

20 In some embodiments, the KIR/DAP12 receptor complex comprises one or more of the sequences of SEQ ID NOs: 21-24.

Other Domains

25 The CALLAR and the nucleic acid encoding the CALLAR may further comprise a signal peptide, such as a human CD8 alpha chain signal peptide. The human CD8 alpha signal peptide is responsible for the translocation of the receptor to the T cell surface. In one embodiment, the isolated nucleic acid sequence encoding the CALLAR comprises a nucleic acid sequence encoding a CD8 alpha chain signal peptide. In another embodiment, the CALLAR comprises a CD8 alpha chain signal peptide.

30 The CALLAR may also comprise a peptide linker. In one embodiment, the isolated nucleic acid sequence encoding the CALLAR comprises a nucleic acid sequence encoding a peptide linker between the nucleic acid sequence encoding the extracellular domains and the transmembrane domain.

In another embodiment, the intracellular domains of the CALLAR can be linked to each other in a random or specified order. Optionally, a short oligo- or

polypeptide linker, for example, between 2 and 10 amino acids in length may form a linkage between the domains. A glycine-serine doublet is a particularly suitable linker.

5 Any domains and/or fragments of the CALLAR, vector, and the promoter may be amplified by PCR or any other means known in the art.

Vector Comprising the CALLAR

10 All vectors described herein comprising an extracellular portion of Factor VIII A2 or C2 subunit should be construed to be equally compatible with use of any Factor VIII extracellular portion. As such, use of the vectors described herein is exemplified by use of A2 or C2 subunit, but should be construed to be equally disclosed with respect to use of A1, B, A3, and C1 subunits.

15 For proof of concept as to specificity and functionality, a lentiviral vector plasmid is useful (e.g., pELPS-hFVIII-A2-BBz-T2A-mCherry, pELPS-hFVIII-C2-BBz-T2A-mCherry, pTRPE-hFVIII-A2-BBz, and pTRPE-hFVIII-C2-BBz), where BBz denotes 4-1BB CD3 zeta. This results in stable (permanent) expression in the host T cell. As an alternative approach, the encoding mRNA can be electroporated into the host cell, which would achieve the same therapeutic effect as the virally transduced T cells, but would not be permanent, since the mRNA would dilute out 20 with cell division.

25 In one aspect, the invention includes a vector comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an extracellular domain comprising an alloantigen or fragment thereof (such as a Factor VIII subunit), a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule (such as 4-1BB), and a nucleic acid sequence encoding an intracellular signaling domain (such as CD3 zeta). In one embodiment, the vector comprises any of the isolated nucleic acid sequences encoding the CALLAR as described herein. In another embodiment, 30 the vector comprises a plasmid vector, viral vector, retrotransposon (e.g. piggyback, sleeping beauty), site directed insertion vector (e.g. CRISPR, zinc finger nucleases, TALEN), or suicide expression vector, or other known vector in the art.

All constructs disclosed herein comprising different alloantigens and fragments thereof, can be incorporated into any lentiviral vector plasmid, other viral

vectors, or RNA approved for use in human cells. In one embodiment, the vector is a viral vector, such as a lentiviral vector. In another embodiment, the vector is a RNA vector.

5 The production of the CALLAR can be verified by sequencing. Expression of the full length CALLAR protein may be verified using immunoblot, immunohistochemistry, flow cytometry or other technology well known and available in the art.

10 The present invention also provides a vector in which DNA encoding the CALLAR of the present invention is inserted. Vectors, including those derived from retroviruses such as lentivirus, are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses, such as murine leukemia viruses, in that they can transduce non-15 proliferating cells, such as hepatocytes. They also have the added advantage of resulting in low immunogenicity in the subject into which they are introduced.

20 The expression of natural or synthetic nucleic acids encoding CALLARs is typically achieved by operably linking a nucleic acid encoding the CALLAR polypeptide or portions thereof to a promoter, and incorporating the construct into an expression vector. The vector is one generally capable of replication in a mammalian cell, and/or also capable of integration into the cellular genome of the mammal. Typical vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.

25 The nucleic acid can be cloned into any number of different types of vectors. For example, the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.

30 The expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY), and in other virology and molecular biology manuals. Viruses, which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno- associated viruses, herpes viruses, and lentiviruses.

In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers, (e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193).

5 Additional promoter elements, e.g., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is
10 preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either cooperatively or independently to activate transcription.

15 An example of a promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, the elongation factor-1 α promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention. The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionein promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.

30 In order to assess the expression of a CALLAR polypeptide or portions thereof, the expression vector to be introduced into a cell can also contain either a

5 selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a co- transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.

10 Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assessed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, 15 chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82). Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter. 20 Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter- driven transcription.

25 Methods of introducing and expressing genes into a cell are known in the art. In the context of an expression vector, the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art. For example, the expression vector can be transferred into a host cell by physical, chemical, or biological means.

30 Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY).

Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors. RNA vectors include vectors having a

5 RNA promoter and/ other relevant domains for production of a RNA transcript. Viral vectors, and especially retroviral vectors, have become the most widely used method for inserting genes into mammalian, e.g., human cells. Other viral vectors may be derived from lentivirus, poxviruses, herpes simplex virus, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and 5,585,362.

10 Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, 15 micelles, mixed micelles, and liposomes. An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g. , an artificial membrane vesicle).

15 In the case where a non-viral delivery system is utilized, an exemplary delivery vehicle is a liposome. The use of lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo). In another aspect, the nucleic acid may be associated with a lipid. The nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a 20 linking molecule that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid. Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution. For example, they may be present in 25 a bilayer structure, as micelles, or with a “collapsed” structure. They may also simply be interspersed in a solution, possibly forming aggregates that are not uniform in size or shape. Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic 30 hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.

Lipids suitable for use can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine (“DMPC”) can be obtained from Sigma, St. Louis, MO; dicetyl phosphate (“DCP”) can be obtained from K & K Laboratories

(Plainview, NY); cholesterol (“Choi”) can be obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol (“DMPG”) and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, AL.). Stock solutions of lipids in chloroform or chloroform/methanol can be stored at about -20°C. Chloroform is used as the only 5 solvent since it is more readily evaporated than methanol. “Liposome” is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers or aggregates. Liposomes can be characterized as having vesicular structures with a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by 10 aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh et al., 1991 Glycobiology 5: 505-10). However, compositions that have different structures in solution than the normal vesicular structure are also 15 encompassed. For example, the lipids may assume a micellar structure or merely exist as nonuniform aggregates of lipid molecules. Also contemplated are lipofectamine-nucleic acid complexes.

Cells Comprising a CALLAR

20 In another aspect, the invention includes a genetically modified cell, such as a helper T cell, a cytotoxic T cell, a memory T cell, regulatory T cell, gamma delta T cell, a natural killer cell, a monocyte, a cytokine induced killer cell, a cell line thereof, and other effector cell that comprises the nucleic acid encoding the CALLAR described herein. In one embodiment, the genetically modified cell comprises an 25 isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an extracellular domain comprising an alloantigen or fragment thereof (such as a Factor VIII subunit), a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule 30 (such as 4-1BB), and a nucleic acid sequence encoding an intracellular signaling domain (such as CD3 zeta).

In another embodiment, the genetically modified cell comprises a CALLAR comprising an extracellular domain comprising an alloantigen or fragment thereof, a transmembrane domain, an intracellular domain of 4-1BB, and a CD3 zeta signaling

domain. In another embodiment, the genetically modified cell comprises a CALLAR comprising an extracellular domain comprising A2 subunit of Factor VIII, a transmembrane domain, an intracellular domain of a costimulatory molecule, and an intracellular signaling domain.

5 In another embodiment, the cell expresses the CALLAR. In this embodiment, the cell has high affinity for alloantibodies expressed on B cells. As a result, the cell induces killing of B cells expressing the alloantibodies.

10 In another embodiment, the genetically modified cell is a T cell. In this embodiment, the T cell expresses the CALLAR described herein and the T cell has high affinity for Factor VIII alloantibodies expressed on B cells. As a result, the T cell induces killing of B cells expressing Factor VIII alloantibodies.

15 It is also useful for the T cell to have limited toxicity toward healthy cells and specificity to cells expressing alloantibodies. Such specificity prevents or reduces off-target toxicity that is prevalent in current therapies that are not specific for autoantibodies. In one embodiment the T cell has limited toxicity toward healthy cells.

20 The invention includes T cells, such as primary cells, expanded T cells derived from primary T cells, T cells derived from stem cells differentiated in vitro, T cell lines such as Jurkat cells, other sources of T cells, combinations thereof, and other effector cells.

25 The functional ability of CALLARs to bind to alloantibodies and sera, for example, but not limited to, hemophilia, may be assessed in a Jurkat reporter cell line, which would depend on activation of the CALLAR by binding to auto- and alloantibody (in response to which the activated cells fluoresce green due to an NFAT-GFP reporter construct contained therein). Such methods are useful and reliable qualitative measures for functional binding ability.

30 The CALLAR constructs described herein are compatible with VSV-G pseudotyped HIV-1 derived lentiviral particles and can be permanently expressed in primary human T cells from healthy donors using lentiviral transduction. Killing efficacy can be determined in a chromium based cell lysis assay or any similar assay known in the art.

Additional target cell lines can be produced as needed by expression of human monoclonal antibodies on the surface of K562 cells.

Sources of T cells

Prior to expansion and genetic modification, T cells are obtained from a subject. Examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof. T cells can be obtained from a number of sources, including skin, 5 peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments of the present invention, any number of T cell lines available in the art, may be used. In certain embodiments of the present invention, T cells can be obtained from a unit of blood collected from a subject using 10 any number of techniques known to the skilled artisan, such as Ficoll™ separation. In one preferred embodiment, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one embodiment, the cells collected by apheresis may 15 be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In one embodiment of the invention, the cells are washed with phosphate buffered saline (PBS). In an alternative embodiment, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Again, surprisingly, initial activation steps in the 20 absence of calcium lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated “flow-through” centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the Haemonetics Cell Saver 5) according to the manufacturer’s instructions. After washing, the cells may be 25 resuspended in a variety of biocompatible buffers, such as, for example, Ca-free, Mg-free PBS, PlasmaLyte A, or other saline solution with or without buffer. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.

In another embodiment, T cells are isolated from peripheral blood 30 lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient or by counterflow centrifugal elutriation. A specific subpopulation of T cells, such as CD3⁺, CD28⁺, CD4⁺, CD8⁺, CD45RA⁺, and CD45RO⁺T cells, can be further isolated by positive or negative selection techniques. For example, in one embodiment, T cells are isolated by

incubation with anti-CD3/anti-CD28 (*i.e.*, 3x28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T cells. In one embodiment, the time period is about 30 minutes. In a further embodiment, the time period ranges from 30 minutes to 36 hours 5 or longer and all integer values there between. In a further embodiment, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred embodiment, the time period is 10 to 24 hours. In one preferred embodiment, the incubation time period is 24 hours. For isolation of T cells from patients with leukemia, use of longer incubation times, such as 24 hours, can increase cell yield. Longer incubation times 10 may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such as isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells. Thus, by simply shortening or lengthening the time T cells are allowed to bind to the 15 CD3/CD28 beads and/or by increasing or decreasing the ratio of beads to T cells (as described further herein), subpopulations of T cells can be preferentially selected for or against at culture initiation or at other time points during the process. Additionally, by increasing or decreasing the ratio of anti-CD3 and/or anti-CD28 antibodies on the beads or other surface, subpopulations of T cells can be preferentially selected for or 20 against at culture initiation or at other desired time points. The skilled artisan would recognize that multiple rounds of selection can also be used in the context of this invention. In certain embodiments, it may be desirable to perform the selection procedure and use the “unselected” cells in the activation and expansion process. “Unselected” cells can also be subjected to further rounds of selection.

25 Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, 30 to enrich for CD4⁺ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8. In certain embodiments, it may be desirable to enrich for or positively select for regulatory T cells which typically express CD4⁺, CD25⁺, CD62L^{hi}, GITR⁺, and

FoxP3⁺. Alternatively, in certain embodiments, T regulatory cells are depleted by anti-C25 conjugated beads or other similar method of selection.

For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In 5 certain embodiments, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one embodiment, a concentration of 2 billion cells/ml is used. In one embodiment, a concentration of 1 billion cells/ml is used. In a further embodiment, greater than 100 million cells/ml is 10 used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, 15 concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (i.e., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection 20 of CD8⁺ T cells that normally have weaker CD28 expression.

In a related embodiment, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized. This selects for cells that express high amounts of desired antigens to be bound to the particles. For 25 example, CD4⁺ T cells express higher levels of CD28 and are more efficiently captured than CD8⁺ T cells in dilute concentrations. In one embodiment, the concentration of cells used is 5 X 10⁶/ml. In other embodiments, the concentration used can be from about 1 X 10⁵/ml to 1 X 10⁶/ml, and any integer value in between.

In other embodiments, the cells may be incubated on a rotator for varying 30 lengths of time at varying speeds at either 2-10°C or at room temperature.

T cells for stimulation can also be frozen after a washing step. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After the washing step that removes plasma and platelets, the cells may be

suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or culture media containing 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin and 7.5% DMSO, or 5 31.25% Plasmalyte-A, 31.25% Dextrose 5%, 0.45% NaCl, 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin, and 7.5% DMSO or other suitable cell freezing media containing for example, Hespan and PlasmaLyte A, the cells then are frozen to -80°C at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as 10 uncontrolled freezing immediately at -20° C or in liquid nitrogen.

In certain embodiments, cryopreserved cells are thawed and washed as described herein and allowed to rest for one hour at room temperature prior to activation using the methods of the present invention.

Also contemplated in the context of the invention is the collection of blood 15 samples or apheresis product from a subject at a time period prior to when the expanded cells as described herein might be needed. As such, the source of the cells to be expanded can be collected at any time point necessary, and desired cells, such as T cells, isolated and frozen for later use in T cell therapy for any number of diseases or conditions that would benefit from T cell therapy, such as those described herein. 20 In one embodiment a blood sample or an apheresis is taken from a generally healthy subject. In certain embodiments, a blood sample or an apheresis is taken from a generally healthy subject who is at risk of developing a disease, but who has not yet developed a disease, and the cells of interest are isolated and frozen for later use. In certain embodiments, the T cells may be expanded, frozen, and used at a later time. In 25 certain embodiments, samples are collected from a patient shortly after diagnosis of a particular disease as described herein but prior to any treatments. In a further embodiment, the cells are isolated from a blood sample or an apheresis from a subject prior to any number of relevant treatment modalities, including but not limited to treatment with agents such as natalizumab, efalizumab, antiviral agents, 30 chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies, cytoxin, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, and irradiation. These drugs inhibit either the calcium dependent phosphatase

calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin). (Liu et al., *Cell* 66:807-815, 1991; Henderson et al., *Immun.* 73:316-321, 1991; Bierer et al., *Curr. Opin. Immun.* 5:763-773, 1993). In a further embodiment, the cells are isolated for a patient and frozen for 5 later use in conjunction with (*e.g.*, before, simultaneously or following) bone marrow or stem cell transplantation, T cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH. In another embodiment, the cells are isolated prior to and can be frozen for later use for treatment following B-cell ablative 10 therapy, *e.g.*, Rituxan.

In a further embodiment of the present invention, T cells are obtained from a patient directly following treatment. In this regard, it has been observed that following certain cancer treatments, in particular treatments with drugs that damage the immune system, shortly after treatment during the period when patients would normally be 15 recovering from the treatment, the quality of T cells obtained may be optimal or improved for their ability to expand *ex vivo*. Likewise, following *ex vivo* manipulation using the methods described herein, these cells may be in a preferred state for enhanced engraftment and *in vivo* expansion. Thus, it is contemplated within the context of the present invention to collect blood cells, including T cells, dendritic 20 cells, or other cells of the hematopoietic lineage, during this recovery phase. Further, in certain embodiments, mobilization (for example, mobilization with GM-CSF) and conditioning regimens can be used to create a condition in a subject wherein 25 repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy. Illustrative cell types include T cells, B cells, dendritic cells, and other cells of the immune system.

Activation and Expansion of T Cells

T cells are activated and expanded generally using methods as described, for 30 example, in U.S. Patents 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.

Generally, the T cells of the invention are expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a co-stimulatory molecule on the surface of the T cells. In particular, T cell populations may be stimulated as described herein, such as 5 by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted 10 with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. To stimulate proliferation of either CD4⁺ T cells or CD8⁺ T cells, an anti-CD3 antibody and an anti-CD28 antibody. Examples of an anti-CD28 antibody include 9.3, B-T3, XR-CD28 (Diaclone, Besançon, France) 15 can be used as can other methods commonly known in the art (Berg *et al.*, *Transplant Proc.* 30(8):3975-3977, 1998; Haanen *et al.*, *J. Exp. Med.* 190(9):13191328, 1999; Garland *et al.*, *J. Immunol Meth.* 227(1-2):53-63, 1999).

In certain embodiments, the primary stimulatory signal and the co-stimulatory signal for the T cell may be provided by different protocols. For example, the agents providing each signal may be in solution or coupled to a surface. When coupled to a 20 surface, the agents may be coupled to the same surface (*i.e.*, in “cis” formation) or to separate surfaces (*i.e.*, in “trans” formation). Alternatively, one agent may be coupled to a surface and the other agent in solution. In one embodiment, the agent providing the co-stimulatory signal is bound to a cell surface and the agent providing the primary activation signal is in solution or coupled to a surface. In certain 25 embodiments, both agents can be in solution. In another embodiment, the agents may be in soluble form, and then cross-linked to a surface, such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents. In this regard, see for example, U.S. Patent Application Publication Nos. 20040101519 and 20060034810 for artificial antigen presenting cells (aAPCs) that are contemplated for 30 use in activating and expanding T cells in the present invention.

In one embodiment, the two agents are immobilized on beads, either on the same bead, *i.e.*, “cis,” or to separate beads, *i.e.*, “trans.” By way of example, the agent providing the primary activation signal is an anti-CD3 antibody or an antigen-binding fragment thereof and the agent providing the co-stimulatory signal is an anti-CD28

antibody or antigen-binding fragment thereof; and both agents are co-immobilized to the same bead in equivalent molecular amounts. In one embodiment, a 1:1 ratio of each antibody bound to the beads for CD4⁺ T cell expansion and T cell growth is used. In certain aspects of the present invention, a ratio of anti CD3:CD28 antibodies bound to the beads is used such that an increase in T cell expansion is observed as compared to the expansion observed using a ratio of 1:1. In one particular embodiment an increase of from about 1 to about 3 fold is observed as compared to the expansion observed using a ratio of 1:1. In one embodiment, the ratio of CD3:CD28 antibody bound to the beads ranges from 100:1 to 1:100 and all integer values there between. In one aspect of the present invention, more anti-CD28 antibody is bound to the particles than anti-CD3 antibody, *i.e.*, the ratio of CD3:CD28 is less than one. In certain embodiments of the invention, the ratio of anti CD28 antibody to anti CD3 antibody bound to the beads is greater than 2:1. In one particular embodiment, a 1:100 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:75 CD3:CD28 ratio of antibody bound to beads is used. In a further embodiment, a 1:50 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:30 CD3:CD28 ratio of antibody bound to beads is used. In one preferred embodiment, a 1:10 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:3 CD3:CD28 ratio of antibody bound to the beads is used. In yet another embodiment, a 3:1 CD3:CD28 ratio of antibody bound to the beads is used.

Ratios of particles to cells from 1:500 to 500:1 and any integer values in between may be used to stimulate T cells or other target cells. As those of ordinary skill in the art can readily appreciate, the ratio of particles to cells may depend on particle size relative to the target cell. For example, small sized beads could only bind a few cells, while larger beads could bind many. In certain embodiments the ratio of cells to particles ranges from 1:100 to 100:1 and any integer values in-between and in further embodiments the ratio comprises 1:9 to 9:1 and any integer values in between, can also be used to stimulate T cells. The ratio of anti-CD3- and anti-CD28-coupled particles to T cells that result in T cell stimulation can vary as noted above, however certain preferred values include 1:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, and 15:1 with one preferred ratio being at least 1:1 particles per T cell. In one embodiment, a ratio of particles to cells of 1:1 or less is used. In one particular embodiment, a preferred

particle: cell ratio is 1:5. In further embodiments, the ratio of particles to cells can be varied depending on the day of stimulation. For example, in one embodiment, the ratio of particles to cells is from 1:1 to 10:1 on the first day and additional particles are added to the cells every day or every other day thereafter for up to 10 days, at final 5 ratios of from 1:1 to 1:10 (based on cell counts on the day of addition). In one particular embodiment, the ratio of particles to cells is 1:1 on the first day of stimulation and adjusted to 1:5 on the third and fifth days of stimulation. In another embodiment, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:5 on the third and fifth days of stimulation. In another 10 embodiment, the ratio of particles to cells is 2:1 on the first day of stimulation and adjusted to 1:10 on the third and fifth days of stimulation. In another embodiment, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:10 on the third and fifth days of stimulation. One of skill in the art will appreciate that a variety of other ratios may be suitable for use in the present 15 invention. In particular, ratios will vary depending on particle size and on cell size and type.

In further embodiments of the present invention, the cells, such as T cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured. In an alternative embodiment, prior to culture, the 20 agent-coated beads and cells are not separated but are cultured together. In a further embodiment, the beads and cells are first concentrated by application of a force, such as a magnetic force, resulting in increased ligation of cell surface markers, thereby inducing cell stimulation.

By way of example, cell surface proteins may be ligated by allowing 25 paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3x28 beads) to contact the T cells. In one embodiment the cells (for example, 10^4 to 10^9 T cells) and beads (for example, DYNABEADS® M-450 CD3/CD28 T paramagnetic beads at a ratio of 1:1) are combined in a buffer, for example PBS (without divalent cations such as, calcium and magnesium). Again, those of ordinary skill in the art can readily 30 appreciate any cell concentration may be used. For example, the target cell may be very rare in the sample and comprise only 0.01% of the sample or the entire sample (*i.e.*, 100%) may comprise the target cell of interest. Accordingly, any cell number is within the context of the present invention. In certain embodiments, it may be desirable to significantly decrease the volume in which particles and cells are mixed

together (*i.e.*, increase the concentration of cells), to ensure maximum contact of cells and particles. For example, in one embodiment, a concentration of about 2 billion cells/ml is used. In another embodiment, greater than 100 million cells/ml is used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells. Such populations of cells may have therapeutic value and would be desirable to obtain in certain embodiments. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.

In one embodiment of the present invention, the mixture may be cultured for several hours (about 3 hours) to about 14 days or any hourly integer value in between. In another embodiment, the mixture may be cultured for 21 days. In one embodiment of the invention the beads and the T cells are cultured together for about eight days. In another embodiment, the beads and T cells are cultured together for 2-3 days. Several cycles of stimulation may also be desired such that culture time of T cells can be 60 days or more. Conditions appropriate for T cell culture include an appropriate media (*e.g.*, Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (*e.g.*, fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN- γ , IL-4, IL-7, GM-CSF, IL-10, IL-12, IL-15, TGF β , and TNF- α or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol. Media can include RPMI 1640, AIM-V, DMEM, MEM, α -MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells. Antibiotics, *e.g.*, penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under

conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C) and atmosphere (e.g., air plus 5% CO₂).

T cells that have been exposed to varied stimulation times may exhibit different characteristics. For example, typical blood or apheresed peripheral blood mononuclear cell products have a helper T cell population (T_H, CD4⁺) that is greater than the cytotoxic or suppressor T cell population (T_C, CD8⁺). *Ex vivo* expansion of T cells by stimulating CD3 and CD28 receptors produces a population of T cells that prior to about days 8-9 consists predominately of T_H cells, while after about days 8-9, the population of T cells comprises an increasingly greater population of T_C cells. Accordingly, depending on the purpose of treatment, infusing a subject with a T cell population comprising predominately of T_H cells may be advantageous. Similarly, if an antigen-specific subset of T_C cells has been isolated it may be beneficial to expand this subset to a greater degree.

Further, in addition to CD4 and CD8 markers, other phenotypic markers vary significantly, but in large part, reproducibly during the course of the cell expansion process. Thus, such reproducibility enables the ability to tailor an activated T cell product for specific purposes.

Therapy

The present invention also provides methods for preventing, treating and/or managing a disorder associated with Factor VIII antibody-expressing cells (e.g., anti-FVIII antibodies in a subject with hemophilia treated with FVIII replacement therapy). Non-limiting examples of disorders associated with auto- and/or alloantibody-expressing cells include hemophilia and related disorders. In one embodiment, the subject is a human.

In one aspect, the invention includes a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia. The method comprises administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain, thereby treating the antibodies in the subject with hemophilia.

5 In another aspect, the invention includes a method for treating a disorder associated with FVIII antibodies in a subject with hemophilia. The method comprises administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2 subunit of factor VIII, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule, and a nucleic acid sequence encoding an intracellular signaling domain, thereby treating the a disorder associated with FVIII antibodies in 10 the subject with hemophilia.

15 The methods of the invention comprise administering to a subject in need a CALLAR T cell of the invention that binds to the auto- and alloantibody-expressing cell. In one embodiment, the subject undergoes plasmapheresis or another clinical treatment to remove or decrease antibodies in the subject's serum. The method to remove or decrease serum antibodies, such as auto- and/or alloantibodies, may include chemical or other methods known in the art. The treatment method may be specific to the auto- and/or alloantibody or generalized for any antibody. In one embodiment, the subject is a human. Non-limiting examples of diseases associated with auto- and alloantibody-expressing cells include FVIII antibodies in subjects with 20 hemophilia treated with FVIII replacement therapy, and the like.

25 In the methods of treatment described herein, T cells isolated from a subject can be modified to express the appropriate CALLAR, expanded ex vivo and then reinfused into the subject. The modified T cells recognize target cells, such as factor VIII specific B cells, and become activated, resulting in killing of the alloimmune target cells.

 In order to monitor CALLAR-expressing cells in vitro, in situ, or in vivo, CALLAR cells can further express a detectable marker. When the CALLAR binds the target, the detectable marker is activated and expressed, which can be detected by assays known in the art, such as flow cytometry.

30 Without wishing to be bound by any particular theory, the anti-FVIII antibody immune response elicited by the CALLAR-modified T cells may be an active or a passive immune response. In yet another embodiment, the modified T cell targets a B cell. For example, the target antibody expressing B cells may be susceptible to

indirect destruction by CALLAR redirected T cells that have previously reacted against adjacent antibody-expressing cells.

In one embodiment, the fully-human CALLAR-genetically modified T cells of the invention may be used as a type of vaccine for *ex vivo* immunization and/or *in vivo* therapy in a mammal. In one embodiment, the mammal is a human.

With respect to *ex vivo* immunization, one of the following may occur in vitro prior to administering the cell into a mammal: i) expansion of the cells, ii) introducing a nucleic acid encoding a CALLAR to the cells or iii) cryopreservation of the cells.

Ex *vivo* procedures are well known in the art and are discussed more fully below. Briefly, cells are isolated from a mammal (e.g., a human) and genetically modified (i.e., transduced or transfected in vitro) with a vector expressing a CALLAR disclosed herein. The CALLAR-modified cell can be administered to a mammalian recipient to provide a therapeutic benefit. The mammalian recipient may be a human and the CALLAR-modified cell may be autologous with respect to the recipient. Alternatively, the cells can be allogeneic, syngeneic or xenogeneic with respect to the recipient.

One example of a procedure for *ex vivo* expansion of hematopoietic stem and progenitor cells that can be applied to the cells of the present invention is described in U.S. Pat. No. 5,199,942, incorporated herein by reference. Other suitable methods are known in the art and therefore the present invention should not be construed to be limited to any particular method of *ex vivo* expansion of the cells. Briefly, *ex vivo* culture and expansion of T cells generally comprises: (1) collecting CD34+ hematopoietic stem and progenitor cells from a mammal from peripheral blood harvest or bone marrow explants; and (2) expanding such cells *ex vivo*. In addition to the cellular growth factors described in U.S. Pat. No. 5,199,942, other factors such as flt3-L, IL-1, IL-3 and c-kit ligand, can be used for culturing and expansion of the cells.

In addition to using a cell-based vaccine in terms of *ex vivo* immunization, the present invention also includes compositions and methods for *in vivo* immunization to elicit an immune response directed against an antigen in a patient.

Generally, the cells described herein may be utilized in the treatment and prevention of diseases that arise in individuals who are immunocompromised. In particular, the CALLAR-modified T cells of the invention are used in the treatment of diseases, disorders and conditions associated with expression of antibodies. In certain

embodiments, the cells of the invention are used in the treatment of patients at risk for developing diseases, disorders and conditions associated with expression of antibodies. Thus, the present invention provides methods for the treatment or prevention of diseases, disorders and conditions associated with expression of antibodies, such as FVIII antibodies in subjects with hemophilia treated with FVIII replacement therapy, comprising administering to a subject in need thereof, a therapeutically effective amount of the CALLAR-modified T cells of the invention.

The CALLAR-modified T cells of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations. Briefly, pharmaceutical compositions of the present invention may comprise a target cell population as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (*e.g.*, aluminum hydroxide); and preservatives. Compositions of the present invention are in one aspect formulated for intravenous administration.

Pharmaceutical compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented). The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.

It can generally be stated that a pharmaceutical composition comprising the T cells described herein may be administered at a dosage of 10^4 to 10^9 cells/kg body weight, in some instances 10^5 to 10^6 cells/kg body weight, including all integer values within those ranges. T cell compositions may also be administered multiple times at these dosages. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, *e.g.*, Rosenberg et al., *New Eng. J. of Med.* 319:1676, 1988). The optimal dosage and treatment regime for a particular patient can readily be determined by one skilled in the art of medicine by monitoring the patient for signs of disease and adjusting the treatment accordingly.

In certain embodiments, activated T cells are administered to a subject.

Subsequent to administration, blood is redrawn or apheresis is performed, and T cells are activated and expanded therefrom using the methods described here, and are then reinfused back into the patient. This process can be carried out multiple times every 5 few weeks. In certain embodiments, T cells can be activated from blood draws of from 10cc to 400cc. In certain embodiments, T cells are activated from blood draws of 20cc, 30cc, 40cc, 50cc, 60cc, 70cc, 80cc, 90cc, or 100cc. Not to be bound by theory, using this multiple blood draw/multiple reinfusion protocol, may select out certain populations of T cells.

10 Administration of the cells of the invention may be carried out using any convenient means, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be administered to a patient transarterially, subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (*i.v.*) 15 injection, or intraperitoneally. In one embodiment, the T cell compositions of the present invention are administered to a patient by intradermal or subcutaneous injection. In another embodiment, the T cell compositions of the present invention are administered by *i.v.* injection. The compositions of T cells may be injected directly into a tumor, lymph node, or site of infection.

20 In certain embodiments of the present invention, cells are activated and expanded using the methods described herein, or other methods known in the art where T cells are expanded to therapeutic levels, and administered to a patient in conjunction with (*e.g.*, before, simultaneously or following) any number of relevant treatment modalities, including but not limited to treatment with agents such as 25 antiviral therapy, cidofovir and interleukin-2, Cytarabine (also known as ARA-C) or natalizumab treatment for MS patients or efalizumab treatment for psoriasis patients or other treatments for PML patients. In further embodiments, the T cells of the invention may be used in combination with chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, 30 mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAM PATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, cytokines, and irradiation. These drugs inhibit either the calcium dependent phosphatase calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for

growth factor induced signaling (rapamycin). (Liu et al., *Cell* 66:807-815, 1991; Henderson et al., *Immun.* 73:316-321, 1991; Bierer et al., *Curr. Opin. Immun.* 5:763-773, 1993). In a further embodiment, the cell compositions of the present invention are administered to a patient in conjunction with (*e.g.*, before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH. In another embodiment, the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, *e.g.*, Rituxan.

For example, in one embodiment, subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain embodiments, following the transplant, subjects receive an infusion of the expanded immune cells of the present invention. In an additional embodiment, expanded cells are administered before or following surgery.

The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices. The dose for CAMPATH, for example, will generally be in the range 1 to about 100 mg for an adult patient, usually administered daily for a period between 1 and 30 days. The preferred daily dose is 1 to 10 mg per day although in some instances larger doses of up to 40 mg per day may be used (described in U.S. Patent No. 6,120,766).

EXPERIMENTAL EXAMPLES

The invention is further described in detail by reference to the following experimental examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples therefore, specifically point out the preferred

embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

The Materials and Methods used in the performance of the experiments disclosed herein are now described.

5 *Detection of A2 and C2 CALLARs.* T cells were activated with CD3/28 beads for 24 hrs followed by lentiviral transduction of an A2- CALLAR or C2-CALLAR utilizing the 4-1BB and CD3 zeta signaling domains (A2bbz and C2bbz, respectively). Lentiviral vectors expressing A2- or C2-CALLAR constructs in which mCherry was fused to the c-terminus of the zeta domain (A2bbz-mCh or C2bbz-mCh, respectively) were also generated and used for transduction. FMC63bbz CAR (CD19 CAR) was used as a control. T cells were stained with either A2 or C2 specific antibodies as indicated on day 5 following transduction to detect expression of the A2 and C2 containing CALLARs. Protein L was used to stain for the FMC63bbz CAR.

10

15 *Activation of A2 and C2 CALLARs.* In some embodiments, T cells transduced with indicated CAR or CALLAR were plated on microwells coated with OKT3 (for polyclonal T cell activation), anti-A2 or anti-C2. Supernatants were harvested at 24 hours, and IFN- γ was measured by ELISA. In some embodiments, T cells were mixed at varying T cell (Effector) to target cell ratios (E:T ratios) to determine cytotoxicity and cytokine production upon binding of the CALLAR or CAR expressed on the T cell to cognate ligand expressed on the target cell. In some experiments, the Nalm-6 B-cell acute lymphoblastic leukemia cell line was engineered to express either A2 specific surface immunoglobulin or C2-specific surface immunoglobulin generated using murine monoclonal antibody-derived variable domain sequences to these respective domains.

20

25 The results of the experiments are now described.

Chimeric molecules were designed to express FVIII epitopes derived from human FVIII that are linked to a transmembrane domain and cytoplasmic signaling domains that activate T cells and trigger their cytotoxic function. Non-limiting examples of possible designs are shown schematically in **Figures 1 and 2**. The 30 chimeric molecules are named CALLARs (Chimeric ALLoAntigen Receptors) to distinguish them from traditional chimeric antigen receptors or CARs using an scFv for receptor targeting. The initial CALLARs incorporate the A2 and C2 domains from human FVIII since most inhibitory antibodies bind to epitopes in one of these two domains. When these CALLARs are introduced into human T cells by genetic

modification (e.g. lentiviral vectors), these CALLAR-modified T cells were activated and killed B cells and plasma cells expressing surface immunoglobulin (sIg) that bound to either the A2 or C2 domains for FVIII. The modified T cells are expected to eliminate FVIII-specific B cells *in vivo* leading to the eradication of FVIII inhibitory 5 antibodies. The KIR-based CALLAR (**Figure 2**, right side) can trigger robust antigen-specific proliferation and effector function *in vitro* when introduced into human T cells with DAP12. In some embodiments, T cells are genetically modified to comprise a CALLAR comprising a chimeric KIR generated by fusing the FVIII domain with the transmembrane and short cytoplasmic domain of a KIR, *e.g.*, KIRS2, 10 KIR2DS2, that is co-expressed with DAP12. In some embodiments, the CALLAR comprises A2 or C2 domain of FVIII that is connected via a CD8alpha-derived extracellular hinge. In some embodiments, the CALLAR comprises A2 or C2 domain of FVIII that is connected via glycine-serine derived extracellular hinge such as Gly-Gly-Gly-Ser- Gly-Gly-Gly-Ser. In some embodiments, the genetically 15 modified T cells are administered to a subject having FVIII antibodies. Sequences of some portions of the chimeric molecules useful in the present invention are provided as SEQ ID NOs: 21-28.

Surface expression of A2 and C2 CALLAR on human T cells was analyzed 20 (**Figure 3**). Lentiviral vector transduction of CD3/28-activated T cells demonstrated that both the A2-specific and C2-specific CALLARs were expressed on the surface of T cells. T cells were activated with CD3/28 beads for 24 hrs followed by lentiviral transduction of an A2- CALLAR or C2-CALLAR utilizing the 4-1BB and Zeta 25 signaling domains (A2bbz and C2bbz, respectively). Lentiviral vectors expressing A2- or C2-CALLAR constructs (A2bbz-mCh or C2bbz-mCh) were also generated and used for transduction. FMC63bbz CAR (anti-CD19 CAR) was used as a control. T cells were stained with either an A2 or C2 specific antibodies as indicated on day 5 following transduction to detect expression of the A2 and C2 containing CALLARs. Protein L was used to stain for the FMC63bbz CAR. Flow cytometry was used to 30 analyze A2 and C2-based CARs on primary T-cells. Fresh isolated human T cells from healthy donors were transduced with lentiviral vector supernatants encoding the following CARs: FMC63-bbz, A2-bbz, and C2-bbz. A2bbz-mCh and C2bbz-mCh represent T cells transduced with lentiviral vectors encoding a bi-cistronic construct for expression of the respective CAR and mCherry as separate proteins. CAR expression was evaluated by flow cytometry. Briefly, T cells were cultured in RPMI

1640 medium with 10% FBS and stimulated with anti-CD3/anti-CD28 Dynabeads (invitrogen). 24 hrs after stimulation, T cells were transduced with the CAR lentiviral vector supernatants. 6-8 days after lentiviral transduction T cells were stained with biotinylated Protein L antibody followed by strepavidin PE (BD Biosciences), anti-A2 followed by or goat-anti mouse-FITC (Jackson ImmunoResearch), or anti-C2 followed by or goat-anti mouse-FITC (Jackson ImmunoResearch) as indicated. CAR expression was evaluated by flow cytometry (LSR-II, BD). Flow cytometry analysis was carried out by using Flowjo (Tree Star Inc). After transduction it was observed that A2 and C2 domain-based CARs were efficiently expressed on the cell surface of the transduced T cells.

T cells expressing these CALLARs secreted IFN-gamma with the A2-CALLAR responding to anti-A2 antibody, and not anti-C2 antibody. As expected, C2-CALLAR T cells responded to anti-C2 antibody, but not anti-A2 antibody. Control T cells expressing a CD19-specific standard CAR did not respond to either anti-A2 or anti-C2. However, all CALLAR or CAR T cells responded to polyclonal stimulation with OKT3 (Figure 4). T cells transduced with indicated CAR or CALLAR were plated on microwells coated with OKT3 (for polyclonal T cell activation), anti-A2 or anti-C2. Supernatants were harvested at 24 hours, and IFN- γ was measured by ELISA. T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR, an A2-domain containing chimeric alloantibody receptor (A2-BBz) or a C2-domain containing receptor (C2-BBz). After 7-9 days of culture, the T cells were transferred to polystyrene multi-well plates pre-coated with antibodies to CD3 (clone OKT3), anti-A2 (Green Mountain Antibodies), and anti-C2(Green Mountain Antibodies). Following 24 hours incubation at 37 degrees C, supernatants were harvested for interferon-gamma (IFN γ) analysis by ELISA. Results illustrate that all T cells are capable of producing IFN γ following activation by anti-CD3 antibody. Only A2-BBz transduced T cells produce IFN γ in response to A2-specific antibody. Only C2-BBz transduced T cells produce IFN γ in response to C2-specific antibody.

CD19+ Nalm6 cells were engineered to express FVIII-specific chimeric immunoglobulin in a CALLARs model system for antigen-specific B cells (Figure 5). Human peripheral blood T cells were transduced with A2-FVIII-CALLARs, C2-FVIII-CALLARs, Dsg3-CAAR or CD19-CAR (controls) or non-transduced T cells (NTD). The T cells were mixed with Nalm6 cells engineered to express surface

immunoglobulin specific for the A2 domain of FVIII at varying effector to target (E:T) ratios. Percent specific lysis was measured by a ^{51}Cr release assay at 16 hours.

Studies to determine the ability of these CALLARs to respond to surface immunoglobulin are described elsewhere herein. In some embodiments, the K562 cells may co-express CD79a and CD79b.

T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with a CD8 extracellular spacer (A2(cd8)BBz) or a C2-domain containing receptor with the same CD8 spacer (C2(cd8)BBz) (Figure 6). After 7-9 days of culture, the cytotoxic activity of the transduced T cells was assessed by a 4-hour ^{51}Cr -release assay using K562 target cells that were engineered to express CD19 (K562-CD19), an A2 specific surface immunoglobulin (K562-A2) or a C2-specific surface immunoglobulin (K562-C2) and varying effector to target cell ratio (E:T ratio) as indicated. 19BBz-expressing T cells only show cytotoxicity towards the CD19 $^{+}$ target K562 cells. A2(cd8)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(cd8)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with a synthetic (Gly)₄-Ser extracellular spacer (A2(gs)BBz) or a C2-domain containing receptor with the same (Gly)₄-Ser spacer (C2(gs)BBz) (Figure 7). After 7-9 days of culture, the cytotoxic activity of the transduced T cells was assessed by a 4-hour ^{51}Cr -release assay using K562 target cells that were engineered to express CD19 (K562-CD19), an A2 specific surface immunoglobulin (K562-A2) or a C2-specific surface immunoglobulin (K562-C2) and varying effector to target cell ratio (E:T ratio) as indicated. 19BBz-expressing T cells only show cytotoxicity towards the CD19 $^{+}$ target K562 cells. A2(gs)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(gs)BBz transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), an A2-domain containing chimeric alloantibody receptor with KIR/DAP12 signaling (A2(gs)KIRS2) or a C2-domain containing receptor with the same KIR/DAP12 signaling (C2(gs)KIRS2) (Figure 8). After 7-9 days of culture, the cytotoxic activity of the transduced T cells was assessed by a 4-hour ^{51}Cr -release

assay using K562 target cells that were engineered to express CD19 (K562-CD19), an A2 specific surface immunoglobulin (K562-A2) or a C2-specific surface immunoglobulin (K562-C2) and varying effector to target cell ratio (E:T ratio) as indicated. 19BBz-expressing T cells only show cytotoxicity towards the CD19+ target K562 cells. A2(gs)KIRS2-transduced T cells only mediate lysis of K562 target cells expressing anti-A2 surface immunoglobulin. C2(gs)KIRS2-transduced T cells only mediate lysis of K562 target cells expressing anti-C2 surface immunoglobulin.

T cells were transduced with lentiviral vectors encoding an anti-CD19 CAR (19BBz), A2-domain containing chimeric alloantibody receptors with a CD8 extracellular spacer (A2(cd8)BBz), a synthetic (Gly)₄-Ser (A2(gs)BBz) or with KIR/DAP12 signaling (A2(gs)KIRS2), or C2-domain containing receptor with the same CD8 spacer (C2(cd8)BBz), synthetic (Gly)₄-Ser (C2(gs)BBz) or with KIR/DAP12 signaling (C2(gs)KIRS2) (Figure 9). After 7-9 days of culture, the transduced T cells were mixed at a 1:1 ratio with K562 target cells that were engineered to express CD19 (K562-CD19), an A2 specific surface immunoglobulin (K562-A2) or a C2-specific surface immunoglobulin (K562-C2). Stimulator microbeads coated with anti-CD3 and anti-CD28 (CD3/28 beads, Dynal) or media alone were used as an additional positive and negative controls, respectively. Following 24 hours incubation at 37 degrees C, supernatants were harvested for interferon-gamma (IFN γ) analysis by ELISA. 19BBz-expressing T cells only show enhanced IFN γ production in response to CD19+ target K562 cells or CD3/28 beads. A2(cd8)BBz, A2(gs)BBz and A2(gs)KIRS2 T cells show enhanced IFN γ production in response to K562 target cells expressing anti-A2 surface immunoglobulin or positive control CD3/28 beads. C2(cd8)BBz, C2(gs)BBz and C2(gs)KIRS2 T cells show enhanced IFN γ production in response to K562 target cells expressing anti-C2 surface immunoglobulin or positive control CD3/28 beads.

Additional studies include examining the extracellular hinge domain to determine the optimal structure for A2 and C2. Further, analysis of activation by anti-A2 and anti-C2 antibodies will determine how broadly CALLARs respond to antibodies across different epitopes. A2 and C2 may have the potential to interact weakly with binding partners for intact FVIII, such as von Willebrand Factor (vWF), phospholipids and platelets.

In some embodiments, this system provides a robust method for manipulating B-cells and plasma cells to create tolerance to functionally allogeneic enzymes like FVIII in hemophilia A.

5

SEQ ID NOS: 13-28

pELPS-hFVIII-A2-BBz-T2A-mCherry (SEQ ID NO:13)

GATCTATGGA GTTTGGGCTG AGCTGGCTTT TTCTTGTGGC TATTTTAAAA
GGTGTCCAGT GCGGATCCTC AGTTGCCAAG AAGCATCCTA AAACCTGGGT
10 ACATTACATT GCTGCTGAAG AGGAGGACTG GGACTATGCT CCCTTAGTCC
TCGCCCCCGA TGACAGAAAGT TATAAAAGTC AATATTTGAA CAATGGCCCT
CAGCGGATTG GTAGGAAGTA CAAAAAAAGTC CGATTATGG CATAACACAGA
TGAAACCTTT AAGACTCGTG AAGCTATTCA GCATGAATCA GGAATCTGG
GACCTTACT TTATGGGAA GTTGGAGACA CACTGTTGAT TATATTAAAG
15 AATCAAGCAA GCAGACCATA TAACATCTAC CCTCACGGAA TCACTGATGT
CCGTCCTTG TATTCAAGGA GATTACCAAAGG GTGTAAGG CATTGAAAGG
ATTTCCAAT TCTGCCAGGA GAAATATTCA AATATAAATG GACAGTGACT
GTAGAAGATG GGCCAACTAA ATCAGATCCT CGGTGCCTGA CCCGCTATTA
CTCTAGTTTC GTTAATATGG AGAGAGATCT AGCTTCAGGA CTCATTGGCC
20 CTCTCCTCAT CTGCTACAAA GAATCTGTAG ATCAAAGAGG AAACCAGATA
ATGTCAGACA AGAGGAATGT CATCCTGTTT TCTGTATTTG ATGAGAACCG
AAGCTGGTAC CTCACAGAGA ATATACAACG CTTTCTCCCC AATCCAGCTG
GAGTGCAGCT TGAAGATCCA GAGTTCCAAG CCTCCAACAT CATGCACAGC
ATCAATGGCT ATGTTTTGA TAGTTGCAG TTGTCAGTTT GTTGCATGA
25 GGTGGCATACT TGGTACATTC TAAGCATTGG AGCACAGACT GACTTCCTTT
CTGTCTTCTT CTCTGGATAT ACCTTCAAAC ACAAATGGT CTATGAAGAC
ACACTCACCC TATTCCCATT CTCAGGAGAA ACTGTCTTCA TGTCGATGGA
AAACCCAGGT CTATGGATTG TGGGGTGCCA CAACTCAGAC TTTCGGAACA
GAGGCATGAC CGCCTTACTG AAGGTTCTA GTTGTGACAA GAACACTGGT
30 GATTATTACG AGGACAGTTA TGAAGATATT TCAGCATACT TGCTGAGTAA
AAACAATGCC ATTGAACCAA GAGCTAGCAC CACGACGCCA GCGCCGCGAC
CACCAACACC GGCGCCCACC ATCGCGTCGC AGCCCCTGTC CCTGCGCCCA
GAGGCAGTGCCTGGC GGCCAGCGGC GGGGGCGCA GTGCACACGA GGGGGCTGG
CTTCGCCTGT GATTCCGGAA TCTACATCTG GGCCCCTCTG GCCGGCACCT

GTGGCGTGCT GCTGCTGTCC CTGGTCATCA CCCTGTACTG CAAGCGGGGC
AGAAAGAACG TGCTGTACAT CTTCAAGCAG CCCTTCATGC GGCTGTGCA
GACCACACAG GAAGAGGACG GCTGTAGCTG TAGATTCCCC GAGGAAGAGG
AAGGCAGCTG CGAGCTGAGA GTGAAGTTCA GCAGAAGCGC CGACGCCCT
5 GCCTATCAGC AGGGCCAGAA CCAGCTGTAC AACGAGCTGA ACCTGGGCAG
ACGGGAGGAA TACGACGTGC TGGACAAGAG AAGAGGCCGG GACCCTGAGA
TGGCGGCAA GCCCAGACGG AAGAACCCCC AGGAAGGCCT GTATAACGAA
CTGCAGAAAG ACAAGATGGC CGAGGCCTAC AGCGAGATCG GCATGAAGGG
CGAGCAGGAGA AGAGGCAAGG GCCATGACGG CCTGTACCAG GGCTGAGCA
10 CCGCCACCAA GGACACCTAC GACGCCCTGC ACATGCAGGC CCTGCCTCCA
AGAGGCAGCG GAGAGGGCAG AGGAAGTCTT CTAACATGCG GTGACGTGGA
GGAGAATCCC GGCCCTACGC GTATGGTGAG CAAGGGCGAG GAGGATAACA
TGGCCATCAT CAAGGAGTTC ATGCGTTCA AGGTGCACAT GGAGGGCTCC
GTGAACGGCC ACGAGTTCGA GATCGAGGGC GAGGGCGAGG GCCGCCCTA
15 CGAGGGCACC CAGACCGCCA AGCTGAAGGT GACCAAGGGT GGCCCCCTGC
CCTTCGCCTG GGACATCCTG TCCCCTCAGT TCATGTACGG CTCCAAGGCC
TACGTGAAGC ACCCCGCCGA CATCCCCGAC TACTTGAAGC TGTCCCTCCC
CGAGGGCTTC AAGTGGGAGC GCGTGATGAA CTTCGAGGAC GGCGCGTGG
TGACCGTGAC CCAGGACTCC TCCCTGCAGG ACGGCGAGTT CATCTACAAG
20 GTGAAGCTGC GCGGCACCAA CTTCCCTCC GACGGCCCCG TAATGCAGAA
GAAGACCATG GGCTGGGAGG CCTCCTCCGA GCGGATGTAC CCCGAGGACG
GCGCCCTGAA GGGCGAGATC AAGCAGAGGC TGAAGCTGAA GGACGGCGGC
CACTACGACG CTGAGGTCAA GACCACCTAC AAGGCCAAGA AGCCCGTGCA
GCTGCCCGGC GCCTACAACG TCAACATCAA GTTGGACATC ACCTCCCACA
25 ACGAGGACTA CACCATCGTG GAACAGTACG AACGCGCCGA GGGCCGCCAC
TCCACCGGCG GCATGGACGA GCTGTACAAG TAGGTCGACA ATCAACCTCT
GGATTACAAA ATTTGTGAAA GATTGACTGG TATTCTTAAC TATGTTGCTC
CTTTTACGCT ATGTGGATAC GCTGCTTTAA TGCCTTGTA TCATGCTATT
GCTTCCCGTA TGGCTTCAT TTTCTCCTCC TTGTATAAAT CCTGGTTGCT
30 GTCTCTTAT GAGGAGTTGT GGCCCGTTGT CAGGCAACGT GGCGTGGTGT
GCACTGTGTT TGCTGACGCA ACCCCCCACTG GTTGGGGCAT TGCCACCACC
TGTCAGCTCC TTTCCGGGAC TTTCGCTTTC CCCCTCCCTA TTGCCACGGC
GGAACTCATC GCCGCCTGCC TTGCCCGCTG CTGGACAGGG GCTCGGCTGT
TGGGCACTGA CAATTCCGTG GTGTTGTCGG GGAAGCTGAC GTCCTTCCA

TGGCTGCTCG CCTGTGTTGC CACCTGGATT CTGCGCGGA CGTCCTTCTG
CTACGTCCCT TCGGCCCTCA ATCCAGCGGA CCTTCCTTCC CGCGGCCTGC
TGCCGGCTCT GC GGCGCTCTT CCGCGTCTTC GCCTTCGCC C TCAGACGAGT
CGGATCTCCC TTTGGGCCGC CTCCCCGCCT GGAATTGAG CTCGGTACCT
5 TTAAGACCAA TGACTTACAA GGCAGCTGTA GATCTAGCC ACTTTTAAA
AGAAAAGGGG GGACTGGAAG GGCTAATTCA CTCCCAACGA AGACAAGATC
TGCTTTTGC TTGTACTGGG TCTCTCTGGT TAGACCAGAT CTGAGCCTGG
GAGCTCTCTG GCTAACTAGG GAACCCACTG CTTAACGCCTC AATAAAGCTT
GCCTTGAGTG CTTCAAGTAG TGTGTGCCCG TCTGTTGTGT GACTCTGGTA
10 ACTAGAGATC CCTCAGACCC TTTAGTCAG TGTGGAAAAT CTCTAGCAGT
AGTAGTTCAT GTCATCTTAT TATTCACTAT TTATAACTTG CAAAGAAATG
AATATCAGAG AGTGAGAGGA ACTTGTATT TGCAGCTTAT AATGGTTACA
AATAAAGCAA TAGCATCACA AATTCACAA ATAAAGCATT TTTTCACTG
CATTCTAGTT GTGGTTTGTCAAAACTCATC AATGTATCTT ATCATGTCTG
15 GCTCTAGCTA TCCCGCCCT AACTCCGCC AGTTCCGCC ATTCTCCGCC
CCATGGCTGA CTAATTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG
CCTCTGAGCT ATTCCAGAAG TAGTGAGGAG GCTTTTTGG AGGCCTAGGC
TTTGCGTCG AGACGTACCC AATTCGCCCT ATAGTGAGTC GTATTACGCG
CGCTCACTGG CCGTCGTTT ACAACGTCGT GACTGGAAA ACCCTGGCGT
20 TACCCAACTT AATCGCCTTG CAGCACATCC CCCTTCGCC AGCTGGCGTA
ATAGCGAAGA GGCCCGCACC GATGCCCTT CCCAACAGTT GCGCAGCCTG
AATGGCGAAT GGCAGACGC GCCCTGTAGC GGCGCATTAA GCGCGGGGG
TGTGGTGGTT ACGCGCAGCG TGACCGCTAC ACTTGCCAGC GCCCTAGCGC
CCGCTCCTT CGCTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTT
25 CCCCCGTCAAG CTCTAAATCG GGGGCTCCCT TTAGGGTTCC GATTTAGTGC
TTTACGGCAC CTCGACCCCA AAAAACTTGA TTAGGGTGAT GGTCACGTA
GTGGGCCATC GCCCTGATAG ACGGTTTTTC GCCCTTGAC GTTGGAGTCC
ACGTTCTTA ATAGTGGACT CTTGTTCAA ACTGGAACAA CACTCAACCC
TATCTCGGTC TATTCTTTG ATTTATAAGG GATTTGCCG ATTCGGCCT
30 ATTGGTTAAA AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTAAAC
AAAATATTAA CGTTACAAT TTCCCAGGTG GCACTTTCG GGGAAATGTG
CGCGGAACCC CTATTGTTT ATTTTCTAA ATACATTCAA ATATGTATCC
GCTCATGAGA CAATAACCT GATAAATGCT TCAATAATAT TGAAAAAGGA
AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG

GCATTTGCC TTCCTGTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA
AGATGCTGAA GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC
TCAACAGCGG TAAGATCCTT GAGAGTTTC GCCCCGAAGA ACGTTTCCA
ATGATGAGCA CTTTAAAGT TCTGCTATGT GGCGCGGTAT TATCCCGTAT
5 TGACGCCGGG CAAGAGCAAC TCGGTCGCCG CATAACTAT TCTCAGAATG
ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG
ACAGTAAGAG AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC
GGCCAACCTTA CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT
TTTGCACAA CATGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG
10 GAGCTGAATG AAGCCATACC AAACGACGAG CGTGACACCA CGATGCCGTG
AGCAATGGCA ACAACGTTGC GCAAACATT ATT AACTGGCGAA CTACTTACTC
TAGCTTCCCG GCAACAATT AATAGACTGGA TGGAGGCGGA TAAAGTTGCA
GGACCACCTTC TGGCCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA
ATCTGGAGCC GGTGAGCGTG GGTCTCGCGG TATCATTGCA GCACTGGGGC
15 CAGATGGTAA GCCCTCCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG
GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT
GATTAAGCAT TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA
TTGATTTAAA ACTTCATTAA TAATTTAAA GGATCTAGGT GAAGATCCTT
TTTGATAATC TCATGACCAA AATCCCTAA CGTGAGTTT CGTTCCACTG
20 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTT
TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCAACC GCTACCAGCG
GTGGTTGGTT TGCCGGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC
TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT
AGTTAGGCCA CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT
25 CTGCTAATCC TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT
TACCGGGTTG GACTCAAGAC GATAAGTACCG GGATAAGGCG CAGCGGTCGG
GCTGAACGGG GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC
ACCGAACTGA GATACTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC
CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG
30 GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT
CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC
GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTAC
GGTTCCCTGGC CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA
TCCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTGAGT GAGCTGATAC

CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG
CGGAAGAGCG CCCAATACGC AAACCGCCTC TCCCCGCGCG TTGGCCGATT
CATTAATGCA GCTGGCACGA CAGGTTCCC GACTGGAAAG CGGGCAGTGA
GCGCAACGCA ATTAATGTGA GTTAGCTCAC TCATTAGGCA CCCCAGGCTT
5 TACACTTTAT GCTTCCGGCT CGTATGTTGT GTGGAATTGT GAGCGGATAA
CAATTCACA CAGGAAACAG CTATGACCAT GATTACGCCA AGCGCGCAAT
TAACCCTCAC TAAAGGGAAC AAAAGCTGGA GCTGCAAGCT TAATGTAGTC
TTATGCAATA CTCTTGTAGT CTTGCAACAT GGTAACGATG AGTTAGCAAC
ATGCCTTACA AGGAGAGAAA AAGCACCGTG CATGCCGATT GGTGGAAGTA
10 AGGTGGTACG ATCGTGCCTT ATTAGGAAGG CAACAGACGG GTCTGACATG
GATTGGACGA ACCACTGAAT TGCCGCATTG CAGAGATATT GTATTTAAGT
GCCTAGCTCG ATACAATAAA CGGGTCTCTC TGGTTAGACC AGATCTGAGC
CTGGGAGCTC TCTGGCTAAC TAGGGAACCC ACTGCTTAAG CCTCAATAAA
GCTTGCCTTG AGTGCTTCAA GTAGTGTGTG CCCGCTGTGTT GTGTGACTCT
15 GGTAACTAGA GATCCCTCAG ACCCTTTAG TCAGTGTGGA AAATCTCTAG
CAGTGGCGCC CGAACAGGGA CCTGAAAGCG AAAGGGAAAC CAGAGCTCTC
TCGACGCAGG ACTCGGCTTG CTGAAGCGCG CACGGCAAGA GGCGAGGGC
GGCGACTGGT GAGTACGCCA AAAATTTGA CTAGCGGAGG CTAGAAGGAG
AGAGATGGGT GCGAGAGCGT CAGTATTAAG CGGGGGAGAA TTAGATCGCG
20 ATGGGAAAAA ATT CGGTTAA GGCCAGGGGG AAAGAAAAAA TATAAATTAA
AACATATAGT ATGGGCAAGC AGGGAGCTAG AACGATT CGC AGTTAACCT
GGCCTGTTAG AAACATCAGA AGGCTGTAGA CAAATACTGG GACAGCTACA
ACCATCCCTT CAGACAGGAT CAGAAGAACT TAGATCATT A TATAATACAG
TAGCAACCCT CTATTGTGTG CATCAAAGGA TAGAGATAAA AGACACCAAG
25 GAAGCTT TAG ACAAGATAGA GGAAGAGCAA AACAAAAGTA AGACCACCGC
ACAGCAAGCG GCCGCTGATC TTCAGACCTG GAGGAGGAGA TATGAGGGAC
AATTGGAGAA GTGAATTATA TAAATATAAA GTAGTAAAAA TTGAACCATT
AGGAGTAGCA CCCACCAAGG CAAAGAGAAG AGTGGTGCAG AGAGAAAAAA
GAGCAGTGAGG AATAGGAGCT TTGTTCTTG GGTTCTGGG AGCAGCAGGA
30 AGCACTATGG GCGCAGCCTC AATGACGCTG ACGGTACAGG CCAGACAATT
ATTGTCTGGT ATAGTGCAGC AGCAGAACAA TTTGCTGAGG GCTATTGAGG
CGCAACAGCA TCTGTTGCAA CTCACAGTCT GGGGCATCAA GCAGCTCCAG
GCAAGAACCTC TGGCTGTGGA AAGATACCTA AAGGATCAAC AGCTCCTGGG
GATTGGGGT TGCTCTGGAA AACTCATTG CACCACTGCT GTGCCTTGGGA

ATGCTAGTTG GAGTAATAAA TCTCTGGAAC AGATTGGAAT CACACGACCT
GGATGGAGTG GGACAGAGAA ATTAACAATT ACACAAGCTT AATAACACTCC
TTAATTGAAG AATCGCAAAA CCAGCAAGAA AAGAATGAAC AAGAATTATT
GGAATTAGAT AAATGGGCAA GTTGTGGAA TTGGTTAAC ATAACAAATT
5 GGCTGTGGTA TATAAAATTA TTCATAATGA TAGTAGGAGG CTTGGTAGGT
TTAAGAATAG TTTTGCTGT ACTTTCTATA GTGAATAGAG TTAGGCAGGG
ATATTCAACCA TTATCGTTTC AGACCCACCT CCCAACCCCG AGGGGACCCG
ACAGGCCCGA AGGAATAGAA GAAGAAGGTG GAGAGAGAGA CAGAGACAGA
TCCATTGAT TAGTGAACGG ATCTCGACGG TATCGATTAG ACTGTAGCCC
10 AGGAATATGG CAGCTAGATT GTACACATTT AGAAGGAAAA GTTATCTTGG
TAGCAGTTCA TGTAGCCAGT GGATATATAG AAGCAGAAGT AATTCCAGCA
GAGACAGGGC AAGAACACAGC ATACTTCCTC TTAAAATTAG CAGGAAGATG
GCCAGTAAAA ACAGTACATA CAGACAATGG CAGCAATTTC ACCAGTACTA
CAGTTAAGGC CGCCTGTTGG TGGCGGGGA TCAAGCAGGA ATTTGGCATT
15 CCCTACAATC CCCAAAGTCA AGGAGTAATA GAATCTATGA ATAAAGAATT
AAAGAAAATT ATAGGACAGG TAAGAGATCA GGCTGAACAT CTTAAGACAG
CAGTACAAAT GGCAGTATTTC ATCCACAATT TTAAAAGAAA AGGGGGGATT
GGGGGGTACA GTGCAGGGGA AAGAATAGTA GACATAATAG CAACAGACAT
ACAAACTAAA GAATTACAAA AACAAATTAC AAAAATTCAA AATTTTCGGG
20 TTTATTACAG GGACAGCAGA GATCCAGTT GGCTGCATTG ATCACGTGAG
GCTCCGGTGC CCGTCAGTGG GCAGAGCGCA CATCGCCAC AGTCCCCGAG
AAGTTGGGGG GAGGGGTGG CAATTGAACC GGTGCCTAGA GAAGGTGGCG
CGGGGTAAAC TGGGAAAGTG ATGTCGTGTA CTGGCTCCGC CTTTTTCCCG
AGGGTGGGGG AGAACCGTAT ATAAGTGCAG TAGTCGCCGT GAACGTTCTT
25 TTTCGCAACG GGTTTGCCTGC CAGAACACAG GTAAGTCCCG TGTGTGGTTC
CCGCAGGGCCT GGCCTTTA CGGGTTATGG CCCTTGCCTG CCTTGAATTA
CTTCCACCTG GCTGCAGTAC GTGATTCTTG ATCCCGAGCT TCAGGGTTGG
AGTGGGTGGG AGAGTTCGAG GCCTTGCCTG TAAGGAGCCC CTTCGCCTCG
TGCTTGAGTT GAGGCCTGGC CTGGCGCTG GGGCCGCCGC GTGCGAATCT
30 GGTGGCACCT TCGCGCCTGT CTCGCTGCTT TCGATAAGTC TCTAGCCATT
TAAAATTTC GATGACCTGC TGCGACGCTT TTTTCTGGC AAGATAGTCT
TGTAAATGCG GGCAAGATC TGACACTGG TATTCGGTT TTTGGGGCCG
CGGGCGGCAGA CGGGGCCCGT GCGTCCCAGC GCACATGTTC GGCGAGGCCG
GGCCTGCGAG CGCGGCCACC GAGAATCGGA CGGGGGTAGT CTCAGCTGG

1 CCGGCCTGCT CTGGTGCCTG GCCTCGCGCC GCCGTGTATC GCCCCGCCCT
 2 GGGCGGCAAG GCTGGCCCGG TCGGCACCAG TTGCGTGAGC GGAAAGATGG
 3 CCGCTTCCCG GCCCTGCTGC AGGGAGCTCA AAATGGAGGA CGCGGCGCTC
 4 GGGAGAGCGG GCGGGTGAGT CACCCACACA AAGGAAAAGG GCCTTCCGT
 5 CCTCAGCCGT CGCTTCATGT GACTCCACGG AGTACCGGGC GCCGTCCAGG
 6 CACCTCGATT AGTTCTCGAG CTTTGAGT ACAGTCGTCTT TAGGTTGGGG
 7 GGAGGGGTTT TATGCGATGG AGTTTCCCCA CACTGAGTGG GTGGAGACTG
 8 AAGTTAGGCC AGCTTGGCAC TTGATGTAAT TCTCCTTGGA ATTTGCCCTT
 9 TTTGAGTTTG GATCTTGGTT CATTCTCAAG CCTCAGACAG TGTTCAAAG
 10 TTTTTTCTT CCATTCAGG TGTCGTGATC TAGAG

hFVIII-A2-BBz-T2A-mCherry (SEQ ID NO:14)

15 MEFGLSWLFL VAILKGVQCG SSVAKKHPKT WVHYIAAEEE DWDYAPLVLA
 16 PDDRSYKSQY LNNGPQRIGR KYKKVRFMAY TDETFKTREA IQHESGILGP
 17 LLYGEVGDTL LIIFKNQASR PYNIYPHGIT DVRPLYSRRL PKGVKHLKDF
 18 PILPGEIFKY KWTVTVEDGP TKSDPRCLTR YYSSFVNMER DLASGLIGPL
 19 LICYKESVDQ RGNQIMSDKR NVILFSVFDE NRSWYLTE NI QRFLPNPAGV
 20 QLEDPEFQAS NIMHSINGYV FDSLQLSVCL HEVAYWYILS IGAQTDFLSV
 21 FFSGYTFKHK MVYEDTTLF PFSGETVFMS MENPGLWILG CHNSDFRNNG
 22 MTALLKVSSC DKNTGDYED SYEDISAYLL SKNNAIEPRA STTTPAPRPP
 23 TPAPTIASQP LSLRPEACRP AAGGAVHTRG LDFACDSGIY IWAPLAGTCG
 24 VLLLSLVITL YCKRGRKKLL YIFKQPFMRP VQTTQEEEDGC SCRFPEEEEG
 25 GCELRVKFSR SADAPAYQQG QNQLYNELNL GRREYDVLD KRRGRDPEMG
 26 GKPRRKNPQE GLYNELQKDK MAEAYSEIGM KGERRRGKGH DGLYQGLSTA
 27 TKDTYDALHM QALPPRGSGE GRGSLLTCGD VEENPGPTRM VSKGEEDNMA
 28 IIKEFMRFKV HMEGSVNGHE FEIEGEGEGR PYEGTQTAKL KVTKGGPLPF
 29 AWDILSPQFM YGSKAYVKHP ADIPDYLKLS FPEGFKWERV MNFEDGGVVT
 30 VTQDSSLQDG EFIYKVKL RG TNFPSDGPVM QKKTMGWEAS SERMYPEDGA
 31 LKGEIKQRLK LKDGGHYDAE VKTTYKAKKP VQLPGAYNVN IKLDITSHNE
 32 DYTIVEQYER AEGRHSTGGM DELYK

hFVIII-A2-BBz-T2A (SEQ ID NO:15)

MEFGLSWLFL VAILKGVQCG SSVAKKHPKT WVHYIAAEEE DWDYAPLVLA
 PDDRSYKSQY LNNGPQRIGR KYKKVRFMAY TDETFKTREA IQHESGILGP

LLYGEVGDTL LIIFKNQASR PYNIYPHGIT DVRPLYSRRL PKGVKHLKDF
 PILPGEIFKY KWTVTVEDGP TKSDPRCLTR YYSSFVNMER DLASGLIGPL
 LICYKESVDQ RGNQIMSDKR NVILFSVFDE NRSWYLTE NI QRFLPNPAGV
 QLEDPEFQAS NIMHSINGYV FDSLQLSVCL HEVAYWYILS IGAQTDFLSV
 5 FFSGYTFKHK MVYEDTLTLE PFSGETVFMS MENPGLWILG CHNSDFRNRG
 MTALLKVSSC DKNTGDYYED SYEDISAYLL SKNNAIEPRA STTTPAPRPP
 TPAPTIASQP LSLRPEACRP AAGGAVHTRG LDFACDSGIY IWAPLAGTCG
 VLLLSSLVITL YCKRGRKKLL YIFKQPFMRP VQTTQEEDGC SCRFPEEEEG
 GCELRVKFSR SADAPAYQQG QNQLYNELNL GRREYDVLD KRRGRDPEMG
 10 GKPRRKNPQE GLYNELQKDK MAEAYSEIGM KGERRRGKGH DGLYQGLSTA
 TKDTYDALHM QALPPR

pELPS-hFVIII-C2-BBz-T2A-mCherry (SEQ ID NO:16)

GATCTATGGA GTTTGGGCTG AGCTGGCTTT TTCTTGTGGC TATTTTAAAA
 15 GGTGTCCAGT GCGGATCCAA TAGTTGCAGC ATGCCATTGG GAATGGAGAG
 TAAAGCAATA TCAGATGCAC AGATTACTGC TTCATCCTAC TTTACCAATA
 TGTTTGCCAC CTGGTCTCCT TCAAAAGCTC GACTTCACCT CCAAGGGAGG
 AGTAATGCCT GGAGACCTCA GGTGAATAAT CCAAAAGAGT GGCTGCAAGT
 GGACTTCCAG AAGACAATGA AAGTCACAGG AGTAACACT CAGGGAGTAA
 20 AATCTCTGCT TACCAGCATG TATGTGAAGG AGTTCCCTCAT CTCCAGCAGT
 CAAGATGGCC ATCAGTGGAC TCTCTTTTT CAGAATGGCA AAGTAAAGGT
 TTTTCAGGGGA AATCAAGACT CCTTCACACC TGTGGTGAAC TCTCTAGACC
 CACCGTTACT GACTCGCTAC CTTCGAATTG ACCCCCAGAG TTGGGTGCAC
 CAGATTGCCCG TGAGGATGGA GGTTCTGGGC TGCGAGGCAC AGGACCTCTA
 25 CGCTAGCACC ACGACGCCAG CGCCCGCACC ACCAACACCG GCGCCCACCA
 TCGCGTCGCA GCCCCTGTCC CTGCGCCAG AGGCCTGCCG GCCAGCGCG
 GGGGGCGCAG TGCACACGAG GGGGCTGGAC TTCGCCTGTG ATTCCGGAAT
 CTACATCTGG GCCCCTCTGG CCGGCACCTG TGGCGTGCTG CTGCTGTCCC
 TGGTCATCAC CCTGTACTGC AAGCAGGGCA GAAAGAAGCT GCTGTACATC
 30 TTCAAGCAGC CCTTCATGCG GCCTGTGCAG ACCACACAGG AAGAGGACGG
 CTGTAGCTGT AGATTCCCCG AGGAAGAGGA AGGCCTGCCG GAGCTGAGAG
 TGAAGTTCAAG CAGAAGCGCC GACGCCCTG CCTATCAGCA GGGCCAGAAC
 CAGCTGTACA ACGAGCTGAA CCTGGGCAGA CGGGAGGAAT ACGACGTGCT
 GGACAAGAGA AGAGGCCGGG ACCCTGAGAT GGGCGGCAAG CCCAGACGG

AGAACCCCCA GGAAGGCCTG TATAACGAAC TGCAGAAAGA CAAGATGGCC
GAGGCCTACA GCGAGATCGG CATGAAGGGC GAGCGGAGAA GAGGCAAGGG
CCATGACGGC CTGTACCAGG GCCTGAGCAC CGCCACCAAG GACACCTACG
ACGCCCTGCA CATGCAGGCC CTGCCTCAA GAGGCAGCGG AGAGGGCAGA
5 GGAAGTCTTC TAACATGCGG TGACGTGGAG GAGAATCCCG GCCCTACGCG
TATGGTGAGC AAGGGCGAGG AGGATAACAT GGCCATCATC AAGGAGTTCA
TGCCTTCAA GGTGCACATG GAGGGCTCCG TGAACGGCCA CGAGTCGAG
ATCGAGGGCG AGGGCGAGGG CCGCCCTAC GAGGGCACCC AGACGCCAA
GCTGAAGGTG ACCAAGGGTG GCCCCCTGCC CTTCGCCTGG GACATCCTGT
10 CCCCTCAGTT CATGTACGGC TCCAAGGCCT ACGTGAAGCA CCCCGCCGAC
ATCCCCGACT ACTTGAAGCT GTCCTTCCCC GAGGGCTTCA AGTGGGAGCG
CGTGTGAAC TTCGAGGACG GCGCGTGGT GACCGTGACC CAGGACTCCT
CCCTGCAGGA CGCGAGTTC ATCTACAAGG TGAAGCTGCG CGGCACCAAC
TTCCCCCTCCG ACGGCCCCGT AATGCAGAAG AAGACCATGG GCTGGGAGGC
15 CTCCTCCGAG CGGATGTACC CCGAGGACGG CGCCCTGAAG GGCGAGATCA
AGCAGAGGCT GAAGCTGAAG GACGGCGGCC ACTACGACGC TGAGGTCAAG
ACCACCTACA AGGCCAAGAA GCCCGTGCAG CTGCCCGCG CCTACAACGT
CAACATCAAG TTGGACATCA CCTCCCACAA CGAGGACTAC ACCATCGTGG
AACAGTACGA ACGCGCCGAG GGCGCCACT CCACCGCGG CATGGACGAG
20 CTGTACAAGT AGGTCGACAA TCAACCTCTG GATTACAAAA TTTGTGAAAG
ATTGACTGGT ATTCTTAACT ATGTTGCTCC TTTTACGCTA TGTGGATACG
CTGCTTTAAT GCCTTTGTAT CATGCTATTG CTTCCCGTAT GGCTTTCATT
TTCTCCTCCT TGTATAAACCT CTGGTTGCTG TCTCTTATG AGGAGTTGTG
GCCCGTTGTC AGGCAACGTG GCGTGGTGTG CACTGTGTT GCTGACGCAA
25 CCCCCACTGG TTGGGGCATT GCCACCACCT GTCAGCTCCT TTCCGGGACT
TCGCTTTCC CCCTCCCTAT TGCCACGGCG GAACTCATCG CCGCCTGCC
TGCCCGCTGC TGGACAGGGG CTCGGCTGTT GGGCACTGAC AATTCCGTGG
TGTTGTCGGG GAAGCTGACG TCCTTCCAT GGCTGCTCGC CTGTGTTGCC
ACCTGGATTC TGCAGGGGAC GTCCTCTGC TACGTCCCTT CGGCCCTCAA
30 TCCAGCGGAC CTTCCCTTCCC GCAGGCCTGCT GCCGGCTCTG CGGCCTCTC
CGCGTCTTCG CCTTCGCCCT CAGACGAGTC GGATCTCCCT TTGGGCGGCC
TCCCCGCCTG GAATTGAGC TCGGTACCTT TAAGACCAAT GACTTACAAG
GCAGCTGTAG ATCTTAGCCA CTTTTAAAAA GAAAAGGGGG GACTGGAAGG
GCTAATTACAC TCCCAACGAA GACAAGATCT GCTTTTGCT TGTACTGGGT

CTCTCTGGTT AGACCAGATC TGAGCCTGGG AGCTCTCTGG CTAACCTAGGG
AACCCACTGC TTAAGCCTCA ATAAAGCTTG CCTTGAGTGC TTCAAGTAGT
GTGTGCCCGT CTGTTGTGTG ACTCTGGTAA CTAGAGATCC CTCAGACCC
TTTAGTCAGT GTGGAAAATC TCTAGCAGTA GTAGTCATG TCATCTTATT
5 ATTCAGTATT TATAACTTGC AAAGAAATGA ATATCAGAGA GTGAGAGGAA
CTTGTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA
ATTTCACAAA TAAAGCATT TTTCACTGC ATTCTAGTTG TGGTTGTCC
AAACTCATCA ATGTATCTTA TCATGTCTGG CTCTAGCTAT CCCGCCCTA
ACTCCGCCA GTTCCGCCA TTCTCCGCCA CATGGCTGAC TAATTTTT
10 TATTTATGCA GAGGCCGAGG CCGCCTCGGC CTCTGAGCTA TTCCAGAAGT
AGTGAGGAGG CTTTTTGGA GGCTAGGCT TTTGCGTCGA GACGTACCCA
ATTCGCCCTA TAGTGAGTCG TATTACGCGC GCTCACTGGC CGTCGTTTA
CAACGTCGTG ACTGGGAAA CCCTGGCGTT ACCCAACTTA ATCGCCTTGC
AGCACATCCC CCTTCGCCA GCTGGCGTAA TAGCGAAGAG GCCCGCACCG
15 ATCGCCCTTC CCAACAGTTG CGCAGCCTGA ATGGCGAATG GCGCGACGCG
CCCTGTAGCG GCGCATTAAG CGCGCGGGT GTGGTGGTTA CGCGCAGCGT
GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC
CTTCCTTCT CGCCACGTTC GCCGGTTTC CCCGTCAAGC TCTAAATCGG
GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA
20 AAAACTTGAT TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA
CGGTTTTCG CCCTTGACG TTGGAGTCCA CGTTCTTAA TAGTGGACTC
TTGTTCCAAA CTGGAACAAAC ACTCAACCCT ATCTCGGTCT ATTCTTTGA
TTTATAAGGG ATTTGCCGA TTTCGGCCTA TTGGTAAAAA AATGAGCTGA
TTTAACAAAA ATTTAACGCG AATTTAACAA AAATATTAAC GTTTACAATT
25 TCCCAGGTGG CACTTTCGG GGAAATGTGC GCGGAACCCC TATTGTTTA
TTTTCTAAA TACATTAAA TATGTATCCG CTCATGAGAC AATAACCTG
ATAAAATGCTT CAATAATATT GAAAAAGGAA GAGTATGAGT ATTCAACATT
TCCGTGTCGC CCTTATTCCC TTTTTGCGG CATTGCGCT TCCTGTTTT
GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG
30 TGCACGAGTG GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG
AGAGTTTCG CCCCCGAAGAA CGTTTCCAA TGATGAGCAC TTTAAAGTT
CTGCTATGTG GCGCGGTATT ATCCCGTATT GACGCCGGC AAGAGCAACT
CGGTCGCCGC ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG
TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT

GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC
GATCGGAGGA CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC
ATGTAACTCG CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA
AACGACGAGC GTGACACCAC GATGCCTGTA GCAATGGCAA CAACGTTGCG
5 CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA
TAGACTGGAT GGAGGCAGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC
CTTCCGGCTG GCTGGTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG
GTCTCGCGGT ATCATTGCAG CACTGGGCC AGATGGTAAG CCCTCCCGTA
TCGTAGTTAT CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT
10 AGACAGATCG CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC
AGACCAAGTT TACTCATATA TACTTTAGAT TGATTAAAAA CTTCATTTTT
AATTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA
ATCCCTTAAC GTGAGTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA
GATCAAAGGA TCTTCTTGAG ATCCTTTTT TCTGCGCGTA ATCTGCTGCT
15 TGCAAACAAA AAAACCACCG CTACCAGCGG TGGTTGTTT GCCGGATCAA
GAGCTACCAA CTCTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT
ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA
ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG
GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG
20 ATAGTTACCG GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTCGTGCA
CACAGCCCAG CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG
CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG
GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC
CAGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC
25 TGACTTGAGC GTCGATTTT GTGATGCTCG TCAGGGGGC GGAGCCTATG
AAAAAACGCC AGCAACGCGG CCTTTTACG GTTCCTGGCC TTTTGCTGGC
CTTTGCTCA CATGTTCTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC
CGTATTACCG CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC
CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGCA
30 AACCGCCTCT CCCCGCGCGT TGGCCGATTC ATTAATGCAG CTGGCACGAC
AGGTTTCCCG ACTGGAAAGC GGGCAGTGAG CGCAACGCAA TTAATGTGAG
TTAGCTCACT CATTAGGCAC CCCAGGCTTT ACACCTTATG CTTCCGGCTC
GTATGTTGTG TGGAATTGTG AGCGGATAAC AATTCACAC AGGAAACAGC
TATGACCATG ATTACGCCAA GCGCGCAATT AACCCCTCACT AAAGGGAAACA

AAAGCTGGAG CTGCAAGCTT AATGTAGTCT TATGCAATAC TCTTGTAGTC
TTGCAACATG GTAACGATGA GTTAGCAACA TGCCTACAA GGAGAGAAAA
AGCACCGTGC ATGCCGATTG GTGGAAGTAA GGTGGTACGA TCGTGCCTTA
TTAGGAAGGC AACAGACGGG TCTGACATGG ATTGGACGAA CCACTGAATT
5 GCCGCATTGC AGAGATATTG TATTTAAGTG CCTAGCTCGA TACAATAAAC
GGGTCTCTCT GGTTAGACCA GATCTGAGCC TGGGAGCTCT CTGGCTAACT
AGGGAACCCA CTGCTTAAGC CTCAATAAAC CTTGCCTGA GTGCTTCAG
TAGTGTGTGC CCGTCTGTG TGTGACTCTG GTAACTAGAG ATCCCTCAGA
CCCTTTAGT CAGTGTGGAA AATCTCTAGC AGTGGCGCCC GAACAGGGAC
10 CTGAAAGCGA AAGGGAAACC AGAGCTCTCT CGACGCAGGA CTCGGCTTGC
TGAAGCGCGC ACGGCAAGAG GCGAGGGCG GCGACTGGTG AGTACGCCAA
AAATTTGAC TAGCGGAGGC TAGAAGGAGA GAGATGGGTG CGAGAGCGTC
AGTATTAAGC GGGGGAGAAT TAGATCGCGA TGGGAAAAAA TTCGGTTAAG
GCCAGGGGGA AAGAAAAAAT ATAAATTAAA ACATATAGTA TGGGCAAGCA
15 GGGAGCTAGA ACGATTCGCA GTTAATCCTG GCCTGTTAGA AACATCAGAA
GGCTGTAGAC AAATACTGGG ACAGCTACAA CCATCCCTTC AGACAGGATC
AGAAGAACTT AGATCATTAT ATAATACAGT AGCAACCCTC TATTGTGTGC
ATCAAAGGAT AGAGATAAAA GACACCAAGG AAGCTTCTAGA CAAGATAGAG
GAAGAGCAAA ACAAAAGTAA GACCACCGCA CAGCAAGCGG CCGCTGATCT
20 TCAGACCTGG AGGAGGAGAT ATGAGGGACA ATTGGAGAAG TGAATTATAT
AAATATAAAG TAGTAAAAAT TGAACCATTA GGAGTAGCAC CCACCAAGGC
AAAGAGAAGA GTGGTGCAGA GAGAAAAAAG AGCAGTGGGA ATAGGAGCTT
TGTTCCTTGG GTTCTTGGGA GCAGCAGGAA GCACTATGGG CGCAGCCTCA
ATGACGCTGA CGGTACAGGC CAGACAATTA TTGTCTGGTA TAGTGCAGCA
25 GCAGAACAAAT TTGCTGAGGG CTATTGAGGC GCAACAGCAT CTGTTGCAAC
TCACAGTCTG GGGCATCAAG CAGCTCCAGG CAAGAACCTC GGCTGTGGAA
AGATAACCTAA AGGATCAACA GCTCCTGGGG ATTTGGGGTT GCTCTGGAAA
ACTCATTGAC ACCACTGCTG TGCCTTGGAA TGCTAGTTGG AGTAATAAAAT
CTCTGGAACA GATTGGAATC ACACGACCTG GATGGAGTGG GACAGAGAAA
30 TTAACAATTA CACAAGCTTA ATACACTCCT TAATTGAAGA ATCGCAAAAC
CAGCAAGAAA AGAATGAACA AGAATTATTG GAATTAGATA AATGGGCAAG
TTTGTGGAAT TGGTTAACAA TAACAAATTG GCTGTGGTAT ATAAAATTAT
TCATAATGAT AGTAGGAGGC TTGGTAGGTT TAAGAATAGT TTTTGCTGTA
CTTTCTATAG TGAATAGAGT TAGGCAGGGGA TATTCAACCAT TATCGTTCA

GACCCACCTC CCAACCCCGA GGGGACCCGA CAGGCCGAA GGAATAGAAG
AAGAAGGTGG AGAGAGAGAC AGAGACAGAT CCATTGATT AGTGAACGGA
TCTCGACGGT ATCGATTAGA CTGTAGCCCA GGAATATGGC AGCTAGATTG
TACACATTAGA GAAGGAAAAG TTATCTTGGT AGCAGTTCAT GTAGCCAGTG
5 GATATATAGA AGCAGAAGTA ATTCCAGCAG AGACAGGGCA AGAAACAGCA
TACTTCCTCT TAAAATTAGC AGGAAGATGG CCAGTAAAAA CAGTACATAC
AGACAATGGC AGCAATTCA CCAGTACTAC AGTTAAGGCC GCCTGTTGGT
GGCGGGGAT CAAGCAGGAA TTTGGCATTC CCTACAATCC CCAAAGTCAA
GGAGTAATAG AATCTATGAA TAAAGAATTAA AAGAAAATTAA TAGGACAGGT
10 AAGAGATCAG GCTGAACATC TTAAGACAGC AGTACAAATG GCAGTATTCA
TCCACAATTAA TAAAAGAAAA GGGGGGATTG GGGGGTACAG TGCAGGGGAA
AGAATAGTAG ACATAATAGC AACAGACATA CAAACTAAAG AATTACAAAAA
ACAAATTACA AAAATTCAAATTTTCGGGT TTATTACAGG GACAGCAGAG
ATCCAGTTG GCTGCATTGA TCACGTGAGG CTCCGGTGCC CGTCAGTGGG
15 CAGAGCGCAC ATCGCCCACA GTCCCCGAGA AGTTGGGGGG AGGGGTCGGC
AATTGAACCG GTGCCTAGAG AAGGTGGCGC GGGGTAAACT GGGAAAGTGA
TGTCGTGTAC TGGCTCCGCC TTTTCCCGA GGGTGGGGGA GAACCGTATA
TAAGTGCAGT AGTCGCCGTG AACGTTCTTT TTGCAACGG GTTGCCGCC
AGAACACAGG TAAGTGCCGT GTGTGGTTCC CGCGGGCCTG GCCTCTTAC
20 GGGTTATGGC CCTTGCCTGC CTTGAATTAC TTCCACCTGG CTGCAGTACG
TGATTCTTGA TCCCGAGCTT CGGGTTGGAA GTGGGTGGGA GAGTCGAGG
CCTTGCCTT AAGGAGCCCC TTCGCCTCGT GCTTGAGTTG AGGCCTGGC
TGGCGCTGG GGCGCCCGCG TGCGAATCTG GTGGCACCTT CGCGCCTGTC
TCGCTGCTTT CGATAAGTCT CTAGCCATTAA AAAATTGGT ATGACCTGCT
25 GCGACGCTTT TTTCTGGCA AGATAGTCTT GTAAATGCGG GCCAAGATCT
GCACACTGGT ATTCGGTTT TTGGGGCCGC GGGCGCGAC GGGGCCCGTG
CGTCCCAGCG CACATGTTG GCGAGGCAGG GCCTGCGAGC GCGGCCACCG
AGAATCGGAC GGGGGTAGTC TCAAGCTGGC CGGCCTGCTC TGGTGCCTGG
CCTCGCCCG CCGTGTATCG CCCCCCCTG GGCGGAAGG CTGGCCCGGT
30 CGGCACCAAGT TGCGTGAGCG GAAAGATGGC CGCTCCCGG CCCTGCTGCA
GGGAGCTCAA AATGGAGGAC GCGGCGCTCG GGAGAGCGGG CGGGTGAGTC
ACCCACACAA AGGAAAAGGG CCTTCCGTC CTCAGCCGTC GCTTCATGTG
ACTCCACCGA GTACCAGGCG CCGTCCAGGC ACCTCGATTA GTTCTCGAGC
TTTGGAGTA CGTCGTCTT AGGTTGGGG GAGGGGTTT ATGCGATGGA

GTTCACCCCCAC ACTGAGTG GGG TGGAGACTGA AGTTAGGCCA GCTTGGCACT
 TGATGTAATT CTCCTTGGAA TTTGCCCTTT TTGAGTTGG ATCTTGGTTC
 ATTCTCAAGC CTCAGACAGT GGTCAAAGT TTTTTCTTC CATTTCAGGT
 GTCGTGATCT AGAG

5

pELPS-hFVIII-C2-BBz-T2A-mCherry (SEQ ID NO:17)

MEFGLSWLFL VAILKGVQCG SNSCSMPLGM ESKAISDAQI TASSYFTNMF
 ATWSPSKARL HLQGRSNAWR PQVNNPKEWL QVDFQKTMKV TGVTTQGVKS
 LLTSMYVKEF LISSSQDGHQ WTLFFQNGKV KVFQGNQDSF TPVVNSLDPP
 10 LLTRYLRIHP QSWVHQIALR MEVLGCEAQD LYASTTTPAP RPPTPAPTIA
 SQPLSLRPEA CRPAAGGAVH TRGLDFACDS GIYIWIAPLAG TCGVLLSLV
 ITLYCKRGRK KLLYIFKQPF MRPVQTTQEE DGCSCRFPEE EGGCELRVK
 FSRSADAPAY QQGQNQLYNE LNLRREEYD VLDKRRGRDP EMGGKPRRKN
 PQEGLYNELQ KDKMAEAYSE IGMKGERRRG KGDGLYQGL STATKDTYDA
 15 LHMQALPPRG SGEGRGSLLT CGDVEENPGP TRMVKSGEED NMAIIKEFMR
 FKVHMEGSVN GHEFEIEGEG EGRPYEGTQT AKLKVTKGKP LPFAWDILSP
 QFMYGSKAYV KHPADIPDYL KLSFPEGFKW ERVMNFEDGG VVTVTQDSSL
 QDGEFIYKVK LRGTNFPSDG PVMQKKTMGW EASSERMYPE DGALKGEIKQ
 RLKLKDGGHY DAEVKTTYKA KKPVQLPGAY NVNIKLDITS HNEDYTIVEQ
 20 YERAEGRHST GGMDELYK

hFVIII-C2-BBz (SEQ ID NO:18)

MEFGLSWLFL VAILKGVQCG SNSCSMPLGM ESKAISDAQI TASSYFTNMF
 ATWSPSKARL HLQGRSNAWR PQVNNPKEWL QVDFQKTMKV TGVTTQGVKS
 25 LLTSMYVKEF LISSSQDGHQ WTLFFQNGKV KVFQGNQDSF TPVVNSLDPP
 LLTRYLRIHP QSWVHQIALR MEVLGCEAQD LYASTTTPAP RPPTPAPTIA
 SQPLSLRPEA CRPAAGGAVH TRGLDFACDS GIYIWIAPLAG TCGVLLSLV
 ITLYCKRGRK KLLYIFKQPF MRPVQTTQEE DGCSCRFPEE EGGCELRVK
 FSRSADAPAY QQGQNQLYNE LNLRREEYD VLDKRRGRDP EMGGKPRRKN
 30 PQEGLYNELQ KDKMAEAYSE IGMKGERRRG KGDGLYQGL STATKDTYDA
 LHMQALPPR

pTRPE-hFVIII-A2-BBz (SEQ ID NO:19)

GTGCACGAGT GGGTTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT

GAGAGTTTTC GCCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTTAAAGT
TCTGCTATGT GGCGCGGTAT TATCCCGTAT TGACGCCGGG CAAGAGCAAC
TCGGTCGCCG CATAACTAT TCTCAGAATG ACTTGGTTGA GTACTCACCA
GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG AATTATGCAG
5 TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACCTTA CTTCTGACAA
CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTTGACCAA CATGGGGGAT
CATGTAACTC GCCTTGATCG TTGGGAACCG GAGCTGAATG AAGCCATACC
AAACGACGAG CGTGACACCA CGATGCCTGT AGCAATGGCA ACAACGTTGC
GCAAACATT ATT AACTGGCGAA CTACTTACTC TAGCTTCCCG GCAACAAATTA
10 ATAGACTGGA TGGAGGCAGA TAAAGTTGCA GGACCACTTC TGCGCTCGGC
CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG
GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA GCCCTCCCGT
ATCGTAGTTA TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA
TAGACAGATC GCTGAGATAG GTGCCTCACT GATTAAGCAT TGGTAACTGT
15 CAGACCAAGT TTACTCATAT ATACTTTAGA TTGATTAAA ACTTCATTTT
TAATTAAA GGATCTAGGT GAAGATCCTT TTTGATAATC TCATGACCAA
AATCCCTAA CGTGAGTTT CGTCCACTG AGCGTCAGAC CCCGTAGAAA
AGATCAAAGG ATCTTCTTGA GATCCTTTT TTCTGCGCGT AATCTGCTGC
TTGCAAACAA AAAAACACC GCTACCAGCG GTGGTTGTT TGCCGGATCA
20 AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA
TACCAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAAG
AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT
GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC
GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG GGGTTCGTGC
25 ACACAGCCC A GCTTGGAGCG AACGACCTAC ACCGAACCTGA GATACCTACA
GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA
GGTATCCGGT AAGCGGCAGG GTGCGAACAG GAGAGCGCAC GAGGGAGCTT
CCAGGGGGAA ACGCCTGGTA TCTTATAGT CCTGTCGGGT TTCGCCACCT
CTGACTTGAG CGTCGATTT TGTGATGCTC GTCAGGGGG CGGAGCCTAT
30 GGAAAAACGC CAGCAACGCG GCCTTTTAC GGTCCTGGC CTTTGCTGG
CCTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA
CCGTATTACC GCCTTGAGT GAGCTGATAC CGCTCGCCGC AGCCGAACGA
CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCCAATACGC
AAACCGCCTC TCCCCGCGCG TTGGCCGATT CATTAATGCA GCTGGCACGA

CAGGTTTCCC GACTGGAAAG CGGGCAGTGA GCGCAACGCA ATTAATGTGA
GTTAGCTCAC TCATTAGGCA CCCCAGGCTT TACACTTAT GCTTCCGGCT
CGTATGTTGT GTGGAATTGT GAGCGGATAA CAATTCACA CAGGAAACAG
CTATGACCAT GATTACGCCA AGCGCGCAAT TAACCCTCAC TAAAGGGAAC
5 AAAAGCTGGA GCTGCAAGCT TAATGTAGTC TTATGCAATA CTCTTGTAGT
CTTGCAACAT GGTAACGATG AGTTAGCAAC ATGCCTTACA AGGAGAGAAA
AAGCACCGTG CATGCCGATT GGTGGAAGTA AGGTGGTACG ATCGTGCCTT
ATTAGGAAGG CAACAGACGG GTCTGACATG GATTGGACGA ACCACTGAAT
TGCCGCATTG CAGAGATATT GTATTAAAGT GCCTAGCTCG ATACATAAAC
10 GGGTCTCTCT GGTTAGACCA GATCTGAGCC TGGGAGCTCT CTGGCTAACT
AGGGAAACCCA CTGCTTAAGC CTCAATAAAG CTTGCCTTGA GTGCTTCAAG
TAGTGTGTGC CCGTCTGTTG TGTGACTCTG GTAACTAGAG ATCCCTCAGA
CCCTTTAGT CAGTGTGGAA AATCTCTAGC AGTGGCGCCC GAACAGGGAC
TTGAAAGCGA AAGGGAAACC AGAGGAGCTC TCTCGACGCA GGACTCGGCT
15 TGCTGAAGCG CGCACGGCAA GAGGCGAGGG GCGGCGACTG GTGAGTACGC
CAAAAATTTT GACTAGCGGA GGCTAGAAGG AGAGAGATGG GTGCGAGAGC
GTCAGTATTA AGCGGGGGAG AATTAGATCG CGATGGGAAA AAATTCGGTT
AAGGCCAGGG GGAAAGAAAA AATATAAATT AAAACATATA GTATGGCAA
GCAGGGAGCT AGAACGATTC GCAGTTAACCT CTGGCCTGTT AGAAACATCA
20 GAAGGCTGTA GACAAATACT GGGACAGCTA CAACCACCCC TTCAGACAGG
ATCAGAAGAA CTTAGATCAT TATATAATAC AGTAGCAACC CTCTATTGTG
TGCATCAAAG GATAGAGATA AAAGACACCA AGGAAGCTTT AGACAAGATA
GAGGAAGAGC AAAACAAAAG TAAGACCACC GCACAGCAAG CGGCCGCTGA
TCTTCAGACC TGGAGGAGGA GATATGAGGG ACAATTGGAG AAGTGAATTA
25 TATAAATATA AAGTAGTAAA AATTGAACCA TTAGGAGTAG CACCCACCAA
GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA AAGAGCAGTG GGAATAGGAG
CTTTGTTCTT GGAGCTCTG GGAGCAGCAG GAAGCACTAT GGGCGCAGCG
TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
GCAGCAGAAC AATTTGCTGA GGGCTATTGA GGCGAACAG CATCTGTG
30 AACTCACAGT CTGGGGCATH AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG
GAAAGATAACC TAAAGGATCA ACAGCTCCTG GGGATTGGG GTTGCTCTGG
AAAACTCATT TGCACCACTG CTGTGCCTTG GAATGCTAGT TGGAGTAATA
AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA GTGGGACAGA
GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA

AAACCAGCAA GAAAAGAATG AACAAAGAATT ATTGGAATTA GATAAAATGGG
CAAGTTTG TG GAATTGGTT AACATAACAA ATTGGCTGTG GTATATAAAA
TTATTCTAA TGATAGTAGG AGGCTTGGTA GGTTTAAGAA TAGTTTTGC
TGTACTTTCT ATAGTGAATA GAGTTAGGCA GGGATATTCA CCATTATCGT
5 TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC CGAAGGAATA
GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
CGGATCTCGA CGGTATCGAT TAGACTGTAG CCCAGGAATA TGGCAGCTAG
ATTGTACACA TTTAGAAGGA AAAGTTATCT TGGTAGCAGT TCATGTAGCC
AGTGGATATA TAGAAGCAGA AGTAATTCCA GCAGAGACAG GGCAAGAAC
10 AGCATACTTC CTCTTAAAAT TAGCAGGAAG ATGGCCAGTA AAAACAGTAC
ATACAGACAA TGGCAGCAAT TTCACCAAGTA CTACAGTTAA GGCGCCTGT
TGGTGGCGGG GGATCAAGCA GGAATTGGC ATTCCCTACA ATCCCCAAAG
TCAAGGAGTA ATAGAATCTA TGAATAAAGA ATTAAAGAAA ATTATAGGAC
AGGTAAGAGA TCAGGCTGAA CATCTTAAGA CAGCAGTACA AATGGCAGTA
15 TTCATCCACA ATTTTAAAAG AAAAGGGGGG ATTGGGGGT ACAGTGCAGG
GGAAAGAATA GTAGACATAA TAGAACAGA CATAACAACT AAAGAATTAC
AAAAACAAAT TACAAAATT CAAAATTTC GGGTTTATTA CAGGGACAGC
AGAGATCCAG TTTGGCTGCA TACGCGTCGT GAGGCTCCGG TGCCCGTCAG
TGGGCAGAGC GCACATCGCC CACAGTCCCC GAGAAGTTGG GGGGAGGGGT
20 CGGCAATTGA ACCGGTGCT AGAGAAGGTG GCGCGGGTA AACTGGAAA
GTGATGTCGT GTACTGGCTC CGCCTTTTC CCGAGGGTGG GGGAGAACCG
TATATAAGTG CAGTAGTCGC CGTGAACGTT CTTTTCGCA ACGGGTTTGC
CGCCAGAACCA CAGGTAAGTG CCGTGTGTGG TTCCCGCGGG CCTGGCCTCT
TTACGGGTTA TGGCCCTTGC GTGCCTTGAA TTACTCCAC CTGGCTGCAG
25 TACGTGATTC TTGATCCCGA GCTTCGGGTT GGAAGTGGGT GGGAGAGTTC
GAGGCCTTGC GCTTAAGGAG CCCCTCGCC TCGTGCTTGA GTTGAGGCCT
GGCCTGGCG CTGGGGCCGC CGCGTGCAGA TCTGGTGGCA CCTTCGCGCC
TGTCTCGCTG CTTTCGATAA GTCTCTAGCC ATTTAAAATT TTTGATGACC
TGCTGCGACG CTTTTTTCT GGCAAGATAG TCTTGTAAAT GCGGGCCAAG
30 ATCTGCACAC TGGTATTTCG GTTTTGGGG CCGCGGGCGG CGACGGGCC
CGTGCCTCCC AGCGCACATG TTCGGCGAGG CGGGGCCTGC GAGCGCGGCC
ACCGAGAACATC GGACGGGGGT AGTCTCAAGC TGGCCGGCCT GCTCTGGTGC
CTGGCCTCGC GCCGCCGTGT ATCGCCCCGC CCTGGCGGGC AAGGCTGGCC
CGGTCGGCAC CAGTTGCGTG AGCGGAAAGA TGGCCGCTTC CC GGCCCTGC

TGCAGGGAGC TCAAAATGGA GGACGCGGCG CTCGGGAGAG CGGGCGGGTG
AGTCACCCAC ACAAAAGGAAA AGGGCCTTTC CGTCCTCAGC CGTCGCTTCA
TGTGACTCCA CTGAGTACCG GGCGCCGTCC AGGCACCTCG ATTAGTTCTC
GTGCTTTGG AGTACGTCGT CTTAGGTTG GGGGGAGGGG TTTTATGCAG
5 TGGAGTTTCC CCACACTGAG TGGGTGGAGA CTGAAGTTAG GCCAGCTTGG
CACTTGATGT AATTCTCCTT GGAATTGAGC CTTTTGAGT TTGGATCTTG
GTTCATCTC AAGCCTCAGA CAGTGGTTCA AAGTTTTTT CTTCCATTT
AGGTGTCGTG AGCTAGAGCC ACCATGGAGT TTGGGCTGAG CTGGCTTTT
CTTGTGGCTA TTTTAAAAGG TGTCCAGTGC GGATCCTCAG TTGCCAAGAA
10 GCATCCTAAA ACTTGGGTAC ATTACATTGC TGCTGAAGAG GAGGACTGGG
ACTATGCTCC CTTAGTCCTC GCCCCCCGATG ACAGAAGTTA TAAAAGTCAA
TATTGAAACA ATGGCCCTCA GCGGATTGGT AGGAAGTACA AAAAAGTCCG
ATTATGGCA TACACAGATG AACCTTTAA GACTCGTGAA GCTATTCA
ATGAATCAGG AATCTTGGGA CCTTTACTTT ATGGGAAGT TGGAGACACA
15 CTGTTGATTA TATTAAGAA TCAAGCAAGC AGACCATA ACATCTACCC
TCACGGAATC ACTGATGTCC GTCCTTGTA TTCAAGGAGA TTACAAAAG
GTGTAAAACA TTTGAAGGAT TTTCCAATTC TGCCAGGAGA AATATTCAA
TATAAATGGA CAGTGACTGT AGAAGATGGG CCAACTAAAT CAGATCCTCG
GTGCCTGACC CGCTATTACT CTAGTTCGT TAATATGGAG AGAGATCTAG
20 CTTCAGGACT CATTGGCCCT CTCCTCATCT GCTACAAAGA ATCTGTAGAT
CAAAGAGGAA ACCAGATAAT GTCAGACAAG AGGAATGTCA TCCTGTTTC
TGTATTTGAT GAGAACCGAA GCTGGTACCT CACAGAGAAT ATACAACGCT
TTCTCCCCAA TCCAGCTGGA GTGCAGCTTG AAGATCCAGA GTTCCAAGCC
TCCAACATCA TGCACAGCAT CAATGGCTAT GTTTTGATA GTTGCAGTT
25 GTCAGTTGT TTGCATGAGG TGGCATACTG GTACATTCTA AGCATTGGAG
CACAGACTGA CTTCTTTCT GTCTTCTCT CTGGATATAC CTTCAAACAC
AAAATGGTCT ATGAAGACAC ACTCACCCCTA TTCCCATTCT CAGGAGAAC
TGTCTTCATG TCGATGGAAA ACCCAGGTCT ATGGATTCTG GGGTGCCACA
ACTCAGACTT TCGGAACAGA GGCATGACCG CCTTACTGAA GGTTCTAGT
30 TGTGACAAGA ACACGGTGA TTATTACGAG GACAGTTATG AAGATATTTC
AGCATACTTG CTGAGTAAA ACAATGCCAT TGAACCAAGA GCTAGCACCA
CGACGCCAGC GCCGCGACCA CCAACACCGG CGCCCACCAT CGCGTCGCAG
CCCCTGTCCC TGGGCCAGA GGCAGTGCAGG CCAGCGGCGG GGGGCGCAGT
GCACACGAGG GGGCTGGACT TCGCCTGTGA TTCCGGAATC TACATCTGGG

CCCCCTCTGGC CGGCACCTGT GGCGTGCTGC TGCTGTCCCT GGTCATCACCA
CTGTACTGCA AGCGGGGCAG AAAGAAGCTG CTGTACATCT TCAAGCAGCC
CTTCATGCAG CCTGTGCAGA CCACACAGGA AGAGGACGGC TGTAGCTGTA
GATTCCCCGA GGAAGAGGAA GGCGGCTGCG AGCTGAGAGT GAAGTTCAGC
5 AGAAGCGCCG ACGCCCCTGC CTATCAGCAG GGCCAGAAC AGCTGTACAA
CGAGCTGAAC CTGGGCAGAC GGGAGGAATA CGACGTGCTG GACAAGAGAA
GAGGCCGGGA CCCTGAGATG GGCGGCAAGC CCAGACGGAA GAACCCCCAG
GAAGGCCTGT ATAACGAAC GCAGAAAGAC AAGATGGCCG AGGCCTACAG
CGAGATCGGC ATGAAGGGCG AGCGGAGAAG AGGCAAGGGC CATGACGGCC
10 TGTACCAGGG CCTGAGCACC GCCACCAAGG ACACCTACGA CGCCCTGCAC
ATGCAGGCC CGCCCTCCAAG ATGAGTCGAC AATCAACCTC TGGATTACAA
AATTGTGAA AGATTGACTG GTATTCTAA CTATGTTGCT CCTTTACGC
TATGTGGATA CGCTGTTA ATGCCTTGAT ATCATGCTAT TGCTTCCCGT
ATGGCTTCA TTTTCTCCTC CTTGTATAAA TCCTGGTTGC TGTCTTTA
15 TGAGGAGTTG TGGCCCGTTG TCAGGCAACG TGGCGTGGTG TGCAGTGT
TTGCTGACGC AACCCCCACT GGTTGGGCA TTGCCACCAC CTGTCAGCTC
CTTCCGGGA CTTTCGCTT CCCCCCTCCCT ATTGCCACGG CGGAACCTCAT
CGCCGCCTGC CTTGCCCGCT GCTGGACAGG GGCTCGGCTG TTGGGCACTG
ACAATTCCGT GGTGTTGTCG GGGAAAGCTGA CGTCCTTCC TTGGCTGCTC
20 GCCTGTGTTG CCACCTGGAT TCTGCGCGGG ACGTCCTTCT GCTACGTCCC
TCGGCCCTC AATCCAGCGG ACCTTCCTTC CCGCGGCCTG CTGCCGGCTC
TGCGGCCTCT TCCGCGTCTT CGCCTTCGCC CTCAGACGAG TCGGATCTCC
CTTTGGCCG CCTCCCCGCC TGGAATTCGA GCTCGGTACC TTTAAGACCA
ATGACTTACA AGGCAGCTGT AGATCTTAGC CACTTTAA AAGAAAAGGG
25 GGGACTGGAA GGGCTAATTG ACTCCCAACG AAGACAAGAT CTGCTTTTG
CTTGTACTGG GTCTCTCTGG TTAGACCAGA TCTGAGCCTG GGAGCTCT
GGCTAACTAG GGAACCCACT GCTTAAGCCT CAATAAGCT TGCCTTGAGT
GCTTCAAGTA GTGTGTGCC GTCTGTTG TGACTCTGGT AACTAGAGAT
CCCTCAGACC CTTTAGTCA GTGTGGAAAA TCTCTAGCAG TAGTAGTTCA
30 TGTCATCTTA TTATTCAGTA TTTATAACTT GCAAAGAAAT GAATATCAGA
GAGTGAGAGG AACCTGTTA TTGCAGCTTA TAATGGTTAC AAATAAGCA
ATAGCATCAC AAATTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT
TGTGGTTGT CCAAACTCAT CAATGTATCT TATCATGTCT GGCTCTAGCT
ATCCCGCCCC TAACTCCGCC CAGTTCCGCC CATTCTCCGC CCCATGGCTG

ACTAATTTT TTTATTTATG CAGAGGCCGA GGCCGCCCTCG GCCTCTGAGC
 TATTCCAGAA GTAGTGAGGA GGCTTTTTG GAGGCCTAGC TAGGGACGTA
 CCCAATTCGC CCTATAGTGA GTCGTATTAC GCGCGCTCAC TGGCCGTCGT
 TTTACAACGT CGTGACTGGG AAAACCTGG CGTTACCCAA CTTAATGCC
 5 TTGCAGCAC A TCCCCCTTC GCCAGCTGGC GTAATAGCGA AGAGGCCCGC
 ACCGATCGCC CTTCCCAACA GTTGCAGCAGC CTGAATGGCG AATGGGACGC
 GCCCTGTAGC GGCGCATTAA GCGCGCGGG TGTGGTGGTT ACGCGCAGCG
 TGACCGCTAC ACTTGCCAGC GCCCTAGCGC CCGCTCCTT CGCTTCCTC
 CCTTCCTTC TCGCCACGTT CGCCGGCTT CCCC GTCAAG CTCTAAATCG
 10 GGGGCTCCCT TTAGGGTTCC GATTTAGTGC TTTACGGCAC CTCGACCCCA
 AAAAACATTGA TTAGGGTGAT GGTCACGTA GTGGGCCATC GCCCTGATAG
 ACGGTTTTTC GCCCTTGAC GTTGGAGTCC ACGTTCTTA ATAGTGGACT
 CTTGTTCAA ACTGGAACAA CACTCAACCC TATCTCGGTC TATTCTTTG
 ATTTATAAGG GATTTGCCG ATTTCGGCCT ATTGGTTAAA AAATGAGCTG
 15 ATTTAACAAA AATTTAACGC GAATTTAAC AAAATATTAA CGCTTACAAT
 TTAGGTGGCA CTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT
 TTTCTAAATA CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT
 AAATGCTTCA ATAATATTGA AAAAGGAAGA GTATGAGTAT TCAACATTT
 CGTGTGCCCC TTATTCCCTT TTTGCGGCA TTTTGCCTTC CTGTTTTGC
 20 TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGG

pTRPE-hFVIII-C2-BBz (SEQ ID NO:20)

GTGCACGGAGT GGGTTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT
 GAGAGTTTTC GCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTTAAAGT
 25 TCTGCTATGT GGCGCGGTAT TATCCGTAT TGACGCCGGG CAAGAGCAAC
 TCGGTGCCG CATAACTAT TCTCAGAATG ACTTGGTTGA GTACTCACCA
 GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG AATTATGCAG
 TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACCTTA CTTCTGACAA
 CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTGCACAA CATGGGGAT
 30 CATGTAACTC GCCTTGATCG TTGGGAACCG GAGCTGAATG AAGCCATACC
 AAACGACGAG CGTGACACCA CGATGCCTGT AGCAATGGCA ACAACGTTGC
 GCAAACATT AACTGGCGAA CTACTTACTC TAGCTCCCG GCAACAATTA
 ATAGACTGGA TGGAGGCGGA TAAAGTTGCA GGACCACCTTC TGCGCTCGGC
 CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGGCC GGTGAGCGTG

GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA GCCCTCCCGT
ATCGTAGTTA TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA
TAGACAGATC GCTGAGATAG GTGCCTCACT GATTAAGCAT TGGTAACTGT
CAGACCAAGT TTACTCATAT ATACTTTAGA TTGATTAAA ACTTCATTT
5 TAATTTAAA GGATCTAGGT GAAGATCCTT TTTGATAATC TCATGACCAA
AATCCCTTAA CGTGAGTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA
AGATCAAAGG ATCTTCTTGA GATCCTTTT TTCTGCGCGT AATCTGCTGC
TTGCAAACAA AAAAACACC GCTACCAGCG GTGGTTGTT TGCCGGATCA
AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA
10 TACCAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAAG
AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT
GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC
GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG GGGTTCGTGC
ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACTGA GATACTACA
15 GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA
GGTATCCGGT AAGCGGCAGG GTGCGAACAG GAGAGCGCAC GAGGGAGCTT
CCAGGGGAA ACGCCTGGTA TCTTATAGT CCTGTCGGGT TTCGCCACCT
CTGACTTGAG CGTCGATTG TGTGATGCTC GTCAGGGGG CGGAGCCTAT
GGAAAAACGC CAGCAACGCG GCCTTTTAC GGTCCTGGC CTTTGCTGG
20 CCTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA
CCGTATTACC GCCTTGAGT GAGCTGATAC CGCTCGCCGC AGCCGAACGA
CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCCAATACGC
AAACCGCCTC TCCCCGCGCG TTGGCCGATT CATTAAATGCA GCTGGCACGA
CAGGTTCCC GACTGGAAAG CGGGCAGTGA GCGCAACGCA ATTAATGTGA
25 GTTAGCTCAC TCATTAGGCA CCCCAGGCTT TACACTTAT GCTTCCGGCT
CGTATGTTGT GTGGAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG
CTATGACCAT GATTACGCCA AGCGCGCAAT TAACCCTCAC TAAAGGGAAC
AAAAGCTGGA GCTGCAAGCT TAATGTAGTC TTATGCAATA CTCTTGTAGT
CTTGCAACAT GGTAAACGATG AGTTAGCAAC ATGCCTTACA AGGAGAGAAA
30 AAGCACCGTG CATGCCGATT GGTGGAAGTA AGGTGGTACG ATCGTGCCTT
ATTAGGAAGG CAACAGACGG GTCTGACATG GATTGGACGA ACCACTGAAT
TGCCGCATTG CAGAGATATT GTATTAAAGT GCCTAGCTCG ATACATAAAC
GGGTCTCTCT GGTTAGACCA GATCTGAGCC TGGGAGCTCT CTGGCTAACT
AGGGAAACCCA CTGCTTAAGC CTCAATAAAG CTTGCCTTGA GTGCTTCAAG

TAGTGTGTGC CCGTCTGTTG TGTGACTCTG GTAACTAGAG ATCCCTCAGA
CCCTTTAGT CAGTGTGGAA AATCTCTAGC AGTGGCGCCC GAACAGGGAC
TTGAAAGCGA AAGGGAAACC AGAGGAGCTC TCTCGACGCA GGACTCGGCT
TGCTGAAGCG CGCACGGCAA GAGGCGAGGG GCGGCGACTG GTGAGTACGC
5 CAAAAATTAA GACTAGCGGA GGCTAGAAGG AGAGAGATGG GTGCGAGAGC
GTCAGTATTA AGCGGGGGAG AATTAGATCG CGATGGAAA AAATTCGGTT
AAGGCCAGGG GGAAAGAAAA AATATAAATT AAAACATATA GTATGGCAA
GCAGGGAGCT AGAACGATTC GCAGTTAACGC CTGGCCTGTT AGAAACATCA
GAAGGCTGTA GACAAATACT GGGACAGCTA CAACCATCCC TTCAGACAGG
10 ATCAGAAGAA CTTAGATCAT TATATAATAC AGTAGCAACC CTCTATTGTG
TGCATCAAAG GATAGAGATA AAAGACACCA AGGAAGCTTT AGACAAGATA
GAGGAAGAGC AAAACAAAAG TAAGACCACC GCACAGCAAG CGGCCGCTGA
TCTTCAGACC TGGAGGAGGA GATATGGAGG ACAATTGGAG AAGTGAATTA
TATAAATATA AAGTAGTAAA AATTGAACCA TTAGGAGTAG CACCCACCAA
15 GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA AAGAGCAGTG GGAATAGGAG
CTTTGTTCCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT GGGCGCAGCG
TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
GCAGCAGAAC AATTTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC
AACTCACAGT CTGGGGCATT AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG
20 GAAAGATAACC TAAAGGATCA ACAGCTCCTG GGGATTGGG GTTGCTCTGG
AAAACTCATT TGCACCACGT CTGTGCCTTG GAATGCTAGT TGGAGTAATA
AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA GTGGGACAGA
GAAATTAAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
AAACCAGCAA GAAAAGAATG AACAGAAATT ATTGGAATTA GATAAATGGG
25 CAAGTTTGTG GAATTGGTT AACATAACAA ATTGGCTGTG GTATATAAAA
TTATTCTAA TGATAGTAGG AGGCTTGGTA GGTAAAGAA TAGTTTTGC
TGTACTTTCT ATAGTGAATA GAGTTAGGCA GGGATATTCA CCATTATCGT
TTCAGACCCA CCTCCCAACC CCGAGGGAC CCGACAGGCC CGAAGGAATA
GAAGAAGAAC GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
30 CGGATCTCGA CGGTATCGAT TAGACTGTAG CCCAGGAATA TGGCAGCTAG
ATTGTACACA TTTAGAAGGA AAAGTTATCT TGGTAGCAGT TCATGTAGCC
AGTGGATATA TAGAAGCAGA AGTAATTCCA GCAGAGACAG GGCAAGAAC
AGCATACTTC CTCTTAAAT TAGCAGGAAG ATGGCCAGTA AAAACAGTAC
ATACAGACAA TGGCAGCAAT TTCACCAGTA CTACAGTTAA GGCCGCCTGT

TGGTGGCGGG GGATCAAGCA GGAATTGGC ATTCCCTACA ATCCCCAAAG
TCAAGGAGTA ATAGAATCTA TGAATAAAGA ATTAAAGAAA ATTATAGGAC
AGGTAAGAGA TCAGGCTGAA CATCTTAAGA CAGCAGTACA AATGGCAGTA
TTCATCCACA ATTTAAAAG AAAAGGGGGG ATTGGGGGGT ACAGTGCAGG
5 GGAAAGAATA GTAGACATAA TAGCAACAGA CATAACAACT AAAGAATTAC
AAAAACAAAT TACAAAATT CAAAATTTTC GGGTTTATTA CAGGGACAGC
AGAGATCCAG TTTGGCTGCA TACGCGTCGT GAGGCTCCGG TGCCCGTCAG
TGGGCAGAGC GCACATCGCC CACAGTCCCC GAGAAGTTGG GGGGAGGGGT
CGGCAATTGA ACCGGTGCGT AGAGAAGGTG GCGCAGGGTA AACTGGAAA
10 GTGATGTCGT GTACTGGCTC CGCCTTTTC CCGAGGGTGG GGGAGAACCG
TATATAAGTG CAGTAGTCGC CGTGAACGTT CTTTTCGCA ACGGGTTTGC
CGCCAGAACAA CAGGTAAGTG CCGTGTGTGG TTCCCGCGGG CCTGGCCTCT
TTACGGGTTA TGGCCCTTGC GTGCCTTGAA TTACTCCAC CTGGCTGCAG
TACGTGATTC TTGATCCCCA GCTTCGGGTT GGAAGTGGGT GGGAGAGTTC
15 GAGGCCTTGC GCTTAAGGAG CCCCTTCGCC TCGTGCTTGA GTTGAGGCCT
GGCCTGGCG CTGGGGCCGC CGCGTGCAGA TCTGGTGGCA CCTTCGCGCC
TGTCTCGCTG CTTTCGATAA GTCTCTAGCC ATTTAAAATT TTTGATGACC
TGCTCGACG CTTTTTTCT GGCAAGATAG TCTTGAAAT GCGGGCCAAG
ATCTGCACAC TGGTATTTCG GTTTTGGGG CCGCGGGCGG CGACGGGGCC
20 CGTGCCTCCC AGCGCACATG TTCGGCGAGG CGGGGCCTGC GAGCGCGGCC
ACCGAGAACATC GGACGGGGGT AGTCTCAAGC TGGCCGGCCT GCTCTGGTGC
CTGGCCTCGC GCCGCCGTGT ATCGCCCCGC CCTGGCGGC AAGGCTGGCC
CGGTCGGCAC CAGTTGCGTG AGCGGAAAGA TGGCCGCTTC CC GGCCCTGC
TGCAGGGAGC TCAAAATGGA GGACGCGCG CTCGGAGAG CGGGCGGGTG
25 AGTCACCCAC ACAAAGGAAA AGGGCCTTTC CGTCCTCAGC CGTCGCTTCA
TGTGACTCCA CTGAGTACCG GGCGCCGTCC AGGCACCTCG ATTAGTTCTC
GTGCTTTGG AGTACGTGTT CTTAGGTTG GGGGGAGGGG TTTTATGCGA
TGGAGTTCC CCACACTGAG TGGGTGGAGA CTGAAGTTAG GCCAGCTTGG
CACTTGATGT AATTCTCCTT GGAATTGCGC CTTTTGAGT TTGGATCTTG
30 GTTCATTCTC AAGCCTCAGA CAGTGGTTCA AAGTTTTTT CTTCCATTTC
AGGTGTCGTG AGCTAGAGCC ACCATGGAGT TTGGGCTGAG CTGGCTTTT
CTTGTGGCTA TTTTAAAAGG TGTCCAGTGC GGATCCAATA GTTGCAGCAT
GCCATTGGGA ATGGAGAGTA AAGCAATATC AGATGCACAG ATTACTGCTT
CATCCTACTT TACCAATATG TTTGCCACCT GGTCTCCTTC AAAAGCTCGA

CTTCACCTCC AAGGGAGGAG TAATGCCTGG AGACCTCAGG TGAATAATCC
AAAAGAGTGG CTGCAAGTGG ACTTCCAGAA GACAATGAAA GTCACAGGAG
TAACTACTCA GGGAGTAAAA TCTCTGCTTA CCAGCATGTA TGTGAAGGAG
TTCCTCATCT CCAGCAGTCA AGATGGCCAT CAGTGGACTC TCTTTTTCA
5 GAATGGCAA GTAAAGGTTT TTCAGGGAAA TCAAGACTCC TTCACACCTG
TGGTGAACTC TCTAGACCCA CCGTTACTGA CTCGCTACCT TCGAATTAC
CCCCAGAGTT GGGTGCACCA GATTGCCCTG AGGATGGAGG TTCTGGCTG
CGAGGCACAG GACCTCTACG CTAGCACCAC GACGCCAGCG CCGCGACCAC
CAACACCGGC GCCCACCAC GCGTCGCAGC CCCTGTCCCT GCGCCCAGAG
10 GCGTGCCGGC CAGCGCGGG GGGCGCAGTG CACACGAGGG GGCTGGACTT
CGCCTGTGAT TCCGGAATCT ACATCTGGGC CCCTCTGGCC GGCACCTGTG
GCGTGCTGCT GCTGTCCCTG GTCATCACCC TGTACTGCAA GCGGGGCAGA
AAGAAGCTGC TGTACATCTT CAAGCAGCCC TTCATGCGGC CTGTGCAGAC
CACACAGGAA GAGGACGGCT GTAGCTGTAG ATTCCCCGAG GAAGAGGAAG
15 GCGGCTGCGA GCTGAGAGTG AAGTTCAGCA GAAGGCCGA CGCCCTGCC
TATCAGCAGG GCCAGAACCA GCTGTACAAC GAGCTGAACC TGGGCAGACG
GGAGGAATAC GACGTGCTGG ACAAGAGAAG AGGCCGGAC CCTGAGATGG
GCGGCAAGCC CAGACGGAAG AACCCCCAGG AAGGCCTGTA TAACGAAC
CAGAAAGACA AGATGGCCGA GGCCTACAGC GAGATCGGCA TGAAGGGCGA
20 GCGGAGAAGA GGCAAGGGCC ATGACGGCCT GTACCAGGGC CTGAGCACCG
CCACCAAGGA CACCTACGAC GCCCTGCACA TGCAGGCCCT GCCTCCAAGA
TGAGTCGACA ATCAACCTCT GGATTACAAA ATTTGTGAAA GATTGACTGG
TATTCTTAAC TATGTTGCTC CTTTACGCT ATGTGGATAC GCTGCTTTAA
TGCCTTGTA TCATGCTATT GCTTCCCGTA TGGCTTCAT TTTCTCCTCC
25 TTGTATAAAAT CCTGGTTGCT GTCTTTTAT GAGGAGTTGT GGCCCGTTGT
CAGGCAACGT GGC GTGGTGT GCACTGTGTT TGCTGACGCA ACCCCCAC
GTTGGGCAT TGCCACCACC TGTCAGCTCC TTTCCGGAC TTTCGCTTTC
CCCCTCCCTA TTGCCACGGC GGAACTCATC GCCGCCTGCC TTGCCCGCTG
CTGGACAGGG GCTCGGCTGT TGGGCAGTGA CAATTCCGTG GTGTTGTCGG
30 GGAAGCTGAC GTCCTTCCT TGGCTGCTCG CCTGTGTTGC CACCTGGATT
CTGCGCGGGA CGTCCTTCTG CTACGTCCCT TCAGGCCCTCA ATCCAGCGGA
CCTTCCTTCC CGCGGCCTGC TGCCGGCTCT GCAGGCCTCTT CCGCGTCTTC
GCCTTCGCCCGC TCAGACGAGT CGGATCTCCC TTTGGGCCGC CTCCCCGCC
GGAATTGAG CTCGGTACCT TTAAGACCAA TGACTTACAA GGCAGCTGTA

GATCTTAGCC ACTTTTAAAGAAAAGGGGG GGACTGGAAG GGCTAATTCA
 CTCCCAACGA AGACAAGATC TGCTTTGC TTGTACTGGG TCTCTCTGGT
 TAGACCAGAT CTGAGCCTGG GAGCTCTCTG GCTAACTAGG GAACCCACTG
 CTTAACGCTC AATAAAGCTT GCCTTGAGTG CTTCAAGTAGG TGTGTGCCCG
 5 TCTGTTGTGT GACTCTGGTA ACTAGAGATC CCTCAGACCC TTTTAGTCAG
 TGTGGAAAAT CTCTAGCACT AGTAGTTCAT GTCATCTTAT TATTCACTAT
 TTATAACTTG CAAAGAAATG AATATCAGAG AGTGAGAGGA ACTTGTTTAT
 TGCAGCTTAT AATGGTTACA AATAAAGCAA TAGCATCACA AATTCACAA
 ATAAAGCATT TTTTCACTG CATTCTAGTT GTGGTTGTC CAAACTCATC
 10 AATGTATCTT ATCATGTCTG GCTCTAGCTA TCCCAGCCCT AACTCCGCC
 AGTTCCGCC AGTTCTCCGCC CCATGGCTGA CTAATTTTT TTATTTATGC
 AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT ATTCCAGAAG TAGTGAGGAG
 GCTTTTTGG AGGCCTAGCT AGGGACGTAC CCAATTGCGC CTATAGTGAG
 TCGTATTACG CGCGCTCACT GGCGTCGTT TTACAACGTC GTGACTGGGA
 15 AAACCCTGGC GTTACCCAAC TTAATCGCCT TGCAGCACAT CCCCCTTCG
 CCAGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATGCCAG TTCCCAACAG
 TTGCGCAGCC TGAATGGCGA ATGGGACGCG CCCTGTAGCG GCGCATTAAAG
 CGCGGCCGGT GTGGTGGTTA CGCGCAGCGT GACCCTACA CTTGCCAGCG
 CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC CTTCCCTTCT CGCCACGTT
 20 GCCGGCTTTC CCCGTCAAGC TCTAAATCGG GGGCTCCCTT TAGGGTTCCG
 ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT TAGGGTGATG
 GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTCG CCCTTGACG
 TTGGAGTCCA CGTTCTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAAC
 ACTCAACCCT ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTGCCGA
 25 TTTCGGCCTA TTGGTTAAAA AATGAGCTGA TTTAACAAAA ATTTAACGCG
 AATTTAACAA AAATATTAAC GCTTACAATT TAGGTGGCAC TTTTCGGGAA
 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT
 GTATCCGCTC ATGAGACAAT AACCTGATA AATGCTTCAA TAATATTGAA
 AAAGGAAGAG TATGAGTATT CAACATTCC GTGTCGCCCT TATTCCCTT
 30 TTTCGGGCAT TTTGCCTTCC TGTTTTGCT CACCCAGAAA CGCTGGTGAA
 AGTAAAAGAT GCTGAAGATC AGTTGG

DAP12-T2A-A2-KIRS2 (SEQ ID NO:21)

ATGGGGGGAC TTGAACCTG CAGCAGGTTC CTGCTCCTGC CTCTCCTGCT
GGCTGTAAGT GGTCTCCGTC CTGTCCAGGT CCAGGCCAG AGCGATTGCA
GTTGCTCTAC GGTGAGCCCG GGCGTGCTGG CAGGGATCGT GATGGGAGAC
CTGGTGCTGA CAGTGCTCAT TGCCCTGGCC GTGTACTTCC TGGGCCGGCT
5 GGTCCCTCGG GGGCGAGGGG CTGCGGAGGC AGCGACCCGG AAACAGCGTA
TCACTGAGAC CGAGTCGCCT TATCAGGAGC TCCAGGGTCA GAGGTCGGAT
GTCTACAGCG ACCTCAACAC ACAGAGGCCG TATTACAAAG TCGAGGGCGG
CGGAGAGGGC AGAGGAAGTC TTCTAACATG CGGTGACGTG GAGGAGAATC
CCGGCCCTAG GATGGCCTTA CCAGTGACCG CCTTGCTCCT GCCGCTGCC
10 TTGCTGCTCC ACGCCGCCAG GCCGGGATCC TCAGTTGCCA AGAAGCATCC
TAAAACTTGG GTACATTACA TTGCTGCTGA AGAGGAGGAC TGGGACTATG
CTCCCTTAGT CCTCGCCCCC GATGACAGAA GTTATAAAAG TCAATATTTG
AACAAATGGCC CTCAGCGGAT TGGTAGGAAG TACAAAAAAG TCCGATTAT
GGCATAACACA GATGAAACCT TTAAGACTCG TGAAGCTATT CAGCATGAAT
15 CAGGAATCTT GGGACCTTA CTTTATGGGG AAGTTGGAGA CACACTGTTG
ATTATATTTA AGAATCAAGC AAGCAGACCA TATAACATCT ACCCTCACGG
AATCACTGAT GTCCGTCCCT TGTATTCAAG GAGATTACCA AAAGGTGTAA
AACATTGAA GGATTTCAGA ATTCTGCCAG GAGAAATATT CAAATATAAA
TGGACAGTGA CTGTAGAAGA TGGGCCAACT AAATCAGATC CTCGGTGCCT
20 GACCCGCTAT TACTCTAGTT TCGTTAATAT GGAGAGAGAT CTAGCTTCAG
GACTCATTGG CCCTCTCCTC ATCTGCTACA AAGAATCTGT AGATCAAAGA
GGAAACCAGA TAATGTCAGA CAAGAGGAAT GTCATCCTGT TTTCTGTATT
TGATGAGAAC CGAAGCTGGT ACCTCACAGA GAATATACAA CGCTTTCTCC
CCAATCCAGC TGGAGTGCAG CTTGAAGATC CAGAGTTCCA AGCCTCCAAC
25 ATCATGCACA GCATCAATGG CTATTTTT GATAGTTGC AGTTGTCAGT
TTGTTGCAT GAGGTGGCAT ACTGGTACAT TCTAACGATT GGAGCACAGA
CTGACTTCCT TTCTGTCTTC TTCTCTGGAT ATACCTCAA ACACAAAATG
GTCTATGAAG ACACACTCAC CCTATTCCA TTCTCAGGAG AACTGTCTT
CATGTCGATG GAAAACCCAG GTCTATGGAT TCTGGGTGC CACAACTCAG
30 ACTTTCGGAA CAGAGGCATG ACCGCCTTAC TGAAGGTTTC TAGTTGTGAC
AAGAACACTG GTGATTATTA CGAGGACAGT TATGAAGATA TTTCAGCATA
CTTGCTGAGT AAAAACAAATG CCATTGAACC AAGAGCTAGC GGTGGCGGAG
GTTCTGGAGG TGGGGTTCC TCACCCACTG AACCAAGCTC CAAAACCGGT
AACCCCAGAC ACCTGCATGT TCTGATTGGG ACCTCAGTGG TCAAAATCCC

TTTCACCATC CTCCTCTTCA TCGCTGGTGC TCCAACAAAA
 AAAATGCTGC TGTAATGGAC CAAGAGCCTG CAGGGAACAG AACAGTGAAC
 AGCGAGGATT CTGATGAACA AGACCATCAG GAGGTGTCAT ACGCATAA

5 **FVIII-A2-KIRS2 (SEQ ID NO:22)**

MALPV TALLL PLALLLHAAR PGSSVAKKHP KTWVHYIAAE EEDWDYAPLV
 LAPDDRSYKS QYLNNGPQRI GRKYKKVRFM AYTDETFKTR EAIQHESGIL
 GPLLYGEVGD TLLIIFKNQA SRPYNIYPHG ITDVRPLYSR RLPKGVKHLK
 DFPILPGEIF KYKWTVTVED GPTKSDPRCL TRYSSFVN M ERDLASGLIG
 10 PLLICYKESV DQRGNQIMSD KRNVILFSVF DENRSWYLTE NIQRFLPNPA
 GVQLEDPEFQ ASNIMHSING YVFDSQLSV CLHEVAYWYI LSIGAQTDFL
 SVFFSGYTFK HKMVYEDTLT LFPPFSGETVF MSMENPGLWI LGCHNSDFRN
 RGMTALLKVS SCDKNTGDYY EDSYEDISAY LLSKNNAIEP RASGGGGSGG
 15 GGSSPTEPSS KTGNPRHLHV LIGTSVVKIP FTILLFFLLH RWCSNKKNAA
 VMDQE PAGNR TVNSEDSDEQ DHQEVSYA*

DAP12-T2A-C2-KIRS2 (SEQ ID NO:23)

ATGGGGGGAC TTGAACCCCTG CAGCAGGTTC CTGCTCCTGC CTCTCCTGCT
 GGCTGTAAGT GGTCTCCGTC CTGTCCAGGT CCAGGCCAG AGCGATTGCA
 20 GTTGCTCTAC GGTGAGCCCG GCGGTGCTGG CAGGGATCGT GATGGGAGAC
 CTGGTGCTGA CAGTGCTCAT TGCCCTGGCC GTGTACTTCC TGGGCCGGCT
 GGTCCCTCGG GGGCGAGGGG CTGCGGAGGC AGCGACCCGG AAACAGCGTA
 TCACTGAGAC CGAGTCGCCT TATCAGGAGC TCCAGGGTCA GAGGTCGGAT
 GTCTACAGCG ACCTCAACAC ACAGAGGCCG TATTACAAAG TCGAGGGCGG
 25 CGGAGAGGGC AGAGGAAGTC TTCTAACATG CGGTGACGTG GAGGAGAATC
 CCGGCCCTAG GATGGCCTTA CCAGTGACCG CCTTGCTCCT GCCGCTGGCC
 TTGCTGCTCC ACGCCGCCAG GCCGGGATCC AATAGTTGCA GCATGCCATT
 GGGATGGAG AGTAAAGCAA TATCAGATGC ACAGATTACT GCTTCATCCT
 ACTTTACCAA TATGTTGCC ACCTGGTCTC CTTCAAAAGC TCGACTTCAC
 30 CTCCAAGGG A GGAGTAATGC CTGGAGACCT CAGGTGAATA ATCCAAAAGA
 GTGGCTGCAA GTGGACTTCC AGAAGACAAT GAAAGTCACA GGAGTAACCA
 CTCAGGGAGT AAAATCTCTG CTTACCAGCA TGTATGTGAA GGAGTTCTC
 ATCTCCAGCA GTCAAGATGG CCATCAGTGG ACTCTCTTT TTCAGAATGG
 CAAAGTAAAG GTTTTCAGG GAAATCAAGA CTCCTTCACA CCTGTGGTGA

ACTCTCTAGA CCCACCGTTA CTGACTCGCT ACCTTCGAAT TCACCCCCAG
 AGTTGGGTGC ACCAGATTGC CCTGAGGATG GAGGTTCTGG GCTGCGAGGC
 ACAGGACCTC TACGCTAGCG GTGGCGGAGG TTCTGGAGGT GGGGGTTCC
 CACCCACTGA ACCAAGCTCC AAAACCGGTAA ACCCCAGACA CCTGCATGTT
 5 CTGATTGGGA CCTCAGTGTT CAAAATCCCT TTCACCATCC TCCTCTTCTT
 TCTCCTTCAT CGCTGGTGCT CCAACAAAAA AAATGCTGCT GTAATGGACC
 AAGAGCCTGC AGGGAACAGA ACAGTGAACA GCGAGGATTG TGATGAACAA
 GACCATCAGG AGGTGTCATA CGCATAA

10 **FVIII-C2-KIRS2 (SEQ ID NO:24)**

MALPVTALLL PLALLLHAAR PGSNSCSMPL GMESKAISDA QITASSYFTN
 MFATWSPSKA RLHLQGRSNA WRPQVNNPKE WLQVDFQKTM KVTGVTTQGV
 KSLLTSMYVK EFLISSSQDG HQWTLFFQNG KVVKVQGNQD SFTPVVNSLD
 PPLLTRYLRI HPQSWVHQIA LRMEVLGCEA QDLYASGGGG SGGGGSSPTE
 15 PSSKTGNPRH LHVLIGTSVV KIPFTILLFF LLHRWCSNKK NAAVMDQEPA
 GNRTVNSEDS DEQDHQEVSY A*

A2-gs-BBz Nucleotide Sequence (SEQ ID NO:25)

ATGGAGTTTG GGCTGAGCTG GCTTTTCTT GTGGCTATTT TAAAAGGTGT
 20 CCAGTGCAGGA TCCTCAGTTG CCAAGAACCA TCCTAAAACCT TGGGTACATT
 ACATTGCTGC TGAAGAGGAG GACTGGGACT ATGCTCCCTT AGTCCTCGCC
 CCCGATGACA GAAGTTATAA AAGTCAATAT TTGAACAATG GCCCTCAGCG
 GATTGGTAGG AAGTACAAAAA AAGTCCGATT TATGGCATAAC ACAGATGAAA
 CCTTTAAGAC TCGTGAAGCT ATTCAAGCATG AATCAGGAAT CTTGGGACCT
 25 TTACTTTATG GGGAAAGTTGG AGACACACTG TTGATTATAT TTAAGAATCA
 AGCAAGCAGA CCATATAACA TCTACCCTCA CGGAATCACT GATGTCCGTC
 CTTTGTATTC AAGGAGATTA CCAAAAGGTG TAAAACATT TGAAGGATTT
 CCAATTCTGC CAGGAGAAAT ATTCAAATAT AAATGGACAG TGACTGTAGA
 AGATGGCCA ACTAAATCAG ATCCTCGGTG CCTGACCCGC TATTACTCTA
 30 GTTTCGTTAA TATGGAGAGA GATCTAGCTT CAGGACTCAT TGGCCCTCTC
 CTCATCTGCT ACAAAAGAAC TGTAGATCAA AGAGGAAACC AGATAATGTC
 AGACAAGAGG AATGTCATCC TGTTTCTGT ATTTGATGAG AACCGAAGCT
 GGTACCTCAC AGAGAATATA CAACGCTTTC TCCCCAATCC AGCTGGAGTG
 CAGCTTGAAG ATCCAGAGTT CCAAGCCTCC AACATCATGC ACAGCATCAA

TGGCTATGTT TTTGATAGTT TGCAGTTGTC AGTTGTTTG CATGAGGTGG
 CATACTGGTA CATTCTAACG ATTGGAGCAC AGACTGACTT CCTTTCTGTC
 TTCTTCTCTG GATATACCTT CAAACACAAA ATGGTCTATG AAGACACACT
 CACCTATTC CCATTCTCAG GAGAAACTGT CTTCATGTCG ATGGAAAACC
 5 CAGGTCTATG GATTCTGGGG TGCCACAACT CAGACTTCG GAACAGAGGC
 ATGACCGCCT TACTGAAGGT TTCTAGTTGT GACAAGAACAA CTGGTGATTA
 TTACGAGGAC AGTTATGAAG ATATTCAGC ATACTGCTG AGTAAAAACA
 ATGCCATTGA ACCAAGAGCT AGCGGTGGCG GAGGTTCTGG AGGTGGAGGT
 10 TCCTCCGGAA TCTACATCTG GGCCCCTCTG GCCGGCACCT GTGGCGTGCT
 GCTGCTGTCC CTGGTCATCA CCCTGTACTG CAAGCGGGGC AGAAAGAACG
 TGCTGTACAT CTTCAAGCAG CCCTTCATGC GGCTGTGCA GACCACACAG
 GAAGAGGACG GCTGTAGCTG TAGATTCCCC GAGGAAGAGG AAGGCGGCTG
 CGAGCTGAGA GTGAAGTTCA GCAGAAGCGC CGACGCCCT GCCTATCAGC
 15 AGGGCCAGAA CCAGCTGTAC AACGAGCTGA ACCTGGGCAG ACGGGAGGAA
 TACGACGTGC TGGACAAGAG AAGAGGCCGG GACCCTGAGA TGGGCGGCAA
 GCCCAGACGG AAGAACCCCC AGGAAGGCCT GTATAACGAA CTGCAGAAAG
 ACAAGATGGC CGAGGCCTAC AGCGAGATCG GCATGAAGGG CGAGCGGAGA
 AGAGGCAAGG GCCATGACGG CCTGTACCAG GGCTGAGCA CCGCCACCAA
 GGACACCTAC GACGCCCTGC ACATGCAGGC CCTGCCTCCA AGATGA
 20

20

A2-gs-BBz Amino Acid Sequence (SEQ ID NO:26)

MEFGLSWLFL VAILKGVQCG SSVAKKHPKT WVHYIAAEEE DWDYAPLVLA
 PDDRSYKSQY LNNGPQRIGR KYKKVRFMAY TDETFKTREA IQHESGILGP
 LLYGEVGDTL LIIFKNQASR PYNIYPHGIS DVRPLYSRRL PKGVKHLKDF
 25 PILPGEIFKY KWTVTVEDGP TKSDPRCLTR YYSSFVNMER DLASGLIGPL
 LICYKESVDQ RGNQIMSDKR NVILFSVFDE NRSWYLTEI QRFLPNPAGV
 QLEDPEFQAS NIMHSINGYV FDSLQLSVCL HEVAYWYILS IGAQTDFLSV
 FFSGYTFKHK MVYEDTTLF PFSGETVFMS MENPGLWILG CHNSDFRNRG
 MTALLKVSSC DKNTGDYYED SYEDISAYLL SKNNAIEPRA SGGGGSGGGG
 30 SSGIYIWAPL AGTCGVLLS LVITLYCKRG RKKLLYIFKQ PFMRPVQTTQ
 EEDGCSCRFP EEEEGGCCLR VKFSRSADAP AYQQGQNQLY NELNLGRREE
 YDVLDKRRGR DPEMGGKPRR KNPQEGLYNE LQKDKMAEAY SEIGMKGERR
 RGKGHDGLYQ GLSTATKDTY DALHMQALPP R*

C2-gs-BBz Nucleic Acid Sequence (SEQ ID NO:27)

ATGGAGTTG GGCTGAGCTG GCTTTTCTT GTGGCTATT TAAAAGGTGT
 CCAGTGCAGA TCCAATAGTT GCAGCATGCC ATTGGGAATG GAGAGTAAAG
 CAATATCAGA TGCACAGATT ACTGCTTCAT CCTACTTTAC CAATATGTTT
 5 GCCACCTGGT CTCCTTCAAA AGCTCGACTT CACCTCCAAG GGAGGAGTAA
 TGCCTGGAGA CCTCAGGTGA ATAATCCAAA AGAGTGGCTG CAAGTGGACT
 TCCAGAAGAC AATGAAAGTC ACAGGAGTAA CTACTCAGGG AGTAAAATCT
 CTGCTTACCA GCATGTATGT GAAGGAGTTC CTCATCTCCA GCAGTCAAGA
 TGGCCATCAG TGGACTCTCT TTTTCAGAA TGGCAAAGTA AAGGTTTTTC
 10 AGGGAAATCA AGACTCCTTC ACACCTGTGG TGAACCTCTCT AGACCCACCG
 TTACTGACTC GCTACCTTCG AATTACCCCC CAGAGTTGGG TGCACCAGAT
 TGCCCTGAGG ATGGAGGTTTC TGGGCTGCGA GGCACAGGAC CTCTACGCTA
 GCGGTGGCGG AGGTTCTGGA GGTGGAGGTT CCTCCGGAAT CTACATCTGG
 GCCCCTCTGG CCGGCACCTG TGGCGTGCTG CTGCTGTCCC TGGTCATCAC
 15 CCTGTACTGC AAGCGGGGCA GAAAGAAGCT GCTGTACATC TTCAAGCAGC
 CCTTCATGCG GCCTGTGCAG ACCACACAGG AAGAGGACGG CTGTAGCTGT
 AGATTCCCCG AGGAAGAGGA AGGCGGCTGC GAGCTGAGAG TGAAGTTCA
 CAGAAGCGCC GACGCCCTG CCTATCAGCA GGGCCAGAAC CAGCTGTACA
 ACGAGCTGAA CCTGGGCAGA CGGGAGGAAT ACGACGTGCT GGACAAGAGA
 20 AGAGGCCGGG ACCCTGAGAT GGGCGGCAAG CCCAGACGG AGAACCCCCA
 GGAAGGCCTG TATAACGAAC TGCAGAAAGA CAAGATGGCC GAGGCCTACA
 GCGAGATCGG CATGAAGGGC GAGCGGAGAA GAGGCAAGGG CCATGACGGC
 CTGTACCAGG GCCTGAGCAC CGCCACCAAG GACACCTACG ACGCCCTGCA
 CATGCAGGCC CTGCCTCCAA GATGA

25

C2-gs-BBz Amino Acid Sequence (SEQ ID NO:28)

MEFGLSWLFL VAILKGVQCG SNSCSMPLGM ESKAISDAQI TASSYFTNMF
 ATWSPSKARL HLQGRSNAWR PQVNNPKEWL QVDFQKTMKV TGVTTQGVKS
 LLTSMYVKEF LISSSQDGHQ WTLFFQNGKV KVFQGNQDSF TPVVNSLDPP
 30 LLTRYLRIHP QSWVHQIALR MEVLGCEAQD LYASGGGGSG GGGSSGIYIW
 APLAGTCGVL LLSLVITLYC KRGRKKLLYI FKQPFMRPVQ TTQEEDGCSC
 RFPEEEEGGC ELRVKFSRSA DAPAYQQGQN QLYNELNLGR REEYDVLDKR
 RGRDPEMGGK PRRKNPQEGL YNELQKDKMA EAYSEIGMKG ERRRGKGHDG
 LYQGLSTATK DTYDALHMQA LPPR*

CLAIMS

What is claimed:

1. An isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain.
2. An isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an A2 subunit of Factor VIII, a nucleic acid sequence v a transmembrane domain, a nucleic acid sequence v an intracellular domain of a costimulatory molecule, and a nucleic acid sequence encoding an intracellular signaling domain.
3. The isolated nucleic acid sequence of claim 1, wherein the alloantigen is Factor VIII or fragment thereof.
4. The isolated nucleic acid sequence of claim 3, wherein the Factor VIII or fragment thereof comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:4.
5. The isolated nucleic acid sequence of claim 3, wherein the Factor VIII fragment thereof is selected from the group consisting of an A2 subunit or a C2 subunit of Factor VIII.
6. The isolated nucleic acid sequence of any one of claims 1 or 2, wherein the nucleic acid sequence of the transmembrane domain encodes a CD8 alpha chain hinge and transmembrane domain.
7. The isolated nucleic acid sequence of claim 6, wherein the CD8 alpha chain hinge comprises an amino acid sequence of SEQ ID NO:7 and transmembrane domain comprises an amino acid sequence of SEQ ID NO:8.
8. The isolated nucleic acid sequence of claim 2, wherein the nucleic acid sequence encoding the intracellular domain of the costimulatory molecule comprises a nucleic acid sequence encoding a 4-1BB signaling domain.

9. The isolated nucleic acid sequence of any one of claims 1 or 8, wherein the 4-1BB intracellular domain comprises an amino acid sequence of SEQ ID NO:10.
10. The isolated nucleic acid sequence of claim 2, wherein the nucleic acid sequence encoding the intracellular signaling domain comprises a nucleic acid sequence encoding a CD3 zeta signaling domain.
11. The isolated nucleic acid sequence of any one of claims 1 or 10, wherein the CD3 zeta signaling domain comprises an amino acid sequence of SEQ ID NO:12.
12. A vector comprising the isolated nucleic acid sequence of any one of claims 1-11.
13. The vector of claim 12, wherein the vector is a lentiviral vector.
14. The vector of claim 12, wherein the vector is a RNA vector.
15. An isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising an alloantigen or fragment thereof, a transmembrane domain, an intracellular domain of 4-1BB, and a CD3 zeta signaling domain.
16. An isolated chimeric alloantigen receptor (CALLAR) comprising an extracellular domain comprising A2 subunit of Factor VIII, a transmembrane domain, an intracellular domain of a costimulatory molecule, and an intracellular signaling domain.
17. The isolated CALLAR of claim 15, wherein the alloantigen is Factor VIII or fragment thereof.
18. The isolated CALLAR of claim 15, wherein the Factor VIII or fragment thereof comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:4.
19. The isolated CALLAR of claim 17, wherein the Factor VIII fragment thereof is selected from the group consisting of an A2 fragment and a C2 fragment of Factor VIII.
20. The isolated CALLAR of any one of claims 15 or 16, wherein the transmembrane domain comprises a CD8 alpha chain hinge and transmembrane domain.

21. The isolated CALLAR of claim 20, wherein the CD8 alpha chain hinge comprises an amino acid sequence of SEQ ID NO:7 and transmembrane domain comprises an amino acid sequence of SEQ ID NO:8.
22. The isolated CALLAR of claim 16, wherein the intracellular domain of the costimulatory molecule comprises a 4-1BB intracellular domain.
23. The isolated CALLAR of any one of claims 15 or 22, wherein the 4-1BB intracellular domain comprises SEQ ID NO:10.
24. The isolated CALLAR of claim 16, wherein the intracellular signaling domain comprises a CD3 zeta signaling domain.
25. The isolated CALLAR of any one of claims 15 or 24, wherein the CD3 zeta signaling domain comprises an amino acid sequence of SEQ ID NO:12.
26. A genetically modified cell comprising the CALLAR of any one of claims 15-25.
27. The cell of claim 26, wherein the cell expresses the CALLAR and has high affinity to antibodies expressed on B cells.
28. The cell of claim 26, wherein the cell expresses the CALLAR and induces killing of B cells expressing antibodies.
29. The cell of claim 26, wherein the cell expresses the CALLAR and has limited toxicity toward healthy cells.
30. The cell of claim 26, wherein the cell is selected from the group consisting of a helper T cell, a cytotoxic T cell, a memory T cell, regulatory T cell, gamma delta T cell, a natural killer cell, a monocyte, a cytokine induced killer cell, a cell line thereof, and other effector cell.
31. A method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising: administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding an alloantigen or fragment thereof, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular signaling domain of 4-1BB, and a nucleic acid sequence encoding a CD3 zeta signaling domain, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

32. A method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising: administering to the subject an effective amount of a genetically modified T cell comprising an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR), wherein the isolated nucleic acid sequence comprises a nucleic acid sequence encoding A2 subunit of Factor VIII, a nucleic acid sequence encoding a transmembrane domain, a nucleic acid sequence encoding an intracellular domain of a costimulatory molecule, and a nucleic acid sequence encoding an intracellular signaling domain, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.
33. The method of any one of claims 31 or 32, wherein the subject is a human.
34. The method of any one of claims 31 or 32, wherein the modified T cell has high affinity for Factor VIII antibodies.
35. The method of claim 34, wherein the modified T cell targets a B cell expressing Factor VIII antibodies.
36. An isolated KIR/DAP12 receptor complex comprising:
 - (a) a chimeric alloantigen receptor (CALLAR) comprising an A2 subunit of Factor VIII or C2 subunit of Factor VIII; a linker; and a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and
 - (b) DAP12.
37. The isolated KIR/DAP12 receptor complex of claim 36, wherein the KIR is KIRS2 or KIR2DS2.
38. The isolated KIR/DAP12 receptor complex of claim 36, wherein the linker is a short glycine-serine linker.
39. A genetically modified cell comprising the isolated KIR/DAP12 receptor complex of any one of claims 36-38.
40. A genetically modified cell comprising: an isolated chimeric alloantigen receptor (CALLAR) and DAP12, wherein the CALLAR comprises an extracellular domain comprising A2 subunit of Factor VIII or C2 subunit of Factor VIII, a linker, and a fragment of a KIR, wherein the KIR comprises a transmembrane region and a cytoplasmic domain.
41. The genetically modified cell of claim 40, wherein the KIR is KIRS2 or KIR2DS2.

42. The genetically modified cell of any one of claims 40 or 41, wherein the linker is a short glycine-serine linker.
43. A method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising administering to the subject an effective amount of a genetically modified T cell comprising: an isolated nucleic acid sequence encoding a chimeric alloantigen receptor (CALLAR) comprising a nucleic acid sequence encoding A2 subunit of Factor VIII or C2 subunit of Factor VIII; a nucleic acid sequence encoding a linker; a nucleic acid sequence encoding a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and further comprising a nucleic sequence encoding DAP12, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.
44. The method of claim 43, wherein the linker is a short glycine-serine linker.
45. A method for treating a disorder associated with FVIII antibodies in a subject with hemophilia, the method comprising administering to the subject an effective amount of a genetically modified T cell comprising a chimeric alloantigen receptor (CALLAR) comprising an A2 subunit of Factor VIII or C2 subunit of Factor VIII, a linker, a fragment of a KIR comprising a transmembrane region and a cytoplasmic domain, and further comprising DAP12, thereby treating the disorder associated with FVIII antibodies in the subject with hemophilia.

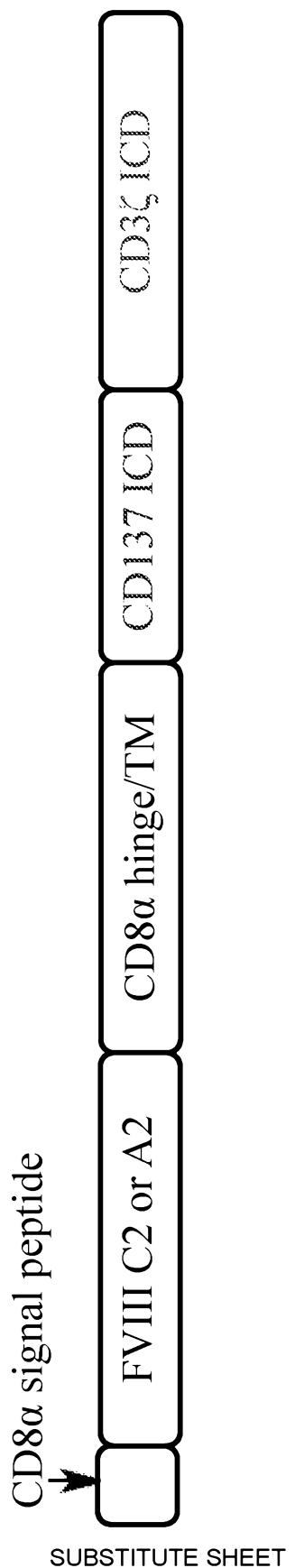


Figure 1

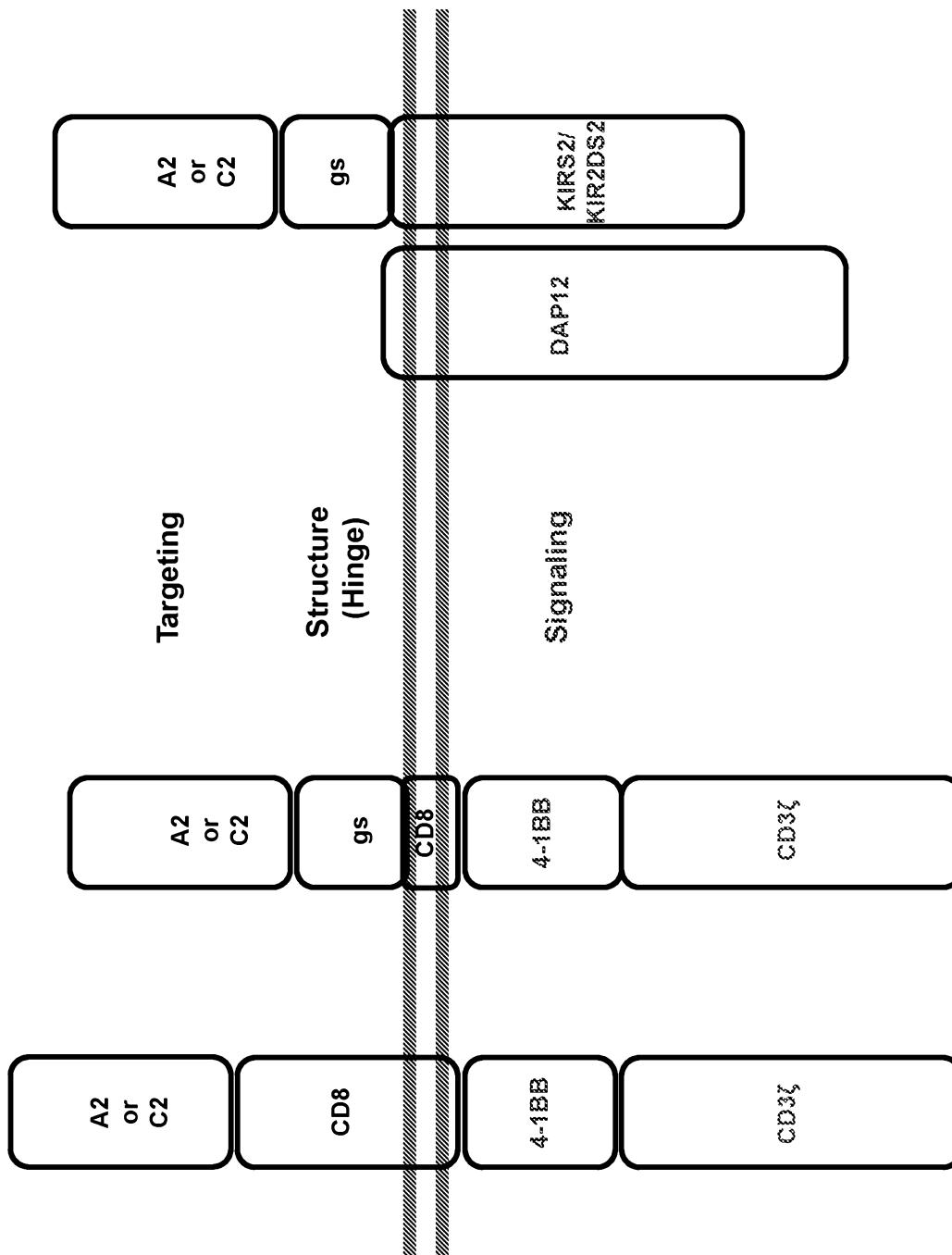


Figure 2

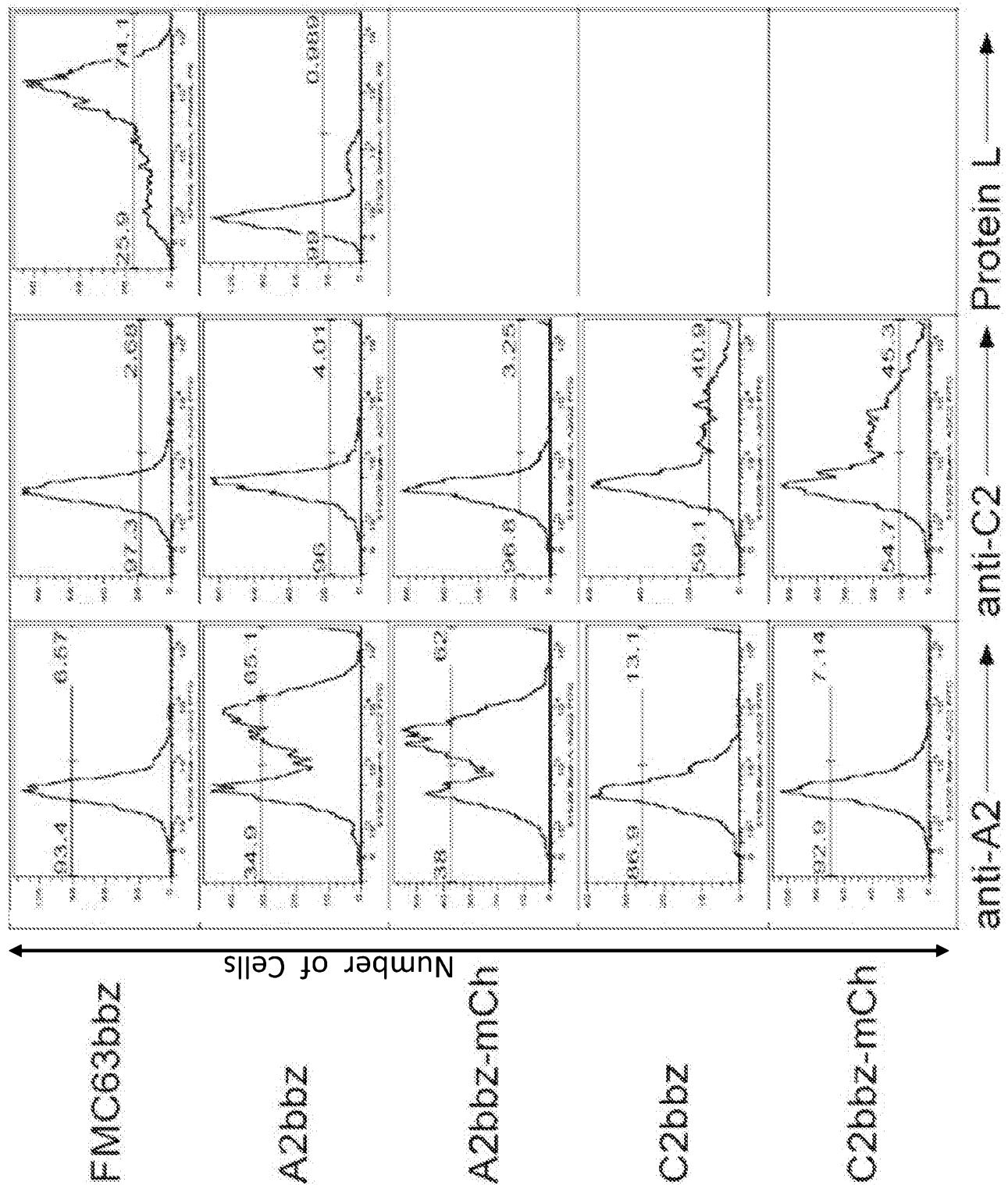


Figure 3

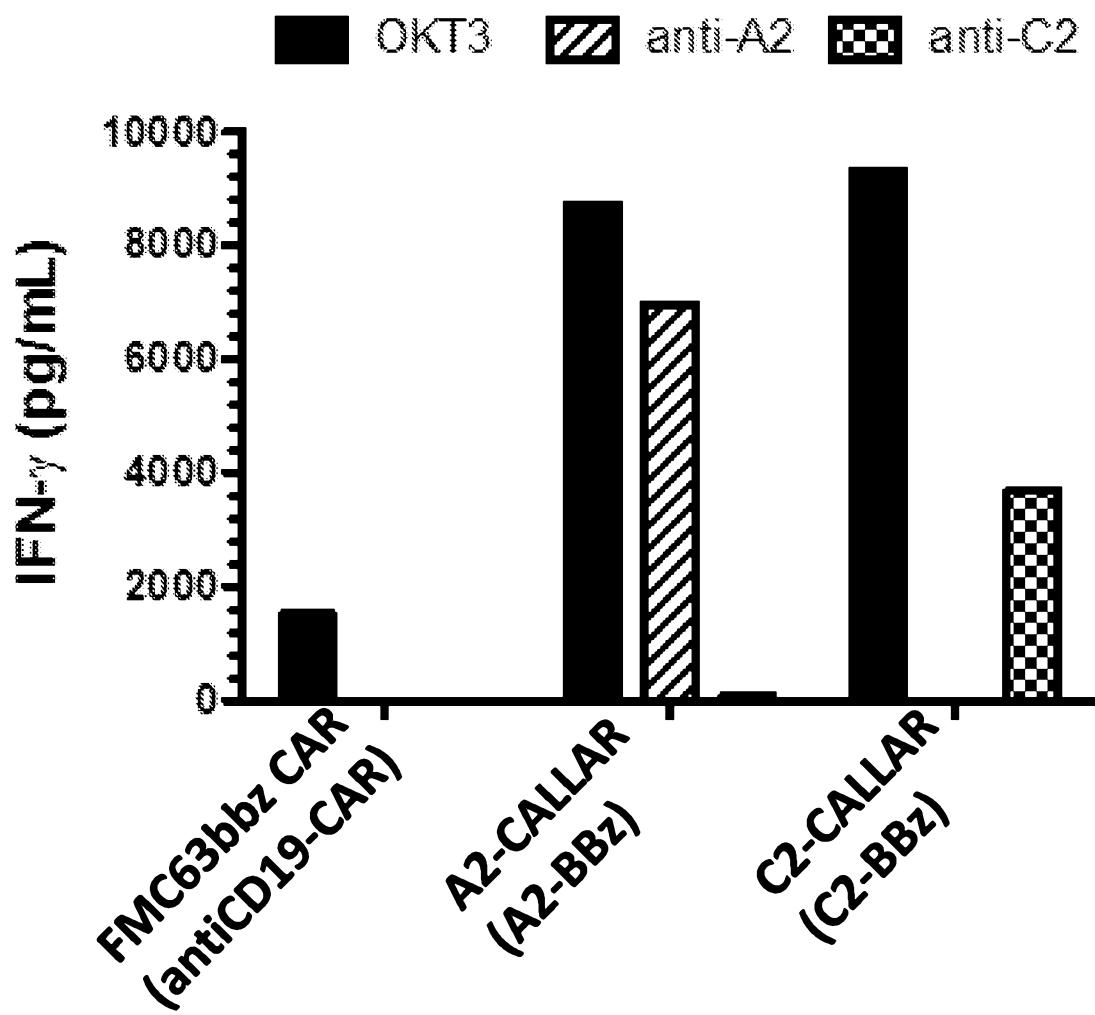


Figure 4

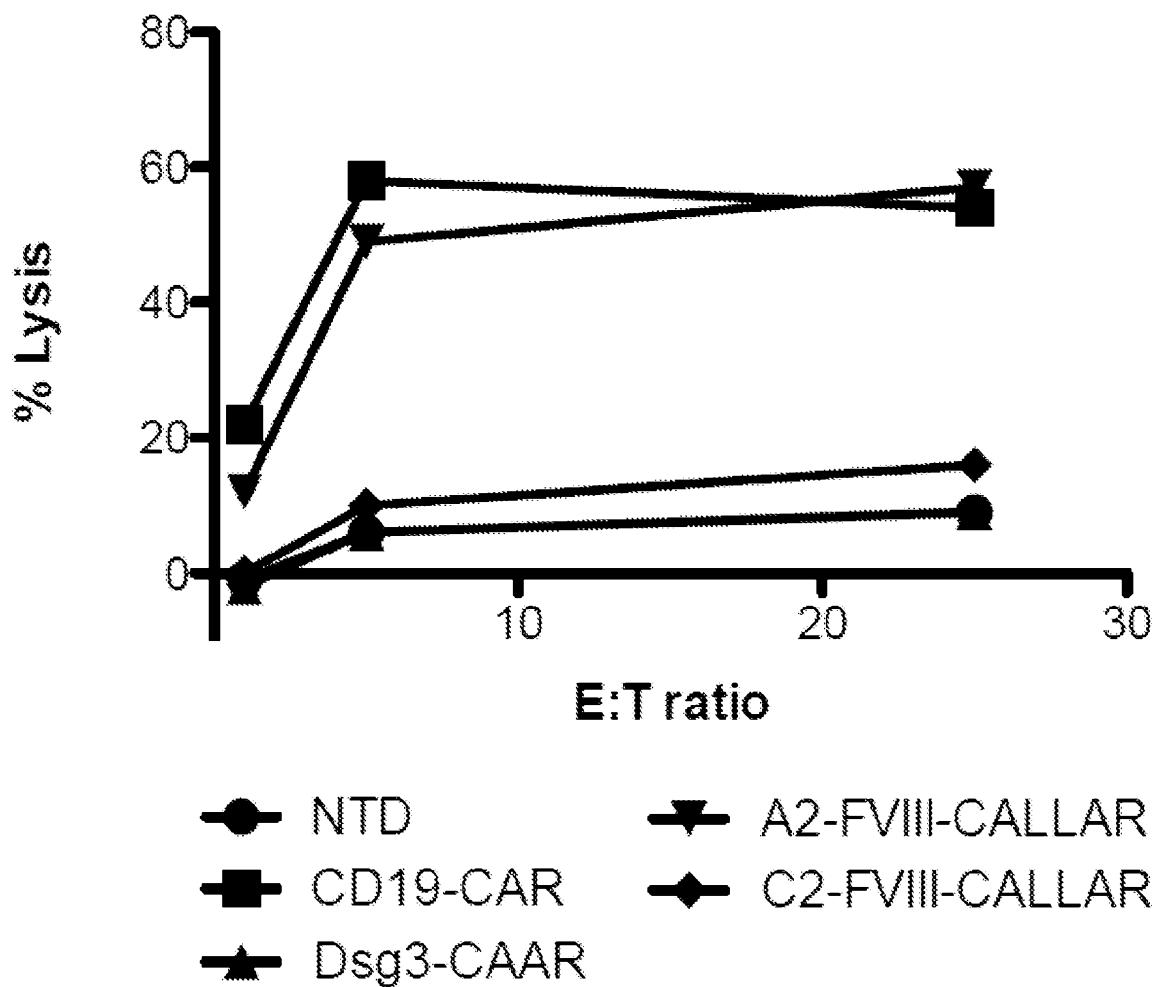


Figure 5

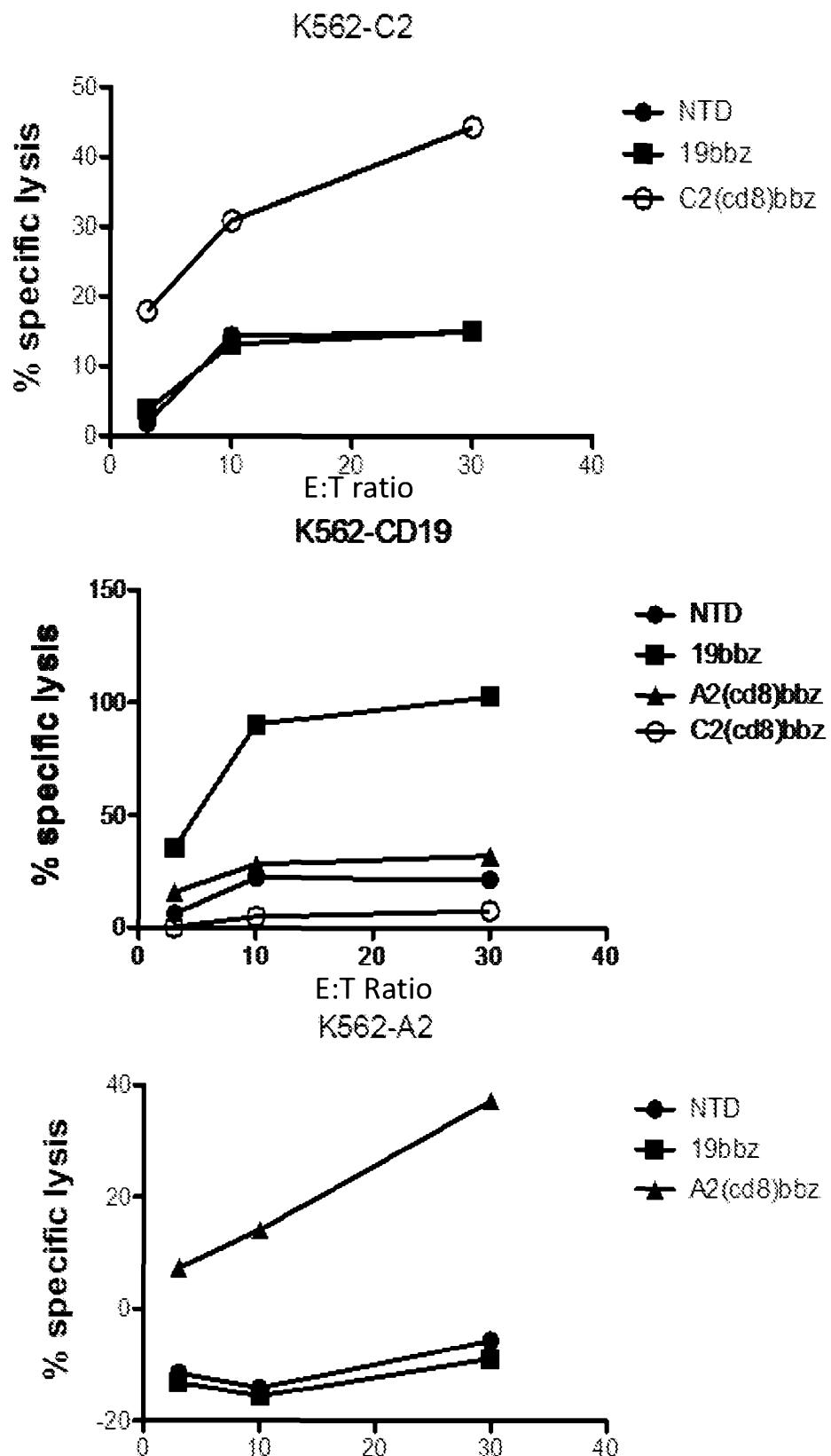


Figure 6

SUBSTITUTE SHEET
6/12

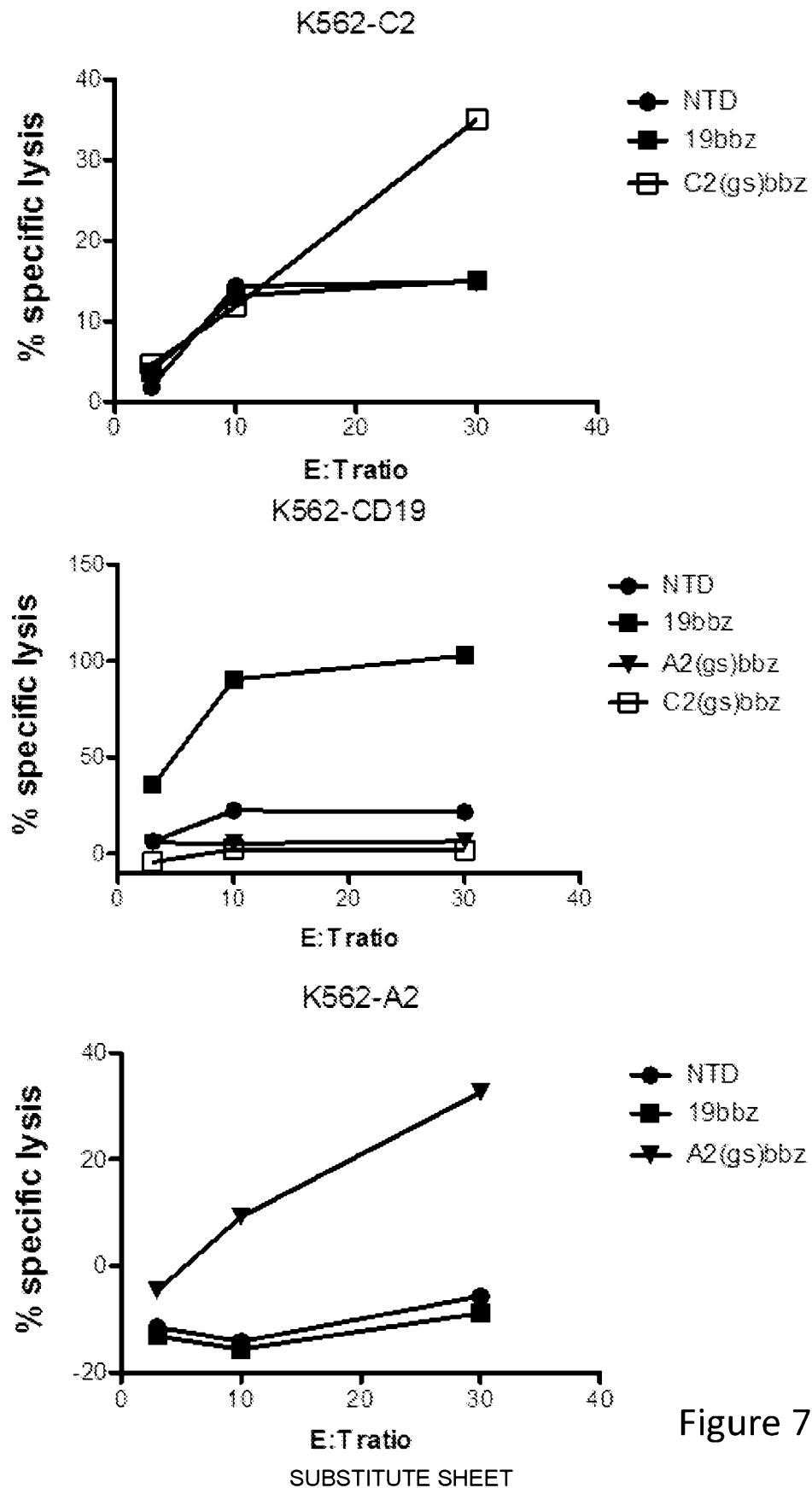


Figure 7

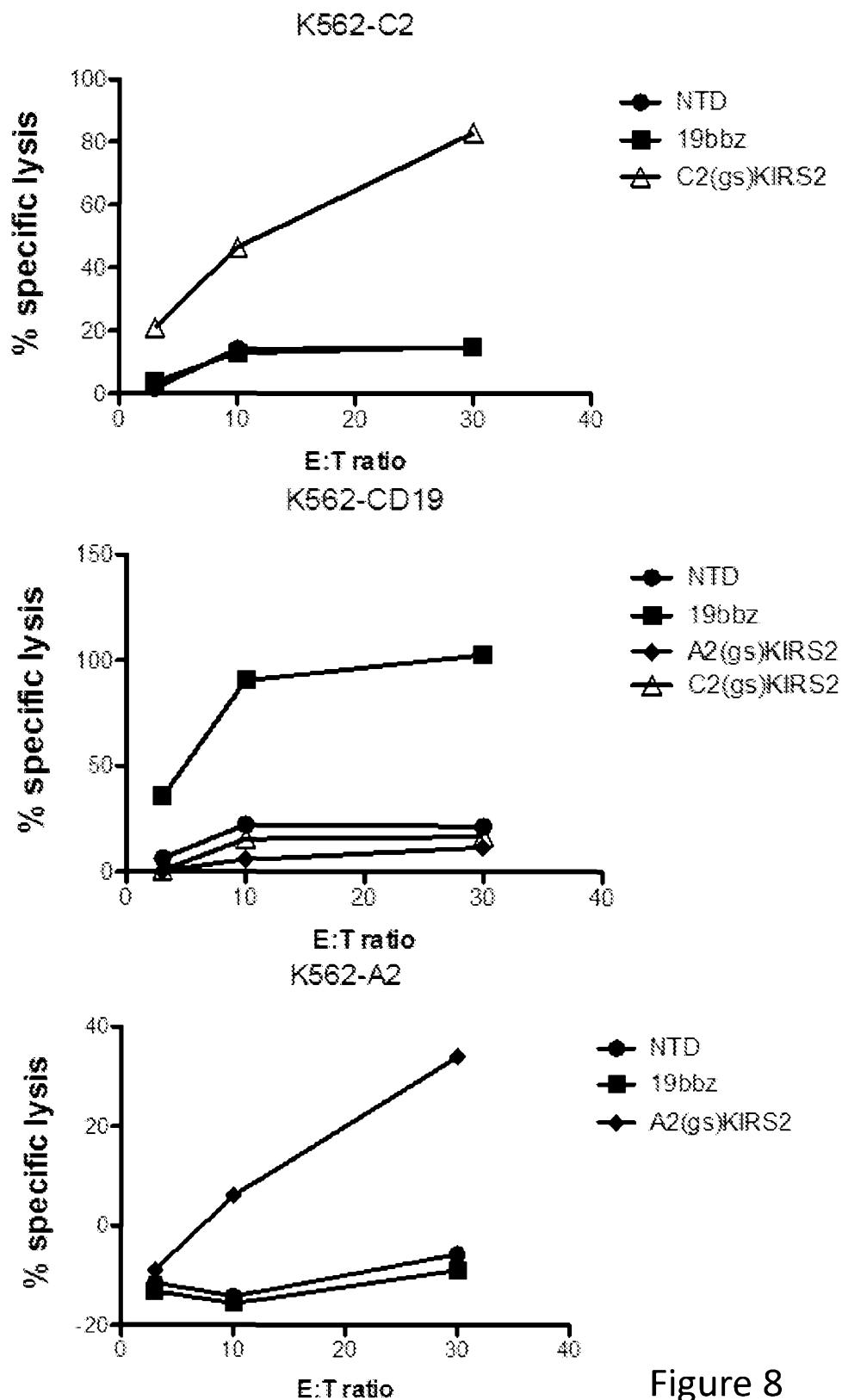


Figure 8

SUBSTITUTE SHEET
8/12

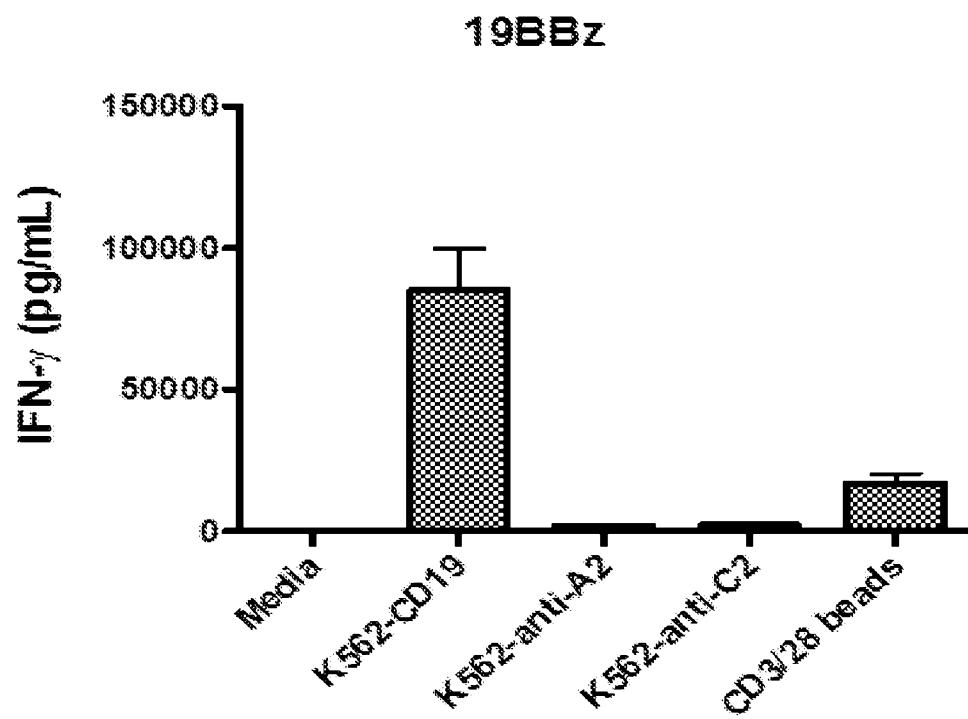


Figure 9 (Part 1/4)

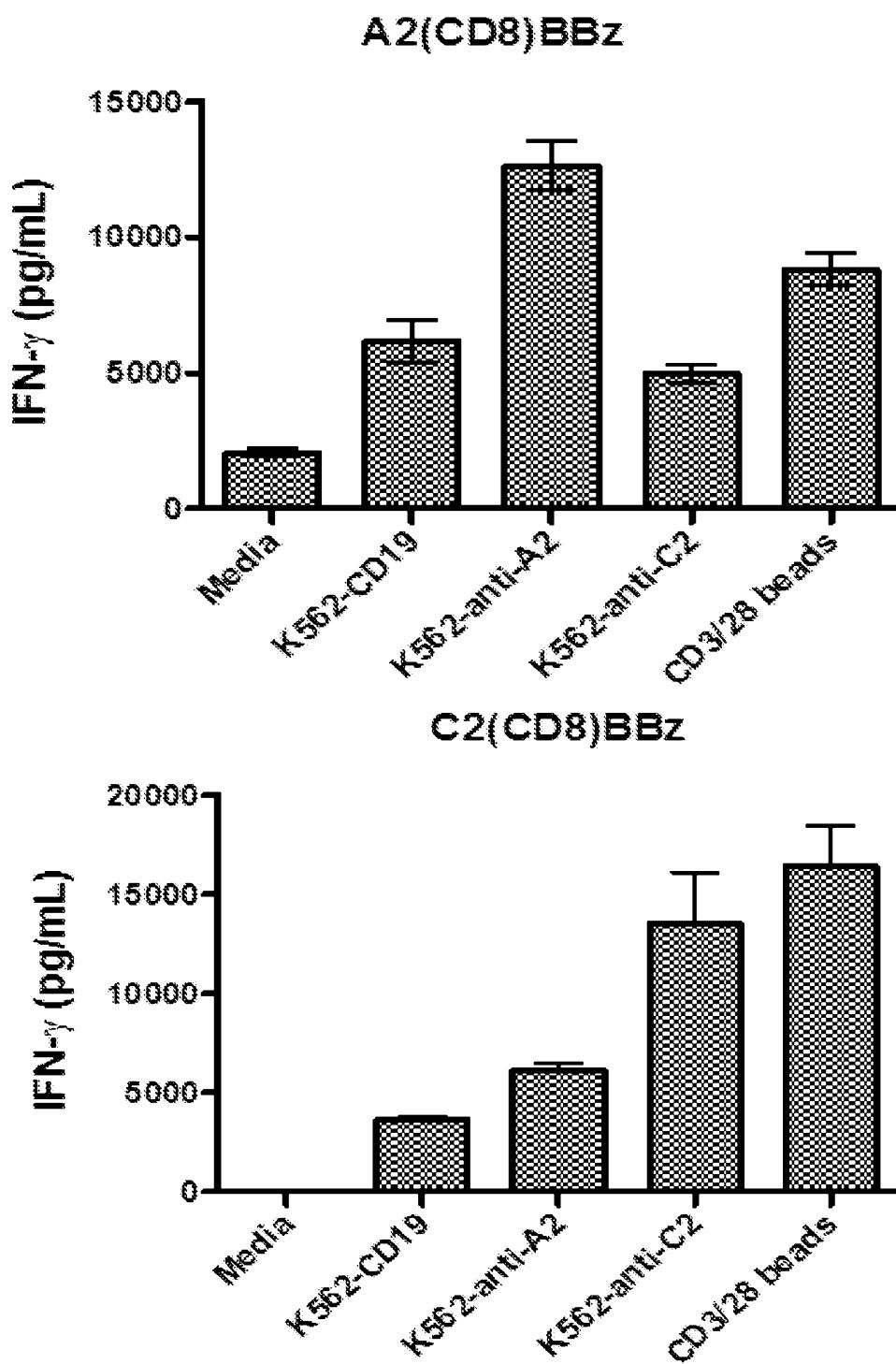


Figure 9 (Part 2/4)

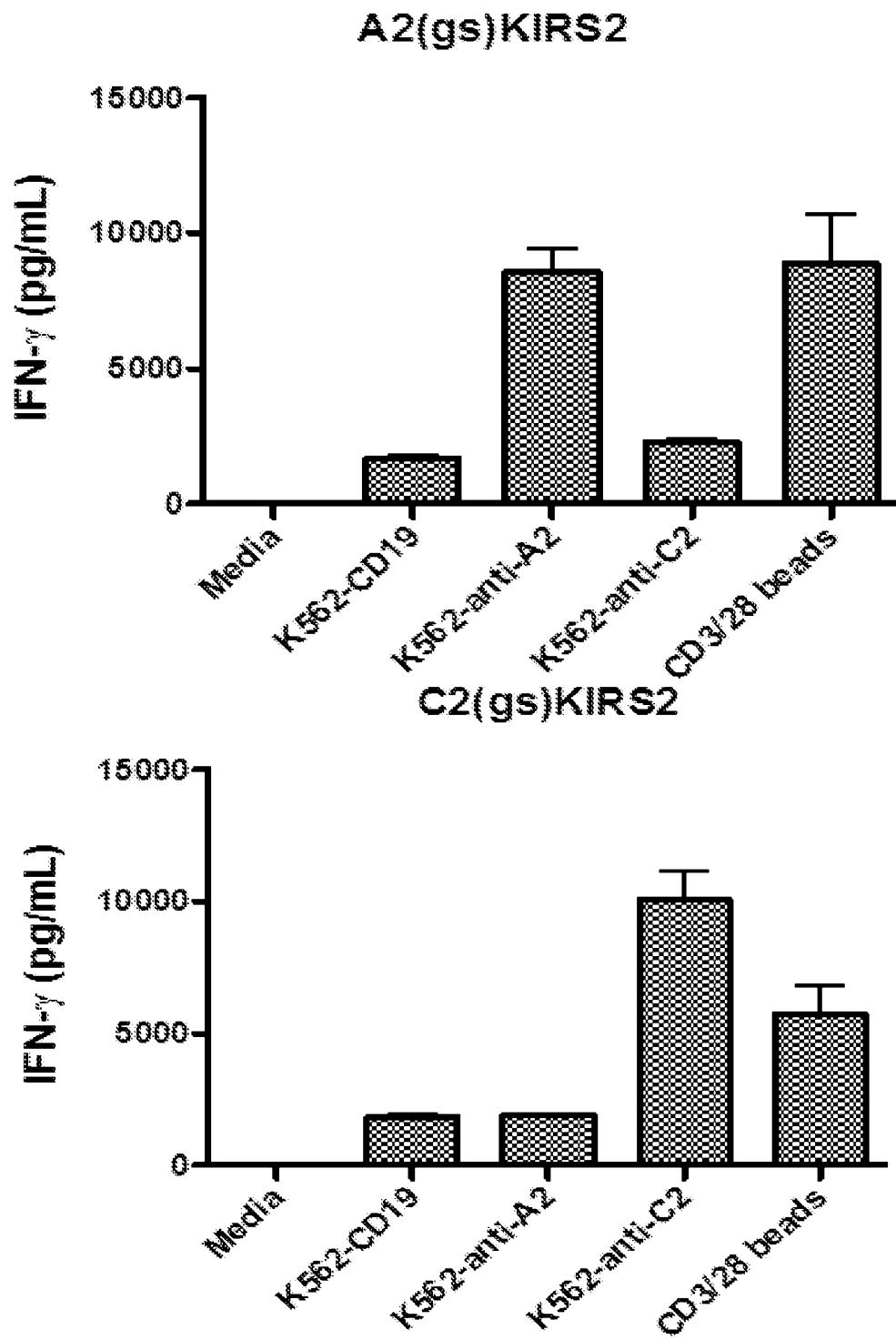


Figure 9 (Part 3/4)

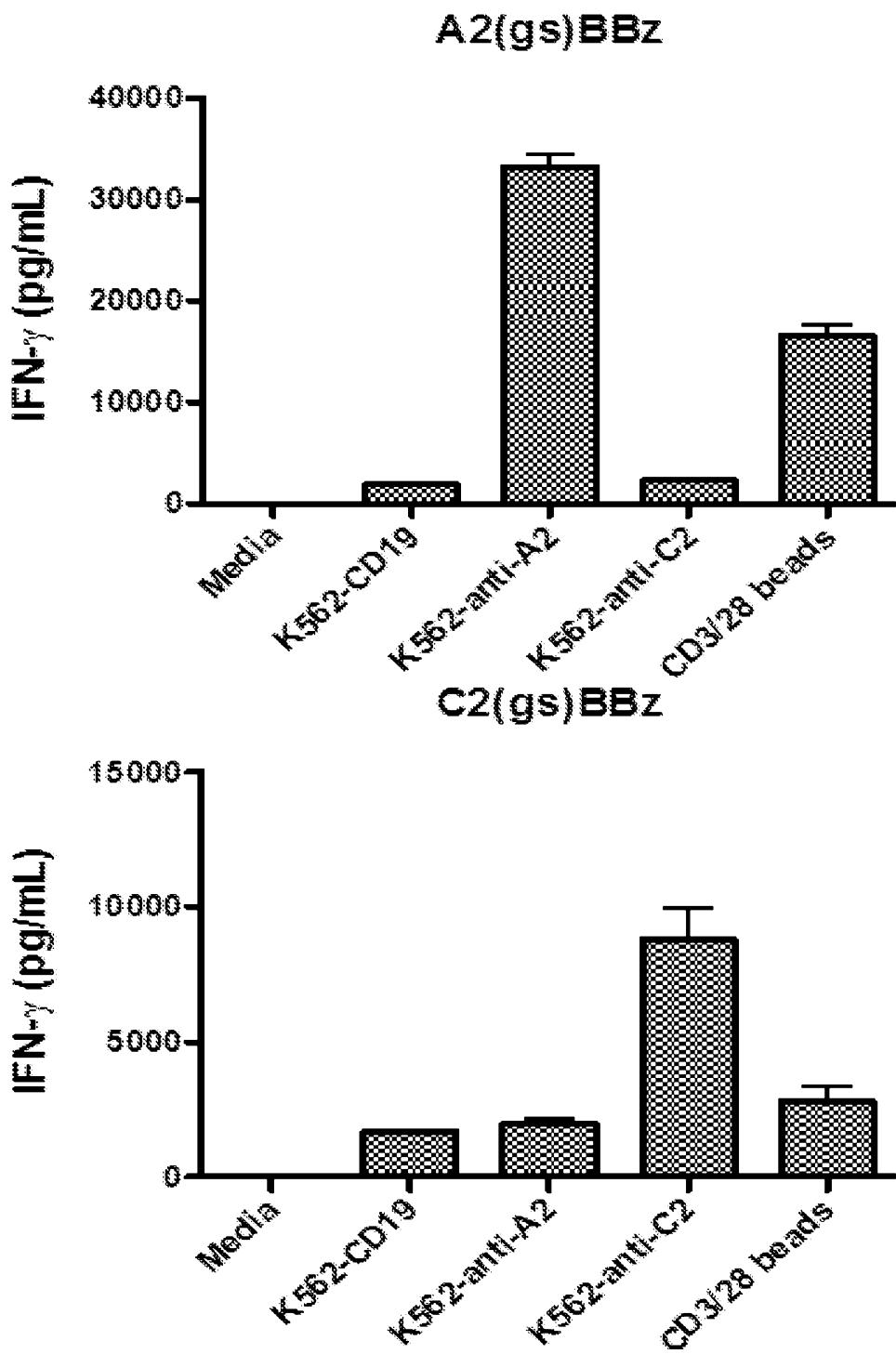


Figure 9 (Part 4/4)

SEQUENCE LISTING

<110> The Trustees of the University of Pennsylvania
 The Children's Hospital of Philadelphia
 Milone, Michael C.
 Arruda, Valder
 Richman, Sarah
 Samelson-Jones, Benjamin

<120> COMPOSITIONS AND METHODS OF CHIMERIC ALLOANTIGEN RECEPTOR T CELLS

<130> 046483-7105W01(01335)

<150> 62/322,937
 <151> 2016-04-15

<160> 29

<170> PatentIn version 3.5

<210> 1
 <211> 1104
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Factor VIII A2 subunit nucleic acid sequence

<400> 1

gatcctcagt	tgccaaagaag	catcctaaaa	cttgggtaca	ttacattgct	gctgaagagg	60
aggactggga	ctatgctccc	ttagtcctcg	cccccgatga	cagaagttat	aaaagtcaat	120
atttgaacaa	tggccctcag	cggattggta	ggaagtacaa	aaaagtccga	tttatggcat	180
acacagatga	aacctttaag	actcgtgaag	ctattcagca	tgaatcagga	atcttggac	240
ctttacttta	tggggaaagtt	ggagacacac	tgttgattat	atthaagaat	caagcaagca	300
gaccatataa	catctaccct	cacggaatca	ctgatgtccg	tcctttgtat	tcaaggagat	360
tacccaaaagg	tgtaaaacat	ttgaaggatt	ttccaattct	gccaggagaa	atattcaaat	420
ataaatggac	agtgactgta	gaagatgggc	caactaaatc	agatcctcgg	tgcctgaccc	480
gctattactc	tagttcgtt	aatatggaga	gagatctagc	ttcaggactc	attggccctc	540
tcctcatctg	ctacaaagaa	tctgtagatc	aaagaggaaa	ccagataatg	tcagacaaga	600
ggaatgtcat	cctgtttct	gtatttgatg	agaaccgaag	ctggtaacctc	acagagaata	660
tacaacgctt	tctcccaat	ccagctggag	tgcagctga	agatccagag	ttccaagcct	720
ccaacatcat	gcacagcatc	aatggctatg	ttttgatag	ttgcagttg	tcagttgtt	780
tgcattgaggt	ggcatactgg	tacattctaa	gcattggagc	acagactgac	ttcctttctg	840
tcttcttctc	tggatatacc	ttcaaacaca	aatggtcta	tgaagacaca	ctcaccctat	900
tcccattctc	aggagaaaact	gtcttcatgt	cgatggaaaa	cccaggtcta	tggattctgg	960

ggtgccacaa ctcagacttt cggAACAGAG gcatgaccgc cttaCTGAAG gtttCTAGTT	1020
gtgacaAGAA cactGGTGTAT tattacGAGG acAGTTATGA agatATTCA gcataCTTC	1080
tgagtaaaaa caatGCCATT gaac	1104

<210> 2
 <211> 368
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Factor VIII A2 subunit amino acid sequence
 <400> 2

Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala			
1	5	10	15

Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp		
20	25	30

Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly		
35	40	45

Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe		
50	55	60

Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu			
65	70	75	80

Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asn Gln		
85	90	95

Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg		
100	105	110

Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp		
115	120	125

Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr		
130	135	140

Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr			
145	150	155	160

Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile		
165	170	175

Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn
 180 185 190

Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp
 195 200 205

Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro
 210 215 220

Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn
 225 230 235 240

Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser
 245 250 255

Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala
 260 265 270

Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His
 275 280 285

Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu
 290 295 300

Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys
 305 310 315 320

His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val
 325 330 335

Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu
 340 345 350

Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg
 355 360 365

<210> 3
 <211> 483
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Factor VIII C2 subunit nucleic acid sequence

<400> 3
 gatccaatag ttgcagcatg ccattggaa tggagagtaa agcaatatca gatgcacaga 60

ttactgcttc atcctacttt accaatatgt ttgccacctg gtctccttca aaagctcgac	120
ttcacctcca agggaggagt aatgcctgga gacctcaggt gaataatcca aaagagtggc	180
tgcaagtgga cttccagaag acaatgaaag tcacaggagt aactactcag ggagtaaaat	240
ctctgcttac cagcatgtat gtgaaggagt tcctcatctc cagcagtcaa gatggccatc	300
agtggactct ctttttcag aatggcaaag taaaggaaaaat tcagggaaat caagactcct	360
tcacacctgt ggtgaactct ctagaccac cgttactgac tcgctacctt cgaattcacc	420
cccagagttg ggtgcaccag attgccctga ggtatggaggt tctgggctgc gaggcacagg	480
acc	483

<210> 4

<211> 161

<212> PRT

<213> Artificial Sequence

<220>

<223> Factor VIII C2 subunit amino acid sequence

<400> 4

Asn	Ser	Cys	Ser	Met	Pro	Leu	Gly	Met	Glu	Ser	Lys	Ala	Ile	Ser	Asp
1				5				10				15			

Ala	Gln	Ile	Thr	Ala	Ser	Ser	Tyr	Phe	Thr	Asn	Met	Phe	Ala	Thr	Trp
				20				25				30			

Ser	Pro	Ser	Lys	Ala	Arg	Leu	His	Leu	Gln	Gly	Arg	Ser	Asn	Ala	Trp
			35			40					45				

Arg	Pro	Gln	Val	Asn	Asn	Pro	Lys	Glu	Trp	Leu	Gln	Val	Asp	Phe	Gln
			50			55			60						

Lys	Thr	Met	Lys	Val	Thr	Gly	Val	Thr	Gln	Gly	Val	Lys	Ser	Leu
65				70				75				80		

Leu	Thr	Ser	Met	Tyr	Val	Lys	Glu	Phe	Leu	Ile	Ser	Ser	Gln	Asp
					85			90				95		

Gly	His	Gln	Trp	Thr	Leu	Phe	Phe	Gln	Asn	Gly	Lys	Val	Lys	Val	Phe
					100			105				110			

Gln	Gly	Asn	Gln	Asp	Ser	Phe	Thr	Pro	Val	Val	Asn	Ser	Leu	Asp	Pro
					115			120			125				

Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His
 130 135 140

Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu
 145 150 155 160

Tyr

<210> 5
 <211> 135
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> CD8 alpha chain hinge

<400> 5
 ctagcaccac gacgccagcg ccgcgaccac caacaccggc gcccaccatc gcgtcgacg 60
 ccctgtccct gcgcccagag gcgtgccggc cagcggcggg gggcgcagtg cacacgaggg 120
 ggctggactt cgccct 135

<210> 6
 <211> 75
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Transmembrane domain

<400> 6
 ccggaatcta catctgggcc cctctggccg gcacctgtgg cgtgctgctg ctgtccctgg 60
 tcatcaccct gtact 75

<210> 7
 <211> 45
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> CD8 alpha chain hinge

<400> 7

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
 1 5 10 15

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
 20 25 30

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp
 35 40 45

<210> 8
 <211> 25
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Transmembrane domain

<400> 8

Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val Leu Leu Leu
 1 5 10 15

Ser Leu Val Ile Thr Leu Tyr Cys Lys
 20 25

<210> 9
 <211> 123
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Intracellular signaling domain of 4-1BB

<400> 9
 gcaaggcgggg cagaaagaag ctgctgtaca tcttcaagca gcccttcatg cggcctgtgc 60
 agaccacaca ggaagaggac ggctgttagct gtagattccc cgaggaagag gaaggcggct 120
 gcg 123

<210> 10
 <211> 40
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> 4-1BB intracellular signaling domain

<400> 10

Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro
 1 5 10 15

Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu
 20 25 30

Glu Glu Glu Gly Gly Cys Glu Leu
 35 40

<210> 11
 <211> 336
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> CD3 zeta signaling domain

<400> 11
 agctgagagt gaagttcagc agaagcgccg acgcccctgc ctatcagcag ggccagaacc 60
 agctgtacaa cgagctgaac ctgggcagac gggaggaata cgacgtgctg gacaagagaa 120
 gaggccggga ccctgagatg ggcggcaagc ccagacggaa gaaccccccag gaaggcctgt 180
 ataacgaact gcagaaagac aagatggccg aggctacag cgagatcggc atgaaggcg 240
 agcggagaag aggcaagggc catgacggcc tgtaccaggg cctgagcacc gccaccaagg 300
 acacctacga cgccctgcac atgcaggccc tgcctc 336

<210> 12
 <211> 111
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> CD3 zeta signaling domain

<400> 12

Val	Lys	Phe	Ser	Arg	Ser	Ala	Asp	Ala	Pro	Ala	Tyr	Gln	Gln	Gly	Gln
1									10					15	

Asn	Gln	Leu	Tyr	Asn	Glu	Leu	Asn	Leu	Gly	Arg	Arg	Glu	Glu	Tyr	Asp
				20				25				30			

Val	Leu	Asp	Lys	Arg	Arg	Gly	Arg	Asp	Pro	Glu	Met	Gly	Gly	Lys	Pro
						35		40			45				

Arg	Arg	Lys	Asn	Pro	Gln	Glu	Gly	Leu	Tyr	Asn	Glu	Leu	Gln	Lys	Asp
					50		55			60					

Lys	Met	Ala	Glu	Ala	Tyr	Ser	Glu	Ile	Gly	Met	Lys	Gly	Glu	Arg	Arg
							65		70	75			80		

Arg	Gly	Lys	Gly	His	Asp	Gly	Leu	Tyr	Gln	Gly	Leu	Ser	Thr	Ala	Thr
					85			90					95		

Lys	Asp	Thr	Tyr	Asp	Ala	Leu	His	Met	Gln	Ala	Leu	Pro	Pro	Arg	
					100			105				110			

<210> 13
 <211> 10335
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> pELPS-hFVIII-A2-BBz-T2A-mCherry

 <400> 13

gatctatgga	gtttgggctg	agctggctt	ttcttgcgc	tatttaaaaa	ggtgtccagt	60
gcggatcctc	agttgccaag	aagcatccta	aaacttgggt	acattacatt	gctgctgaag	120
aggaggactg	ggactatgct	cccttagtcc	tcgccccca	tgacagaagt	tataaaagtc	180
aatatttcaa	caatggccct	cagcggattt	gttaggaagta	caaaaaagtc	cgatttatgg	240
catacacaga	tgaaacctt	aagactcgta	aagctattca	gcatgaatca	ggaatcttgg	300
gacctttact	ttatgggaa	gttggagaca	cactgttgc	tatatttaag	aatcaagcaa	360
gcagaccata	taacatctac	cctcacggaa	tcactgtatgt	ccgtccttgc	tattcaagga	420
gattaccaaa	aggtgtaaaa	catttgaagg	attttccat	tctgccagga	gaaatattca	480
aatataaattg	gacagtgact	gtagaagatg	ggccaactaa	atcagatcct	cggtgcctga	540
cccgcttattt	ctcttagttt	gttaatatgg	agagagatct	agttcagga	ctcattggcc	600
ctctcctcat	ctgctacaaa	gaatctgtat	atcaaagagg	aaaccagata	atgtcagaca	660
agaggaatgt	catcctgttt	tctgtatttgc	atgagaaccg	aagctggta	ctcacagaga	720
atatacaacg	ctttctcccc	aatccagctg	gagtgcagct	tgaagatcca	gagttccaag	780
cctccaaacat	catgcacagc	atcaatggct	atgttttgc	tagttgcag	ttgtcagttt	840
gtttgcattt	gtttgcattt	taagcattgg	agcacagact	gacttcctt		900
ctgtcttctt	ctctggatat	accttcaaacc	acaaaatggt	ctatgaagac	acactcaccc	960
tattccattt	ctcaggagaa	actgtcttca	tgtcgatgga	aaacccaggt	ctatggattc	1020
tggggtgcca	caactcagac	tttcgaaaca	gaggcatgac	cgccttactg	aaggtttcta	1080
gttgtgacaa	gaacactgg	gattattacg	aggacagttt	tgaagatatt	tcagcatact	1140
tgctgagtaa	aaacaatgcc	attgaaccaa	gagctagcac	cacgacgcca	gcgcccgcac	1200
caccaacacc	ggcgccccacc	atcgctcg	agccctgtc	cctgcgcccc	gaggcgtgcc	1260
ggccagggc	ggggggcgca	gtgcacacga	gggggctgga	cttcgcctgt	gattccggaa	1320
tctacatctg	ggccctctg	gccggcacct	gtggcgtgc	gctgctgtcc	ctggcattca	1380
ccctgtactg	caagcggggc	agaaagaagc	tgctgtacat	cttcaagcag	cccttcatgc	1440
ggcctgtgca	gaccacacag	gaagaggacg	gctgtagctg	tagattcccc	gaggaagagg	1500
aaggcggctg	cgagctgaga	gtgaagttca	gcagaagcgc	cgacgcccc	gcctatcagc	1560

agggccagaa ccagctgtac aacgagctga acctggcag acgggaggaa tacgacgtgc	1620
tggacaagag aagaggccgg gaccctgaga tgggcggcaa gcccagacgg aagaacccc	1680
aggaaggcct gtataacgaa ctgcagaaag acaagatggc cgaggcctac agcgagatcg	1740
gcatgaaggg cgagcggaga agaggcaagg gccatgacgg cctgtaccag ggcctgagca	1800
ccgcccaccaa ggacacctac gacgcctgc acatgcaggc cctgcctcca agaggcagcg	1860
gagagggcag aggaagtctt ctaacatgctg gtgacgtgga ggagaatccc ggcctacgc	1920
gtatggtgag caagggcgag gaggataaca tggccatcat caaggagttc atgcgcttca	1980
aggtgcacat ggagggctcc gtgaacggcc acgagttcga gatcgagggc gagggcgagg	2040
gccgccccta cgagggcacc cagaccgcca agctgaaggt gaccaagggt ggcccccctgc	2100
ccttcgcctg ggacatcctg tcccctcagt tcatgtacgg ctccaaggcc tacgtgaagc	2160
accccgccga catccccgac tacttgaagc tgtccttccc cgagggcttc aagtgggagc	2220
gcgtgatgaa ctgcgaggac ggcggcgtgg tgaccgtgac ccaggactcc tccctgcagg	2280
acggcgagtt catctacaag gtgaagctgc gcggcaccaa cttccctcc gacggccccg	2340
taatgcagaa gaagaccatg ggctgggagg ctcctccga gcggatgtac cccgaggacg	2400
gcgcctgaa gggcgagatc aagcagaggc tgaagctgaa ggacggcggc cactacgacg	2460
ctgaggtcaa gaccacctac aaggccaaga agccctgca gctgccggc gcctacaacg	2520
tcaacatcaa gttggacatc acctcccaca acgaggacta caccatcgtg gaacagtacg	2580
aacgcgccga gggccgccac tccaccggcg gcatggacga gctgtacaag taggtcgaca	2640
atcaacctct ggattacaaa atttgtgaaa gattgactgg tattcttaac tatgttgctc	2700
ctttacgct atgtggatac gctgctttaa tgccttgc tcatgctatt gcttccgta	2760
tggcttcat tttctccctcc ttgtataaat cctgggtgct gtctctttat gaggagttgt	2820
ggcccggtgt caggcaacgt ggcgtgggt gcactgtgtt tgctgacgca acccccactg	2880
gttggggcat tgccaccacc tgcagctcc tttccggac tttcgcttcc cccctcccta	2940
ttgccacggc ggaactcatc gcccctgccc ttgcccgtg ctggacaggg gctcggtgt	3000
tgggcactga caattccgtg gtgttgcgg ggaagctgac gtccttcca tggctgctcg	3060
cctgtgttgc cacctggatt ctgcgcggga cgtccttctg ctacgtccct tcggccctca	3120
atccagcgga cttcccttcc cgccgcctgc tgccggctct gcggcctctt ccgcgtcttc	3180
gccttcgccc tcagacgagt cggatctccc tttggggccgc ctccccgcct ggaattcgag	3240
ctcggtacct ttaagaccaa tgacttacaa ggcagctgta gatcttagcc actttttaaa	3300
agaaaaagggg ggactggaag ggctaattca ctcccaacga agacaagatc tgcttttgc	3360

ttgtactggg tctctctgg tagaccagat ctgagcctgg gagctctctg gctaactagg	3420
gaacccactg cttaagcctc aataaagctt gccttgagtg cttcaagtag ttgtgtcccc	3480
tctgttgtt gactctggta actagagatc cctcagaccc ttttagtcag tgtggaaaat	3540
ctcttagcagt agtagttcat gtcatcttattattcagtat ttataacttg caaagaaatg	3600
aatatcagag agtgagagga acttgtttat tgca gtttatt aatggttaca aataaagcaa	3660
tagcatcaca aatttcacaa ataaaggcatt ttttcactg cattctagtt gtggtttgc	3720
caaactcatc aatgtatctt atcatgtctg gctctagcta tcccgccct aactccgccc	3780
agttccgccc attctccgccc ccatggctga ctaattttt ttatattatgc agaggccgag	3840
gccgcctcgg cctctgagct attccagaag tagtgaggag gctttttgg aggcctaggc	3900
tttgcgtcg agacgtaccc aattcgcctt atagttagtc gtattacgcg cgctcactgg	3960
ccgtcgaaaa acaacgtcgt gactggggaaa accctggcgt tacccaaactt aatgccttg	4020
cagcacatcc cccttcgccc agctggcgta atagcgaaga ggcccgacacc gatgcctt	4080
cccaacagtt gcgcagcctg aatggcgaat ggcgcgacgc gccctgttagc ggcgcattaa	4140
gchgccccggg tgtgggggtt acgcgcagcg tgaccgctac acttgccagc gccctagcgc	4200
ccgctcctt cgcttccttc ctttccttgc tcgcccacgtt cgccggctt cccgtcaag	4260
ctctaaatcg ggggatccct ttagggttcc gatttagtgc tttacggcac ctcgacccca	4320
aaaaacttga ttaggggtat gttcacgta gtggccatc gccctgatag acggttttc	4380
gcccttgcac gttggagtcc acgttctta atagtggact cttgttccaa actggaaacaa	4440
cactcaaccc tatctcggtc tattttttt atttataagg gattttgcg atttcggcct	4500
attggtaaaa aaatgagctg atttaacaaa aatttaacgc gaatttaac aaaatattaa	4560
cgtttacaat ttcccaggtg gcactttcg gggaaatgtg cgccggaccc ctattgttt	4620
atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct	4680
tcaataatat tgaaaaagga agagttatgag tattcaacat ttccgtgtcg cccttattcc	4740
ctttttgcg gcattttgcc ttccgtttt tgctcacccaa gaaacgctgg tgaaaagtaaa	4800
agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc tcaacagcgg	4860
taagatcctt gagagtttc gccccgaaga acgtttcca atgtatgagca cttttaaagt	4920
tctgctatgt ggcgcggat tatccgtat tgacgccccca caagagcaac tcggcgccg	4980
catacactat tctcagaatg acttggttga gtactcacca gtcacagaaa agcatcttac	5040
ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg ataacactgc	5100
ggccaaactta cttctgacaa cgatcgagg accgaaggag ctaaccgctt tttgcacaa	5160

catggggat catgttaactc gccttgcattc ttggaaaccg gagctgaatg aagccatacc	5220
aaacgacgag cgtgacacca cgtatgcctgt agcaatggca acaacgttgc gcaaactatt	5280
aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga tggaggcgga	5340
taaagttgca ggaccacttc tgcgctcgcc ccttccggct ggctggttta ttgctgataa	5400
atctggagcc ggtgagcgtg ggtctcgccg tatcattgca gcactggggc cagatggtaa	5460
gccctccgt atcgttagtta tctacacgac ggggagtcag gcaactatgg atgaacgaaa	5520
tagacagatc gctgagatag gtgcctcaact gattaagcat tggtaactgt cagaccaagt	5580
ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa ggatcttaggt	5640
gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagttt cgttccactg	5700
agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt ttctgcgcgt	5760
aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggttgtt tgccggatca	5820
agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac	5880
tgtccttcta gtgtagccgt agttagggca ccacttcaag aactctgttag caccgcctac	5940
atacctcgct ctgctaattcc tggtaaccgt ggctgctgcc agtggcgata agtcgtgtct	6000
taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg	6060
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gataacctaca	6120
cgctgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt	6180
aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta	6240
tctttatagt cctgtcggtt ttcgcacact ctgacttgag cgtcgatttt tgtgtatgctc	6300
gtcagggggg cggagccat gaaaaaacgc cagcaacgcg gccttttac gttcctggc	6360
cttttgcgg cctttgctc acatgttctt tcctgcgtta tcccctgatt ctgtggataa	6420
ccgttattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga ccgagcgcag	6480
cgagtcagtg agcgaggaag cggaaagagcg cccaaatacgc aaaccgcctc tccccgcgcg	6540
ttggccgatt cattaatgca gctggcacga caggtttccc gactggaaag cggcagtgaa	6600
gcgcaacgcgca attaatgtga gttagctcac tcattaggca ccccaggctt tacactttat	6660
gcttccggct cgtatgttgt gtgaaattgt gagcggataa caatttcaca cagggaaacag	6720
ctatgaccat gattacgcca agcgcgcaat taaccctcac taaaggaaac aaaagctgga	6780
gctgcaagct taatgttagtc ttatgcaata ctcttgcgtt cttgcaacat ggttaacgatg	6840
agttagcaac atgccttaca aggagagaaa aagcaccgtg catgcccattt ggtggaaagta	6900
aggtggtagc atcgtgcctt attaggaagg caacagacgg gtctgacatg gattggacga	6960

accactgaat tgccgcattg cagagatatt gtatttaagt gcctagctcg atacaataaa	7020
cgggtctctc tggtagacc agatctgagc ctgggagctc tctggctaac tagggAACCC	7080
actgcttaag cctcaataaa gcttccttg agtgcttcaa gtagtgtgtg cccgtctgtt	7140
gtgtgactct ggtaactaga gatccctcag acccttttag tcagtgtgga aaatctctag	7200
cagtggcgcc cgaacagggc cctgaaagcg aaagggaaac cagagctctc tcgacgcagg	7260
actcggcttg ctgaagcgcg cacggcaaga ggcgaggggc ggcgactggt gagtacgcca	7320
aaaattttga ctagcggagg ctagaaggag agagatgggt gcgagagcgt cagtattaag	7380
cggggagaa ttagatcgcg atggaaaaaa attcggttaa ggccaggggg aaagaaaaaa	7440
tataaattaa aacatatagt atggcaagc agggagctag aacgattcgc agttaatcct	7500
ggcctgttag aaacatcaga aggctgtaga caaatactgg gacagctaca accatccctt	7560
cagacaggat cagaagaact tagatcatta tataatacag tagcaaccct ctattgtgt	7620
catcaaagga tagagataaa agacaccaag gaagctttag acaagataga ggaagagcaa	7680
aacaaaagta agaccaccgc acagcaagcg gccgctgatc ttcagacctg gaggaggaga	7740
tatgagggac aattggagaa gtgaattata taaatataaa gtagaaaaaa ttgaaccatt	7800
aggagtagca cccaccaagg caaagagaag agtgggtcag agagaaaaaa gagcagtggg	7860
aataggagct ttgttccttg ggtcttggg agcagcagga agcactatgg gcgcagcctc	7920
aatgacgctg acggtacagg ccagacaatt attgtctggt atagtgcagc agcagaacaa	7980
tttgctgagg gctattgagg cgcaacagca tctgttgcaaa ctcacagtct gggcatcaa	8040
gcagctccag gcaagaatcc tggctgtgga aagataccta aaggatcaac agctcctggg	8100
gatttgggt tgctctggaa aactcatttg caccactgct gtgccttggaa atgctagttg	8160
gagtaataaa tctctggAAC agattggaaat cacacgacct ggtggagtg ggacagagaa	8220
attaacaatt acacaagctt aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa	8280
aagaatgaac aagaattatt ggaatttagat aaatggcaa gtttggaa ttggtttaac	8340
ataacaaatt ggctgtggta tataaaattta ttccataatga tagtaggagg cttggtaggt	8400
ttaagaatag ttttgctgt actttctata gtgaatagag ttaggcaggg atattcacca	8460
ttatcgtttc agaccaccc cccaaaccccg aggggacccg acaggcccga aggaatagaa	8520
gaagaaggtg gagagagaga cagagacaga tccattcgat tagtgaacgg atctcgacgg	8580
tatcgattag actgtagccc aggaatatgg cagctagatt gtacacattt agaaggaaaa	8640
gttatcttgg tagcagttca tgttagccagt ggatatacg aagcagaagt aattccagca	8700
gagacagggc aagaaacagc atacttcctc taaaattag caggaagatg gccagtaaaa	8760

acagtacata cagacaatgg cagcaatttc accagtacta cagtttaaggc cgcctgttgg	8820
tgggcgggga tcaaggcagga atttggcatt ccctacaatc cccaaagtca aggagtaata	8880
gaatctatga ataaagaatt aaagaaaatt ataggacagg taagagatca ggctgaacat	8940
cttaagacag cagtacaaat ggcagtattc atccacaatt taaaagaaa aggggggatt	9000
gggggtaca gtgcagggga aagaatagta gacataatag caacagacat acaaactaaa	9060
gaattacaaa aacaaattac aaaaattcaa aatttcggg tttattacag ggacagcaga	9120
gatccagttt ggctgcattt atcacgtgag gctccggtgc ccgtcagtgg gcagagcgca	9180
catcgcccac agtccccgag aagttggggg gaggggtcgg caattgaacc ggtgcctaga	9240
gaaggtggcg cgggtaaac tggaaagtg atgtcgtgta ctggctccgc cttttcccg	9300
agggtggggg agaaccgtat ataagtgcag tagtcgcgt gaacgttctt tttcgcaacg	9360
ggttgccgc cagaacacag gtaagtgccg tgtgtggttc ccgcgggcct ggcctctta	9420
cgggttatgg cccttgcgtg cttgaatta cttccacctg gctgcagtac gtgattctt	9480
atcccagact tcggggttgg agtgggtgg agagttcgag gccttgcgt taaggagccc	9540
cttcgcctcg tgcttgagtt gaggcctggc ctggcgctg gggccgcccgt gtgcgaatct	9600
gttggcacct tcgcgcctgt tcgcgtgct tcgataagtc tctagccatt taaaattttt	9660
gatgacactgc tgcgacgctt ttttctggc aagatagtct tgtaaatgcg ggccaagatc	9720
tgcacactgg tatttcgggtt tttggggccg cgggcggcga cggggcccggt gcgtcccagc	9780
gcacatgttc ggcgaggcgg ggcctgcgag cgcggccacc gagaatcggc cggggtagt	9840
ctcaagctgg ccggcctgtc ctgggtgcctg gcctcgccgc gccgtgtatc gccccccct	9900
gggcggcaag gctggcccg tcggcaccag ttgcgtgagc ggaaagatgg ccgcttcccg	9960
gccctgctgc agggagctca aaatggagga cgcggcgctc gggagagcgg gcgggtgagt	10020
cacccacaca aaggaaaagg gccttccgt cctcagccgt cgcttcatgt gactccacgg	10080
agtaccgggc gccgtccagg cacctcgatt agttctcgag cttttggagt acgtcgtctt	10140
taggttgggg ggaggggttt tatgcgtatgg agttccca cactgagtgg gtggagactg	10200
aagttaggcc agcttggcac ttgatgtaat tctccttggaa atttgcctt tttgagtttgc	10260
gatcttgggtt catttcaag cctcagacag tggtaaaatgg ttttttctt ccatttcagg	10320
tgtcgtgatc tagag	10335

<210> 14
 <211> 875
 <212> PRT
 <213> Artificial Sequence

<220>

<223> hFVIII-A2-BBz-T2A-mCherry

<400> 14

Met	Glu	Phe	Gly	Leu	Ser	Trp	Leu	Phe	Leu	Val	Ala	Ile	Leu	Lys	Gly
1				5					10					15	

Val	Gln	Cys	Gly	Ser	Ser	Val	Ala	Lys	Lys	His	Pro	Lys	Thr	Trp	Val
				20				25					30		

His	Tyr	Ile	Ala	Ala	Glu	Glu	Asp	Trp	Asp	Tyr	Ala	Pro	Leu	Val
					35			40			45			

Leu	Ala	Pro	Asp	Asp	Arg	Ser	Tyr	Lys	Ser	Gln	Tyr	Leu	Asn	Asn	Gly
					50			55			60				

Pro	Gln	Arg	Ile	Gly	Arg	Lys	Tyr	Lys	Lys	Val	Arg	Phe	Met	Ala	Tyr
65					70				75				80		

Thr	Asp	Glu	Thr	Phe	Lys	Thr	Arg	Glu	Ala	Ile	Gln	His	Glu	Ser	Gly
					85			90			95				

Ile	Leu	Gly	Pro	Leu	Leu	Tyr	Gly	Glu	Val	Gly	Asp	Thr	Leu	Leu	Ile
					100			105			110				

Ile	Phe	Lys	Asn	Gln	Ala	Ser	Arg	Pro	Tyr	Asn	Ile	Tyr	Pro	His	Gly
					115			120			125				

Ile	Thr	Asp	Val	Arg	Pro	Leu	Tyr	Ser	Arg	Arg	Leu	Pro	Lys	Gly	Val
					130			135			140				

Lys	His	Leu	Lys	Asp	Phe	Pro	Ile	Leu	Pro	Gly	Glu	Ile	Phe	Lys	Tyr
					145			150			155			160	

Lys	Trp	Thr	Val	Thr	Val	Glu	Asp	Gly	Pro	Thr	Lys	Ser	Asp	Pro	Arg
					165			170			175				

Cys	Leu	Thr	Arg	Tyr	Tyr	Ser	Ser	Phe	Val	Asn	Met	Glu	Arg	Asp	Leu
								180			185		190		

Ala	Ser	Gly	Leu	Ile	Gly	Pro	Leu	Leu	Ile	Cys	Tyr	Lys	Glu	Ser	Val
								195		200		205			

Asp	Gln	Arg	Gly	Asn	Gln	Ile	Met	Ser	Asp	Lys	Arg	Asn	Val	Ile	Leu
								210		215		220			

Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile
 225 230 235 240

Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu
 245 250 255

Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp
 260 265 270

Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile
 275 280 285

Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly
 290 295 300

Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe
 305 310 315 320

Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu
 325 330 335

Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr
 340 345 350

Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr
 355 360 365

Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn
 370 375 380

Ala Ile Glu Pro Arg Ala Ser Thr Thr Pro Ala Pro Arg Pro Pro
 385 390 395 400

Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro Glu
 405 410 415

Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp
 420 425 430

Phe Ala Cys Asp Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr
 435 440 445

Cys Gly Val Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys Arg
 450 455 460

Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro
 465 470 475 480

Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu
 485 490 495

Glu Glu Glu Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser Ala
 500 505 510

Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
 515 520 525

Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
 530 535 540

Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu
 545 550 555 560

Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
 565 570 575

Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly
 580 585 590

Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu
 595 600 605

His Met Gln Ala Leu Pro Pro Arg Gly Ser Gly Glu Gly Arg Gly Ser
 610 615 620

Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Thr Arg Met
 625 630 635 640

Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe Met
 645 650 655

Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe Glu
 660 665 670

Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr Ala
 675 680 685

Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile
 690 695 700

Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His Pro
 705 710 715 720

Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe Lys
 725 730 735

Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val Thr
 740 745 750

Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys Leu
 755 760 765

Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys Thr
 770 775 780

Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly Ala
 785 790 795 800

Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly His
 805 810 815

Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val Gln
 820 825 830

Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser His
 835 840 845

Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly Arg
 850 855 860

His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys
 865 870 875

<210> 15
 <211> 616
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> hFVIII-A2-BBz-T2A

<400> 15

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
 1 5 10 15

Val Gln Cys Gly Ser Ser Val Ala Lys Lys His Pro Lys Thr Trp Val
 20 25 30

His Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val
 35 40 45

Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly
 50 55 60

Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr
 65 70 75 80

Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly
 85 90 95

Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile
 100 105 110

Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly
 115 120 125

Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val
 130 135 140

Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr
 145 150 155 160

Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg
 165 170 175

Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu
 180 185 190

Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val
 195 200 205

Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu
 210 215 220

Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile
 225 230 235 240

Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu
 245 250 255

Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp
 260 265 270

Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile
 275 280 285

Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly
 290 295 300

Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe
 305 310 315 320

Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu
 325 330 335

Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr
 340 345 350

Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr
 355 360 365

Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn
 370 375 380

Ala Ile Glu Pro Arg Ala Ser Thr Thr Pro Ala Pro Arg Pro Pro
 385 390 395 400

Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro Glu
 405 410 415

Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp
 420 425 430

Phe Ala Cys Asp Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr
 435 440 445

Cys Gly Val Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys Arg
 450 455 460

Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro
 465 470 475 480

Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu
 485 490 495

Glu Glu Glu Gly Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser Ala
 500 505 510

Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
 515 520 525

Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
 530 535 540

Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu
 545 550 555 560

Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
 565 570 575

Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly
 580 585 590

Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu
 595 600 605

His Met Gln Ala Leu Pro Pro Arg
 610 615

<210> 16

<211> 9714

<212> DNA

<213> Artificial Sequence

<220>

<223> pELPS-hFVIII-C2-BBz-T2A-mCherry

<400> 16

gatctatgga gtttgggctg agctggcttt ttcttgtggc tattttaaaa ggtgtccagt 60

gcggatccaa tagttgcagc atgccattgg gaatggagag taaagcaata tcagatgcac 120

agattactgc ttcatcctac tttaccaata tgtttgccac ctggtctcct tcaaaagctc 180

gacttcacct ccaagggagg agtaatgcct ggagacctca ggtgaataat ccaaaagagt 240

ggctgcaagt ggacttccag aagacaatga aagtcacagg agtaactact cagggagtaa 300

aatctctgct taccagcatg tatgtgaagg agttcctcat ctccagcagt caagatggcc 360

atcagtggac tctctttttt cagaatggca aagtaaaggt ttttcagggta aatcaagact 420

ccttcacacc tgtggtgaac tctctagacc caccgttact gactcgctac ctccgaattc 480

accccccagag ttgggtgcac cagattgccc tgaggatgga ggttctgggc tgcgaggcac 540

aggacctcta cgctagcacc acgacgcccag cgccgcgacc accaacacccg gcgcacca 600

tcgcgtcgca	gcccctgtcc	ctgcgcccag	aggcgtgccg	gccagcggcg	gggggcgcag	660
tgcacacgag	ggggctggac	ttcgctgtg	attccggaat	ctacatctgg	gcccctctgg	720
ccggcacctg	tggcgtgctg	ctgctgtccc	tggtcatcac	cctgtactgc	aagcggggca	780
gaaagaagct	gctgtacatc	ttcaaggcagc	ccttcatgcg	gcctgtgcag	accacacagg	840
aagaggacgg	ctgtagctgt	agattccccg	aggaagagga	aggcggctgc	gagctgagag	900
tgaagttcag	cagaagcgcc	gacgcccctg	cctatcagca	gggccagaac	cagctgtaca	960
acgagctgaa	cctgggcaga	cgggaggaat	acgacgtgct	ggacaagaga	agaggccggg	1020
accctgagat	gggcggcaag	cccagacgga	agaacccca	ggaaggcctg	tataacgaac	1080
tgcagaaaga	caagatggcc	gaggcctaca	gcgagatcgg	catgaagggc	gagcggagaa	1140
gaggcaaggg	ccatgacggc	ctgtaccagg	gcctgagcac	cgccaccaag	gacacctacg	1200
acgcccctgca	catgcaggcc	ctgcctccaa	gaggcagcgg	agagggcaga	ggaagtcttc	1260
taacatgcgg	tgacgtggag	gagaatccc	gcctacgcg	tatggtgagc	aagggcgagg	1320
aggataacat	ggccatcatc	aaggagtta	tgcgcttcaa	ggtgcacatg	gagggctccg	1380
tgaacggcca	cgagttcgag	atcgagggcg	agggcgaggg	ccgcccctac	gagggcaccc	1440
agaccgccaa	gctgaaggtg	accaagggtg	gccccctgcc	cttcgcctgg	gacatcctgt	1500
cccctcagtt	catgtacggc	tccaaggcct	acgtgaagca	ccccgcccac	atccccgact	1560
acttgaagct	gtccttcccc	gagggcttca	agtgggagcg	cgtgatgaac	ttcgaggacg	1620
gcggcgtggt	gaccgtgacc	caggactcct	ccctgcagga	cggcgagttc	atctacaagg	1680
tgaagctgcg	cggcaccaac	ttccccctcg	acggccccgt	aatgcagaag	aagaccatgg	1740
gctgggaggc	ctcctccgag	cggatgtacc	ccgaggacgg	cgcctgaag	ggcgagatca	1800
agcagaggct	gaagctgaag	gacggcggcc	actacgacgc	tgaggtcaag	accacctaca	1860
aggccaagaa	gcccgtgcag	ctgcccggcg	cctacaacgt	caacatcaag	ttggacatca	1920
cctccccacaa	cgaggactac	accatcgtgg	aacagtacga	acgcgcccag	ggccgcccact	1980
ccacccggcgg	catggacgag	ctgtacaagt	aggtcgacaa	tcaacctctg	gattacaaaa	2040
tttgtgaaag	attgactggt	attcttaact	atgttgctcc	ttttacgcta	tgtggatacg	2100
ctgctttaat	gcctttgtat	catgctattg	cttcccgtat	ggctttcatt	ttctcctcct	2160
tgtataaattc	ctggttgctg	tctctttatg	aggagttgtg	gcccgttgc	aggcaacgtg	2220
gcgtgggtgt	cactgtgttt	gctgacgcaa	cccccaactgg	ttggggcatt	gccaccacct	2280
gtcagctcct	ttccgggact	ttcgctttcc	ccctccctat	tgccacggcg	gaactcatcg	2340
ccgcctgcct	tgcccgtgc	tggacagggg	ctcggtgtt	gggcactgac	aattccgtgg	2400

tgcacgagtg ggttacatcg aactggatct caacagcggt aagatccttg agagtttcg	4260
ccccgaagaa cgtttccaa tgatgagcac ttttaagtt ctgctatgtg gcgcggtatt	4320
atcccgtatt gacgcgggc aagagcaact cggtcgccgc atacactatt ctcagaatga	4380
cttggtagactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga	4440
attatgcagt gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac	4500
gatcggagga ccgaaggagc taaccgctt tttgcacaac atggggatc atgtaactcg	4560
ccttgcgt tggaaaccgg agctgaatga agccatacca aacgacgagc gtgacaccac	4620
gatgcctgta gcaatggcaa caacgttgcg caaactatta actggcgaac tacttactct	4680
agcttccgg caacaattaa tagactggat ggagggcgat aaagttgcag gaccactct	4740
gcgctcggcc cttccggctg gctggttat tgctgataaa tctggagccg gtgagcgtgg	4800
gtctcgcggt atcattgcag cactgggccc agatggtaag ccctccgta tcgtagttat	4860
ctacacgacg gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg	4920
tgcctcactg attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat	4980
tgatttaaaa cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct	5040
catgaccaaa atcccttaac gtgagtttc gttccactga gcgtcagacc ccgtagaaaa	5100
gatcaaagga tcttctttag atccttttt tctgcgcgta atctgctgct tgcaaacaaa	5160
aaaaccaccc ctaccagcg tggttgtt gccggatcaa gagctaccaa ctctttcc	5220
gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta	5280
gttaggccac cacttcaaga actctgttagc accgcctaca tacctcgctc tgctaattct	5340
gttaccagtg gctgtgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg	5400
atagttaccg gataaggcgc agcggtcggtt ctgaacgggg ggttcgtgca cacagcccag	5460
cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc	5520
cacgcttccc gaaggggagaa aggccggacag gtatccgta agccggcaggg tcggaacagg	5580
agagcgcacg agggagcttc cagggggaaa cgcctggat ctttatactc ctgtcggtt	5640
tcgcccaccc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg	5700
aaaaaacgcc agcaacgcgg ctttttacg gttcctggcc ttttgctggc ctttgctca	5760
catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccc cctttgagtg	5820
agctgataacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc	5880
ggaagagcgc ccaatacgca aaccgcctct ccccgccgt tggccgattc attaatgcag	5940
ctggcacgac aggttcccg actggaaagc gggcagttag cgcaacgcaa ttaatgtgag	6000

ttagctcact cattaggcac cccaggctt acactttatg cttccggctc gtatgttgtg	6060
tggaatttgt agcgataac aatttcacac aggaaacagc tatgaccatg attacgcca	6120
gcgcgcaatt aaccctcact aaagggaaaca aaagctggag ctgcaagctt aatgtagtct	6180
tatgcaatac tctttagtc ttgcaacatg gtaacgatga gtagcaaca tgccttacaa	6240
ggagagaaaa agcaccgtgc atgccgattg gtggaaagtaa ggtggtaacg tcgtgcctta	6300
ttaggaaggc aacagacggg tctgacatgg attggacgaa ccactgaatt gccgcattgc	6360
agagatattg tatttaagtg cctagctcga tacaataaac gggtctctct gtttagacca	6420
gatctgagcc tggagactct ctggctaact agggAACCCa ctgcttaagc ctcaataaaag	6480
cttgcccttga gtgcttcaag tagtgtgtgc ccgtctgttgc tgtgactctg gtaactagag	6540
atccctcaga cccttttagt cagtgtggaa aatctctagc agtggcgccc gaacagggac	6600
ctgaaagcga aagggaaacc agagctctct cgacgcagga ctggcttgc tgaagcgcgc	6660
acggcaagag gcgaggggcg gcgactggtg agtacgcca aaattttgac tagcggaggc	6720
tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga	6780
tggaaaaaaa ttcggttaag gccaggggaa aagaaaaat ataaattaaa acatatagt	6840
tggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa	6900
ggctgttagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt	6960
agatcattat ataatacagt agcaaccctc tatttgtgtc atcaaaggat agagataaaa	7020
gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca	7080
cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag	7140
tgaatttat ataatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc	7200
aaagagaaga gtgggtcaga gagaaaaaaag agcagtggga ataggagctt tgcccttgg	7260
gttcttggga gcagcaggaa gcactatggg cgcagcctca atgacgctga cggtagggc	7320
cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc	7380
gcaacagcat ctgttgcac tcacagtctg gggcatcaag cagctccagg caagaatcct	7440
ggctgtggaa agatacctaa aggtcaaca gctcctgggg atttgggtt gctctggaaa	7500
actcatttgc accactgctg tgccttggaa tgctagttgg agtaataat ctctggaaaca	7560
gattggaaatc acacgacctg gatggagtgg gacagagaaa ttaacaatta cacaagctta	7620
atacactcct taattgaaga atcgaaaac cagcaagaaa agaatgaaca agaattattg	7680
gaatttagata aatgggcaag tttgtggaaat tggttaaca taacaatttgc gctgtggat	7740
ataaaaattat tcataatgt agtaggaggc ttggtaggtt taagaatagt ttttgctgta	7800

ctttctata	g tgaatagagt taggcaggga tattcaccat tatcgttca gaccac	7860
ccaacccg	a ggggacccga caggccgaa ggaatagaag aagaagg	7920
agagacag	atgtaacgga tctcgacggt atcgattaga ctgtagcc	7980
ggaatatgg	c agcttagatt tacacattt a gaggaaaag ttatcttgg	8040
gtagccag	tg gatatataga agcagaagta attccagcag agacagg	8100
tacttcct	c taaaatttgc aggaagatgg ccagtaaaaa cagta	8160
agcaattt	c cactac agttaaggcc gcctgttgg gggggggat caagcagg	8220
tttggcatt	c cttacaatcc ccaaagtcaa ggagtaatag aatctatgaa taaagaatta	8280
aagaaaatt	a taggacaggt aagagatcag gctgaacatc ttaagacagc agtacaatg	8340
gcagtattc	a tccacaattt taaaagaaaa ggggggattt ggggtacag tgcagg	8400
agaatagta	g acataatagc aacagacata caaactaaag aattacaaaa acaaattaca	8460
aaaattca	a atttcgggt ttattacagg gacagcagag atccagttt gctgcatt	8520
tcacgtgagg	c ctccggtgcc cgtcagtggg cagagcgcac atcgccaca gtccccgaga	8580
agttggggg	g agggtcggc aattgaaccg gtgcctagag aaggtggcgc gggtaaact	8640
gggaaaagt	g tgcgtgtac tggctccgccc ttttccga ggtggggga gaaccgtata	8700
taagtgcagt	a agtgcgcgtg aacgttctt ttgcacacgg gtttgcgc a	8760
taagtgcgt	g aacacagg gtgtggttcc cgcgggcctg gcctcttac ggttatggc cttgcgt	8820
cttgaattac	t ttccacctgg ctgcagtacg tgattcttga tcccgagctt cgggttgg	8880
gtgggtgg	g gggcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	8940
aggcctgg	c tggcgctgg ggccgcgc tgcaatctg gtggcacctt cgcgcgt	9000
tcgctgc	t ttccacctgg ctgcagtacg tgattcttga tcccgagctt cgggttgg	9060
ttttctgg	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9120
tttggggcc	c gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9180
gcctgcg	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9240
tggtgcct	c cttccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9300
cggcacc	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9360
aatggagg	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9420
cctttccg	c cttccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9480
acctcgat	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9540
atgcgat	g gggccgcgttcc gggccgcctg aaggagcccc ttgcgcgt gcttgagtt	9600

tgatgttaatt ctccttgaa tttgccctt ttgagttgg atcttggttc attctcaagc 9660
 ctcagacagt ggttcaaagt tttttcttc cattcaggt gtcgtgatct agag 9714

<210> 17
 <211> 668
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> pELPS-hFVIII-C2-BBz-T2A-mCherry

<400> 17

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
 1 5 10 15

Val Gln Cys Gly Ser Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser
 20 25 30

Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn
 35 40 45

Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly
 50 55 60

Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu
 65 70 75 80

Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln
 85 90 95

Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile
 100 105 110

Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly
 115 120 125

Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val
 130 135 140

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro
 145 150 155 160

Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys
 165 170 175

Glu Ala Gln Asp Leu Tyr Ala Ser Thr Thr Thr Pro Ala Pro Arg Pro
 180 185 190

Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro
 195 200 205

Glu Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu
 210 215 220

Asp Phe Ala Cys Asp Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly
 225 230 235 240

Thr Cys Gly Val Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys
 245 250 255

Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg
 260 265 270

Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro
 275 280 285

Glu Glu Glu Glu Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser
 290 295 300

Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
 305 310 315 320

Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
 325 330 335

Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln
 340 345 350

Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr
 355 360 365

Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp
 370 375 380

Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala
 385 390 395 400

Leu His Met Gln Ala Leu Pro Pro Arg Gly Ser Gly Glu Gly Arg Gly
 405 410 415

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Thr Arg
 420 425 430

Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
 435 440 445

Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
 450 455 460

Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
 465 470 475 480

Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
 485 490 495

Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
 500 505 510

Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
 515 520 525

Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
 530 535 540

Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
 545 550 555 560

Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
 565 570 575

Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
 580 585 590

Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
 595 600 605

His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
 610 615 620

Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
 625 630 635 640

His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
 645 650 655

Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys
660 665

<210> 18
<211> 409
<212> PRT
<213> Artificial Sequence

<220>
<223> hFVIII-C2-BBz

<400> 18

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Gly Ser Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser
20 25 30

Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn
35 40 45

Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly
50 55 60

Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu
65 70 75 80

Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln
85 90 95

Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile
100 105 110

Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly
115 120 125

Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val
130 135 140

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro
145 150 155 160

Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys
165 170 175

Glu Ala Gln Asp Leu Tyr Ala Ser Thr Thr Thr Pro Ala Pro Arg Pro
180 185 190

Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro
 195 200 205

Glu Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu
 210 215 220

Asp Phe Ala Cys Asp Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly
 225 230 235 240

Thr Cys Gly Val Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys
 245 250 255

Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg
 260 265 270

Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro
 275 280 285

Glu Glu Glu Gly Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser
 290 295 300

Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
 305 310 315 320

Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
 325 330 335

Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln
 340 345 350

Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr
 355 360 365

Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp
 370 375 380

Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala
 385 390 395 400

Leu His Met Gln Ala Leu Pro Pro Arg
 405

<210> 19
 <211> 9547

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> pTRPE-hFVIII-A2-BBz

 <400> 19
 gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagtttc 60
 gccccgaaga acgtttcca atgatgagca cttttaaagt tctgctatgt ggcgcgtat 120
 tatccccgtat tgacgccggg caagagcaac tcggtcgccc catacactat tctcagaatg 180
 acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 240
 aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 300
 cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catggggat catgtactc 360
 gccttgcgtcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 420
 cgatgcctgt agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 480
 tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 540
 tgcgctcggc cttccggct ggctgggtta ttgctgataa atctggagcc ggtgagcgtg 600
 ggtctcgcgg tatcattgca gcactgggc cagatggtaa gccctccgt atcgttagtta 660
 tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 720
 gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 780
 ttgatttaaa acttcatttt taatttaaaa ggatcttagt gaagatcctt tttgataatc 840
 tcatgaccaa aatcccttaa cgtgagttt cgttccactg agcgtcagac cccgtagaaa 900
 agatcaaagg atcttcttga gatcctttt ttctgcgcgt aatctgctgc ttgcaaacaa 960
 aaaaaccacc gctaccagcg gtggttgtt tgccggatca agagctacca actcttttc 1020
 cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgttcttcta gtgtagccgt 1080
 agttaggcca ccacttcaag aactctgttag caccgcctac atacctcgct ctgctaattcc 1140
 ttttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 1200
 gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 1260
 gcttggagcg aacgacctac accgaactga gataacctaca gcgtgagcta tgagaaagcg 1320
 ccacgcttcc cgaaggggaga aaggcggaca ggtatccggt aagcggcagg gtcggAACAG 1380
 gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 1440
 ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cgagcctat 1500
 ggaaaaacgc cagcaacgcg gccttttac gttcctggc ctttgctgg cctttgctc 1560
 acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 1620

gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag	1680
cggaagagcg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca	1740
gctggcacga caggttccc gactggaaag cgggcagtga gcgcaacgca attaatgtga	1800
gttagctcac tcattaggca ccccaggctt tacactttat gcttccggct cgtatgttgt	1860
gtggaattgt gagcggataa caatttcaca cagggaaacag ctatgaccat gattacgcca	1920
agcgcgcaat taaccctcac taaagggaac aaaagctgga gctgcaagct taatgttagtc	1980
ttatgcaata ctctttagt cttgcaacat ggtaacgatg agtttagcaac atgccttaca	2040
aggagagaaa aagcaccgtg catgcccattt ggtggaaagta aggtggtagc atcgtgcctt	2100
attaggaagg caacagacgg gtctgacatg gattggacga accactgaat tgccgcattt	2160
cagagatatt gtatttaagt gcctagctcg atacataaac gggctctctt ggttagacca	2220
gatctgagcc tgggagctct ctggctaact agggaaacca ctgcttaagc ctcaataaaag	2280
cttgccttga gtgcttcaag tagtgtgtgc ccgtctgttgc tgcactctg gtaactagag	2340
atccctcaga cccttttagt cagtgtggaa aatctctagc agtggcgccc gaacaggggac	2400
ttgaaagcga aagggaaacc agaggagctc tctcgacgca ggactcggttgc tgctgaagcg	2460
cgcacggcaa gaggcgaggg gcggcgactg gtgagtagc caaaaatttt gactagcggaa	2520
ggctagaagg agagagatgg gtgcgagagc gtcagtatttta agcgggggag aattagatcg	2580
cgatggaaa aaattcggtt aaggccaggg gaaagaaaa aatataaattttaaaaacatata	2640
gtatggcaa gcagggagct agaacgatttgc gcagttatc ctggcctgtt agaaacatca	2700
gaaggctgta gacaaatact gggacagcta caaccatccc ttcagacagg atcagaagaa	2760
cttagatcat tatataatac agtagcaacc ctctattgtt tgcatcaaag gatagagata	2820
aaagacacca aggaagctt agacaagata gaggaagagc aaaacaaaag taagaccacc	2880
gcacagcaag cggccgctga tcttcagacc tggaggagga gatatgaggg acaattggag	2940
aagtgaatttata aagttagtaaa aattgaacca ttaggatgtt caccaccaaa	3000
ggcaaagaga agagtggtgc agagagaaaa aagagcagtg ggaataggag ctttggctt	3060
tgggttcttgc ggagcagcag gaagcactat gggcgacgcg tcaatgacgc tgacggta	3120
ggccagacaa ttattgtctg gtatagtgc gcagcagaac aatttgcgtt gggctattgtt	3180
ggcgcaacag catctgttgc aactcacagt ctggggcatc aagcagctcc aggcaagaat	3240
cctggctgtt gaaagataacc taaaggatca acagtccttgc gggattttgg gttgctctgg	3300
aaaactcatt tgcaccactg ctgtgccttgc gaatgttagt tggagtaata aatctctggaa	3360
acagatttgg aatcacacga cctggatgga gtggacaga gaaattaaca attacacaag	3420

cttaatacac tccttaattt aagaatcgca aaaccagcaa gaaaagaatg aacaagaatt	3480
attggaaatta gataaatggg caagtttgta gaattggttt aacataacaa attggctgtg	3540
gtatataaaa ttattcataa tgatagtagg aggcttgta ggttaagaa tagttttgc	3600
tgtactttct atagtgaata gagttaggca gggatattca ccattatcgt ttcagaccca	3660
cctcccaacc ccgaggggac ccgacaggcc cgaaggaata gaagaagaag gtggagagag	3720
agacagagac agatccattc gattagtgaa cgatctcgat cggtatcgat tagactgtag	3780
cccaggaata tggcagctag attgtacaca tttagaagga aaagttatct tggtagcagt	3840
tcatgttagcc agtggatata tagaagcaga agtaattcca gcagagacag ggcaagaaac	3900
agcatacttc ctcttaaaat tagcaggaag atggccagta aaaacagtac atacagacaa	3960
tggcagcaat ttcaccagta ctacagttaa ggccgcctgt tggcggcgg gcatcaagca	4020
ggaatttggc attccctaca atccccaaag tcaaggagta atagaatcta tgaataaaga	4080
attaaagaaa attataggac aggttaagaga tcaggctgaa catcttaaga cagcagtaca	4140
aatggcagta ttcatccaca attttaaaag aaaagggggg attggggggt acagtgcagg	4200
ggaaagaata gtagacataa tagcaacaga catacaaact aaagaattac aaaaacaaat	4260
tacaaaaatt caaaattttc gggtttatta cagggacagc agagatccag tttggctgca	4320
tacgcgtcgt gaggctccgg tgcccgtag tggcagagc gcacatcgcc cacagtcccc	4380
gagaagttgg ggggaggggt cggcaattga accggcgcct agagaaggtg gcgcgggta	4440
aactggaaa gtgatgtcgt gtactggctc cgccttttc ccgagggtgg gggagaaccg	4500
tatataagtg cagtagtcgc cgtaacgtt cttttcgca acgggttgc cgccagaacaa	4560
caggttaagtg ccgtgtgtgg ttcccgccgg cctggcctct ttacgggtta tggcccttgc	4620
gtgccttcaa ttacttccac ctggctgcag tacgtgattc ttgatcccga gcttcggggtt	4680
ggaagtgggt gggagagttc gaggccttgc gcttaaggag ccccttcgccc tcgtgcttga	4740
gttgaggcct ggcctggcgc ctggggccgc cgcgtgcgaa tctggcggca cttcgcgc	4800
tgtctcgctg cttcgataa gtctctagcc attttaaaatt tttgatgacc tgctgcgacg	4860
cttttttct ggcaagatag tcttgtaat gcgggccaag atctgcacac tggtatttcg	4920
gtttttgggg cgcggggcgg cgacggggcc cgtgcgtccc agcgcacatg ttccggcagg	4980
cggggcctgc gagcgcggcc accgagaatc ggacgggggt agtctcaagc tggccggcct	5040
gctctggcgc ctggcctcgc gccggcgtgt atcgccccgc cctggggcggc aaggctggcc	5100
cggtcggcac cagttgcgtg agcggaaaga tggccgcttc ccggccctgc tgcagggagc	5160
tcaaaatgga ggacgcggcg ctcggagag cggcgggtg agtcacccac acaaaggaaa	5220

agggctttc cgtcctcagc cgtcgcttca tgtgactcca ctgagtaccg ggcgccgtcc	5280
aggcacctcg attagttctc gtgctttgg agtacgtcgt cttaggttg gggggagggg	5340
tttatgcga tggagttcc ccacactgag tgggtggaga ctgaagttag gccagcttgg	5400
cacttgatgt aatttcctt ggaatttgc cttttgagt ttggatctt gttcattctc	5460
aagcctcaga cagtggttca aagttttt cttccatttc aggtgtcgt agctagagcc	5520
accatggagt ttgggctgag ctggctttt cttgtggcta tttaaaagg tgtccagtgc	5580
ggatcctcag ttgccaagaa gcatcctaaa acttgggtac attacattgc tgctgaagag	5640
gaggactggg actatgctcc cttagtcctc gcccccgatg acagaagtta taaaagtcaa	5700
tatttgaaca atggccctca gcggatttgtt aggaagtaca aaaaagtccg atttatggca	5760
tacacagatg aaacctttaa gactcgtgaa gctattcagc atgaatcagg aatcttggga	5820
ccttacttt atgggaaagt tggagacaca ctgttgatta tatttaagaa tcaagcaagc	5880
agaccatata acatctaccc tcacggaatc actgatgtcc gtccttgta ttcaaggaga	5940
ttacccaaag gtgtaaaaca tttgaaggat tttccaattc tgccaggaga aatattcaa	6000
tataaatgga cagtgactgt agaagatggg ccaactaat cagatcctcg gtgcctgacc	6060
cgcttattact ctagttcgt taatatggag agagatctag cttcaggact cattggccct	6120
ctcctcatct gctacaaaga atctgttagat caaagaggaa accagataat gtcagacaag	6180
aggaatgtca tcctgttttc tgtatttgat gagaaccgaa gctggtaacct cacagagaat	6240
atacaacgct ttctccccaa tccagctgga gtgcagctt aagatccaga gttccaagcc	6300
tccaaacatca tgcacagcat caatggctat gttttgata gttgcagtt gtcagttgt	6360
ttgcatgagg tggcatactg gtacattcta agcattggag cacagactga cttccttct	6420
gtcttcttct ctggatatac cttcaaacac aaaatggtct atgaagacac actcacccta	6480
ttcccattct caggagaaac tgtcttcatg tcgatggaaa acccaggtct atggattctg	6540
gggtgccaca actcagactt tcggaacaga ggcacgaccg cttactgaa ggtttctagt	6600
tgtgacaaga acactggtga ttattacgag gacagttatg aagatatttc agcatacttg	6660
ctgagtaaaa acaatgccat tgaaccaaga gctagcacca cgacgccagc gccgcgacca	6720
ccaacaccgg cgccacccat cgcgtcgac cccctgtccc tgcgcccaga ggcgtgccgg	6780
ccagcggcgg gggcgcagt gcacacgagg gggctggact tcgcctgtga ttccgaaatc	6840
tacatctggg cccctctggc cggcacctgt ggcgtgctgc tgctgtccct ggtcatcacc	6900
ctgtactgca agcggggcag aaagaagctg ctgtacatct tcaagcagcc cttcatgcgg	6960
cctgtgcaga ccacacagga agaggacggc tgttagctgta gattccccga ggaagagggaa	7020

ggcggctgcg	agctgagagt	gaagttcagc	agaagcgccg	acgcccctgc	ctatcagcag	7080
ggccagaacc	agctgtacaa	cgagctgaac	ctggcagac	gggaggaata	cgacgtgctg	7140
gacaagagaa	gaggccggga	ccctgagatg	ggcggcaagc	ccagacggaa	gaaccccccag	7200
gaaggcctgt	ataacgaact	gcagaaagac	aagatggccg	aggcctacag	cgagatcgcc	7260
atgaagggcg	agcggagaag	aggcaaggc	catgacggcc	tgtaccaggg	cctgagcacc	7320
gccaccaagg	acacctacga	cgccctgcac	atgcaggccc	tgcctccaag	atgagtcgac	7380
aatcaacctc	tggattacaa	aatttgtgaa	agattgactg	gtattctaa	ctatgttgct	7440
cctttacgc	tatgtggata	cgctgcttta	atgcctttgt	atcatgctat	tgcttcccg	7500
atggctttca	ttttctcctc	cttgtataaa	tcctgggtgc	tgtctcttta	tgaggagttg	7560
tggcccggtt	tcaggcaacg	tggcgtggtg	tgcactgtgt	ttgctgacgc	aaccccccact	7620
ggttggggca	ttgccaccac	ctgtcagctc	ctttccggga	cttgcgttt	ccccctccct	7680
attgccacgg	cggaactcat	cgccgcctgc	cttgcggcgt	gctggacagg	ggctcggtcg	7740
ttgggcactg	acaattccgt	ggtgttgcg	gggaagctga	cgtccttcc	ttggctgctc	7800
gcctgtgttg	ccacctggat	tctgcgcggg	acgtccttct	gctacgtccc	ttcggccctc	7860
aatccagcgg	actttccttc	ccgcggcctg	ctgcccggctc	tgccgcctct	tccgcgtctt	7920
cgccttcgccc	ctcagacgag	tcggatctcc	ctttggccg	cctcccccgc	tggattcga	7980
gctcggtacc	tttaagacca	atgacttaca	aggcagctgt	agatcttagc	cacttttaa	8040
aagaaaaggg	gggactggaa	gggctaattc	actcccaacg	aagacaagat	ctgcttttg	8100
cttgtactgg	gtctctctgg	ttagaccaga	tctgagcctg	ggagctctct	ggctaactag	8160
ggaaccact	gcttaagcct	caataaagct	tgccttgagt	gcttcaagta	gtgtgtgcc	8220
gtctgttgtg	tgactctggt	aactagagat	ccctcagacc	cttttagtca	gtgtggaaaa	8280
tctctagcag	tagtagttca	tgtcatctta	ttattcagta	tttataactt	gcaaagaaat	8340
gaatatcaga	gagtgagagg	aacttgttta	ttgcagctta	taatggttac	aaataaagca	8400
atagcatcac	aaatttcaca	aataaagcat	tttttcact	gcattctagt	tgtggtttgt	8460
ccaaactcat	caatgtatct	tatcatgtct	ggctctagct	atcccgc	taactccgccc	8520
cagttccgccc	catttccgc	cccatggctg	actaattttt	tttatttatg	cagaggccga	8580
ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	ggcttttttg	gaggcctagc	8640
tagggacgta	cccaattcgc	cctatactgta	gtcgattac	gcgcgctcac	tggccgtcg	8700
tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	cttaatcgcc	ttgcagcaca	8760
tcccccttcc	gccagctggc	gtaatagcga	agaggcccgc	accgatcgcc	cttcccaaca	8820

gttgcgcagc	ctgaatggcg	aatgggacgc	gccctgtgc	ggcgcattaa	gcgcggcggg	8880
tgtgggtgtt	acgcgcagcg	tgaccgctac	acttgccagc	gccctagcgc	ccgctccttt	8940
cgcttccttc	cttcccttc	tcgcccacgtt	cgccggcttt	ccccgtcaag	ctctaaatcg	9000
ggggctccct	ttagggttcc	gatttagtgc	tttacggcac	ctcgacccca	aaaaacttga	9060
ttagggtgat	gttcacgta	gtgggcccac	gccctgatag	acggtttttc	gcccttgac	9120
gttggagtcc	acgttcttta	atagtggact	cttggccaa	actggaaacaa	cactcaaccc	9180
tatctcggtc	tattcttttgc	atttataagg	gattttgccc	atttcggcct	attggttaaa	9240
aaatgagctg	atttaacaaa	aatttaacgc	gaattttaac	aaaatattaa	cgcttacaat	9300
ttaggtggca	cttttcgggg	aatgtgcgc	ggaaccccta	tttgcatttt	tttctaaata	9360
cattcaaata	tgtatccgct	catgagacaa	taaccctgat	aaatgcttca	ataatattga	9420
aaaaggaaga	gtatgagtat	tcaacatttc	cgtgtcgccc	ttattccctt	ttttgcggca	9480
ttttgccttc	ctgttttgc	tcacccagaa	acgctggtga	aagtaaaaga	tgctgaagat	9540
cagttgg						9547

<210> 20
 <211> 8926
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pTRPE-hFVIII-C2-BBz

<400> 20	gtgcacgagt	gggttacatc	gaactggatc	tcaacagcgg	taagatcctt	gagagttttc	60
	gccccgaaga	acgtttcca	atgatgagca	cttttaaagt	tctgctatgt	ggcgcggtat	120
	tatcccgtat	tgacgcccggg	caagagcaac	tcggtcgccc	catacactat	tctcagaatg	180
	acttgggtga	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg	acagtaagag	240
	aattatgcag	tgctgccata	accatgagtg	ataaacactgc	ggccaactta	cttctgacaa	300
	cgatcgagg	accgaaggag	ctaaccgctt	ttttgcacaa	catggggat	catgtaactc	360
	gccttgatcg	ttggaaaccg	gagctgaatg	aagccatacc	aaacgacgag	cgtgacacca	420
	cgatgcctgt	agcaatggca	acaacgttgc	gcaaactatt	aactggcgaa	ctacttactc	480
	tagcttcccg	gcaacaatta	atagactgga	tggaggcgg	taaagttgca	ggaccacttc	540
	tgcgctcggc	cttccggct	ggctggttt	ttgctgataa	atctggagcc	ggtgagcgtg	600
	ggtctcgcgg	tatcattgca	gcactggggc	cagatggtaa	gccctcccgt	atcgttagtta	660
	tctacacgac	ggggagtcag	gcaactatgg	atgaacgaaa	tagacagatc	gctgagatag	720

gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga	780
ttgatttaaa acttcatttt taatttaaaa ggatcttaggt gaagatcctt tttgataatc	840
tcatgaccaa aatcccttaa cgtgagttt cgttccactg agcgtcagac cccgtagaaa	900
agatcaaagg atcttcttga gatcctttt ttctgcgcgt aatctgctgc ttgcaaacaa	960
aaaaaccacc gctaccagcg gtggtttgg tgcggatca agagctacca actcttttc	1020
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgttcttcta gttagccgt	1080
agttaggcca ccacttcaag aactctgtac caccgcctac atacctcgct ctgctaattcc	1140
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac	1200
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca	1260
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg	1320
ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggAACAG	1380
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt	1440
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcaggggggg cgagccat	1500
ggaaaaacgc cagcaacgcg gccttttac ggttcctggc ctttgctgg cctttgctc	1560
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt	1620
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag	1680
cggaagagcg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca	1740
gctggcacga caggtttccc gactggaaag cggcagtga gcgcaacgca attaatgtga	1800
gttagctcac tcattaggca ccccaggctt tacactttat gcttcggct cgtatgtgt	1860
gtggaattgt gagcggataa caatttcaca cagggaaacag ctatgaccat gattacgcca	1920
agcgcgcaat taaccctcac taaaggaaac aaaagctgga gctgcaagct taatgtagtc	1980
ttatgcaata ctctttagt cttgcaacat ggtaacgatg agttagcaac atgccttaca	2040
aggagagaaa aagcaccgtg catgccgatt ggtggaaagta aggtggtagc atcgtgcctt	2100
attaggaagg caacagacgg gtctgacatg gattggacga accactgaat tgccgcattg	2160
cagagatatt gtatttaagt gcctagctcg atacataaac gggctctct ggttagacca	2220
gatctgagcc tggagctct ctggctact agggAACCC ctgccttaagc ctcaataaag	2280
cttgccttga gtgcttcaag tagtgtgtgc ccgtctgttg tgtgactctg gtaactagag	2340
atccctcaga cccttttagt cagtgtggaa aatctctagc agtggcgccc gaacagggac	2400
ttgaaagcga aaggaaacc agaggagctc tctcgacgca ggactcggt tgctgaagcg	2460
cgcacggcaa gaggcgaggg gcggcgactg gtgagtagc caaaaatttt gactagcgga	2520

ggctagaagg agagagatgg gtgcgagagc gtcagtatta agcggggag aattagatcg 2580
 cgatggaaa aaattcggtt aaggccaggg ggaaagaaaa aatataaatt aaaacatata 2640
 gtatggcaa gcagggagct agaacgattc gcagttatc ctggcctgtt agaaacatca 2700
 gaaggctgta gacaatact gggacagcta caaccatccc ttcagacagg atcagaagaa 2760
 cttagatcat tatataatac agtagcaacc ctctattgtg tgcatcaaag gatagagata 2820
 aaagacacca aggaagctt agacaagata gaggaagagc aaaacaaaag taagaccacc 2880
 gcacagcaag cggccgctga tcttcagacc tggaggagga gatatgaggg acaattggag 2940
 aagtgaatta tataaatata aagtagtaaa aattgaacca ttaggagtag cacccaccaa 3000
 ggcaaagaga agagtggtgc agagagaaaa aagagcagtg ggaataggag cttgttcct 3060
 tgggttcttggagcagcag gaagcactat gggcgcagcg tcaatgacgc tgacggtaca 3120
 ggccagacaa ttattgtctg gtatagtgcgcacgc aatttgcgtt gggctattgatgc 3180
 ggcgcaacag catctgttgc aactcacagt ctggggcattc aagcagctcc aggcaagaat 3240
 cctggctgttgc gaaagatacc taaaggatca acagctctg gggatttggg gttgtctgg 3300
 aaaactcatt tgcaccactg ctgtgccttgc gaaatgttgcgtt gggctattgatgc 3360
 acagatttgg aatcacacga cctggatgga gtggacaga gaaattaaca attacacaag 3420
 cttaatacacac tccttaatttgc gaaatcgca aaaccagcaa gaaaagaatg aacaagaatt 3480
 attggaaatta gataaatggg caagtttgc gaaatggttt aacataacaa attggctgttgc 3540
 gtatataaaaa ttattcataa tgatagttagg aggcttgta ggtttaagaa tagttttgc 3600
 tgtactttct atagtgcataa gagttaggca gggatattca ccattatcgat ttcagaccca 3660
 cctcccaacc ccgaggggac ccgacaggcc cgaaggaata gaagaagaag gtggagagag 3720
 agacagagac agatccatttgc gattagtggaa cggatctcgat cggatcgat tagactgttag 3780
 cccaggaata tggcagcttagtatttgc gaaatggttt aacataacaa attggctgttgc 3840
 tcatgttagcc agtggatata tagaaggcaga agtaattccatgc gcaagacag ggcaagaaac 3900
 agcataacttc ctcttaaaat tagcaggaatgatggccatgcgaaatggccatgcgat 3960
 tggcagcaat ttcaccatgcgatctatgcgatggccatgcgatggccatgcgatggccatgcgat 4020
 ggaatttggc attccctaca atccccaaatgatggccatgcgatggccatgcgatggccatgcgat 4080
 attaaagaaaa attataggac aggttaagaga tcaggctgaa catcttaaga cagcgttgc 4140
 aatggcagta ttcatccaca atttttaaatgatggccatgcgatggccatgcgatggccatgcgat 4200
 ggaaagaata gtagacataa tagcaacaga catacaaact aaagaattac aaaaacaaat 4260
 tacaaaaatttgcgatggccatgcgatggccatgcgatggccatgcgatggccatgcgatggccatgcgat 4320

tacgcgtcgt	gaggctccgg	tgcccgtcag	tgggcagagc	gcacatcgcc	cacagtcccc	4380
gagaagttgg	ggggaggggt	cggcaattga	accgggtgcct	agagaaggtg	gcgcgggta	4440
aactggaaa	gtgatgtcgt	gtactggctc	cgccttttc	ccgagggtgg	gggagaaccg	4500
tatataagtg	cagtagtcgc	cgtgaacgtt	cttttcgca	acgggtttc	cgccagaaca	4560
caggttaagtg	ccgtgtgtgg	ttcccgccgg	cctggcctct	ttacgggtta	tggcccttgc	4620
gtgccttcaa	ttacttccac	ctggctgcag	tacgtgattc	ttgatcccga	gcttcggggtt	4680
ggaagtgggt	gggagagttc	gaggccttgc	gcttaaggag	ccccttcgcc	tcgtgcttga	4740
gttgaggcct	ggcctgggcg	ctggggccgc	cgcgtgcgaa	tctggtggca	ccttcgcgccc	4800
tgtctcgctg	ctttcgataa	gtctctagcc	atttaaaatt	tttgatgacc	tgctgcgacg	4860
cttttttct	ggcaagatag	tcttgtaaat	gcgggccaag	atctgcacac	tggtatttcg	4920
gtttttgggg	ccgcgggccc	cgacggggcc	cgtgcgtccc	agcgcacatg	ttcggcgagg	4980
cggggcctgc	gagcgcggcc	accgagaatc	ggacgggggt	agtctcaagc	tggccggcct	5040
gctctggtgc	ctggcctcgc	gccgcgtgt	atcgccccgc	cctggccggc	aaggctggcc	5100
cggtcggcac	cagttgcgtg	agcggaaaga	tggccgcttc	ccggccctgc	tgcagggagc	5160
tcaaaatgga	ggacgcggcg	ctcgggagag	cgggcgggtg	agtcacccac	acaaaggaaa	5220
agggccttcc	cgtcctcagc	cgtcgcttca	tgtgactcca	ctgagtaaccg	ggcgcgcgtcc	5280
aggcacctcg	attagttctc	gtgctttgg	agtacgtcgt	ctttaggttg	gggggaggggg	5340
ttttatgcga	tggagttcc	ccacactgag	tgggtggaga	ctgaagttag	gccagcttgg	5400
cacttgatgt	aatttcctt	ggaatttgcc	cttttgagt	ttggatcttgc	gttcattctc	5460
aagcctcaga	cagtggttca	aagttttt	cttccatttc	aggtgtcgtg	agctagagcc	5520
accatggagt	ttgggctgag	ctggttttt	cttggcgtta	ttttaaaagg	tgtccagtgc	5580
ggatccaata	gttgcagcat	gccattggga	atggagagta	aagcaatatc	agatgcacag	5640
attactgctt	catcctactt	taccaatatg	tttgcacact	ggtctccttc	aaaagctcga	5700
cttcacctcc	aaggaggag	taatgcctgg	agacctcagg	tgaataatcc	aaaagagtgg	5760
ctgcaagtgg	acttccagaa	gacaatgaaa	gtcacaggag	taactactca	gggagtaaaa	5820
tctctgctta	ccagcatgta	tgtgaaggag	ttcctcatct	ccagcagtca	agatggccat	5880
cagtggactc	tctttttca	gaatggcaa	gtaaaggttt	ttcaggggaaa	tcaagactcc	5940
ttcacacctg	tggtaactc	tctagaccca	ccgttactga	ctcgctaccc	tgcattcac	6000
ccccagagtt	gggtgcacca	gattgcctg	aggatggagg	ttctggctg	cgaggcacag	6060
gacctctacg	ctagcaccac	gacgccagcg	ccgcgaccac	caacaccggc	gccaccatc	6120

gcgtcgacgc ccctgtccct gcgcccagag gcgtgccggc cagcggcggg gggcgagtg	6180
cacacgaggg ggctggactt cgccctgtat tccggaatct acatctgggc ccctctggcc	6240
ggcacctgtg gcgtgctgct gctgtccctg gtcatcaccc tgtactgcaa gcggggcaga	6300
aagaagctgc tgtacatctt caagcagccc ttcatgcggc ctgtgcagac cacacaggaa	6360
gaggacggct gtagctgttag attccccgag gaagaggaag gcggctgcga gctgagagtg	6420
aagttcagca gaagcgccga cgccctgccc tatcagcagg gccagaacca gctgtacaac	6480
gagctgaacc tgggcagacg ggaggaatac gacgtgctgg acaagagaag aggccggac	6540
cctgagatgg gcggcaagcc cagacggaag aaccccccagg aaggcctgta taacgaactg	6600
cagaaagaca agatggccga ggcctacagc gagatcggca tgaagggcga gcggagaaga	6660
ggcaaggggcc atgacggcct gtaccaggcct ctgagcaccg ccaccaagga cacctacgac	6720
gccctgcaca tgcaggccct gcctccaaga tgagtgcaca atcaacctct ggattacaaa	6780
atttgtgaaa gattgactgg tattcttaac tatgttgctc ctttacgct atgtggatac	6840
gctgctttaa tgcctttgta tcatgctatt gcttcccgta tggctttcat tttctccctcc	6900
ttgtataaat cctgggtgct gtctctttat gaggagttgt ggcccgttgc caggcaacgt	6960
ggcgtgggtgt gcactgtgtt tgctgacgca acccccactg gttggggcat tgccaccacc	7020
tgtcagctcc tttccgggac ttgcgtttc cccctcccta ttgccacggc ggaactcatc	7080
gccgcctgccc ttgcccgtg ctggacaggg gctcggctgt tggcactga caattccgtg	7140
gtgttgtcgg ggaagctgac gtccttcct tggctgctcg cctgtgttgc cacctggatt	7200
ctgcgcggga cgcccttctg ctacgtccct tcggccctca atccagcggc cttccctcc	7260
cgcggcctgc tgccggctct gcggccttt ccgcgtcttc gccttcgccc tcagacgagt	7320
cggatctccc tttggccgc ctcccccgcct ggaattcgag ctcggtaacct ttaagaccaa	7380
tgacttacaa ggcagctgta gatcttagcc acttttaaa agaaaagggg ggactggaag	7440
ggctaattca ctcccaacga agacaagatc tgcttttgc ttgtactggg tctctctgg	7500
tagaccagat ctgagcctgg gagctctctg gctaacttagg gaacccactg cttaagcctc	7560
aataaaagctt gccttgagtgc cttcaagtag tttgtgccc tctgttgtgt gactctggta	7620
actagagatc ctcagacacc tttagtgc tttgtgaaaat ctctagcagt agtagttcat	7680
gtcatcttat tattcagttat ttataacttg caaagaaatg aatatcagag agttagagga	7740
acttgtttat tgcaagttat aatggttaca aataaaagcaa tagcatcaca aatttcacaa	7800
ataaaagcatt ttttcactg cattcttagtt gtggttgtc caaactcatc aatgtatctt	7860
atcatgtctg gctctagcta tcccgccct aactccgccc agttccgccc attctccgccc	7920

ccatggctga ctaattttt ttatttatgc agaggccgag gccgcctcg cctctgagct	7980
atccagaag tagtgaggag gctttttgg aggctagct agggacgtac ccaattcgcc	8040
ctatagttag tcgtattacg cgcgctcaact ggccgtcggt ttacaacgac gtgactggga	8100
aaaccctggc gttacccaac ttaatcgct tgcagcacat ccccccggc ccagctggcg	8160
taatagcgaa gaggccccca ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga	8220
atgggacgacg ccctgtacg ggcgtttaag cgccgggggt gtgggtgtta cgccgcacgt	8280
gaccgctaca cttgccagcg ccctagcgcc cgcccttcc gcttcttcc cttcccttct	8340
cgccacgttc gccggcttcc cccgtcaagc tctaaatcg gggctccctt tagggttccg	8400
atttagtgtt ttacggcacc tcgacccaa aaaacttgat tagggtgatg gttcacgtag	8460
tgggccccatcg ccctgataga cggttttcg cccttgacg ttggagtcca cgccctttaa	8520
tagtggactc ttgttccaaa ctggaaacaac actcaaccct atctcggtct attctttga	8580
tttataaggg attttgcga ttgcgccta ttggtaaaa aatgagctga tttaacaaaa	8640
atttaaacgcg aattttaca aatatattaaac gcttacaatt taggtggcac ttttcgggaa	8700
aatgtgcgcg gaacccttat ttgtttattt ttctaaatac attcaaataat gtatccgctc	8760
atgagacaat aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt	8820
caacatttcc gtgtgcgcct tattccctt tttgcggcat tttgccttcc tggtttgct	8880
cacccagaaa cgctggtaa agtaaaagat gctgaagatc agttgg	8926

<210> 21
 <211> 1848
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> DAP12-T2A-A2-KIRS2

<400> 21	
atggggggac ttgaaccctg cagcaggttc ctgcctcgtc ctctcctgct ggctgttaagt	60
ggctccgtc ctgtccaggt ccaggcccag agcgattgca gttgctctac ggtgagcccg	120
ggcgtgctgg cagggatcgt gatggagac ctgggtctga cagtgcgtcat tgccctggcc	180
gtgtacttcc tggccggct ggtccctcg gggcgagggg ctgcggaggc agcgaccgg	240
aaacagcgta tcactgagac cgagtcgcct tatcaggagc tccagggtca gaggtcgat	300
gtctacagcg acctcaacac acagaggccg tattacaaag tcgaggccgg cggagagggc	360
agaggaagtc ttctaaatcg cggtgacgtg gaggagaatc ccggccctag gatggcctta	420
ccagtgaccg cttgtctccct gcccgtggcc ttgtgtctcc acgcccggcag gcccggatcc	480

tcagttgccca	agaagcatcc	taaaaacttgg	gtacattaca	ttgctgctga	agaggaggac	540
tgggactatg	ctcccttagt	cctcgcccc	gatgacagaa	gttataaaaag	tcaatatttg	600
aacaatggcc	ctcagcggat	tggttaggaag	tacaaaaaaag	tccgatttat	ggcatacaca	660
gatgaaacct	ttaagactcg	tgaagctatt	cagcatgaat	caggaatctt	gggaccttta	720
ctttatgggg	aagttggaga	cacactgttg	attatattta	agaatcaagc	aagcagacca	780
tataacatct	accctcacgg	aatcaactgat	gtccgtcctt	tgtattcaag	gagattacca	840
aaaggtgtaa	aacattgaa	ggattttcca	attctgccag	gagaaatatt	caaataaaa	900
tggacagtga	ctgtagaaga	tgggccaact	aaatcagatc	ctcggtgccct	gaccggctat	960
tactctagtt	tcgttaatat	ggagagagat	ctagcttcag	gactcattgg	ccctctcctc	1020
atctgctaca	aagaatctgt	agatcaaaga	ggaaaccaga	taatgtcaga	caagaggaat	1080
gtcattcctgt	tttctgtatt	tgtgagaac	cgaagctgg	acctcacaga	gaatatacaa	1140
cgtttctcc	ccaatccagc	tggagtgcag	cttgaagatc	cagagttcca	agcctccaac	1200
atcatgcaca	gcatcaatgg	ctatgtttt	gatagtttgc	agttgtcagt	ttgtttgcat	1260
gaggtggcat	actggtacat	tctaaggatt	ggagcacaga	ctgacttcct	ttctgtcttc	1320
ttctctggat	ataccttcaa	acacaaaatg	gtctatgaag	acacactcac	cctattccca	1380
ttctcaggag	aaactgtctt	catgtcgatg	gaaaacccag	gtctatggat	tctggggtgc	1440
cacaactcag	actttcgaa	cagaggcatg	accgcattac	tgaaggttac	tagttgtac	1500
aagaacactg	gtgatttatta	cgaggacagt	tatgaagata	tttcagcata	cttgcgtgagt	1560
aaaaacaatg	ccattgaacc	aagagctagc	ggtggcggag	gttctggagg	tgggggttcc	1620
tcacccactg	aaccaagctc	caaaaaccgt	aaccccgac	acctgcata	tctgattggg	1680
acctcagtgg	tcaaaatccc	tttcaccatc	ctcctttct	ttctccttca	tcgctggtgc	1740
tccaacaaaa	aaaatgctgc	tgtatggac	caagagcctg	cagggAACAG	aacagtgaac	1800
agcgaggatt	ctgatgaaca	agaccatcag	gaggtgtcat	acgcataa		1848

<210> 22
 <211> 478
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> FVIII-A2-KIRS2

<400> 22

Met	Ala	Leu	Pro	Val	Thr	Ala	Leu	Leu	Leu	Pro	Leu	Ala	Leu	Leu	Leu
1						5				10					15

His Ala Ala Arg Pro Gly Ser Ser Val Ala Lys Lys His Pro Lys Thr
 20 25 30

Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
 35 40 45

Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
 50 55 60

Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
 65 70 75 80

Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
 85 90 95

Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
 100 105 110

Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
 115 120 125

His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
 130 135 140

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
 145 150 155 160

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
 165 170 175

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
 180 185 190

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
 195 200 205

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
 210 215 220

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
 225 230 235 240

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
 245 250 255

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
 260 265 270

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
 275 280 285

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
 290 295 300

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
 305 310 315 320

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
 325 330 335

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
 340 345 350

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
 355 360 365

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
 370 375 380

Asn Asn Ala Ile Glu Pro Arg Ala Ser Gly Gly Gly Ser Gly Gly
 385 390 395 400

Gly Gly Ser Ser Pro Thr Glu Pro Ser Ser Lys Thr Gly Asn Pro Arg
 405 410 415

His Leu His Val Leu Ile Gly Thr Ser Val Val Lys Ile Pro Phe Thr
 420 425 430

Ile Leu Leu Phe Phe Leu Leu His Arg Trp Cys Ser Asn Lys Lys Asn
 435 440 445

Ala Ala Val Met Asp Gln Glu Pro Ala Gly Asn Arg Thr Val Asn Ser
 450 455 460

Glu Asp Ser Asp Glu Gln Asp His Gln Glu Val Ser Tyr Ala
 465 470 475

<210> 23
 <211> 1227

<212> DNA
 <213> Artificial Sequence

<220>
 <223> DAP12-T2A-C2-KIRS2

<400> 23
 atggggggac ttgaaccctg cagcaggttc ctgctcctgc ctctcctgct ggctgttaagt 60
 ggtctccgtc ctgtccaggt ccaggcccag agcgattgca gttgctctac ggtgagcccg 120
 ggcgtgctgg cagggatcgt gatgggagac ctgggtctga cagtgctcat tgccctggcc 180
 gtgtacttcc tggccggct ggtccctcgg gggcgagggg ctgcggaggc agcgaccgg 240
 aaacagcgta tcactgagac cgagtcgcct tatcaggagc tccagggtca gaggtcggat 300
 gtctacagcg acctcaacac acagaggccg tattacaaag tcgagggcgg cggagagggc 360
 agaggaagtc ttctaacatg cggtgacgtg gaggagaatc ccggccctag gatggcctta 420
 ccagtgaccg cttgctcct gccgctggcc ttgctgctcc acgcccggcag gccgggatcc 480
 aatagttgca gcatgccatt gggaaatggag agtaaagcaa tatcagatgc acagattact 540
 gcttcatcct actttaccaa tatgtttgcc acctggtctc cttcaaaagc tcgacttcac 600
 ctccaaggga ggagtaatgc ctggagacct caggtgaata atccaaaaga gtggctgcaa 660
 gtggacttcc agaagacaat gaaagtacaca ggagtaacta ctcagggagt aaaatctctg 720
 cttaccagca tgtatgtgaa ggagttcctc atctccagca gtcaagatgg ccatcagtgg 780
 actctcttt ttcagaatgg caaagtaaag gttttcagg gaaatcaaga ctccttcaca 840
 cctgtggta actctctaga cccaccgtta ctgactcgct accttcgaat tcaccccccag 900
 agttgggtgc accagattgc cctgaggatg gaggttctgg gctgcgaggc acaggacctc 960
 tacgctagcg gtggcggagg ttctggaggt gggggttcct cacccactga accaagctcc 1020
 aaaaccggta accccagaca cctgcatgtt ctgattggga cctcagtggt caaaatccct 1080
 ttcaccatcc tcctcttctt tctccttcat cgctggtgct ccaacaaaaaa aaatgctgct 1140
 gtaatggacc aagagcctgc agggAACAGA acagtgaaca gcgaggattc tgatgaacaa 1200
 gaccatcagg aggtgtcata cgcataa 1227

<210> 24
 <211> 271
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> FVIII-C2-KIRS2

<400> 24

Met Ala Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
 1 5 10 15

His Ala Ala Arg Pro Gly Ser Asn Ser Cys Ser Met Pro Leu Gly Met
 20 25 30

Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe
 35 40 45

Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu
 50 55 60

Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu
 65 70 75 80

Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr
 85 90 95

Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe
 100 105 110

Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln
 115 120 125

Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro
 130 135 140

Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile
 145 150 155 160

His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu
 165 170 175

Gly Cys Glu Ala Gln Asp Leu Tyr Ala Ser Gly Gly Gly Ser Gly
 180 185 190

Gly Gly Gly Ser Ser Pro Thr Glu Pro Ser Ser Lys Thr Gly Asn Pro
 195 200 205

Arg His Leu His Val Leu Ile Gly Thr Ser Val Val Lys Ile Pro Phe
 210 215 220

Thr Ile Leu Leu Phe Phe Leu Leu His Arg Trp Cys Ser Asn Lys Lys
 225 230 235 240

Asn Ala Ala Val Met Asp Gln Glu Pro Ala Gly Asn Arg Thr Val Asn
 245 250 255

Ser Glu Asp Ser Asp Glu Gln Asp His Gln Glu Val Ser Tyr Ala
 260 265 270

<210> 25
 <211> 1746
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> A2-gs-BBz Nucleotide Sequence

<400> 25
 atggagtttggctgagctggcttttcttggctatattaaaagggtgtccagtgcggatcctcagtttgc
 aagaagca tcctaaaacttgggtacattacattgctgc tgaagaggaggactgggactatgc
 tccctcgcc cccgatgaca gaagttataaaagtcaatatttgaacaatggccctcagcg
 gattggtagg aagtacaaaaa aagtccgatttatggcatac
 acagatgaaa ctttaagac tcgtgaagcttccatg aatcaggaat cttggac
 ttactttatgggaagttgg agacacactgttgcattatatttgaatca agcaagc
 ccatataaca tctaccctca cggaaatcaact gatgtccgtccattgtattcaaggagatta
 cccaaagggtgtaaaacatttgaaggatttccaattctgc caggagaaatattcaatatt
 aatggacag tgactgtaga agatggcca actaaatcag atcctcggtgc
 tattactcta gttcgttaatggagaga gatctagttt caggactcat tggccctctc
 ctcatctgct acaaagaatctgttagatcaa agaggaaacc agataatgtc
 agacaagagg aatgtcatcc tggttctgttattgatgaaaccgaagct
 ggtacctcac agagaatataaaccgttttc tccccaaatcc agctggagtg
 cagcttgaag atccagagtttccaaggctcc
 aacatcatgc acagcatcaa tggctatgttttgcattatgttgc
 agtttgcatttgcattactggta cattctaagc attggagcac
 agactgactt ctttctgtc
 ttcttctctg gatatacctt caaacacaaa atggctatg
 aagacacacttaccattctcag gagaaactgttcatgtcg
 atggaaaacc caggtctatggattctgg
 tgccacaact cagactttcg
 gaacagaggc atgaccgcct tactgaaggttctgt
 gacaagaaca ctggtgatta ttacgaggac agttatgaag
 atatttcagc atacttgctg
 agtaaaaaca atgccattga accaagagct
 agcggtggcg gaggttctgg aggtggaggt
 tcctccggaa tctacatctggccctgc
 gcccgcacgtggcgtgtc
 gctgtgtcc
 ctggtcatca ccctgtactg
 caagcggggc agaaagaagctgctgtacat
 cttcaaggcag 1320

cccttcatgc	ggcctgtgca	gaccacacag	gaagaggacg	gctgttagctg	tagattcccc	1380
gaggaagagg	aaggcggctg	cgagctgaga	gtgaagttca	gcagaagcgc	cgacgcccct	1440
gcctatcagc	agggccagaa	ccagctgtac	aacgagctga	acctggcag	acgggaggaa	1500
tacgacgtgc	tggacaagag	aagaggccgg	gaccctgaga	tgggcggcaa	gcccagacgg	1560
aagaacccccc	aggaaggcct	gtataacgaa	ctgcagaaag	acaagatggc	cgaggcctac	1620
agcgagatcg	gcatgaaggg	cgagcggaga	agaggcaagg	gccatgacgg	cctgtaccag	1680
ggcctgagca	ccgcccaccaa	ggacacctac	gacgcccgtc	acatgcaggc	cctgcctcca	1740
agatga						1746

<210> 26

<211> 581

<212> PRT

<213> Artificial Sequence

<220>

<223> A2-gs-BBz Amino Acid Sequence

<400> 26

Met	Glu	Phe	Gly	Leu	Ser	Trp	Leu	Phe	Leu	Val	Ala	Ile	Leu	Lys	Gly
1				5					10					15	

Val	Gln	Cys	Gly	Ser	Ser	Val	Ala	Lys	Lys	His	Pro	Lys	Thr	Trp	Val
				20				25				30			

His	Tyr	Ile	Ala	Ala	Glu	Glu	Asp	Trp	Asp	Tyr	Ala	Pro	Leu	Val
				35			40			45				

Leu	Ala	Pro	Asp	Asp	Arg	Ser	Tyr	Lys	Ser	Gln	Tyr	Leu	Asn	Asn	Gly
				50				55		60					

Pro	Gln	Arg	Ile	Gly	Arg	Lys	Tyr	Lys	Lys	Val	Arg	Phe	Met	Ala	Tyr
65					70				75			80			

Thr	Asp	Glu	Thr	Phe	Lys	Thr	Arg	Glu	Ala	Ile	Gln	His	Glu	Ser	Gly
					85			90			95				

Ile	Leu	Gly	Pro	Leu	Leu	Tyr	Gly	Glu	Val	Gly	Asp	Thr	Leu	Leu	Ile
					100				105			110			

Ile	Phe	Lys	Asn	Gln	Ala	Ser	Arg	Pro	Tyr	Asn	Ile	Tyr	Pro	His	Gly
				115				120			125				

Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val
 130 135 140

Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr
 145 150 155 160

Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg
 165 170 175

Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu
 180 185 190

Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val
 195 200 205

Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu
 210 215 220

Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile
 225 230 235 240

Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu
 245 250 255

Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp
 260 265 270

Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile
 275 280 285

Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly
 290 295 300

Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe
 305 310 315 320

Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu
 325 330 335

Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr
 340 345 350

Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr
 355 360 365

Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn
 370 375 380

Ala Ile Glu Pro Arg Ala Ser Gly Gly Gly Ser Gly Gly Gly Gly
 385 390 395 400

Ser Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val
 405 410 415

Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys Arg Gly Arg Lys
 420 425 430

Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro Val Gln Thr
 435 440 445

Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu Glu Glu
 450 455 460

Gly Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro
 465 470 475 480

Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly
 485 490 495

Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro
 500 505 510

Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr
 515 520 525

Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly
 530 535 540

Met Lys Gly Glu Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln
 545 550 555 560

Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln
 565 570 575

Ala Leu Pro Pro Arg
 580

<210> 27
 <211> 1125
 <212> DNA
 <213> Artificial Sequence

<220>

<223> C2-gs-BBz Nucleic Acid Sequence

<400> 27

atggagtttggctgagctggctttctt	gtggctattttaaaagggtgt	ccagtgcggatc	60
tccaaatgttgcagcatgcc	attggaaatggaggtaaag	caatatcaga	120
actgcttcatcctactttac	caatatgtttgcacactgg	ctccttcaaa	180
cacccccaagggaggtaatgcctggaga	cctcaggtga	ataatccaaa	240
caagtggacttccagaagac	aatgaaagtc	acaggagtaactcaggg	300
ctgcttacca	gcatgtatgt	gaaggagttc	360
tggactctcttttcagaa	tggcaaagta	aagggttttc	420
acacctgtgg	tgaactctct	agacccaccgttactgactc	480
cagagttgggtgcaccatgttgcctgg	tgcaccatgttgcctgg	atggaggttc	540
ctctacgcta	gcgggtggcg	tggctgcga	600
gcccccctctgg	aggttctgga	ggcacaggac	660
aaggccggca	gaaagaagct	ctacatctgg	720
accacacagg	gctgtacatc	ttcaaggcagc	780
gagctgagag	cagaagcgcc	cctatcagca	840
cagctgtaca	acgagctgaa	ggggaggaat	900
agaggccggg	cctgtacatc	acgacgtgct	960
tataacgaac	ttcaaggcagc	ggacaagaga	1020
gagcggagaa	gaggcaaggg	ccatgacggc	1080
gacacctacg	ctgtaccagg	gcctgagcac	
acgccttgca	ctgcctccaa	cgccaccaag	
catgcaggcc	gatga		1125

<210> 28

<211> 374

<212> PRT

<213> Artificial Sequence

<220>

<223> C2-gs-BBz Amino Acid Sequence

<400> 28

Met	Glu	Phe	Gly	Leu	Ser	Trp	Leu	Phe	Leu	Val	Ala	Ile	Leu	Lys	Gly
1				5					10					15	

Val	Gln	Cys	Gly	Ser	Asn	Ser	Cys	Ser	Met	Pro	Leu	Gly	Met	Glu	Ser
				20				25					30		

Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn
 35 40 45

Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly
 50 55 60

Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu
 65 70 75 80

Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln
 85 90 95

Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile
 100 105 110

Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly
 115 120 125

Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val
 130 135 140

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro
 145 150 155 160

Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys
 165 170 175

Glu Ala Gln Asp Leu Tyr Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly
 180 185 190

Gly Ser Ser Gly Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly
 195 200 205

Val Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Lys Arg Gly Arg
 210 215 220

Lys Lys Leu Leu Tyr Ile Phe Lys Gln Pro Phe Met Arg Pro Val Gln
 225 230 235 240

Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe Pro Glu Glu Glu
 245 250 255

Glu Gly Cys Glu Leu Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
 260 265 270

Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
275 280 285

Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
290 295 300

Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu
305 310 315 320

Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile
325 330 335

Gly Met Lys Gly Glu Arg Arg Gly Lys Gly His Asp Gly Leu Tyr
340 345 350

Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met
355 360 365

Gln Ala Leu Pro Pro Arg
370

<210> 29
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Glycine-serine linker

<400> 29

Gly Gly Gly Gly Ser
1 5