wo 2014/151539 A1 |JIN I 0O A O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/151539 A1

25 September 2014 (25.09.2014) WIPO I PCT
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 21/62 (2013.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. .) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
PCT/US2014/025955 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13 March 2014 (13.03.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
.] SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(26) Publication Language: English ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
13/833.051 15 March 2013 (15.03.2013) Us kind of regional protection available): ARIPO (BW, GH,
’ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant: ENSIGHTEN, INC. [US/US]; 1601 S. De UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Anza Blvd., Suite 165, Cupettino, CA 95014 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: GOODWIN, Joshua, C.; C/o Ensighten, Inc., E/{Ec’ El\iKF IMFTR’NGLB’I\IGOR’PliRi)?Uﬁ (I)E’RIS’ grE L; sLII<J ; él\\/i
1601 S. De Anza Blvd., Suite 165, Cupertino, CA 95014 TR > OAI,JI B’F le CF, Cé Ci Cl\;[G,A éN ,G ,GW,
(US). MANION, Joshua, R.; C/o Ensighten, Inc., 1601 S. Kl\/% ML M(R IifE ,SN :FD :FG), > > - GQ, >
De Anza Blvd., Suite 165, Cupertino, CA 95014 (US). > S)
(74) Agents: KRONENTHAL, Craig, W. ct al; Banner & Declarations under Rule 4.17:
Witcoff, Ltd., 10 South Wacker Drive, Suite 3000, Chica- — as to applicant’s entitlement to apply for and be granted a
go, IL 60606 (US). patent (Rule 4.17(ii))
(81) Designated States (unless otherwise indicated, for every — a510 the apg?licqnt’s entitlemen.t“to claim the priority of the
kind of national protection available): AE, AG, AL, AM, earlier application (Rule 4.17(iii))
[Continued on next page]
(54) Title: ONLINE PRIVACY MANAGEMENT

MEMORY

System

105 - 121

N AL
e i 101

167

09— | \r;:?;;)u;(lu! MODEM

FIG. 1

(57) Abstract: A privacy management system (PMS) is disclosed for a Chief
Privacy Officer (CPO) or other user to use in monitoring and/or controlling
in realtime the flow of data (e.g., outtlow) about the user and his/her online
experience. The PMS may employ pattern recognition software to evaluate
analytics data and potentially block private information from being sent with-
in the analytics data. The PMS may provide a dashboard displaying a whitel -
ist and/or blacklist indicating what destinations/sources are blocked or al-
lowed as well as private information settings indicating what types of private
information should be blocked. The PMS includes browser-client scripting
code and may also include a PMS-certified verification icon and/or lock and
unlock icons for display on webpages being monitored/controlled in realtime
by the PMS.

WO 2014/151539 A1 AT 00T A0 0 T AN AR

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2014/151539 PCT/US2014/025955

1

ONLINE PRIVACY MANAGEMENT

CROSS REFERENCE TO RELATED APPLICATIONS

[01]

This international application claims priority to U.S. Application No. 13/833,051,
filed March 15, 2013, which is a continuation-in-part of U.S. Patent Application
Serial No. 13/554,603 (Attorney Docket No. 007662.00016), filed July 20, 2012,
which is a continuation of U.S. Patent Application Serial No. 13/340,582 (Attorney
Docket No. 007662.00009), filed December 29, 2011, which claims priority to U.S.
Provisional Application Serial No. 61/428,560 (Attorney Docket No. 007662.00005),
filed December 30, 2010, including its concurrently-filed appendices; all of the

aforementioned applications are herein incorporated by reference in their entirety.

TECHNICAL FIELD

[02]

Aspects of the disclosure generally relate to management, regulation, control, and/or
auditing of analytics and other data to be collected from a user’s terminal. In
particular, various aspects of the disclosure discuss features of an online privacy

management system.

BACKGROUND

[03]

[04]

Web pages are generally written in Hypertext Markup Language (HTML). They are
written using HTML elements that include “tags” surrounded by angle brackets;
information in the tag tells the web browser how to interpret the HTML element (e.g.,
as text, for insertion of an image into the webpage, for running a script, etc.). These
tags can, among other things, include or can load scripts in languages such as

JavaScript™,

Meanwhile, web analytics is a field in which data about customers (e.g., customer
behavior, customer location, etc.) is collected and analyzed for a variety of purposes.
To obtain data for web analytics, a population of users visits a web page and/or starts
an application that causes certain program instructions to be executed. Usually, data
is collected for web analytics purposes through a variety of mechanisms, including the

setting of a cookie and/or by running scripts in the HTML document. The scripts may

WO 2014/151539 PCT/US2014/025955

[05]

[06]

[07]

2

perform a variety of functions, including grabbing variables from the document object
model (DOM) and/or sending back an image request to a data collection server either

internally or externally hosted.

The program instructions for web analytics are generally authored and run by a
variety of vendors, including Omniture™, Google™, Yahoo™, and Webtrends™,
among others, in order to be able to capture data such as web page load times, “mouse
overs” (i.e., moving a mouse over a particular object on the web page), and the page
requestor’s IP address. A medium complexity web page may include 5-10 tags with a

reference to computer scripts that are run on servers managed by different vendors.

When a marketer assigned to manage web analytics for an organization decides that
she wants to change the code/tagging to measure and analyze different features, the
process is often tedious and challenging. In many situations, to perform this update,
the marketer must create a new custom variable in the program instructions, define
what the new variable is, and specify what data the modified code must capture for
the web page. Since the marketer is generally not skilled in how to perform these
modifications, she must interface with her information technology (IT) department or
other similar agency. Sometimes, even the IT department may not adequately
understand the syntax of the web analytics program instructions to properly modify
the code, especially given that the myriad web analytics vendors, advertisers, survey
researchers, and marketers all have their own custom computer code for effectuating
the collection of data for analysis. In other situations, the IT department may not have
the appropriate bandwidth to modify the code for deployment on schedule (e.g., for an
advertisement campaign deadline, etc). These problems are only exacerbated when a
client’s website has many pages and/or many different types of program instructions

for collecting various data about a user.

Some web analytics tools use the HTML image element and/or JavaScript to assist in
collecting analytics data. An analytics data transmission may be masked as an image
clement that does not add the image element to the webpage’s DOM. Instead, the
image element may be for a one pixel by one pixel transparent image by the analytics

vendor for the purposes of collecting data related to the webpage visitor. For

WO 2014/151539 PCT/US2014/025955

[08]

example, the “src” attribute may be set to a URL with an appended string of
parameter name-value pairs (e.g.,
www.hostname.com/thelmage.gif?data=something&data2=someMoreData). Once
the “src” attribute is set, the browser may attempt to locate and retrieve the image at
the URL location. In doing so, the analytics data may be obtained at the remote
server as these name-value pairs. This is one method frequently used by web

analytics vendors for collecting data.

Some companies may outsource their web analytics to one or more third party
vendors (e.g., web analytics vendors, voice of consumer (VOC), ad servers, testing
solutions, targeting tools, pay per click (PPC) tools, affiliate tracking, etc.) that
specialize in web analytic, web advertising, and other web-related services.
Meanwhile, these third party vendors may contract/work with one or more fourth
party vendors to assist in collecting data, displaying/selecting advertising images,
analyzing collected data, etc. For example, a fourth party vendor may be executing
code on the companies’ webpages or collecting analytics data from the webpages.
This fourth party vendor may be unknown to the website owner or might not be an
industry-verified vendor. Some fourth party vendors might not respect DNT (Do-
Not-Track) Headers, unbeknownst to the website owner/company. In some case, the
fourth party vendor may even share the information collected about visitors with fifth
party vendors, again unbeknownst to the website owner/company. As such, data may
be collected and distributed from the website to domains and vendors unknown to the
website administrator. Privacy and other issues (e.g., technical issues) may arise in
regulating, controlling, and/or auditing the dissemination of the data. This disclosure
provides an online privacy management system that, among other things, permits
users (e.g., Chief Privacy Officers of a company, etc.) to better

control/regulate/manage consumer data and privacy.

BRIEF SUMMARY

[09]

Aspects of the disclosure address one or more of the issues mentioned above by
disclosing methods, computer readable media, and apparatuses for an online privacy
management system and related systems. In one example, a system may assist in

managing, regulating, controlling, and/or auditing of transmission of collected data

WO 2014/151539 PCT/US2014/025955

[10]

4

(e.g., web analytics or other data) collected from a user’s terminal to external servers.
The privacy management system may simplify the process by which users (e.g., Chief
Privacy Officers (CPOs), webpage visitors, etc.) can oversee with whom and/or what
information is being collected for transmission to third-party and fourth-party

computer Servers.

In one example in accordance with aspects of the disclosure, a privacy management
system’s non-transitory computer-readable medium storing scripting code written in a
programming language that lacks functionality to override a setter function of a
variable corresponding to a uniform resource locator stored in a predefined object,
wherein when the scripting code is executed by a processor of a computing device
located remotely from the privacy management system, the scripting code causes the
remote computing device to perform numerous steps, is disclosed. In some examples,
the steps may include one or more of the steps described herein. For example, the
remote computing device may perform one or more steps of: monitoring in realtime,
using the processor, a document object model of a webpage to identify updates to the
document object model that cause modification of the uniform resource locator stored
in the predefined object; comparing in realtime, using the processor, the modified
uniform resource locator to a predetermined list of values; and/or blocking in
realtime, using the processor, transmission of web analytics data to a server associated
with the modified uniform resource locator, based on the comparing. The remote
computing device may also analyze the analytics data to determine whether it includes
private information. Thus, in addition to, or instead of, checking uniform resource
locators, the remote computing device may evaluate the analytics data itself and
determine whether to block its transmission based on results of evaluating the
analytics data. In addition, in some examples, the remote computing device may also
perform one or more steps of: defining, using the processor, a new object, wherein the
new object is a wrapper object overriding the predefined object; and/or creating the
new object in the document object model, using the processor, wherein the new object
is configured to store at least an uniform resource locator. One or more of the steps

described above may be optional or may be combined with other steps. In some

WO 2014/151539 PCT/US2014/025955

[11]

examples, the monitoring step may include causing the processor to check for updates

to the uniform resource locator stored in the new object.

In another example in accordance with aspects of the disclosure, a computerized
apparatus comprising: a processor configured to transmit, over a network to a remote
computing device, scripting code written in a programming language that lacks
functionality to override a setter function of a first attribute in a predefined object; and
a memory storing the scripting code, which when executed by the remote computing
device, causes the remote computing device to perform numerous steps is disclosed.
In some examples, the steps may include one or more of the steps described herein.
For example, the remote computing device may: define a new object comprising a
wrapper object overriding the predefined object, including configuring a processor of
the remote computing device to create, in a memory of the remote computing device,
the new object instead of the predefined object in response to a request to create the
predefined object; check on a regular interval for updates to a second attribute stored
in the new object, wherein the second attribute is associated with the first attribute
stored in the predefined object; compare the second attribute to a predetermined list of
values, responsive to determining that the second attribute stored in the new object
has been updated by other scripting code executing on the remote computing device,
wherein the other scripting code is transmitted from a remote third-party server
different from the computerized apparatus; and/or block the other scripting code from
causing the remote computing device to send collected data, responsive to the
comparing of the second attribute to the predetermined list of values. In addition, in
some examples, the collected data may comprise web analytic data, the predefined
object may be a hypertext markup language image object, the first attribute and
second attribute may be configured to store uniform resource locators, and/or the
blocking of the other scripting code may be performed in realtime. One or more of
the steps described above may be optional or may be combined with other steps.
Furthermore, in some examples in accordance with aspects of the disclosure, the
predetermined list of values may comprise at least one of: a blacklist and a whitelist,

wherein the other scripting code may be blocked responsive to at least one of:

WO 2014/151539 PCT/US2014/025955

[12]

6

determining that the second attribute of the new object is in the blacklist, and

determining that the second attribute of the new object is not in the whitelist.

In yet another example in accordance with aspects of the disclosure, a method of
controlling distribution of web analytic data using an online privacy management
system is disclosed. In some examples, the method may include one or more of the
steps described herein. For example, the method may include one or more steps of:
receiving a page from a remote server corresponding to a first domain, wherein the
page comprises at least a plurality of elements that cause a computer processor to send
data to a domain different from the first domain; processing, using the computer
processor, a first element of the plurality of elements of the page, wherein the first
clement stores a first uniform resource locator referencing a privacy management
system server storing scripting code for privacy management; sending, using the
computer processor, a request to the privacy management system server for the
scripting code for privacy management; executing, using the computer processor, the
scripting code for privacy management to at least define an overridden object,
wherein the overridden object is a wrapper object overriding a predefined object;
processing, using the computer processor, a second element of the plurality of
clements after the executing of the scripting code for privacy management, wherein
the second element is configured to cause creation of the predefined object configured
to send data to a domain different from the first domain and different from the privacy
management system server; creating, in a computer memory using the computer
processor, the overridden object instead of the predefined object corresponding to the
second element, wherein the overridden object is configured to store at least an
uniform resource locator; storing in the overridden object a second uniform resource
locator received from the second element, wherein the second uniform resource
locator corresponds to a second domain; creating, in the computer memory using the
computer processor, the predefined object, wherein the predefined object is
configured to store at least an uniform resource locator; causing, by the scripting code
for privacy management, the computer processor to check for updates to the uniform
resource locator stored in the overridden object; in response to determining that the

uniform resource locator of the overridden object has been updated to the second

WO 2014/151539 PCT/US2014/025955

[13]

7

uniform resource locator, comparing, by the scripting code for privacy management,
the second uniform resource locator stored in the overridden object to a predetermined
list of domains; in response to determining that the second uniform stored in the
overridden object is in the predetermined list, blocking, by the scripting code for
privacy management, the second element from configuring the page to send collected
data to the second uniform resource locator, wherein the collected data comprises web
analytic data; and/or in response to determining that the second uniform stored in the
overridden object is not in the predetermined list, updating, by the scripting code for
privacy management, the uniform resource locator stored in the predefined object to
the second uniform resource locator. In addition, in some examples, the blocking may
be performed in realtime and comprise one or more steps of: modifying the second
uniform resource locator to clear the collected data; and/or storing the modified
second uniform resource locator in the predefined object. In some examples, the
computer processor may check for updates to the second uniform resource locator of
the overridden object on a predetermined interval, and not using a push model. In
addition, in some examples, the second element may be a script tag in hypertext
markup language and include a fourth uniform resource locator, and the method may
also include one or more steps of: causing, by the second element, an update of the
second uniform resource locator stored in the overridden object to the fourth uniform
resource locator, wherein the fourth uniform resource locator is in the predetermined
list of domains; recording in a log the second uniform resource locator that
corresponds to the second domain; and/or recording in the log in association with the
second uniform resource locator, at least the fourth uniform resource locator. One or
more of the steps described above may be optional or may be combined with other
steps. Furthermore, in some examples, the two steps of recording in the log may
include reading a stack trace using the computer processor to obtain information for

the log file.

In one example in accordance with aspects of the disclosure, a privacy management
system’s computer-readable storage medium storing computer-executable
instructions, which when executed by a processor of a computing device located

remotely from the privacy management system, causes the remote computing device

WO 2014/151539 PCT/US2014/025955

to perform numerous steps is disclosed. In some examples, the steps may include one
or more of the steps described herein. For example, the remote computing device
may perform one or more steps to: define an overridden object, wherein the
overridden object is a wrapper object overriding a predefined object, wherein the
overridden object is configured to store at least an uniform resource locator, wherein
the predefined object is configured to store at least an uniform resource locator; and
wherein the defining an overridden object configures the processor to create, in a
memory, the overridden object instead of the predefined object in response to a
request to create the predefined object; create, in the memory, the predefined object,
wherein the predefined object is associated with the overridden object; cause the
processor to check for updates (e.g., on a predetermined interval, using a push model,
etc.) to the uniform resource locator stored in the overridden object; compare (e.g., in
realtime) the updated uniform resource locator stored in the overridden object to a
predetermined list of domains, in response to determining that the uniform resource
locator of the overridden object has been updated; and/or based on results of the
compare, performing one of: (i) modify the updated uniform resource locator stored in
the overridden object to remove collected data and store the modified updated
uniform resource locator in the predefined object, and (ii) store the updated uniform
resource locator in the predefined object. In some examples in accordance with
aspects of the disclosure, additional steps may be performed to: create, in the memory,
the overridden object, in response to a request to create the predefined object; and/or
compare the updated uniform resource locator stored in the overridden object to the
predetermined list of domains. One or more of the steps described above may be
optional or may be combined with other steps. In one example, the computer-
executable instructions may be written in a programming language that lacks
functionality to override a setter function of a variable corresponding to the uniform
resource locator stored in the predefined object. Furthermore, in some examples, the
modified updated uniform resource locator may be a portion of the updated uniform
resource locator modified with a default value. In addition, in some examples, the
predetermined list of domains may include a whitelist and/or a blacklist, and the

updated uniform resource locator may be stored in the predefined object based on the

WO 2014/151539 PCT/US2014/025955

[14]

[15]

9

updated uniform resource locator being a part of the whitelist and/or not part of the

backlist.

In addition, in accordance with aspects of the disclosure, the methods, apparatus, and
computer-readable medium described herein may further include the steps to cause a
remote computing device to: define an overridden method overriding a predefined
method, wherein the defining an overridden method configures the processor to
execute, by the processor, the overridden method instead of the predefined method in
response to a request to execute the predefined method; cause the processor to execute
the predefined method subsequent to execution of the overridden method (e.g., using
the modified uniform resource locator as the input parameter to the predefined
method); receive an uniform resource locator corresponding to a third domain as an
input parameter to the predefined method, and wherein the third domain is different
from a domain corresponding to the privacy management system server; compare the
received uniform resource locator to the predetermined list of domains; and/or in
response to determining that the received uniform resource locator stored is in the
predetermined list, modify the uniform resource locator stored to remove the collected
data. One or more of the steps described above may be optional or may be combined
with other steps. In some examples, the predefined method may be a constructor
method corresponding to an image element in hypertext markup language, and the
predefined method may be at least one of: an appendChild function, an insertBefore

function, a replaceChild function, and a write function.

In one example in accordance with aspects of the disclosure, a privacy management
system’s computer-readable storage medium storing computer-executable
instructions, which when executed by a processor of a computing device located
remotely from the privacy management system, causes the remote computing device
to perform numerous steps is disclosed. In some examples, the steps may include one
or more of the steps described herein. For example, the remote computing device
may perform one or more steps to: display the predetermined list of domains, wherein
the predetermined list is configured to support regular expressions with wildcards;
generate a graphical user interface configured to permit updates to the predetermined

list by adding and deleting entries in the predetermined list; send the updated

WO 2014/151539 PCT/US2014/025955

10

predetermined list to the privacy management server for storage; generate an
graphical user interface comprising an input means configured to enable scripting
code for privacy management; send a state of the input means to the privacy
management server for storage; before the defining of the overridden object,
determine that the scripting code for privacy management is disabled; reconfigure the
processor to no longer create the overridden object instead of the predefined object in
response to a request to create the predefined object; reconfigure the processor to no
longer cause the processor to check for updates to the uniform resource locator stored
in the overridden object; display a list of one or more domains providing third-party
scripting code to the remote computing device, wherein the third-party scripting code
is configured to cause the remote computing device to send the collected data to a
remote server;, determine that the remote server is associated with a domain on the
blacklist; display the domain on the blacklist that corresponds to the domain providing
third-party scripting code; display whether the processor of the remote computing
device is configured to block execution of the third-party scripting code; determine a
location of the remote computing device; identify a privacy rule corresponding to the
location of the remote computing device; and/or configure the processor to block
sending of the collected data when the privacy rule has been met. One or more of the

steps described above may be optional or may be combined with other steps.

[16] This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the detailed description. The summary is not
intended to identify key features or essential features of the claimed subject matter,
nor is it intended to be used to limit the scope of the claimed subject matter.
Moreover, one or more of the steps and/or components described above may be

optional or may be combined with other steps.

BRIEF DESCRIPTION OF FIGURES
[17] Systems and methods are illustrated by way of example and are not limited in the
accompanying figures in which like reference numerals indicate similar elements and

in which:

WO 2014/151539 PCT/US2014/025955

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

11

Figure 1 shows an illustrative operating environment in which various aspects of the

disclosure may be implemented;

Figure 2 is an illustrative block diagram of workstations and servers that may be used

to implement the processes and functions of certain aspects of the disclosure;

Figure 3 is an illustrative graphical user interface showing a PMS-certified
verification icon and privacy manager interface in accordance with various aspects of

the disclosure;

Figures 4A and 4B (based on, inter alia, Appendix B in U.S. Provisional Application
Serial No. 61/428,560) illustrate example graphical user interfaces for a privacy
management console and an advanced rule editor, in accordance with various aspects

of the disclosure;

Figures 5A, 5B, and 5C (all based on, inter alia, Appendix C in U.S. Provisional
Application Serial No. 61/428,560) illustrate a high-level diagram of a webpage with
numerous web vendors, including third party and fourth party vendors, interacting

with the webpage, in accordance with various aspects of the disclosure;

Figure 6 illustrates a flowchart of a method related to an online privacy management

system in accordance with various aspects of the disclosure;

Figures 7A and 7B illustrate a flowchart of another method related to an online

privacy management system in accordance with various aspects of the disclosure;

Figures 8A and 8B illustrate additional aspects of a dashboard of the privacy

management system; and

Figures 9A and 9B illustrate additional icons that may be used in conjunction with the

privacy management system.

Detailed Description

[27]

In the following description of the various embodiments of the disclosure, reference is
made to the accompanying drawings, which form a part hereof, and in which is shown

by way of illustration, various embodiments in which the disclosure may be practiced.

WO 2014/151539 PCT/US2014/025955

[28]

[29]

12

It is to be understood that other embodiments may be utilized and structural and

functional modifications may be made.

A privacy management system (PMS) is disclosed for a Chief Privacy Officer (CPO)
or other user to use in, among other things, monitoring and/or controlling in realtime
the flow of data (e.g., outflow) about the user and his/her online experience. The
PMS may provide a dashboard displaying a whitelist and/or blacklist indicating what
destinations/sources are blocked or allowed. The dashboard may also include settings
that a user can set to create rules for blocking private information from being
transmitted as analytics data. The PMS includes browser-client scripting code and
may also include a PMS-certified verification icon as well as lock and unlock icons

for display on webpages being monitored/controlled in realtime by the PMS.

Systems and methods are disclosed directed at steps performed by a web browser
application while interacting with a webpage that is monitored by a privacy
management system (PMS). The browser may receive a page (e.g., HTML page)
comprising scripting code (e.g., Javascript) from multiple sources (i.e., privacy
management server, third-party analytics vendors, third-party targeted ads vendors,
etc.) The browser may execute the scripting code, thus causing the plurality of
clements (e.g., scripting tags, image tags, etc.) on the page to send data to different
domains. The scripting code may, in some examples, override particular standard
methods (e.g., appendChild method) and constructor methods for particular page
clements (e.g., image element). The overridden method may be executed at the
browser (i.c., on the user’s device) such that communication between the browser and
particular domains or subdomains may be blocked or allowed. Additionally, or
alternatively, the overridden method may block communications based on whether the
communications include private information. In some examples, the PMS may
implement rules to determine whether to block or allow the communication, or may
rely on default rules. Moreover, in some examples, the PMS may use pattern
recognition software to detect private information within analytics data. The result of
monitoring and control by a PMS may be displayed on an (online) dashboard for a
CPO or other person. The PMS may generate messages in response to particular

events (e.g., blocking) occurring in realtime.

WO 2014/151539 PCT/US2014/025955

[30]

[31]

[32]

13

In addition, systems and methods are disclosed directed at a remote server that
provides the scripting code that is executed to enable the PMS to manage and control
the flow (e.g., outflow) of data. The code may include Javascript code that overrides
existing Javascript methods and/or constructors for Javascript objects, and is referred
to herein as an “overridden method” or “overridden object.” The existing method or
object that is being overridden is referred to herein as the “predefined method” or

“predefined object.”

In addition, systems and methods are disclosed directed at a universal PMS-certified
verification icon that may be provided and displayed on a webpage to indicate that the
webpage is compliant with particular privacy policies. The icon may be provided by
the PMS and information about privacy preferences/settings for the PMS to
implement may be stored in the PMS system. Alternatively, the privacy
preferences/settings information may be stored on the client’s device (e.g., as a
cookie) or other location. Systems and methods are disclosed for providing lock and
unlock icons for various information on a page so that users viewing the page may see
what information will be blocked from being transmitted as analytics data. Further,
systems and methods are disclosed for allowing users (e.g., CPOs, webpage visitors,
etc.) to select the lock and unlock icons so that users may control what information is

being blocked.

In accordance with various aspects of the disclosure, a privacy management system
(PMS) is disclosed for, among other things, enhancing control over consumer data
collection and online privacy. A Chief Privacy Officer (CPO), or anyone interested in
managing the collection and distribution of information about an online user (e.g.,
web analytics, data mining, etc.) may use the PMS to monitor, collect information
about, report about, and/or block in realtime the distribution of data about users. In
one embodiment, the PMS may be used in conjunction with Ensighten’s “Ensighten
Manage”™ product for tag management. In another embodiment, aspects of the PMS
may be used in conjunction with other web analytics and/or tag management products
readily available in the market, such as those by ObservePoint™, Google™, Site
Catalyst™, and others. In addition, the PMS may provide a dashboard displaying a

whitelist and/or blacklist indicating what destinations/sources are blocked or allowed

WO 2014/151539 PCT/US2014/025955

[33]

[34]

[35]

14

as well as windows for allowing a user to customize what private information should
be blocked. The PMS includes browser-client scripting code and may also include a
PMS-certified verification icon, a lock icon, and unlock icon for display on webpages

being monitored/controlled in realtime by the PMS.

Figure 1 describes, among other things, an illustrative operating environment in which
various aspects of the disclosure may be implemented (e.g., see Appendix A in U.S.
Provisional Application Serial No. 61/428,560). Figure 1 illustrates a block diagram
of a tag/content manager 101 (e.g., a computer server) in communication system 100
that may be used according to an illustrative embodiment of the disclosure. The
manager 101 may have a processor 103 for controlling overall operation of the
manager 101 and its associated components, including RAM 105, ROM 107,
input/output module 109, and memory 115.

I/0 109 may include a microphone, keypad, touch screen, and/or stylus through which
a user of device 101 may provide input, and may also include one or more of a
speaker for providing audio output and a video display device for providing textual,
audiovisual and/or graphical output. Software may be stored within memory 115 to
provide instructions to processor 103 for enabling manager 101 to perform various
functions. For example, memory 115 may store software used by the manager 101,
such as an operating system 117, application programs 119, and an associated
database 121. Processor 103 and its associated components may allow the manager
101 to run a series of computer-readable instructions to deploy program instructions
according to the type of request that the manager receives. For instance, if a client
requests that program instructions for capturing mouse movements for complete
session replay be executed, manager 101 may transmit the appropriate instructions to

a user’s computer when that user visits the client’s website.

The manager 101 may operate in a networked environment supporting connections to
onge or more remote computers, such as terminals 141 and 151. The terminals 141 and
151 may be personal computers or servers that include many or all of the elements
described above relative to the manager 101. Alternatively, terminal 141 and/or 151

may be part of a “cloud” computing environment located with or remote from

WO 2014/151539 PCT/US2014/025955

[36]

[37]

[38]

[39]

15

manager 101 and accessed by manager 101. The network connections depicted in
Figure 1 include a local area network (LAN) 125 and a wide area network (WAN)
129, but may also include other networks. When used in a LAN networking
environment, the manager 101 is connected to the LAN 125 through a network
interface or adapter 123. When used in a WAN networking environment, the server
101 may include a modem 127 or other means for establishing communications over
the WAN 129, such as the Internet 131. It will be appreciated that the network
connections shown are illustrative and other means of establishing a communications
link between the computers may be used. The existence of any of various well-

known protocols such as TCP/IP, Ethernet, FTP, HTTP and the like is presumed.

Additionally, an application program 119 used by the manager 101 according to an
illustrative embodiment of the disclosure may include computer executable
instructions for invoking functionality related to delivering program instructions

and/or content.

Computing device 101 and/or terminals 141 or 151 may also be mobile terminals
including various other components, such as a battery, speaker, and antennas (not

shown).

The disclosure is operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well known
computing systems, environments, and/or configurations that may be suitable for use
with the disclosure include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and distributed computing environments that

include any of the above systems or devices, and the like.

The disclosure may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally,
program modules include routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular abstract data types. The

disclosure may also be practiced in distributed computing environments where tasks

WO 2014/151539 PCT/US2014/025955

[40]

[41]

[42]

16

are performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located

in both local and remote computer storage media including memory storage devices.

Referring to Figure 2, that figure describes an illustrative block diagram of
workstations and servers that may be used to implement the processes and functions
of certain aspects of the disclosure (e.g., see Appendix A in U.S. Provisional
Application Serial No. 61/428,560). Figure 2 describes an illustrative system 200 for
implementing methods according to the present disclosure is shown. As illustrated,
system 200 may include one or more workstations 201. Workstations 201 may be
local or remote, and are connected by one or more communications links 202 to
computer network 203 that is linked via communications links 205 to tag/content
manager 204. In certain embodiments, workstations 201 may be different
storage/computing devices for storing and delivering client-specific program
instructions or in other embodiments workstations 201 may be user terminals that are
used to access a client website and/or execute a client-specific application. In system
200, manager 204 may be any suitable server, processor, computer, or data processing
device, or combination of the same. Throughout this disclosure, tag/content manager
204 will be used to reference both the server/terminal that stores program instructions
for tag/content management and the tag/content management program instructions

themselves.

Computer network 203 may be any suitable computer network including the Internet,
an intranet, a wide-area network (WAN), a local-area network (LAN), a wireless
network, a digital subscriber line (DSL) network, a frame relay network, an
asynchronous transfer mode (ATM) network, a virtual private network (VPN), or any
combination of any of the same. Communications links 202 and 205 may be any
communications links suitable for communicating between workstations 201 and

server 204, such as network links, dial-up links, wireless links, hard-wired links, etc.

The steps that follow in the Figures may be implemented by one or more of the
components in Figures 1 and 2 and/or other components, including other computing

devices.

WO 2014/151539 PCT/US2014/025955

[43]

[44]

[45]

17

Taking as an example the Ensighten Manage™ product, aspects of which are
described in Appendix A of U.S. Provisional Application Serial No. 61/428,560, a
webpage author may include Ensighten’s code (or other similar code 510A) (e.g., a
single consistent line of Javascript code) at the top of the webpages 502 on their
website servers 504. This code permits the management of content/tags associated
with the webpage. For example, the Ensighten Manage™ product may be used to
collect analytics data about the movement of the webpage visitor’s mouse over a
particular object (e.g., “mouse over”) and transmit this data to a remote server (e.g.,
Ensighten’s database 506, the webpage owner’s database 504, or other servers 508)
for storage/analysis. Assuming the webpage owner is operating the tag management
software, they are directly managing what data is collected about their webpage
visitors and where that data is distributed. In such a scenario, a CPO might not need a
PMS to monitor and regulate (e.g., block) the flow of analytic data about their website

visitors.

However, some companies may outsource their web analytics to one or more third
party vendors 508A, 508B that specialize in web analytic, web advertising, and other
web-related services. Meanwhile, these third party vendors may contract/work with
one or more fourth party vendors 508C to assist in collecting data,
displaying/selecting advertising images, analyzing collected data, etc. In the
examples illustrated in Figures SA, 5B, and 5C, a fourth party vendor (e.g., “Ad
Vendor X” 580C) may be executing code 510B on the companies’ webpages 502 or
collecting analytics data from the webpages. This fourth party vendor may be
unknown to the website owner. In such a scenario, a CPO might not have the same
control over the collection and flow of information about their website visitors as in
the prior scenario. Moreover, if privacy concerns (e.g., through customer complaints,
from privacy laws in different jurisdictions, etc.) are raised, a CPO might not be able

to efficiently assess and regulate (e.g., in realtime) the outflow of analytic data.

Basic PMS for Offline Auditing of Static Webpages. In one embodiment, the PMS
may be used to audit a website. The PMS may parse a webpage (e.g., HTML) and
identify all elements (e.g., image tags, Javascript tags, Flash™ tags, Applet™ tags,
etc.) on the webpage. The PMS may identify the location (e.g., URL, domain,

WO 2014/151539 PCT/US2014/025955

[46]

[47]

18

subdomain) corresponding to these elements. For example, the PMS, in such an
example, may identify the domain from which all images elements (e.g., the “src”
attribute of HTML image tag) are being sourced. A basic CPO dashboard (i.c., a
graphical user interface that may be displayed on a computer screen) may identify the
various domain names and identify what type of information is being passed to those
domains. In another example, the PMS used to audit the website may also check and
analyze the PMS methods for suspected attempts at modification and report them
(e.g., through the CPO dashboard). In some embodiments, the checking and analysis
may also use a covertly deployed JavaScript monitoring program including aspects of
features described in this disclosure. In yet other embodiments, the PMS may
perform direct (or hash) comparisons of selected PMS methods’ code to check for
modifications. The checks and/or analysis may occur at various different times,

including during periodic spot checks and report the findings accordingly.

While this approach is sufficient for a basic static webpage where HTML elements
are built into the page, it may be inadequate when scripting code (e.g., Javascript
code) is dynamically updating the attribute values of HTML elements on the webpage
and/or adding new elements to the document object model (DOM) of the webpage. In
addition, the PMS in this example performs its audit offline (e.g., using web
spiders/robots), and as such, is incapable of providing realtime information about and

controlling the flow of data from the webpage.

PMS for Realtime Monitoring and/or Control of Dynamic Webpages. In yet
another embodiment, the PMS may provide realtime information about and control of
the flow of data (e.g., analytics data of a webpage) to and from a webpage 502 on a
company’s web servers 504. Scripting code (e.g., Javascript code) may be embedded
in the webpage (e.g., at the top of the webpage) to permit the PMS to interact with the
DOM and other aspects of the webpage. Such scripting code may be integrated with
existing tag management or web analytic solutions. For example, this scripting code
may be included as part of Ensighten’s code 510A at the top of a webpage 502 as per
the Ensighten Manage™ product.

WO 2014/151539 PCT/US2014/025955

[48]

[49]

[50]

[S1]

[52]

[53]

[54]

19

Overriding Particular Methods. When a webpage is loaded, the PMS’s client-
browser scripting code 510 may execute on the website visitor’s computing device
100 (e.g., personal computer, laptop, smartphone, tablet, etc.). Ensuring that this
scripting code (e.g., Javascript) is executed before external vendors (e.g., third party,
fourth party, etc.) code is executed, the PMS’s client-browser scripting code 510A
may override one or more Javascript methods available on the DOM of the webpage.
As a result, as subsequent scripts and page elements 510 (e.g., HTML tags) are
processed and rendered on the webpage, the PMS-overridden Javascript methods are
executed instead of the standard Javascript methods. In particular, it may be desirable
to override those methods that may result in the creation or adding of new elements to
the DOM. For example, in the current Javascript standard, some examples of such
methods include, but are not limited to, the (1) appendChild, (2) insertBefore, (3)
replaceChild, and (4) write methods.

Javascript AppendChild() Example. For example, with the appendChild() method,
which adds a node after the last child node of the inputted element node, the method

may be overridden with at least the following sample 4 lines of pseudo-code:
Line 0: Node.prototype. appendChild = Node.prototype.appendChild,;

Line 1: Node.prototype.appendChild = function(a) {

Line 2: //code for monitoring and regulating the appendChild method

Line 3: this. appendChild(a); };

In Line 0, the “Node.prototype” language is used to refer to the base class that when
modified, applies to all elements in the DOM. As such, “ appendChild” is used to
store a reference to the original appendChild() method that is part of the Javascript
standard. Then in Line 1, the original appendChild() method is overridden with the
new, custom code in Line 2 and Line 3. Line 3 calls the original appendChild()
function, but before that function is called, the PMS may insert code for monitoring
and regulating the scripting occurring on the webpage. In particular, this code may
inspect the “img” (image) element/object being passed into the appendChild() method

and examine it for information about what type of analytics data is being collected

WO 2014/151539 PCT/US2014/025955

[53]

[S6]

20

and where that data is to be sent. For example, if the “img” (image) element was an
HTML image element (i.c., object), the value of the “src” attribute may indicate a
domain name (e.g., URL with full path and file name) and other information. The
term “domain” or “domain name” is used herein to refer, as appropriate, to the full

URL of a resource or an abbreviated form of the URL.

Whitelist and Blacklist Feature. In addition, in some embodiments, the custom
code in Line 2 may include a comparison of the domain name to known friendly
and/or hostile domains. For example, the domain name may be compared against a
whitelist 406 (i.c., friendly sites) and blacklist 408 (i.e., hostile sites). (See Fig. 6, ref.
610). The comparing may be through a direct comparison, through a comparison
involving regular expressions, or a combination of the two. The comparing may
involve one or more or none of a domain’s host, path, file, query parameters, hash, or
HTTP header field (e.g., a user agent field, a referrer field, and/or a cookie field), or
other parameter. The whitelist (and blacklist) may include regular expressions with
wildcards in combination with domain names, subdomain names, or the like. In
addition, the blacklist (or alternatively, the whitelist) may include a default expression
to indicate that all unrecognized domain names should be blocked. A CPO may,
through an online dashboard or the like (see Figure 4), maintain those domains that
should be included in the whitelist 406 and/or blacklist 408. In some examples,
particular sites notorious for unauthorized tracking may be automatically added (or
suggested for addition) to the blacklist. For example, a database of vendors (e.g., ad
servers 508C, web analytics vendors, etc.) that are known to be non-compliant with
privacy regulations (e.g., local regulations, foreign regulations, and/or DNT
requirements) may be used by the privacy management system to populate the

blacklist accordingly.

In those cases where the element attempting to be added to the DOM of the webpage
is not authorized (i.e., the domain it is communicating with is on the blacklist, or it is
not on the whitelist and the default setting is to block unrecognized domains), the
PMS may, in realtime, block the element from being added to the DOM.
Accordingly, code may be included in Line 2 above to make the desired comparison

and then react accordingly. For example, if the element is to be blocked, the value of

WO 2014/151539 PCT/US2014/025955

[57]

[58]

21

the “src” attribute of the “img” (image) element/object may be cleared before the
“ appendChild” method call in Line 3. (See Fig. 6, ref. 616). Alternatively, the
“ appendChild” method in Line 3 may be skipped completely. In yet another
alternative, the element may be added, but modified (e.g., using a default value) so as
to render void its data collection capabilities (e.g., by clearing the values of any
collected analytics data to be saved in the element/object.) For example, clearing the
values of collected data may include modifying/clearing/removing name-value pairs
appended to a URL. (See Fig. 6, ref. 618). One of skill in the art after review of the
entirety disclosed herein will appreciate that at least one benefit of one or more of the
aforementioned examples is that a PMS may perform realtime monitoring and
blocking/allowing of information (e.g., web analytics) transmission to particular
domains/URLs. Such realtime monitoring may allow for instantancous

control/regulation of web analytics distribution without relying on after-the-fact audit

of offline webpages.

Additional Reporting Features of the PMS. In addition to providing a CPO online
dashboard 400, other reporting techniques may also be used in conjunction with the
PMS. For example, a SMS message (or other message type, e¢.g., SMTP e-mail
message, voice message, instant messenger chat message, etc.) may be generated and
sent to a CPO (or other person or computing system) in response to a domain on the
blacklist attempting to collect and/or transmit analytics data on a company’s website.
In another embodiment, specific types of data may be flagged such that when client-
side external scripts attempt to call particular methods associated with sensitive
private user data, then a realtime (or delayed) alert may be generated. For example, if
an external party’s script attempts to call a method to read the unique device identifier
(UDID) of a smartphone device (or other unique identifier of the browser or user), a
message may be automatically generated and sent to the CPO. In addition, a report
402 may be generated and sent (e.g., by e-mail) to a CPO on a regular (e.g., weekly,
monthly, daily, etc.) basis identifying the domain names that attempted to collect

analytics data from the company’s website and the types of analytic data.

Wrapper Techniques for Methods Prohibited From Being Overridden. Although

the present Javascript standards permit some methods, such as “appendChild,” to be

WO 2014/151539 PCT/US2014/025955

[59]

[60]

22

overridden, the language prohibits other methods from being overridden. For
example, the “src” attribute of the image element is set using a “setter” function that
Javascript currently does not allow the PMS’s client-browser scripting code to
override. An authorized third party vendor 508A may include Javascript on the
company’s webpage that changes the “src¢” value to an unauthorized fourth party’s
domain 508C, and a PMS that relied solely on overriding methods and offline
auditing may fail to catch the privacy policy breach.

In addition, in some instances, an analytics data transmission may be masked as an
image clement that is not appended to the webpage’s DOM. Instead, the image
element may be for a one pixel by one pixel transparent image by the analytics
provider for the purposes of collecting data related to the webpage visitor. For
example, the “src” attribute may be set to a URL with an appended string of
parameter name-value pairs (e.g.,
www.hostname.com/thelmage.gif?data=something&data2=someMoreData). Once
the “src” attribute is set, the browser may attempt to locate and retrieve the image at
the URL location. In doing so, the analytics data may be obtained at the remote
server as these name-value pairs. Consequently, overriding the method used to add
that image element to the webpage or inspecting the DOM may be inadequate for a
PMS to monitor and control (e.g., allow or block) the outflow of analytics data.
Although the image clement has been described herein as an example of one
technique for collecting and transmitting information from a computing device to a
remote server, the disclosure contemplates that other elements/objects may be used,
and the techniques and/or systems described herein may be similarly applied to those

others.

Therefore, in addition to overriding those desired methods that are capable of being
overridden, in some embodiments, the PMS may include a non-transitory computer-
readable medium storing scripting code (e.g., client-browser scripting code) to wrap
the methods available for the HTML image element/object. One of ordinary skill in
the art will appreciate after review of the entirety disclosed herein that other

methods/objects (e.g., elements) may be “wrapped” (i.e., referred to as overridden in

WO 2014/151539 PCT/US2014/025955

[61]

[62]

23

various examples in this disclosure) in this manner to overcome the prohibition (i.e.,

due to lack of functionality in the scripting language) on overriding some methods.

For example, a HTML image element is created in Javascript 510B using an image
constructor. That constructor may be overridden. However, in addition to overriding
the constructor method, the PMS client-browser scripting code 510A includes a timer
(or equivalent mechanism) that triggers at regular intervals (e.g., 50 ms, etc.) to
inspect the values of the attributes of the image element. (See Fig. 6, ref. 606). In
particular, the value of the “src” attribute may be monitored to determine if Javascript
code (or other code) 510B has modified the attribute value. (See Fig. 6, ref. 608). In
an alternate embodiment, assuming the underlying platform 100 running the scripting
code provides the functionality, the trigger may not be based on a repeating interval
(or polling) model, but instead on a “push” model that automatically triggers upon
detection of a change in an attribute value. (See Fig. 6, ref. 606). Such a model may
be similar to how a hardware interrupt requests (IRQs) model operates, or to how
event-based programming with a talker-listener model (e.g., push-interaction pattern)

operates.

In the aforementioned example, the determination whether an attribute value has been
modified may be made by the PMS client-browser scripting code comparing the
retrieved value of the attribute to a stored value of the attribute. (See Fig. 6, ref. 608).
The stored value may have been obtained when the original image constructor was
called. When it has been determined that the value of an attribute has changed, the
PMS client-browser scripting code may inspect the updated value and other related
information to decide whether to allow the updated value. (See Fig. 6, ref. 612). In
one example, the PMS scripting code may keep the attribute value the same. In other
examples, the PMS may compare the new value to a whitelist 406 and/or blacklist 408
to determine whether to allow the updated value. (See Fig. 6, ref. 612). In yet
another example, the “src” attribute value may be changed to a default value (e.g., a
URL corresponding to a neutral, transparent image) instead of the new value. (See
Fig. 6, ref. 616). Effectively, the PMS may conditionally keep the original image
reference synchronized with the new image object created with the “wrapper”

technique that overrides the image constructor. (See Fig. 6, refs. 614 & 618).

WO 2014/151539 PCT/US2014/025955

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

24

In one example in accordance with the disclosure, Javascript code may implement
aspects of the example provided with at least the following sample lines of pseudo-
code directed at the image element. One of skill in the art after review of the entirety
disclosed herein will appreciate that the disclosure is not limited to just the HTML
image element, and may be applied to other elements in the document object model

(DOM) as well as other objects outside of the DOM:
Line 0: (function(scope) {
Line 1: var ImageRef = scope.Image; scope.Image = function(a,b) {

Line 2: var THIS = this, image, eventHandlers =
['Abort','Error','KeyDown','KeyPress',' KeyUp','load'], exclude = { children:",
childNodes:", outerHTML:"}, excludeMethods = {naturalHeight:", natural Width:"};

Line 3: image = new ImageRef(a,b);

Line 4: // code here to make the object that the PMS’s overridden constructor returns
(i.e.., “THIS”) look exactly like the image object that the original implementation

returns

Line 5: // code here to create empty functions on the PMS’s image object for all the
event handlers (e.g., onLoad, etc.) listed in “eventHandlers” in Line 3 so that these

event handler methods can be monitored and controlled
Line 6: setInterval(function() {

Line 7: for (p in THIS) { if ((THIS[p] !'== image[p]) && (THIS[p] !== undefined)
&& !(p in excludeMethods)) { try { if (p==="src') {

Line 8: //code for monitoring and regulating the image element’s src attribute
Line 9: } image[p] = THIS[p]; THIS[p] = image[p]; ...

Referring to Line 0 in this example, a new function has been created that passes
Javascript’s global scope (i.e., “window”) into the function. In Line 1, the original

image constructor function is stored into the variable “ImageRef,” then the

WO 2014/151539 PCT/US2014/025955

[75]

[76]

[77]

25

constructor function for the image element is overridden. (See Fig. 6, ref. 602). The
“a” and “b” input parameters may optionally provide the width and height,
respectively, of the image. In Line 2, the private “THIS” variable indicates which
eventHandlers should be monitored and which methods on the image element/object

may be excluded.

Referring to Line 3 of the sample code in this example, although the ImageRef()
method is called with two input parameters, conditional code (e.g., if-else statements)
may be included to optionally call the ImageRef() method with either one input
parameter or no input parameters. Such conditional code may be useful to, among
other things, when less than the two optional input parameters are desired. In Line 4,
a “for” loop may be used to copy all of the properties of the original image
clement/object to the object created by the wrapper. (See Fig. 6, ref. 604). In Line 5,
the eventhandlers are setup in the wrapper for monitoring. In Line 6, a function is
defined that will be repeatedly executed at a regular interval. (See Fig. 6, ref. 606).
In this case, the pseudo-code omits the end bracket (““}”) for the setInterval() and that

the call accepts the quantity of time (e.g., 50 ms) for each interval.

In Line 7, the code inspects those attributes of the image that are of interest to the
PMS. (See Fig. 6, ref. 608). In particular, in line 8, if the attribute being analyzed is
the “src” attribute of the image object, then the PMS may react according to privacy
rules. For example, as explained above with respect to Line 2 of the appendChild()
pseudo-code example, the value of the “src” attribute may be checked (e.g.,
compared) against a whitelist and/or blacklist, as well as other possible actions/rules.
(See Fig. 6, ref. 608). If the PMS determines that no privacy violation would occur,
then the actual synchronization of the predefined object (e.g., image object 514) and

the corresponding overridden object (e.g., wrapper image object 512) occurs in Line

9. (See Fig. 6, refs. 612 & 614).

One of ordinary skill in the art after review of the entirety disclosed herein will
appreciate that the lines of pseudo-code presented above are merely a paraphrasing of
the code and/or functionality achieved by the code. One or more lines of code may

have been omitted in presenting the simplified example above.

WO 2014/151539 PCT/US2014/025955

[78]

[79]

26

Identifying the Third Party Culprit Behind the Fourth Party Access. Referring to
the example above with respect to monitoring the image element, Line 2 may also
include a call to a logStack() function (or comparable function) to determine what
specific Javascript code attempted to create an image element/object or update the
“src” attribute of an image element. Such information may allow a CPO to identify
which third party script is responsible for the data being sent, in addition to
identifying what the data being sent out is. In some embodiments, the logStack()
function operates by creating an “Error” type object and stripping data from it. The
“Error” object may contain a stack trace that includes information about where the
call to create or modify an image element/object originated from. While this function
may be used in some embodiments in accordance with the disclosure, it may be
omitted in some embodiments where browser-specific limitations may prevent proper
access to the “Error” object. The PMS may, in some examples, identify the vendor
responsible for the privacy policy violation on the CPO dashboard, in addition to
displaying other information. This disclosure also contemplates a stack trace (or
comparable log) being captured in other ways. For example, the “arguments.caller”
properties or ‘“Function.caller” properties within a logStack method (or comparable
function) may be examined in lieu of, or in addition to, examining an Error object as

described above.

Private Information Detection and Handling. As disclosed above, aspects of this
disclosure relate to preventing or reducing the likelihood that analytics data (e.g., web
analytics data) is captured by undesired and/or unknown third and/or fourth parties.
To this end, techniques for overriding methods used by third and fourth parties to
capture analytics data are taught. This disclosure further teaches techniques for
creating wrapper objects to monitor and/or block transmission of analytics data to
third and/or fourth parties when such parties use “setter” functions that cannot be
overridden. Each of the techniques described may use a whitelist and/or blacklist to
determine whether the third or fourth party attempting to capture the analytics data
should be blocked from doing so. In another aspect of this disclosure, rather than
block analytic data from being transmitted to a third or fourth party based on
whitelists and/or blacklists alone, the PMS may evaluate the analytics data that a third

WO 2014/151539 PCT/US2014/025955

[80]

[81]

27

and/or fourth party is attempting to capture to determine whether that analytics data
includes private information. In other words, in some embodiments, the PMS may
also analyze (or process) the analytics data to determine its contents, and determine
whether those contents might include private information. Herein, private
information may include personal information, which may be any information that
identifies a person. Examples of personal information may include a name (first,
middle, last, nickname), username, phone number, zip code, address, age, race, etc.
Private information may also include any other information that a person desires to be
kept private, such as account information (e.g., bank account information, credit card

account information, etc.), passwords, security questions and answers, etc.

The PMS may implement the detection of private information in a variety of manners.
Each implementation may include a method for extracting data from a node in a
document (or object model, such as a DOM). Further, such methods may be
classified into one of two categories — methods for extracting data by observing
properties and methods for extracting data by calling methods — based on the way in
which data (which may potentially include private information) is extracted. Some
embodiments may implement methods from both categories. A description of

methods from the two categories follows.

Methods for Extracting Data By Observing Properties. One or more nodes of an
object model, such as a DOM, may be accessed by code of the PMS. The PMS code
(e.g., the PMS’s client-browser scripting code 510A) may include Ensighten’s single
consistent line of JavaScript code (described in U.S. Provisional Application Ser. No.
61/428,560) executed by a program (e.g., a browser) running on a workstation 201.
In such cases, the single line of code may provide the workstation 201 with scripting
code of the PMS, so that code of the PMS on Ensighten’s database 506 (or another
server such as the webpage owner’s server 504) may interact with and evaluate the
nodes of the DOM of the webpage 502 loaded on the workstation. In other cases, the
code of the PMS may be stored entirely on the workstation 201 itself (e.g., in RAM
105 or ROM 107) and executed by a processor (e.g., processor 103) of that

workstation 201.

WO 2014/151539 PCT/US2014/025955

[82]

[83]

[84]

[85]

[86]

[87]

28

Regardless of where the PMS code is stored, once it has access to the DOM, the PMS
code may call a function to retrieve any of the nodes within the DOM. For example,
the PMS code may use the getElementByld(id) function to retrieve a particular node.
The getElementByld(id) function is a predefined function of JavaScript for retrieving
elements from the DOM. Each element in the DOM has an associated identifier. By
specifying a desired identifier as the id parameter in the getElementByld(id) function,
the PMS code may retrieve the associated element from the DOM. The PMS code
may create a variable and assign the result of this function to the variable. For
example, the PMS code may contain the following line of code to access a text node
including a person’s last name (e.g., “Doe” as in “John Doe”) and assign it to a

variable named “node’:
var node = document.getElementByld(“Last Name Text Node”);

In this line of code, the “document” refers to the DOM, having the nodes of a
particular webpage 502, that the PMS code may access. Next, properties of the
variable “node” may be observed to extract data (e.g., a value) using predefined

3

functions of JavaScript. For example, the “nodeValue” property may be used to
extract the value included within the “Last Name Text Node.” The extracted value
(which may be, ¢.g., text in the case of the Last Name Text Node) may be assigned

to another variable named, e.g., “data” within the PMS code as follows:
var data = node.nodeValue;

As a result of this line of PMS code, where “Doe” (as in “John Doe”) is included
within the “Last Name Text Node,” the variable “data” may be assigned “Doe.”
Subsequently, as described in more detail below, the PMS code may then analyze the

variable “data” to determine whether “Doe” includes private information.

Although the getElementByld(id) function is described above, another function (e.g.,
the getElementsByTagName(id) function in JavaScript) could be used in some
embodiments. Likewise, the PMS code may use other predefined properties to extract
data (e.g., values) from the nodes of the DOM. For example, the PMS code may use
the “.innerHTML”, “.outerHTML”, “textContent”, “.innerText”, etc. properties to

WO 2014/151539 PCT/US2014/025955

[88]

[89]

[90]

[91]

[92]

[93]

[94]

29

extract various data from the different nodes of the DOM. In some examples,
multiple properties of the same node may be observed even though only one of the
properties may be assigned to a variable. For example, the variable “data” may be

assigned using an “OR” operator (e.g.,

“||”

) as follows:
var data = node.innerText || node.textContent;

This type of assignment may be useful for checking properties of the node regardless
of the browser (e.g., Internet Explorer’ ™, Firefox'™, Safari™, etc.) being used.
Herein, the PMS may be configured to block analytics data for a variety of browsers.
Thus, in some cases the PMS may use an “OR” operator as above, while in other
cases the PMS may detect the type of browser being used and operate certain modules

of code based on the detection result.

Further, one or more arrays may be created with each property that the PMS desires to

evaluate as follows:
var properties = [‘innerText’, ‘outerText’, ‘innerHTML’, ‘outerHTML’];

Then, the PMS may traverse the array and execute certain functions to evaluate each
property in the array. Still, in other embodiments, multiple variables may be used to
extract data from different properties of the same node. For example, the PMS code

may include code like:
var datal = node.nodeValue;
var data2 = node.textContent;

Third and fourth parties may attempt to capture analytics data from any or all
properties of a node. Since private information may be found in a variety of
properties of the same node, it may be desirable to evaluate each property. In some
cases, private information may be divided and stored among a plurality of properties,
so it may be desirable that the PMS code observe multiple properties of the same node
and evaluate the data together to detect private information as described below. As

the PMS evaluates more properties, the PMS may achieve higher levels of security.

WO 2014/151539 PCT/US2014/025955

[95]

[96]

[97]

[98]

[99]

30

However, evaluating more properties may decrease performance, and therefore, the
PMS may be customized to evaluate only certain properties deemed to be more likely
to include private information and/or more likely to be inspected by third and fourth

parties.

Methods for Extracting Data By Calling Methods. Methods in this second
category, use methods on nodes to extract data held in the nodes. Preliminarily, the
PMS code incorporating processes from this second category may obtain nodes in the
same way as described above using, e.g., “getElementByld(id)” and may assign the
obtained nodes to variables. However, processes in this category, call methods for a
particular node, rather than use properties of the particular node, to extract values
from that node. For example, continuing the example above, instead of using the
“nodeValue” property, a “substringData(..)” method may be used on the variable
“node” to which the “Last Name Text Node” has been assigned. Specifically, the
following lines of PMS code, implementing a method for extracting data by calling a

method, may be used.
var node = document.getElementByld(“Last Name Text Node”);
var data = node.substringData(1, 10);

As a result of this PMS code, where “Doe” (as in “John Doe”) is included within the
“Last Name Text Node,” the substringData(1, 10) method may return “Doe” so that

it may be assigned to the variable “data.”

Although the getElementByld(id) function is described above again, another function
(c.g., the getElementsByTagName(id) function in JavaScript) could be used in some
embodiments implementing methods for extracting data by calling methods as well.
Also, the PMS code may leverage other predefined methods in JavaScript to extract
values from the nodes of the DOM. For example, the PMS code may use the

“getAttribute(..)” method on a node to extract a value from that node.

Method for Detecting and Handling/Blocking Private Information. FIGs. 7A and
7B include flowcharts illustrating a method of the PMS for detecting and handling

private information. The steps of FIGs. 7A and 7B may be performed by one or more

WO 2014/151539 PCT/US2014/025955

[100]

[101]

31

processors as a result of executing machine-executable instructions on a page (e.g., a
webpage) and from the PMS. As explained above, access to scripting code of the
PMS may be through Ensighten’s gateway, including a single line of code in the
webpage 502. In step 700, an object model (e.g., a DOM) of a webpage 502 may be
accessed. In particular, a browser may parse the webpage to obtain the DOM
including each node on the webpage 502. At step 702, a particular node within the
object model may be obtained. The DOM may be traversed in a variety of ways such
that the order in which nodes are obtained at step 702 may vary. In some
embodiments, the method may start by obtaining a node at the top of the node tree of
the DOM. For example, the node obtained in the first instance of step 702 of this
method may be a child node of the root element of the node tree of the DOM.
Further, in some embodiments, step 702 may obtain a node belonging to one node-
type over another node-type. For example, the node first obtained in step 702 may
correspond to an element node rather than a text node where it is desirable to evaluate
element nodes first. In recognition that third and fourth parties may commonly
capture analytics data from certain nodes, step 702 may be configured to obtain such
nodes before obtaining others. Still, in other cases, the node first obtained in step 702

may be randomly chosen.

After a node is obtained in step 702, the method may proceed to step 704. At step
704, a wrapper object overriding the obtained node may be defined. Overriding (or
wrapping) the obtained node may include overriding the constructor method of the
obtained node. Notably, the obtained node may be any of a variety of different types
of nodes. For example, the obtained node may be a text node, element node, attribute
node, etc. As such, the PMS code may be configured to override the constructor of
any type of node. Specifically, the PMS may include a function that is configured to
create a generic wrapper object for any type of node that is obtained at step 704. For

example, the following “GenericWrapper” function may be used.

function GenericWrapper(elementType, excludeProperties) {
var wrapper = this,
excludeProperties = excludeProperties || {
' id": true,
'fileUpdatedDate': true,
' errors'": true

WO 2014/151539 PCT/US2014/025955

32

|3

reference = Function.prototype.call.call(createElement, document,
elementType),

request = new Request(),

timeStamp = +new Date();

request.source = 'wrapper';

request.type = elementType;

request.id = timeStamp;

Bootstrapper.gateway . history.before[timeStamp] = {
request: request,
nodeRef: reference

¥

wrapper. id = timeStamp;

wrapper. _reference = reference;

wrapper.__errors = [];

// Determine if the wrapper has CSS selector properties
var hasld = wrapper.id,

hasClass = wrapper.className,

hasStyle = wrapper.style;

//'If it does not have CSS selector properties, hide the wrapper

if (Thasld && 'hasClass && 'hasStyle) {
wrapper.style.cssText = 'display: none';

}

cloneProperties(wrapper, reference);
createEventHandlers(wrapper, reference);
createSetAttribute(wrapper);
createForwardMethods(wrapper, reference);
createGetters(wrapper, reference);
createListenerLoop(wrapper, reference, excludeProperties);

}

[102] This function allows a generic wrapper object to be created instead of the obtained
node. As described above, some languages, such as JavaScript, do not allow certain
methods, e.g., the setter function used to set the ‘src’ attribute of an image element, to
be overridden. By creating a generic wrapper object instead of the node obtained in
step 702, the PMS is able to circumvent this limitation. Specifically, the generic
wrapper object that replaces the obtained node may be configured with special helper
functions (e.g., setter functions, getter functions, eventHandler functions, etc.) that
allow the PMS to control values of properties of the wrapper object and values

returned by methods of the wrapper object. In other words, since the PMS cannot

WO 2014/151539 PCT/US2014/025955

33

change certain values of a node, it uses its own unique function (e.g.,
“GenericWrapper”) that can create a generic wrapper object for any type of node to

replace that node.

[103] In order for the PMS code to call the “GenericWrapper” function to create a generic
wrapper object for any type of node, the “GenericWrapper” function may use

specially designed helper functions. Example helper functions include the following:

[104] function proxyEventHandler(timeStamp, status, proxy) {
return function (event) {
proxy.width = this.width;
proxy.height = this.height;
Bootstrapper.gateway.resourceComplete(this, timeStamp, status);
proxy.pause = false;
¥
}

function proxyMethod(property, obj) {
return function proxyMethodFn() {
if (typeof obj[property] !=="function') {
return false;

}

return obj[property].apply(obj, arguments);
¥
}

var cloneDefaults = {
'skip": {}
35

function cloneProperties(proxy, reference, options) {
// Fallback clone options
options = options || cloneDefaults;
var skip = options.skip || cloneDefaults.skip;

for (var property in reference) {
// If the property should not be skipped
if (!skip[property]) {
try {
// If the original property is a method, proxy it through our reference
if (typeof reference[property] === 'function') {
reference[property] = proxyMethod(property, proxy);
} else {
// Otherwise, copy the value directly to our proxy
proxy[property| = reference[property];

WO 2014/151539 PCT/US2014/025955

34

}

} catch (error) {
proxy. errors.push(error);

}
}
}
}

function createEventHandlers(proxy, reference) {
cach(eventHandlers, function (event) {
proxy['on' + event] = noop;
reference['on' + event] = proxyMethod(‘on' + event, proxy);
1)
}

function createSetAttribute(proxy) {
proxy.setAttribute = function (property, value) {
proxy[property] = value;
¥
}

function createGetAttribute(proxy, reference) {
proxy.getAttribute = function (property) {
return proxy[property] || reference[property];
¥
}

function createForwardMethods(proxy, reference) {
cach(forwardMethods, function (method) {
if (proxy[method]) {
return false;
} else {
proxy[method] = proxyMethod(method, reference);
}
3
}

function createGetters(proxy, reference) {
// Tterate over the getters (e.g. getElementsByClassName, getAttribute)
cach(getters, function (getter) {
// 1f the original method exists and the proxy method does not exist
var origFnExists = reference['get' + getter],
proxyFnExists = proxy['get' + getter];
if (origFnExists && !'proxyFnExists) {
// Copy the method from our reference to our proxy
proxy|['get' + getter] = proxyMethod('get' + getter, reference);
}
1)

WO 2014/151539 PCT/US2014/025955

35

}

function handleSrcChange(proxy, reference) {
var request = Bootstrapper.gateway . history.before[proxy. id].request;
if (request === undefined) {
request = new Request();
request.id = proxy. id;
request.source = 'proxy';
request.type = reference.tagName.toLowerCase();

}

request.destination = proxy.src;

if (Bootstrapper.gateway.onBefore(request, reference)) {
attachEvents(reference, proxyEventHandler, proxy. id, proxy);
proxy.pause = true;
reference.src = proxy.src;

} else {
proxy.src = reference.src;
Bootstrapper.gateway.onBlock(request, reference);

}
}

function createListenerLoop(proxy, reference, excludeProperties) {
setnterval(function () {
if (proxy.pause || proxy.ignore) {
return false;

}

for (var property in reference) {
try { _
if (typeof reference[property] === ‘'function' | property in
excludeProperties || reference[property] === undefined || proxy[property] ===

reference[property]) {
continue;

}
if (property === "src') {
handleSrcChange(proxy, reference);
} else {
if (typeof proxy[property] !== "function' && proxy.pause) {
continue;
}
reference[property] = proxy[property];
proxy[property] = reference[property];
if (reference[property] == proxy[property]) {
excludeProperties[property] = true;
}
}

} catch (error) {
proxy. errors.push(error);
excludeProperties[property] = true;

WO 2014/151539 PCT/US2014/025955

[105]

[106]

36

}

}
¥, 100);

}

After defining a wrapper object, step 706 may configure the wrapper object to match
the obtained node. That is, the wrapper object may be configured so that it has all the
same properties and values (e.g., text) as the original node obtained from the DOM.
The same function that is used to define the generic wrapper object in step 704 (e.g.,
“GenericWrapper”) may include one or more helper functions for configuring the
generic wrapper object to match the obtained node. When the function for defining
the generic wrapper object (e.g., “GenericWrapper”) is called, the call to that function
may include a parameter for passing the obtained node. Thus, the function for
defining the generic wrapper object may receive a copy of the node that it attempts to
replicate. The function for defining the generic wrapper object may therefore extract
data from the copy of the node it receives using the methods discussed above for
extracting data (e.g., by observing properties of the node and calling methods on the

node).

In step 708, the PMS may check to see whether data of the obtained node is to be
analyzed or not to check for private information. That is, step 708 may include a
determination by the PMS as to whether the wrapper object to be created in place of
the obtained node should be configured to analyze data. In some embodiments, the
determination in step 708 may depend on the type of node that was obtained in step
702. Data of some nodes may be analyzed, while data of other nodes might not be
analyzed. For example, the PMS code may be able to or authorized to analyze data
for element nodes, but not text nodes. The entity that provides the PMS (e.g.,
Ensighten) may collaborate with its customers (e.g., webpage and website owners) to
determine which nodes should be analyzed and which nodes should not. This
collaboration could result in a list of names of nodes to analyze. If so, step 708 may
compare the name of the obtained node with the names on such a list to determine
whether the wrapper object to be created in place of the obtained node should be
configured to analyze data. To balance a desired level of performance with a desired
level of security, the PMS may be customized to replace certain nodes with wrapper

objects that analyze data for private information.

WO 2014/151539 PCT/US2014/025955

[107]

[108]

[109]

37

Further, it should be understood that the determination of whether a node is to be
replaced with a wrapper object that analyzes data may be made each time that node is
to be created. That is, each time a user attempts to view a webpage with the PMS
code, the PMS may make the determination in step 708. Further, the result of the
determination may differ each time based on whether data analysis is turned on or off.
The entity providing the PMS code (e.g., Ensighten) or webpage owners may
customize the PMS code to turn on/off data analysis. For example, turning on/off
data analysis may be performed by modifying a setting stored in association with a
particular webpage or website. If so, checking to see whether data analysis is on or

off may include checking such a setting.

If data is not to be analyzed (No at step 708), the PMS may proceed to step 710 to
replace the obtained node with the wrapper object that has been created to look
exactly like the obtained node. In other words, the obtained node may be
synchronized with the wrapper object so that the wrapper object becomes part of the
DOM. In some cases, step 710 might not replace the obtained node since wrapper
object is configured to replicate the obtained node. In any event, after step 710, the
PMS may proceed to step 799 to determine whether all nodes have been obtained. If
all nodes have been obtained, the PMS code may stop obtaining nodes and may finish
executing. If there are other nodes in the DOM that the PMS code has not yet
obtained, then the PMS code may return to step 702 and perform subsequent steps

with respect to the most recently obtained node.

If data is to be analyzed (Yes at step 708), the PMS may proceed to step 712. At step
712, the PMS may configure the wrapper object to include one or more customized
getter functions. A getter function is a function called on a node to retrieve data from
the node. The “createGetters” function disclosed above may be configured to build
the one or more customized getter functions. By replacing the obtained node with a
wrapper object having a customized getter function, the PMS code may control what
data is returned by the wrapper object. Specifically, the customized getter function
may be configured to return data that the obtained node would return, as long as that
data does not include private information and/or is not being used for analytics data.

Accordingly, the customized getter function may be configured with functions, or

WO 2014/151539 PCT/US2014/025955

[110]

[111]

[112]

[113]

[114]

[115]

[116]

38

calls to functions, that can determine whether data of the generic wrapper object,
which is to replace the obtained node, includes private information. Additionally, or
alternatively, the customized getter function may be configured with functions, or
calls to functions, that can evaluate a stack trace to determine if the getter function is

being called to return analytics data or not.

In step 714, the PMS code may replace the obtained node with the wrapper object
having the customized getter function in the DOM. In other words, the obtained node
may be synchronized with the wrapper object so that the wrapper object becomes part
of the DOM at step 714. As such, the obtained node and its original functions (e.g.,
original getter functions) may no longer be accessible to other nodes in the DOM
seeking to collect analytics data. Instead, nodes secking to collect data from the
obtained node may attempt to access the new getter functions of the wrapper object,
which, unlike the original obtained node, may prevent private information from being

captured.

In some embodiments, several of the above described steps for traversing the DOM to
obtain nodes, creating generic wrapper objects, and replacing the obtained nodes with
the generic wrapper objects may be implemented with JavaScript code. The
following lines of psuedo-code illustrate how JavaScript may be used to perform
some of the steps described above. In view of these lines and the entirety of this
disclosure, one of skill in the art will appreciate that other variations and methods may

be implemented.

Line 0: var elems = document.getElementsByTagName(*);

Line 1: for (var elem in elems) {

Line 2: var theNodeToWrap = document.getElementByID(‘elem’);

Line 3: var NewWrapperObject = new GenericWrapper(theNodeToWrap);

Line 4: document.replaceChild(theNodeToWrap, NewWrapperObject); }

WO 2014/151539 PCT/US2014/025955

[117]

[118]

[119]

[120]

[121]

[122]

39

Lines 0-2 may be used to implement steps 700 and 702 described above. In Line 0,
all element nodes in the DOM (e.g., “document”) may be placed in an array of
elements (e.g., “elems”) using a method (e.g., getElementsByTagName(..)) called on
the DOM. By using an asterisk (e.g., “*”) in this method, all elements of the DOM
may be identified.

In Line 1, a “for loop” may be created to act on each of the elements in the array of
elements identified in Line 0. Thus, the code in Lines 2-4 may be performed for each

element in the array of elements.

In Line 2, a particular element from the array of elements is chosen to be the obtained
node in step 702 for which a wrapped object is to be created. This chosen element is

assigned to a variable called “theNodeToWrap.”

In Line 3, a call to the GenericWrapper function is made with “theNodeToWrap”
being passed as a parameter. This line of code stores the generic wrapper object
returned by the GenericWrapper function into a variable called “newWrapperObject.”
Further, the call in this line may be an implementation of step 704 above and may

initiate the process of performing steps 706, 708, and 712.

In Line 4, the replaceChild(..) method is called on the DOM to replace
“theNodeToWrap” with the “newWrapperObject.” This code may implement either
step 710 or 714 above, depending on whether the GenericWrapper function has

created a wrapper object with a function (e.g., getter function) that analyzes data.

Once an obtained node is replaced with the wrapper object at step 714, a call can be
made to any of the functions of that wrapper object. For example, another node, in
the same DOM that the wrapper object has been placed into, may call the getter
function of the wrapper object. Some nodes may call the getter function of the new
wrapper object for legitimate, non-analytics data collection reasons. For example, one
node may call the getter function of the new wrapper object to display a value of the
new wrapper object on a webpage 502 for the user to view. This action or event may
be acceptable to the user even where the displayed value is private information, since

it is the user who is viewing the private information and the private information is not

WO 2014/151539 PCT/US2014/025955

[123]

[124]

[125]

40

be transmitted or viewed by others. However, in comparison, some third or fourth
parties may insert a node on a webpage 502 that calls getter functions of other nodes
on that same page to collect analytics data. Step 716 illustrates an instance where
some type of node (either a node by a third of fourth party that collects analytics data
or a node that does not collect analytics data) makes a call to the getter function of the

new wrapper object.

At step 718, the getter function of the new wrapper object may determine whether it
was called for analytics data collection purposes. As described above, the getter
function of the new wrapper object may include one or more functions for evaluating
a stack trace to determine a likelihood that the getter function is being called to return
data that would be transmitted as analytics data. For example, evaluating the stack
trace, the getter function may determine that the node that called it also called a
number of other getter functions, and as a result, the getter function may conclude that
it has been called by a node that is collecting analytics data. Additionally, or
alternatively, the getter function may evaluate the node that called it to see if a URL
of that node appears on a whitelist, including a list of pre-approved URLs, and/or a

blacklist, including a list of unapproved or disapproved URLs.

In any event, if the getter function called determines that it has not been called for
analytics data purposes (No at step 718), the getter function may function as the
original node it replaced and return the value requested at step 720. In contrast, if the
getter function determines that it may have been called for analytics data purposes

(Yes at step 718), step 722 may be performed.

In step 722, the PMS may implement one or more methods for extracting data from
the wrapper object by observing one or more properties of the wrapper object as
described above. Specifically, the getter function (and/or one or more helper
functions called by the getter function) may extract one or more properties of the
same wrapper object it belongs to and observe those properties. As explained in
general above, a property of a node may be extracted to obtain potential analytics data

by using the following line: var data = node.nodeValue. When used in step 722,

WO 2014/151539 PCT/US2014/025955

[126]

[127]

41

“data” may be a variable of the wrapper object, and the “node” may be the wrapper

object itself which has been configured to match the obtained node.

Additionally, or alternatively, the PMS may perform step 724. At step 724, the PMS
may implement one or more methods for extracting data from the wrapper object by
calling one or more methods on the wrapper object as described above. As explained
in general above, a method, such as “substringData(..),” may be called on a node to
extract data from the node as follows: var data = node.substringData(1, 10). When
used in step 724, “data” may be a variable of the wrapper object, and the “node” may

be the wrapper object itself which has been configured to match the obtained node.

Once the data is extracted, the PMS may execute pattern recognition software to
evaluate the data at step 726. The pattern recognition software may comprise one or
more functions called by the getter function to evaluate the extracted data.
Alternatively, the pattern recognition software may be stored on the Ensighten
database 506, the webpage owner’s database 504, or another server 508. Further, the
pattern recognition software may be configured to look for patterns within the
extracted data to identify private information. Certain types of private information
have common characteristics (or patterns) that may indicate what type of information
is included. For example, since it is known that telephone numbers are often
represented as seven (7) digits, if the extracted data has seven digits, then it may be an
indication that the data includes a phone number. The pattern recognition software
may make the final determination as to whether extracted data is or is not private
information, such as a phone number. In different embodiments, different degrees of
similarity may be required. For example, extending the phone number example
above, the pattern recognition software might not classify seven digits as a phone
number, but may classify the seven digits as a phone number if the first three digits
are separated by a character (e.g., period or hyphen) from the last four digits, as this is
a common way of representing phone numbers. Although phone numbers are used by
way of example here, other types of private information may have common
characteristics, and therefore, may be recognizable using pattern recognition software.
Further, recognizing one piece of private information may assist in recognizing

another piece of private information. For example, if the software determines that the

WO 2014/151539 PCT/US2014/025955

[128]

[129]

42

data includes a credit card number, then it may determine that three other digits in

proximity to that credit card number correspond to a security code for that credit card.

The pattern recognition software may also use information regarding the context of
the extracted data. For example, the PMS may determine that the obtained node is
from a DOM that corresponds to a webpage on a bank’s website. The PMS may feed
this information into the pattern recognition software so that the pattern recognition
software may be particularly sensitive to identifying a bank account number within
the extracted data. In addition, the pattern recognition software may deploy a variety
of decryption algorithms for decrypting the data before detecting whether it contains
private information, as some wrapper objects may store data in an encrypted form.
Context information may also be used by the pattern recognition software to
determine which decryption algorithms to use or to start with. For example, a
webpage/website owner may require the PMS to encrypt certain data when creating
the wrapper object, and thus, the PMS may use its knowledge that the wrapper object
belongs to such a webpage/website to choose a decryption algorithm to decrypt the

data before evaluating it.

Step 728 checks the results of the pattern recognition software. Specifically, the PMS
at step 728 may determine whether the pattern recognition software has identified the
extracted data as private information. Notably, in some examples, the determination
at step 728 might not check whether the private information is correct — just that it is
private information (e.g., a phone number). For example, step 728 might not
determine whether the phone number in the extracted data is the correct phone
number of the person viewing the webpage 502 from which the node is obtained, and
instead, may determine whether the extracted data is a phone number at all (e.g., has
the format of a phone number). In addition, in some examples, step 728 may
determine whether the identified private information should be blocked from being
transmitted to third and fourth parties. In some cases, the pattern recognition software
may identify private information that a user (e.g., a CPO) might not mind allowing a
third or fourth party to collect in analytics data. In such cases, even though the pattern
recognition software detects that analytics data includes private information, the PMS

may determine that the data is not private information that should be blocked based on

WO 2014/151539 PCT/US2014/025955

[130]

[131]

[132]

43

rules set by a user (e.g., a CPO). If the rules for the webpage including the obtained
node indicate that the private information does not have to be blocked, the PMS may
determine that the data is not private information at step 728 (No at step 728). A user
(e.g., a CPO) may assist in creating these rules by indicating whether or not he/she
wants to keep the private information protected from third and fourth parties through,
¢.g., a dashboard 404 described in more detail below. If the PMS determines that the
extracted data is not private information (No at step 728), the PMS may proceed to
step 730. Step 730 may be similar to step 720 described above.

In some embodiments, the determination at step 728 may consider whether the
extracted data is the actual (or correct) private information of the person viewing the
webpage from which the node is obtained. The PMS may use one or more internal
databases, which may store information provided by users to the PMS for the purpose
of protecting their private information, or one or more external databases (e.g., the
yellowpages) to check whether private information is correct. In these cases, if the
private information is not correct, the PMS may proceed to step 730 because there

might not be a concern to protect the information when it is wrong.

If the data is private information (Yes at step 728), the PMS may proceed to step 732.
The present disclosure may provide several solutions for dealing with situations in
which analytics data includes private information. At step 732, the PMS may
determine which of the one or more solutions to implement. Different solutions may
be used for different embodiments and/or nodes. As illustrated in FIG. 7B, the PMS

may determine whether to report the analytics data or modify the analytics data.

At step 734, the PMS may report the analytics data identified as private information to
a database, such as Ensighten’s database 506. Accordingly, the analytics data that
third and fourth parties are trying to capture can be subsequently reviewed. Further,
trend analysis may be performed on the data reported to detect what types of
information are most commonly targeted by third and fourth parties. Along with
reporting the analytics data, the PMS may also report the type of node used to caption
that analytics data (e.g., the type of node that called the getter function at step 716)

and/or a URL that the data was intended for or transmitted to if not blocked. From

WO 2014/151539 PCT/US2014/025955

[133]

[134]

[135]

[136]

44

this information, the trend analysis may also determine which third and fourth parties
are getting what analytics data and/or how (e.g., through what type of nodes) the third

and fourth parties are capturing the analytics data.

Moreover, in some embodiments, the PMS may use results of the trend analysis to
enhance security of private information. For example, if the PMS determines that a
particular URL is receiving an amount of analytics data above a certain threshold, the
PMS may automatically add that URL to a blacklist to block that URL from receiving
analytics data. In any event, after step 734, the PMS may proceed to step 799 to
check whether additional nodes are to be obtained from the DOM.

Returning to step 732, if the analytics data is to be modified (Modify at step 732),
then the PMS may proceed to step 736. At step 736, the analytics data may be
modified in a variety of ways. In some examples, the PMS may clear or erase the
data so that if received it has a value of null, “0”, undefined, false, etc. Alternatively,
the PMS may change the analytics data to have some other value. For example, the
PMS may change a bank account number to some other number to fool the third or
fourth party into believing they are receiving the correct bank account number. This
may be helpful in tracking whether third or fourth parties are inappropriately using the
analytics data they are receiving. For example, if a fourth party receiving a changed
bank account number attempts to access a bank account with that changed bank
account number, the fourth party may be tracked down. In other examples, the
analytics data may be changed to include a warning to the third or fourth party that
they are not authorized to receive the analytics information that they are attempting to

capture.

Once analytics data is modified, in step 738, the modified analytics data may be
returned to the node that called the getter function at step 716. As a result, the
modified analytics data may be transmitted to the third and fourth parties associated
with the node that called getter function at step 716, and the private information

originally in the obtained node may be protected.

To implement steps 728-738, the PMS code may include if-clse statements. That is,

if-else statements within the PMS code may be used to handle the results of the

WO 2014/151539 PCT/US2014/025955

[137]

[138]

[139]

[140]

45

pattern recognition software. For example, the PMS may include an if-statement that
checks a boolean returned by the pattern recognition software, and if the value of that
boolean indicates that the information is private information, the PMS code may
execute code to clear the data (e.g., data =0) or modify it (e.g., data = “information not

allowed”).

Also, after step 738, the PMS may proceed to step 799. If the PMS determines that all
nodes in the DOM of a particular webpage 502 have been obtained and processed at
step 799, then the PMS may stop obtaining nodes and finish processing until the page

is refreshed or a new page is selected.

FIGs. 7A and 7B illustrate example steps. In some embodiments, certain steps may
be optional, omitted, or reordered. For example, in some cases, step 718 may be
omitted and the getter function of the new wrapper object may treat all calls to it as
potentially coming from a node collecting data for analytics purposes. Moreover,
although FIG. 7B shows that returned private information may be reported or
modified, these solutions do not have to be employed in the alternative. In some
embodiments, private information might only be modified, private information might

only be reported, or private information may always be modified and reported.

In another alternative embodiment, an additional step may be performed between
steps 702 and 704 to determine whether the obtained node includes private
information. If the obtained node does not include private information, then the PMS
might not go through the process of creating a wrapper object for the obtained node.
In other words, the PMS may determine that information of the obtained node does
not need to be protected, and therefore, may skip creating a generic wrapper object for

that obtained node.

In yet another alternative embodiment, an additional step may be performed between
steps 702 and 704 to determine whether a URL of the obtained node is on a blacklist.
If the obtained node includes a URL found on a blacklist, the PMS might not create a
wrapper object for that obtained node, and instead, may simply remove it from the
DOM. In other words, a step could be added to scrub the DOM to remove nodes

known/suspected to be used for undesirable analytics data collection.

WO 2014/151539 PCT/US2014/025955

[141]

[142]

46

In light of the additional steps just described, it should be understood that other steps
may be added to the steps of Figs. 7A and 7B, and that the steps shown in those
figures are intended to provide examples steps from which a person skilled in the art

would understand how to make and use the PMS code.

Chief Privacy Officer’s Dashboard. Figures 4A and 4B illustrate a graphical user
interface 400 for a CPO dashboard 404. The PMS may store computer-executable
instructions and/or provide client-browser scripting code so that the dashboard 404
may be presented on a computing device associated with Ensighten’s database 506,
on a remote computing device associated with a webpage owners’s database 504 (e.g.,
a remote computing device of a CPO associated with an owner of the webpage), or on
a remote computing device 100 of a webpage visitor. Aspects of the dashboard 404
allow the creation of privacy rules for authorizing or blocking direct access to the
analytics data collected from a webpage. For example, the CPO dashboard may allow
a CPO (or other user) to create privacy rules that cause a PMS to block particular
types of collected visitor data from being sent to vendors based on the location of the
visitor, whether the user terminal is a mobile or stationary terminal, or other
parameter. For example, foreign (e.g., Germany) privacy regulations may require that
no (or none of a particular type of) visitor data be sent to vendors. The CPO
dashboard may configure 410 the PMS to detect the location of a website visitor (e.g.,
by reverse geocoding the visitor’s IP address to identify the visitor’s location) and to
subsequently block any attempts to transmit data collected about the user to particular
vendors (e.g., third party vendors, fourth party vendors, etc.). One of skill in the art
will appreciate after review of the entirety disclosed herein that numerous other
information and features may be displayed/available on the CPO dashboard. For
example, the CPO dashboard 402 may display the attribute name and value of the
name-value parameters of image “src¢” attributes. This may assist CPOs in
determining what types of data are being collected and sent about visitors of their
webpages. At least one technical advantage of the prior example is that a single PMS,
in accordance with various aspects of the disclosure, may be used for all worldwide
visitors and adjust based on various parameters, such as the location of the website

visitor and the privacy regulations specific to that location. Moreover, the PMS may

WO 2014/151539 PCT/US2014/025955

[143]

[144]

[145]

47

be adjusted based on other parameters and features apparent to one of skill in the art
after review of the entirety disclosed herein, including any materials (e.g., an
information disclosure statement) submitted concurrent with the filing of this

disclosure.

Additionally, FIGs. 8A and 8B illustrate further aspects of the CPO dashboard 404.
As shown in FIGs. 8A and 8B, the dashboard 404 may include a privacy info tab 801
and customize PMS tab 802 that, when selected, cause the dashboard 404 to provide a
privacy info window 803 and a customize PMS window 804, respectively. The
privacy info window 803 and customize PMS window 804 may provide the CPO with
a number of options (or settings) for creating and/or editing rules. Such rules may

instruct the PMS on how to operate.

When Ensighten’s single consistent line of JavaScript code triggers the PMS to
evaluate a particular webpage, the PMS may refer to stored rules, or settings, for that
particular webpage and/or user to determine what private information should be
blocked from being sent to third and fourth parties. In some embodiments, these rules
may be used by the pattern recognition software so that it only recognizes private
information that is to be blocked. In other embodiments, the pattern recognition
software may identify all types of private information and the PMS may decide which
private information should be blocked based on the rules (see step 728). Further,
some rules may determine which modules of the PMS code should be implemented.
For example, rules can inform the PMS code whether it should execute a module
(e.g., one or more functions/methods) for reporting the analytics data to Ensighten’s
database and/or a module for changing the analytics data so that private information is

protected.

Further, the rules created/edited through the privacy info window 803 and customize
PMS window 804 may be applied to a particular webpage (e.g., webpage 502), an
entire website, or multiple websites of a particular customer. For example, the CPO
may indicate that the rules he/she sets in the privacy info window 803 are to be
applied to all webpages on a particular website, so that the CPO does not have to

create/edit rules for each webpage.

WO 2014/151539 PCT/US2014/025955

[146]

[147]

[148]

48

FIG. 8A illustrates example settings of the privacy info window 803. Via the privacy
info window 803, a user (e.g., a CPO) may specify various types of private
information that he/she wants to block from being collected as analytics data. For
example, a CPO may determine that he/she is not willing to allow a third or fourth
party to capture analytics data including an email address of a visitor to the CPO’s
webpage, and therefore, may select a check box next to the “Email Address” text. By
selecting this check box, the CPO may instruct the PMS to block third and fourth
parties attempting to capture email addresses of visitors to a particular webpage or
website(s). In contrast, if a check box is not selected, this may be an indication that
the CPO is willing to allow the corresponding type of private information to be
captured as analytics data. For example, referring to FIG. 8A, the check box next to
the “Age” text is not selected, and therefore, the CPO may allow third and fourth

parties to extract an age of visitors to his’/her webpage or website(s).

Although not shown in FIG. 8A, the privacy info window 803 may provide an option
through which a user (e.g., CPO) may enter specific private information for a
particular person (which may be the user herself) so that the PMS may identify and
block the exact private information that a user wishes to keep from third and fourth
parties. For example, the privacy window 803 may provide a user input field in
which the user provides his/her phone number so that the PMS may ensure that the

provided phone number is not included within transmitted analytics data.

FIG. 8B illustrates example settings of the customize PMS window 804. Via the
customize PMS window 804, a user (e.g., a CPO) may set parameters that the PMS
may use to determine which modules of code it should execute and/or which modules
of code it should incorporate into the new wrapper object (e.g., which getter function
and/or helper functions). For example, a CPO may turn the PMS’s data analysis on or
off using a virtual switch shown on the customize PMS window 804. When data
analysis is turned off through the customize PMS window 804, the PMS code may
determine not to analyze data at step 708. When data analysis is turned on, the PMS
code may determine to analyze data at step 708, and therefore, may proceed to

execute step 712.

WO 2014/151539 PCT/US2014/025955

[149]

[150]

[151]

[152]

49

Further, the CPO may specify which nodes should be obtained at step 702. In some
examples, all nodes in the DOM of a webpage may be obtained. However, if the CPO
prefers that only certain nodes be obtained and evaluated for private information, the
CPO may designate such nodes through the customize PMS window 804. For
example, a CPO may recognize that certain nodes in the DOM are relatively unlikely
to be tapped for analytics data collection, and therefore, may choose not to have the
PMS evaluate those nodes. Although the customize PMS window 804 in FIG. 8B
shows that the CPO may select different node types (e.g., element nodes, text nodes,
etc.), in some embodiments, the customize PMS window 804 may display the names
of all nodes in a DOM for a webpage (or website) so that the CPO can select the

particular nodes to obtain (and evaluate) instead of just designating the type of nodes.

Moreover, the customize PMS window 804 of FIG. 8B shows that a CPO may also
select various solutions for dealing with a case in which private information is found.
Based on the sclected solutions, the PMS may execute different modules of code to
perform steps 732, 734, and 736. For example, through the customize PMS window
804, a CPO may specify that when private information is detected, the PMS should
modify the private information to change its value. In some examples, the CPO may
indicate what value to change the private information to through the customize PMS

window 804.

FIG. 8B intends to illustrate that methods/modules of the PMS code can be controlled
through a dashboard 404. Although several settings are shown for controlling
execution of the PMS code, other settings could be provided through the dashboard
404. Indeed, all optional features of the PMS disclosed herein could have a
corresponding setting in the dashboard to allow the CPO to customize the PMS for a

particular webpage or website(s).

CPO Dashboard’s ON/OFF Monitoring Switch. In addition, in some embodiments
in accordance with the disclosure, the CPO dashboard may include an input means
(e.g., graphical ON/OFF switch) to allow the CPO to toggle (e.g., turn off, turn on,
turn partially on) the state of the PMS functionality if website performance is desired

at the expense of realtime online privacy management. In response to the input

WO 2014/151539 PCT/US2014/025955

[153]

[154]

50

means, a variable (e.g., a Boolean-type variable) in the Javascript code may be
updated to activate or deactivate the PMS code. As such, when the switch is in the
OFF position, the webpages may be rendered without interaction/analysis by the PMS
Javascript code. Alternatively, when the switch is in the partially ON position, the
PMS may choose to evaluate a particular type of node (e.g., element nodes, or image
nodes) rather than all nodes in the DOM. The state of the input means (e.g., OFF,
ON, partially ON, etc.) may be sent to a remote sever for storage and easy retrieval at

a later time.

PMS-Certified Verification. Figure 3 illustrates a web browser displaying a
webpage (omitted) that has received certification from a PMS that the
webpage/website complies with privacy policies. For example, icon 304 illustrates an
icon that may appear on a webpage 502 to indicate to visitors to the webpage that the
webpage has been verified (e.g., PMS-certified verification) and is being monitored
using a PMS, which in some embodiments may be in accordance with various aspects
of the disclosure. The graphical icon 304 may be selectable and upon its selection
may display a dialog box 302. The dialog box 302 may permit a visitor to further
customize his/her privacy settings/preferences. For example, the user can opt out of
tracking and targeted ads completed (e.g., a user, upon verification of age, may be
opted out of particular types (or even all) of tracking pursuant to child privacy laws
because the user is a child under a particular age.) Upon selection of a setting, the
user’s preferences may be transmitted to a remote server (e.g., Ensighten’s application
server 506) to be saved and associated with the user. The association may be created
using browser-side cookies. For example, a browser-side cookie may be saved on the
visitor’s device 100 with information that permits the PMS to automatically detect the

user’s preference on future visits.

In some embodiments, the dialog box 302 may include similar options to those
discussed with reference to the privacy info window 803 of FIG. 8A. Thus, a user via
the dialog box 302 may specify what types of private information to block from being

transmitted as analytics data.

WO 2014/151539 PCT/US2014/025955

[155]

[156]

51

Companies may sign up with a PMS for monitoring and control of their analytics data
collection and distribution. As a result, the icon 304 may be displayed on the
company’s webpages 502. Moreover, through the PMS client-browser scripting code
(e.g., Javascript code) the PMS may detect and read cookies Internet-wide. For
example, when visiting different websites, the PMS may be able to use the cookie-
based approach to automatically implement the user’s preference on all sites (e.g.,
once a user is verified as being under a particular age, the user’s cookie settings may
assist in automatically opted the user out of tracking and other activities on other
websites.) One skilled in the art will appreciate after review of the entirety disclosed
herein that numerous derivations of the base concept disclosed are contemplated. For
example, the icon 304 may be displayed in different colors to indicate different levels
of privacy management. The icon may be displayed primarily in red to indicate that
the website operates under a privacy setting outside the threshold of comfort
previously designated by the user. Meanwhile, the icon may be displayed primarily in
green to indicate that privacy controls are commensurate with the user’s preferences.
In addition, a dashboard similar to the CPO dashboard may be made available to the
user through selection of the icon 304. As such, the user may be able to identify and
understand what aspects of their online experience are being monitored and where

that information is being sent.

In addition to, or instead of, the icon 304, a webpage may include a plurality of icons.
FIG. 9A illustrates a webpage 900 having lock icons 901 and unlock icons 902. The
lock icons 901 and unlock icons 902 may be positioned in relatively close proximity
to a corresponding piece of information, which may potentially be private
information. For example, as shown in FIG. 9A, an unlock icon 902 may be
positioned next to the name — “John Doe” — of the visitor to the webpage 900. Each
lock icon 901 and unlock icon 902 indicates whether or not the corresponding piece of
information is blocked from being included in analytics data. Specifically, pieces of
information corresponding to lock icons 901 may be blocked from being included
within analytics data, while pieces of information corresponding to unlock icons 902
might not be blocked from being included within analytics data. The lock icons 901

and unlock icons 902 may be included on the webpage 900 when nodes are replaced

WO 2014/151539 PCT/US2014/025955

[157]

[158]

[159]

52

by wrapper objects. In other words, each wrapper object may include functions for
presenting a lock icon 901 and/or unlock icon 902 in association with the data that it
stores. When a lock icon 901 is presented, the getter function of the corresponding
wrapper object may be configured to modify the data before returning the data or may
refrain from returning the data at all. Meanwhile, when an unlock icon 902 is
presented, the getter function of the corresponding wrapper object may be configured

to return the data without modifying the data.

FIG. 9A also depicts an advertisement 905, which may be placed on the page by a
third or fourth party. This advertisement 905 may be an image element configured to
extract data from the webpage 900 and transmit the extracted data as analytics data to
the third or fourth party or even another party. In such cases, the advertisement 905
may collect, e.g., the name, phone number, address, etc. appearing on the webpage
900. However, if the webpage 900 utilizes the PMS code, the PMS code may operate
to block the advertisement 905 from collecting this information. In particular, the
PMS may block the advertisement 905 from collecting private information, which

here is the information associated with lock icons 901.

In some embodiments, the owner and/or CPO of the webpage 900 might not know the
exact source of the advertisement 905, and/or might not know that the advertisement
905 is being used to collect analytics data. Indeed, in some cases, the node that is
collecting analytics data may be invisible on the webpage 900. Therefore, the owner
and/or CPO may choose to implement Ensighten’s PMS code on their webpage or
website(s). If so, Ensighten’s PMS code may place the lock icons 901 and unlock
icons 902 onto the webpage 900 as shown. By displaying the lock icons 901 and
unlock icons 902 in proximity (e.g., within an inch) to the various pieces of
information on the webpage 900, a visitor of the webpage 900 may be informed of the
potential access to their information. Some users might not want their information
being collected and may be attracted to webpages and websites that show them that

their information is protected.

FIG. 9B illustrates another webpage 901 that may appear when a user selects the
“Edit Profile” link on webpage 900. Notably, the webpage 901 may include a

WO 2014/151539 PCT/US2014/025955

[160]

[161]

53

plurality of form fields 903, which are configured to accept user input. Lock icons
901 and unlock icons 902 may be associated with one or more of the form fields 903.
Accordingly, a user can visualize which pieces of his/her information are being
blocked from being included in analytics data. This may encourage users, who may

otherwise be hesitant to enter information, to complete the form fields 903.

Moreover, the lock icons 901 and unlock icons 902 may be selectable elements (e.g.,
HTML elements) that, when clicked on, change from one icon to the other. That is,
when a lock icon 901 is selected it may change to an unlock icon 902, and when an
unlock icon 902 is selected it may change to a lock icon 901. Selecting the lock and
unlock icons 901, 902 might not only change the appearance of the icons, but may
also inform the PMS of the change. The PMS may parse the webpage 901 to extract
the lock and unlock icons 901, 902 as it would any other element node. The PMS
may then analyze the lock and unlock icons 901, 902 to determine which pieces of
information the user wishes to block from being sent in analytics data. Based on this
analysis, the PMS may store settings that can be used to create rules that the PMS
may use when analyzing analytics data. That is, once these settings are stored, when
the PMS evaluates analytics data, the PMS may implement certain rules to make sure
the pieces of information that were associated with a lock icon 901 are considered as
private information and are blocked from being sent to third and fourth parties. In
particular, the rules may include parameters passed to the getter functions of wrapper
objects used to replace certain nodes, so that the getter functions may determine
whether or not to return requested data. For example, a lock icon 901 next to a piece
of information may cause a particular getter function of a wrapper object, which is
generally responsible for returning that piece of information upon request, to withhold

that piece of information or modify it before returning it.

For example, referring to FIG. 9B, a user who enters his or her address in the address
form field 903a, may desire that this address be blocked from being sent in analytics
data. If so, the user may select (using, e.g., a cursor and clicking a mouse) the unlock
icon 902 converting it into a lock icon 901. Once this occurs, the PMS may receive a
notification of the change and may store the address into a list of private information.

Thereafter, if a third or fourth party attempts to collect analytics data including the

WO 2014/151539 PCT/US2014/025955

[162]

[163]

54

address inputted into the address form field 903a, the PMS may identify the address
within the analytics data and clear it, or otherwise modify it, as described herein.
Accordingly, the lock icons 901 and unlock icons 902 may have a similar effect as

entering private information through the privacy info window 803 of the dashboard

404 described above.

Further, in addition to, or instead of, using the dialog box 302 to customize privacy
settings, a user may select lock icons 901 and unlock icons 902. Through these lock
icons 901 and unlock icons 902, website owners may give at least some control over
what analytics data can be collected to their website visitors. Thus, rather than use the
PMS code to block all analytics data that the website owner or CPO believes users
would want blocked, the website owner or CPO may desire that the PMS code be
configured to leverage user preferences to determine what information should be

blocked from transmission as analytics data.

Additional Features. The PMS contemplated by this disclosure includes code in the
Javascript language, but one of ordinary skill in the art after review of the entirety
disclosed herein will appreciate that code written in other programming languages
may be used in addition to or in licu of Javascript. Numerous detailed examples in
the disclosure have used Javascript merely as an example of a scripting language that
allows dynamic update of the elements on a webpage and function overriding
capabilities. The disclosure contemplates that Javascript may be one day deprecated
in favor of another client-side (and server-side) scripting languages, and the disclosed
PMS is not so limited. One of ordinary skill in the art will appreciate that Javascript
may be substituted with other programming languages and technologies (e.g.,
DHTML 5.0 and canvas/video elements). In one example, Adobe Flash™ (formerly
Macromedia Flash) objects embedded in a webpage may be dynamically manipulated
using ActionScript™, a language similar to Javascript in that it also is based on the
ECMAScript standard. This disclosure contemplates embodiments where Flash
objects may be monitored using techniques that would be apparent to one of skill in
the art after review of the entirety disclosed herein. For example, image resources,
picture objects, and button objects may have methods overridden or inherited to

provide for similar functionality as described herein. Similarly, other non-Javascript

WO 2014/151539 PCT/US2014/025955

[164]

[165]

[166]

55

technologies, such as Silverlight™ may also be used in accordance with various

aspects of the disclosure.

In addition, various aspects of the examples illustrated herein take advantage of the
current version of Javascript and the capabilities it provides. For example, the
Javascript specification currently does not permit overriding of the “setter” method of
the “src” attribute of the HTML image clement. If future versions of Javascript
provide the ability to override the aforementioned method, one of skill in the art will
appreciate after review of the entirety disclosed herein that appropriate adjustment to
disclosed PMS features is contemplated by the disclosure. For example, the polling
that is currently disclosed for monitoring the attributes of the image element/object
may be replaced by an overriding method. Alternatively, if a value change
notification feature becomes available in Javascript for the particular element, this
disclosure contemplates that this feature may be used in lieu of (or in conjunction

with) the polling technique currently described in one embodiment.

Furthermore, current web analytics technologies use image elements to transmit
collected data from a user’s device to a remote server. However, this disclosure
contemplates other techniques for transferring collected data (e.g., analytics data) to a
remote server. For example, Websockets™ may be used to create an open direct
TCP/IP connection to a remote server to transmit analytics data. One skilled in the art
will appreciate after review of the entirety disclosed herein that the PMS may override
the method responsible for creation (e.g., adding, modifying, updating, and/or

regulating) of Websockets and apply the principles disclosed herein accordingly.

Aspects of the disclosure are described herein in terms of illustrative embodiments
thereof. Numerous other embodiments, modifications and variations within the scope
and spirit of the recited disclosure will occur to persons of ordinary skill in the art
from a review of this disclosure. For example, one of ordinary skill in the art will
appreciate that the steps illustrated in the illustrative figures and described herein may
be performed in other than the recited order, and that one or more illustrative steps

may be optional in accordance with aspects of the invention.

WO 2014/151539 PCT/US2014/025955

56

1I/We claim:

1. A non-transitory computer-readable medium of a privacy management system server
storing computer-executable instructions that, when executed by a processor of a remote
computing device, cause the remote computing device to:

access a Document Object Model (DOM) of a webpage, wherein the DOM is
configured to include a first node that is configured to send analytics data to a third party
device using a uniform resource locator stored in the first node and a second node that is
configured to store private information;

in response to accessing the DOM, obtain the second node and create, in a memory, a
wrapper object instead of the second node by calling a generic wrapper object function
configured to create a wrapper object for at least two different node types;

configure the wrapper object to match the second node by setting values of the
wrapper object according to values of the second node;

determine whether the wrapper object is to be configured to block the private
information from being captured by the first node;

provide a getter function to the wrapper object, when it is determined that the wrapper
object is to be configured to block the private information from being captured by the first
node, the getter function being configured to analyze the private information before returning
the private information; and

replace the second node with the wrapper object in the DOM.

2. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

determine whether a call to the getter function is made to collect analytics data.

3. The non-transitory computer-readable medium of claim 2, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing

device to:

WO 2014/151539 PCT/US2014/025955

57

return the private information of the wrapper object to a node that called the getter
function, after determining that the call to the getter function is not made to collect analytics

data.

4. The non-transitory computer-readable medium of claim 2, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

evaluate the private information of the wrapper object, after determining that the call

to the getter function is made to collect analytics data.

5. The non-transitory computer-readable medium of claim 2, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

evaluate the private information of the wrapper object, when the call to the getter

function is made by the first node.

6. The non-transitory computer-readable medium of claim 2, wherein determining whether a

call to the getter function is made to collect analytics data comprises evaluating a stack trace.

7. The non-transitory computer-readable medium of claim 2, wherein determining whether a
call to the getter function is made to collect analytics data comprises evaluating a uniform

resource locator of a node that called the getter function.

8. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

extract the private information from the wrapper object by observing properties of the
wrapper object, when a call to the getter function is made; and

evaluate the private information using pattern recognition processes.

WO 2014/151539 PCT/US2014/025955

58

9. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

extract the private information from the wrapper object by calling methods on the
wrapper object, when a call to the getter function is made; and

evaluate the private information using pattern recognition processes.

10. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

modify the private information extracted from the wrapper object so that the private
information is no longer private; and

return the modified private information to the first node.

11. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

report at least one of the private information of the wrapper object and the uniform
resource locator stored in the first node to a database in response to a call to the getter

function by the first node.

12. The non-transitory computer-readable medium of claim 1, wherein the second node is
replaced with the wrapper object before the second node is accessed by other nodes of the

DOM.

13. The non-transitory computer-readable medium of claim 1, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to:

generate a graphical user interface configured to permit a user to designate whether
the getter function of the wrapper object is configured to analyze the private information

before returning the private information.

WO 2014/151539 PCT/US2014/025955

59

14. An apparatus, comprising:
at least one processor configured to transmit, over a network to a remote computing
device, scripting code written in a programming language that lacks functionality to override
certain functions; and
memory storing the scripting code that, when executed by the remote computing
device, causes the remote computing device to:
access an object model of a page, wherein the object model is configured to
include a first node that is configured to send analytics data to a third party device separate
from the apparatus and the remote computing device, and a second node that is configured to
store data,
in response to accessing the object model, obtain the second node and create,
in a memory, a wrapper object instead of the second node;
configure the wrapper object to replicate the second node by setting data of the
wrapper object according to the data of the second node;
provide a getter function to the wrapper object, the getter function being
configured to analyze the data before returning the data to a requesting node; and

replace the second node with the wrapper object in the object model.

15. The apparatus of claim 14, wherein the getter function is configured to:
extract the data from the wrapper object by performing at least one of:
observing properties of the wrapper object, when a call to the getter function is
made; and
calling methods on the wrapper object, when a call to the getter function is
made;
evaluate the data using pattern recognition processes; and

determine whether the data includes private information based on the evaluation.

16. The apparatus of claim 15, wherein the getter function is further configured to:

modify the data when determining that the data includes private information.

17. The apparatus of claim 14, wherein the memory further stores computer-executable

instructions that, when executed by the at least one processor, cause the apparatus to:

WO 2014/151539 PCT/US2014/025955

60

present a graphical user interface configured to generate rules for authorizing or

blocking access to data of the page.

18. The apparatus of claim 14, wherein the memory further stores additional scripting code
that, when executed by a second remote computing device associated with an owner of the
page, cause the second remote computing device to:

present a graphical user interface configured to generate rules for authorizing or

blocking access to data of the page.

19. The apparatus of claim 14, wherein the scripting code, when executed by the remote
computing device, further causes the remote computing device to:

present an icon on the page; and

present a graphical user interface over the page when the icon is selected, the
graphical user interface configured to generate rules for authorizing or blocking access to

data of the page.

20. The apparatus of claim 14, wherein the scripting code, when executed by the remote
computing device, further causes the remote computing device to:
present an icon on the page in association with the wrapper object; and

modify the getter function of the wrapper object when the icon is selected.

21. The apparatus of claim 20,
wherein the icon is one of a lock icon and an unlock icon,
wherein, when the icon is a lock icon, the getter function of the wrapper object is
configured to modify the data before returning it or to refrain from returning the data, and
wherein, when the icon is an unlock icon, the getter function of the wrapper object is

configured to return the data without modifying the data.

22. A non-transitory computer-readable medium of a privacy management system server
storing computer-executable instructions that, when executed by a processor of a remote

computing device, provide:

WO 2014/151539 PCT/US2014/025955

61

a means for accessing an object model of a page, wherein the object model comprises
a plurality of nodes configured to store data;

a means for obtaining one of the nodes among the plurality of nodes of the object
model and creating a wrapper object instead of the obtained node;

a means for configuring the wrapper object to replicate the obtained node by setting
data of the wrapper object according to data of the obtained node;

a means for providing a getter function to the wrapper object, the getter function
being configured to analyze the data before returning the data to a requesting node; and

a means for replacing the second node with the wrapper object in the object model.

23. The non-transitory computer-readable medium of claim 22, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to provide:

a means for extracting the data from the wrapper object by observing properties of the
wrapper object, when a call to the getter function is made; and

a means for executing pattern recognition processes on the extracted data.

24. The non-transitory computer-readable medium of claim 22, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to provide:

a means for extracting the data from the wrapper object by calling methods on the
wrapper object, when a call to the getter function is made; and

a means for executing pattern recognition processes on the extracted data.

25. The non-transitory computer-readable medium of claim 22, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to provide:

a means for modifying the data of the wrapper object so that the data does not include
private information; and

a means for returning the modified data to a requesting node.

WO 2014/151539 PCT/US2014/025955

62

26. The non-transitory computer-readable medium of claim 22, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to provide:

a means for reporting at least one of the data of the wrapper object and a uniform

resource locator, stored in a node requesting the data of the wrapper object, to a database.

27. The non-transitory computer-readable medium of claim 22, further storing computer-
executable instructions that, when executed by the processor, cause the remote computing
device to provide:

a means for generating a graphical user interface configured to permit a user to

designate private information that the getter function of the wrapper object is to block.

WO 2014/151539 PCT/US2014/025955

1/13

105 L PROCESSCOR MEMORY

117~ COperating
" System

105 -~ RAM

et 121

19~ | APPLICATIONS

o~ 107

107~ Rrou

DATA

108 —J | Input/Output LAN
1 Module MODEM INTERFACE
N
- 123
P E—

100

INTERNET

131

SUBSTITUTE SHEET (RULE 26)

WO 2014/151539 PCT/US2014/025955

2/13

Workstation 201

200 —_]

202
Workstation ﬂ%@? —~ Workstation ,Mg)m

202

30
FAITE

Tag / Content Manager

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/025955

WO 2014/151539

3/13

G

TR Y

SUBSTITUTE SHEET (RULE 26)

WO 2014/151539 PCT/US2014/025955

4/13

:
3

ey

pr—

]

4

L3

v

e

542}

.

SREET

&

S e
b
X

1
o X
PO S
F- &2 LN
BlEia
S Y
RIEBR
R
® o
s <o
O . =
Wy O
W

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/025955
5/13

WO 2014/151539

R “‘.&7\2\5

o~
B

k2

o I
o

g
Lo

SUBSTITUTE SHEET (RULE 26)

93

WO 2014/151539

6/13

SH8C

\§\\\\\ &
§\\ RN \ \\w:
| R

506

m

R

ics Vendor A

A

518

SUBSTITUTE SHEET (RULE 26)

0

FPage Loads...

PCT/US2014/025955

5088

Ad VendorC

502

FIG. 5A

WO 2014/151539 PCT/US2014/025955

7/13

568C

506

S08A
s

5088

X

N

A

AR 2;5

RN

-

g

PP OB ",
ALY EOBED savsisarsaransasasnisnsnsnansan

Ad Vendor B
Ad Vendor C

N

P
a7

% Analytics Vendor A

Pé
Ay
P
A
IS 15T
7

5108
502

.......................

510

SUBSTITUTE SHEET (RULE 26)

FIG. 5B

PCT/US2014/025955

WO 2014/151539

8/13

801

781 X

05 i

80y 88y

pis Zis

908 “ Snonnseyw
A Gapd JUsHD

e
e
SR

IOPUSA
gqeppinied puy g

001

SUBSTITUTE SHEET (RULE 26)

WO 2014/151539

9/13

602

Define new object overriding
a predefined object

Y

604

Creale the new object

\

606

Check for moditication to the
new object

NO

< 608

-~ Has URL stored in >

< the newobjectbeen >

B

o updated? -

610

Compare the updated URL
to a predetermined list
{e.g., of domains)

616

Alter the
updated URL
Store gltersd

URL inthe

predefined
object

BLOCKED
_DOMAIN — pagyiror - DOMAIN

. comparison?

618

ALLOWED

PCT/US2014/025955

614

Store updated
URL in the
predefined

object

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2014/151539

10/13

Access obiect model

PCT/US2014/025955

s 100

Obtain a node from the objsct
model

s 102

© Al Nodes
“~Obtained?
G N N

Y

Define a wrapper object
averriding the obtained node

b 104

v

Configure the wrapper object
to maich the obtained node

T \\N 708

N 0 //’/ N

>

g :
<& g
L

799

<Stop otainmg

nodes

YES

Analyze Data =~

Replace obtained node with ... 719
the wrapper obiect configured
to match the gbtaiﬁed node

v

| 1
| 1
| 1
| Q 1
| 1
| 1
l i

FIG. 7A

'

include new getler
function for wrapper

mbjﬁect

e 112

:

Replace obtained
node with wrapper
Obj_ect

e 114

SUBSTITUTE SHEET (RULE 26)

WO 2014/151539 PCT/US2014/025955

11/13

Call to getter function —~._ 716
of wrapper object

NO s call for anaiyti\é\«ff:\/ 718
i - datapurposes?

B

S =
B =
B e

Ty YES

o
o

Return data to node »~— 720 Extract Data from)
calling getter function Wrapper Object By~ 722
Qbserving Properties

v §

: 1 Extract Data from
LA Wrapper Object By .~ 724
\ Calling Methaods on
the Wrapper Object

\

Evaluate Extracted o~ 726
Data Using Pattern
Recognition Software

< £ L
s o Pt
e L

e o 132

REPORT - Report or Modify - MODIFY
 Return value to node - & Data? / |y 736

calling getter function L fj
| 7 Modify Data |

Report Data 7 734 %
tc database Return modified
~~ daia fo node
% 738 calling getter
Fig.Yy R o function

@»w E

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/025955

WO 2014/151539
A00
YIRS
N
% A s
FIG. 8A 404
, 802
- Addwanced B ~ §61
o / Customize PMS /7/ Privacy Info
Specify Tvpes of Private information To Blogk:
803
First Name: Bank Account information:
Last Name: Credit Card Account information:
Age: Username:
Address: Password:
Email Address: Phione Number:
.
FIG. 8B 404
iy AN -
802
; 801
/ et
/ Customize PMS / Privacy Info /
A
408
Analvze Data;
) . 804
Nodes To Ghtain: Solutions: /,/
Elernani Modify g I
Text Clear
Attribute Change
Repaort

SUBSTITUTE SHEET (RULE 26)

902

901

WO 2014/151539 PCT/US2014/025955

13/13
900
FIG. 8A P
Home — Web Browser ~ i {X
< » | hitp/iwww.domainname.com A4

File Edit View Favorites Tools Help

Hello World Home | Aboutlls | Account Summary | Senvices | News | Conlact Us
\ AN A
3 DN i John Doel Al Transactions | Regent Purchases | Pay Your Bil T
« Jour account info: 1 Your Account Summary:
{3 Username: JD123 3 Al Transactions:
\ s - Debit $20 on 1/1/13
Ty Password; Hor) ;
T - Debit $30 on 1/1/13
SN Account§: 1734567850 304 - Debit $15 on 1/2/13
\ ‘ ~ Debit $25 on 1/7/13
{31 Phone #: 555-5555 - Cradit $150 on 1/8/13
e Address: 1 Frst St - Debit $30 on 1/10/13
W Xiown, NY 56999
Edit Profile Page 123 \/
Done *
FIiG. 8B 801
Home — Web Browser - 4o X
4 B | hilp//www.domainname.com A4

File Edit View Favorites Tools Help

\ 803 \ 803a

Hello World Home | AboulUs | Accouni Summary | Serviges | News | Gontact Us
L} Your Profile: 902 903 _“A;

/’“‘"‘/ 7 S

First Name: John <Y Usermame: | JD123 oY

Middie Name: =N Password: | e

Last Name: Doe Phone #: | 555-5556

Age: \\\ Address: {1 First St

Ernail Address: | doe@mail.com | & X town, NY 99999

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 14/25955

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 21/62 (2014.01)
USPC - 726/27

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC (8) - GO6F 21/62(2014.01)
USPC - 726/27

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 715/760, 709/224, 715/747, 726/26, 709/204, 455/456.1, 715/235, 707/E17.118 (See Keywords Below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Thomsoninnovation.com; Patbase; Google Scholar; Google Patents; Gogole.com; Freepatentsonline; ProQuest Dialog

Search Terms: object model, DOM, document object model, webpage, HTML page, node, element, object, wrapper, replace, replicate,
match, value, parameter, setting, private, confidential, block, prevent, getter function, analyze, modify, pro

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2012/0284801 A1 (GOODWIN et al.) 08 November 2012 (08.11.2012), entire document, 1-27
especially abstract; para [0010], [0012], [0027], {0042]-[0043], [0056), [0060])-[0065]
Y US 8,335,982 B1 (COLTON et al.) 18 December 2012 (18.12.2012), entire document, 1-27
especially abstract; col 7, In 5-30; col 12, In 25-60; col 19, In 5-50
A US 2005/0039190 A1 (REES et al.) 17 February 2005 (17.02.2005), entire document, 1-27
US 2010/0146110 A1 (CHRISTENSEN et al.) 10 June 2010 (10.06.2010), entire document, 1-27
P.X US 2013/0276136 A1 (GOODWIN et al.) 17 October 2013 (17.10.2013), entire document, 1-27

|:| Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or riority
date and not in conflict with the apﬁhqanon but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

«p

wyn

wy

“&”

Date of the actual completion of the international search

27 July 2014 (27.07.2014)

Date of mailing of the international search report

19 AUG 2074

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - wo-search-report

