

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/057421 A1

(43) International Publication Date

23 April 2015 (23.04.2015)

WIPO | PCT

(51) International Patent Classification:

B01D 53/56 (2006.01) B01D 53/78 (2006.01)
B01D 53/75 (2006.01)

(21) International Application Number:

PCT/US2014/059416

(22) International Filing Date:

7 October 2014 (07.10.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/998,248 15 October 2013 (15.10.2013) US

(71) Applicant: CANNON TECHNOLOGY, INC. [US/US];
510 Constitution Boulevard, New Kensington, PA 15068
(US).

(72) Inventor: SUCHAK, Naresh, J.; 245 Demarest Street,
Glen Rock, NJ 07452 (US).

(74) Agent: ADAMS, John, M.; Price & Adams, P.C., 4135
Brownsville Road, P.O. Box 98127, Pittsburgh, PA 15227
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR REMOVING CONTAMINANTS FROM EXHAUST GASES

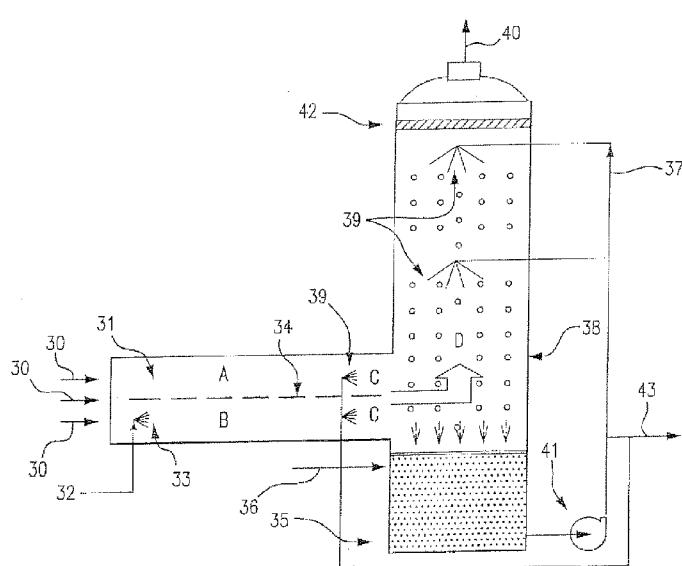


FIG. 4

(57) **Abstract:** In a method for removing a portion of contaminants, such as nitrogen oxides, from an exhaust gas stream of a combustion process, the exhaust gas stream is separated into two or more gas streams. At least one of the two or more gas streams is treated first by mixing with ozone. The treated gas stream is then fed to a scrubber where it is recombined with the untreated gas stream. Excess ozone present in the treated gas stream is consumed by oxidation of contaminants in the untreated gas stream before the combined gas stream is released to the atmosphere. The portion of the gas stream separated for mixing with ozone directly correlates to the amount of nitrogen oxides that are desired to be removed from the stream.

TITLE

METHOD AND APPARATUS FOR REMOVING CONTAMINANTS FROM EXHAUST GASES

[0001] The present application claims priority from U.S. Provisional Application No. 61/713,780 filed October 15, 2012.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to method and apparatus for removing contaminants, such as nitrogen oxides, sulfur oxides, particulates, heavy metals and other acid gases, from gas streams arising from chemical, metallurgical, partial and full combustion processes, as for example, exhaust streams generated exhausts from engines or boilers on mobile sources such as sea going, naval or other vessels.

[0004] 2. Description of the Prior Art

[0005] The use of ozone for oxidizing nitrogen oxides is described in U.S. Patent Nos. 5,206,002; 6,162,409; 6,649,132; and 7,303,735. These chemistries and techniques are directed towards high levels of nitrogen oxides removal (around 90%) and require 1.5 moles of ozone per mole of nitrogen oxide present in the gas stream. Configuring these processes to operate at lower levels of nitrogen oxides removal causes both economic and process challenges.

[0006] Combustion and chemical processes generally result in gas streams containing contaminants that need cleanup before being exhausted to the atmosphere. Many industrial processes, power generating utilities, combustion sources, stationary and mobile sources such as engines, boilers, kilns and the like use solid fuels or low cost hydrocarbon fuels that contain sulfur, chlorine, nitrogen and metal compounds in hydrocarbons which result in exhaust gases that contain contaminants such as acid gases, particulate matter and heavy metals. To comply with stricter environmental rules mandated by legislation and a greater concern for the environment, combinations of scrubbing (wet or dry) and particulate capture devices such as electrostatic precipitators (ESP), wet ESP and bag house are increasingly preferred for emissions control of acid gas and particulate matters.

[0007] Nitrogen oxides found in most combustion exhaust streams are in the form of nitric oxide (NO), which is mostly insoluble in water and not very reactive. Nitric oxide is not removed by most wet or dry scrubber capture devices. Therefore, to control nitrogen oxides emissions, the two major options are to lower nitrogen oxides formation at the source by modifying combustion or secondly treating nitrogen oxides in the exhaust gas stream using post combustion techniques.

[0008] Primary techniques used for reducing nitrogen oxides formation by modifying combustion are low nitrogen oxides burner (LNB), flue gas recirculation (FGR), staged combustion and over fire air (OFA). In most applications these technologies are not adequate for removing nitrogen oxides from combustion gas streams and post combustion techniques, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), become necessary to achieve the desired nitrogen oxides reduction.

[0009] Both SCR and SNCR processes realize good results but also have limitations. Ozone based oxidation technologies have recently gained success as an alternative post combustion technique, especially when an application is not suitable for SCR. Ozone based processes as described in U.S. Patent Nos. 6,162,409, 5,206,002

and 7,303,735 provide multi-pollutant removal approaches and they have been implemented on flue gases that arise from gas and coal fire boilers removing multiple pollutants including nitrogen oxide, sulfur oxides, particulates, etc. Ozone based processes are also industrially practiced in lowering emissions in other applications such as metal pickling processes, fluidized catalytic cracker (FCC) regenerators, metal recovery furnaces and sulfuric acid manufacture.

[0010] Coal fired boilers with low nitrogen oxides burners and staged combustion often attain nitrogen oxides in 0.25 to 0.4 lb/MMBTU cost effectively whereas regulations require nitrogen oxides emissions in a range of 0.1 to 0.15 lb/MMGBTU i.e., post combustion technology that can cost effectively offer 40 to 70% reduction.

[0011] The methods disclosed in U.S. Patent Nos. 6,162,409, 5,206,002, 6,649,132 and 7,303,735 use chemistry of nitrogen oxides reaction with ozone by forming higher oxides of nitrogen, especially the pentavalent form or higher which are quite water soluble and readily removed by wet scrubbing. The stoichiometric amount of ozone required to convert one mole of NO_x, in the form of NO, to the pentavalent form is about 1.5 moles of ozone and 0.5 moles if NO_x is in the form of NO₂.

[0012] Although these ozone based methods for removing nitrogen oxides from combustion streams are effective at achieving ultra low levels of nitrogen oxides emissions in the treated gas stream, there is need for an improved process for partial removal of nitrogen oxides that addresses the economic, regulatory and process challenges presented by emission controls.

SUMMARY OF THE INVENTION

[0013] In accordance with the present invention there is provided a method for the partial removal of contaminants from a process gas stream that includes the step of separating a process gas stream into at least two process gas streams. Ozone is fed

into contact with at least one of the separated process gas streams to oxidize the contaminants in the gas stream. At least one of the process gas streams contacted by ozone is fed to a scrubber for removal of the oxidized contaminants from the gas stream.

[0014] Further in accordance with the present invention there is provided a method for the partial removal of contaminants from a process gas stream that includes the step of conditioning the process gas stream emitted from a combustion process. The process gas stream containing contaminants is separated into at least two process gas streams. Ozone is injected into at least one of the separated process gas streams to provide mixing of the ozone with the contaminants including nitrogen oxides in the separated process gas stream. The nitrogen oxides in the separated process gas stream are oxidized by mixing with ozone. The oxidized nitrogen oxides are captured in a capture device to remove the nitrogen oxides from the separated process gas stream. The separated process gas stream substantially free of nitrogen oxides is recombined with the remainder of the process gas stream containing contaminants.

[0015] Further in accordance with the present invention there is provided a method for the partial removal of contaminants from a process gas stream that includes the step of conditioning the process gas stream emitted from a combustion process. The process gas stream containing contaminants is divided into at least two process gas streams. Ozone is injected into a selected one of the process gas stream for mixing of the ozone with the contaminants including nitrogen oxides. The nitrogen oxides in the selected process gas stream are oxidized by ozone. The oxidized nitrogen oxides are removed by a capture device from the selected process gas stream. Then the selected process gas stream substantially free of nitrogen oxides is recombined with the remaining process gas stream containing contaminants.

[0016] Further the present invention is directed to apparatus for the partial removal of contaminants from a process gas stream that includes a duct for conveying the process gas stream containing nitrogen oxides from the exhaust of a combustion

process. The duct is partitioned into at least two zones for receiving the process gas stream containing contaminants to divide the process gas stream into at least two streams. A source of ozone is injected into a selected one of the two zones for mixing with the process gas stream. The ozone mixed with the process gas stream oxidizes the nitrogen oxides in the process gas stream in the selected zone.

[0017] Further the present invention is directed to apparatus for the partial removal of contaminants from a process gas stream that includes a duct and a scrubber or any process equipment conveying the process gas stream containing nitrogen oxides from the exhaust of a combustion or chemical process. The ozone is introduced in the process gas stream to selectively mix with a portion of the gas stream with or without physical partitioning to result into at least two process gas zones. One zone is significantly mixed with ozone and the other is not mixed with ozone. The ozone in a portion of the process gas stream oxidizes the nitrogen oxides in the process gas stream.

[0018] The contaminants contained in the process gas stream for treatment are selected from the group consisting of nitrogen oxides, sulfur oxides, acid gases, particulate matters and mercury. The nitrogen oxides treated are selected from the group consisting of nitric oxide and nitrogen dioxide. The process gas stream is an exhaust gas stream from an industrial process, typically from a source selected from the group consisting of fixed sources and mobile sources. The industrial process is selected from the group consisting of industrial boilers, power generation systems, chemical processing, kilns, furnaces and combustion processes.

[0019] The amount of contaminants removed is about the amount of ozone added to the at least one of the two or more process gas streams.

[0020] The scrubber is typically selected from the group consisting of dry, semi-dry and wet scrubbing equipment. The amount of ozone that is added to the at least one of the two or more separated gas stream in an amount of greater stoichiometry

than the amount of nitrogen oxides present therein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Figure 1 is a graph, illustrating nitrogen oxides removal versus molar ratio of ozone to nitrogen oxides.

[0022] Figure 2 is a graph, illustrating nitrogen oxides removal versus molar ratio of ozone to nitrogen oxides removed.

[0023] Figure 3 is a graph, illustrating nitrogen oxides removal versus molar ratio of ozone to nitrogen oxides removed.

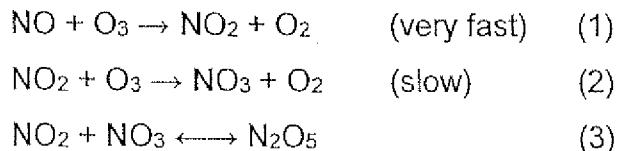
[0024] Figure 4 is a system flow diagram of a process for the oxidation of nitrogen oxides in a partitioned duct.

[0025] Figure 5 is a system flow diagram of a process for nitrogen oxides removal in a multi-Venturi wet scrubbing apparatus.

[0026] Figure 6 is a system flow diagram of a process for nitrogen oxides removal in a dry scrubbing capture device.

[0027] Figure 7 is a system flow diagram of a process for nitrogen oxides removal in a partitioned horizontal spray scrubber.

[0028] Figure 8 is a system flow diagram of a process for nitrogen oxides removal by scrubbing a portion of a gas stream.


DETAILED DESCRIPTION OF THE INVENTION

[0029] The present invention provides for the oxidation of nitrogen oxides and other contaminants by the addition of ozone to a separated portion of the process gas stream. The total process gas or flue gas stream is divided into at least two or more streams. The portion of the total process gas stream that is to be treated with ozone is determined based on the extent of nitrogen oxides removal desired. For purposes of illustration, to remove 60% of the nitrogen oxides from the process gas stream, approximately 60% of the gas stream may be mixed with ozone and treated by the methods of the invention.

[0030] Nitrogen oxides generated in combustion processes are mostly in the form of NO which has negligible solubility in water. By adding ozone to the exhaust gas stream, nitrogen oxides can be oxidized to higher forms. Solubility of nitrogen oxides increases with the degree of oxidation. Higher oxides such as N_2O_5 and oxyacids are not only very soluble but also highly reactive and they can be removed in dry, semi-dry and wet scrubbing equipment along with other contaminants present in the exhaust gas stream so treated.

[0031] Although various methods as disclosed by the prior art are effective in achieving ultra low levels of nitrogen oxides emissions, when applied to removing only a portion of the nitrogen oxides present in the exhaust gas stream, they will generate appreciable amounts of NO_2 which is not quantitatively removed in the capture device employed. It is well understood that only when nitrogen oxides are oxidized beyond NO_2 to higher oxides such as N_2O_5 , quantitative removal occurs in industrially used capture devices.

[0032] Nitrogen oxides oxidation to N_2O_5 involves many reactions but for the sake of brevity, it can be simplified as follows:

[0033] The reaction (1) is an order of magnitude faster when compared to reaction (2). By the time reaction (2) starts to occur, most of the NO is oxidized to form NO₂. Therefore, reactions (1) and (2) are somewhat consecutive reactions.

[0034] Nitrogen dioxide (NO₂) has relatively low solubility in water, so unless the reaction is brought forward to the formation of oxides higher than NO₂, removal of nitrogen oxides in a wet scrubber remains very limited. On the other hand, N₂O₅ is extremely soluble and with moisture present in the gas stream. As a result, N₂O₅ forms HNO₃ which is soluble with water in all proportions. Therefore, any capture device, wet scrubber, wet ESP or any device with wet surfaces such as a condenser or coalescing device such as a mist eliminator will remove HNO₃ and N₂O₅ quantitatively with or without any reagent present in the aqueous phase.

[0035] The highly oxidized forms HNO₃ and N₂O₅ are also very reactive and are removed using most common reagents and adsorbents industrially used in dry and semi-dry scrubbing. N₂O₅ and HNO₃ are also removed in fabric filter by adsorption on particulate matters in a capture device such as bag house.

[0036] The stoichiometric amount of ozone required to convert one mole of NO and NO₂ to pentavalent form namely N₂O₅ and/or HNO₃ is about 1.5 and 0.5 moles respectively. In the majority of combustion processes, nitrogen oxides are predominantly in the form of NO. In fact by and large, most nitrogen oxides emitted from various types of sources is in the form NO.

[0037] Figure 1 depicts the removal of nitrogen oxides versus the ratio of moles

of ozone to moles of nitrogen oxides in the exhaust gas from a coal fired boiler. This figure, which appears in U.S. Pat. No 6,162,409, shows the overall stoichiometric ratio of 1.5 moles of ozone required per mole of nitrogen oxides for greater than 90% nitrogen oxides removal. This ozone requirement is per mole of nitrogen oxides present in the gas stream and not per mole of nitrogen oxides removed.

[0038] When only a partial amount of nitrogen oxides reduction is required, ozone required per mole of nitrogen oxides removed far exceeds 1.5. To remove 50% of nitrogen oxides (mostly as NO) a series of reactions must occur. When the ozone is added and thoroughly mixed in the gas stream, ozone first reacts with NO present in the nitrogen oxides to convert to NO₂. Only after almost all of the NO is oxidized does NO₂ oxidation to N₂O₅ begin.

[0039] To achieve 50% removal with two moles of nitrogen oxides present in the gas stream, one mole of nitrogen oxides need to be removed. For this 50% removal example, with two moles of nitrogen oxides in the form of NO, two moles of ozone are required to convert to two moles of NO₂ as per reaction (1) above. Since NO₂ is only partially soluble, in order to achieve 50% removal, one mole out of two moles of NO₂ must be converted to a pentavalent form. Therefore an additional 0.5 moles of ozone is required to convert one mole of NO₂ to a pentavalent form N₂O₅. Thus the total ozone requirement is 2.5 moles per mole of nitrogen oxides removed when the nitrogen oxides targeted removal is only 50%.

[0040] As disclosed in U.S. Pat. No. 6,162,409, the data used in Figure 1 is plotted in Figure 2 as nitrogen oxides removal versus ratio of mole of ozone consumed to moles of nitrogen oxides removed in the exhaust gas from a coal fired boiler. It is well illustrated that the moles of ozone required per mole of nitrogen oxides removed increases with the decrease in nitrogen oxides removal. For 50% nitrogen oxides removal, the molar ratio of ozone consumed to nitrogen oxides removed is closer to 2.5. In essence, the nitrogen oxides reaction with ozone and removal by a capture device was oversimplified in this example but detailed enough to show the limitation of

the prior art process. The partial removal of nitrogen oxides with these earlier processes has limitations which the present invention overcomes.

[0041] The merits of a nitrogen oxides removal process are evaluated with respect to many attributes of which there are four fundamental ones. First, what level of nitrogen oxides removal can the process achieve? Second, how affordable are the ownership costs in both capital and operating terms per ton of nitrogen oxides removed (cost effectiveness)? Third, are secondary emissions within acceptable limits? Fourth, how compatible is nitrogen oxides removal process with removal of other contaminants?

[0042] The limitations that the prior art processes fall short in measuring up to the second and third attributes. Ozone is a costly commodity. The amount of ozone required per unit of nitrogen oxides removal increases rapidly with reduction in nitrogen oxides removal requirement. Half a century ago, most countries in the world did not have mandatory requirement of reducing nitrogen oxides emissions. As air quality worsened due to increasing air emissions, governmental bodies put in place environmental regulations that mandated the gradual lowering of nitrogen oxides emissions. In the initial phase of implementation of these regulations, the nitrogen oxides reduction from fixed sources such as industrial boilers, power generation systems, combustion processes as well as mobile sources such as ships, barges, etc. are modest. The prior art processes use significantly greater amounts of ozone per unit of nitrogen oxides removed at low or modest nitrogen oxides reduction requirements, as it is depicted in Figure 2, and offer poor cost effectiveness thereby falling short with respect to the second attribute. The prior art processes are directed toward very high nitrogen oxides reduction requirements.

[0043] At low or modest nitrogen oxides reduction requirements, using methods disclosed in the prior art, the ozone treated gas stream also has significantly higher NO₂ content. Nitrogen dioxide is brown in color and increases the opacity of the exhaust. The large stationary sources, such as fossil fuel or biomass fired boilers or combustion

sources, have huge exhaust streams and are vulnerable to default on opacity specifications by not satisfying the third attribute above.

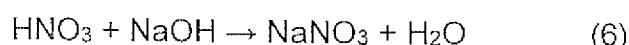
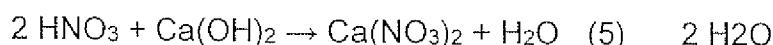
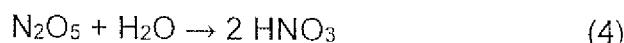
[0044] The rate at which nitrogen oxides and ozone react is dependent on the kinetic rate constant, as well as the concentration of nitrogen oxides and ozone. With a decrease in concentration, the rate of reaction also decreases. As described earlier in the 50% nitrogen oxides removal case, 2.5 moles of ozone is required per mole of nitrogen oxides removed. The reaction (1) above is very fast and consumes two moles of ozone leaving only 0.5 moles of ozone for the slower reaction (2). In order to achieve the required oxidation, either the exhaust gas stream processing vessel must be large enough to provide the necessary residence time between NO_2 and ozone or excess ozone must be added, which may result in some residual ozone in the treated flue gas that is not consumed in the scrubbing process.

[0045] Partial nitrogen oxides removal, per the prior art processes, is achieved at sub-stoichiometric ratios of ozone and oxidized stream having a mixture of N_2O_5 and NO_2 . Scrubbing removes all N_2O_5 and some NO_2 . On scrubbing N_2O_5 only nitrate is formed; whereas, scrubbing NO_2 forms a mixture of nitrite and nitrate of alkali or alkaline earth metals. The presence of nitrite in the scrubber purge is undesired and poses challenges in handling and treating liquid streams in the effluent treatment plant.

[0046] When the flue gas also has sulfur oxides present in it, SO_2 absorption produces sulphite in the scrubbing medium. Sulphite is an ozone scavenger and helps to eliminate excess ozone in wet scrubbing devices. NO_2 also reacts with sulphite when it is present in large concentrations and depletes sulphite potentially creating conditions for ozone slip. In lime and limestone based reagents, large concentrations of NO_2 also affect sulfur oxides removal adversely thus not satisfying the fourth attribute.

[0047] In accordance with present invention, the amount of the process gas stream to be treated for nitrogen oxides removal is about the same percentage as the

amount of nitrogen oxides removal. For example, if the operator wishes to remove 60% of the nitrogen oxides in a flue gas stream, then the operator will treat 60% of the total flue gas stream with ozone. The operator thereby separates the primary flue gas stream into two or more gas streams where at least one stream totals 60% of the total process gas stream by volume. An operator can conceivably treat two streams that total 60% of the total (30% and 30%) or three or more streams as long as the total percentage of treated streams is approximately equal to the percentage reduction in nitrogen oxides content for the entire process gas stream.




[0048] The portion of the gas stream that is oxidized with ozone proceeds along the reactions (1) to (3), as described above. The amount of ozone is based on the amount of nitrogen oxides in that portion of gas stream. A slight excess of stoichiometric requirement may be added to reduce the reaction time requirement. Nitrogen oxides in combustion flue gas streams are generally in the form of NO (divalent) and, therefore, stoichiometric requirement is 1.5 moles of ozone per mole of nitrogen oxides. However, when nitrogen oxides in the gas stream is from chemical or other sources and is a mixture of divalent (NO) and tetravalent (NO₂) forms, the stoichiometric requirement is then 1.5 moles of ozone per mole of divalent form and 0.5 moles of ozone per mole of tetravalent form.

[0049] Prior to mixing ozone, all or a portion of the gas stream to be mixed may be scrubbed, pre-scrubbed, selectively pre-scrubbed, quenched or conditioned as required. With respect to temperature, the optimum condition for oxidations is 40°F to 225°F in the gas stream. Preferably, the gas stream may be droplet free or free from excessive mist of the aqueous medium, if sulfur oxides are also present in the flue gas stream. Ozone is not added to the balance of the gas stream.

[0050] The oxidized contaminants in the ozone treated portion of the stream are removed by contacting with a scrubbing medium in a wet or semi-dry or dry scrubber. The oxidized contaminants, especially nitrogen oxides, are highly soluble in water and very reactive and, therefore, may also be removed in the aqueous medium on

condensing or coalescing surfaces, such as heat exchangers or droplet separators. Alternatively, they may be captured in fabric filter (bag house), ESP (electrostatic precipitator), WESP (wet electrostatic precipitator), etc. Oxidized nitrogen oxides are converted to oxyacids, such as nitric acid and nitrous acid and salt.

[0051] The chemistry of this dissolution and stabilization of nitrogen oxides in the form of oxyacids and salts is described below.

[0052] For treating a portion of the process gas stream with ozone, the existing scrubber and APC (air pollution control) device may be modified simply by portioning the duct and/or scrubber while ensuring the oxidized portion of stream is contacted adequately with a scrubbing medium and contaminants are captured prior to unifying the portion of the stream with the balance of gas stream not treated with ozone.

[0053] When the ozone treated portion of the gas stream is reunited with the rest of the gas stream that is untreated, small amounts of excess ozone from the treated stream are instantaneously consumed in the recombined stream. An extremely fast oxidation reaction results, as stated in equation (1) above. Thus, the reunited stream ceases to have any residual ozone. Also, due to excess ozone present in the treated stream, almost all of the nitrogen oxides are oxidized to their pentavalent form and captured quantitatively in the capture device with insignificant amounts of leftover NO_2 .

[0054] The present invention also provides the capability of an ozone free stack when high nitrogen oxides removal is desired. For example, for 90% nitrogen oxides removal, 10% of the untreated stream is mixed with 90% treated stream and residual ozone from the 90% treated stream is destroyed by the untreated nitrogen oxides present in the 10% gas stream.

[0055] The present invention provides a method and apparatus for the removal of contaminants such as nitrogen oxides in a relatively safe manner that does not cause secondary emissions and requires less ozone. Further, the present invention allows for the implementation of nitrogen oxides reduction in phases to match regulations that mandate a drop in nitrogen oxides emissions over time. Phase 1 might mandate a 30 to 35% nitrogen oxides reduction, while phase 2 mandates 60 to 65% reduction, and phase 3 requiring a 90 to 95% reduction. With the methods of the present invention, these mandated reductions are reached in a cost effective manner.

[0056] The processes of the present invention lower NO₂ emissions in the treated gas stream being exhausted to the atmosphere and the opacity of the plume irrespective of nitrogen oxides reduction required. In this manner residual ozone in the treated gas stream is eliminated and consequently ozone slip is inhibited. Ozone usage is optimized when partial nitrogen oxides reduction is performed. The present invention significantly lowers residence time requirement for effective nitrogen oxides oxidation without compromising efficiency and without causing ozone slip. Improved scrubber chemistry results, and consequently sulfur oxides removal efficiency is retained by inhibiting sulfite destruction in the scrubbing medium by NO₂. Thus, the methods of the present invention provide cost effective treatment when a gradual or stage wise implementation of nitrogen oxides abatement is performed.

[0057] As illustrated in Figure 3, unit ozone consumption per mole of nitrogen oxides removed remains almost identical. The consumption of ozone is 35% less in lowering 55% of the nitrogen oxides content compared with the prior art processes described above under identical conditions.

[0058] In addition to savings in the amount of ozone consumed, the present invention creates a dry exhaust stack, when a portion of the gas stream is not scrubbed and was thereby not saturated with water vapor. This eliminates any residual ozone and contains very low NO₂ content in the remaining nitrogen oxides. Since most of the

nitrogen oxides absorbed is N_2O_5 , only nitrate is formed in the scrubbing medium.

[0059] Referring now to Figure 4, there is schematically illustrated a vertical flue gas scrubber for the oxidation of nitrogen oxides in a partitioned duct. An untreated gas stream 30 is conveyed through duct 31 to a wet spray scrubber 38. In accordance with the present invention, the duct 31 is partitioned to treat a portion of the gas stream 30. Partition 34 divides duct 31 into two equal zones, A and B. Ozone from duct 32 is emitted from nozzle 33 for mixing with the gas stream in Zone B. Contaminants, including nitrogen oxides, are completely oxidized in the Zone B prior to contact with aqueous medium sprays from nozzles 39 connected to header spray assembly 37 in Zone C. Oxidized contaminants from Zone B, such as N_2O_5 and HNO_3 , are readily captured in aqueous sprays in Zone C. The gas stream exiting from both Zones C is remixed in the bottom section of the scrubber 38. If required, the residence time requirement can be compensated for by using a slight excess of ozone. If the volume of the duct (Zones A and B) is insufficient or if the duct cannot be partitioned, then the bottom portion of the scrubber 38 may be partitioned to create Zones A and B for oxidation. If sulfur oxides are also present, the internal arrangements in the scrubber may be made necessary to avoid droplets from the spray section falling into the oxidation zone. If the physical partitioning of the bottom of the scrubber 38 is not an option, then ozone can be introduced in the section of the bottom if the oxidized portion of the gas stream rises to the scrubbing section vertically without mixing with remaining gas stream. In this manner a selective portion of gas stream is treated without physically partitioning gas flow. With the help of modern flow modeling tools, such as computational fluid dynamics (CFD), it is now possible to ensure that a substantial part of ozone mixed portion remains isolated until oxidized NO_x is captured in the scrubbing section. Thus the present invention can also be practiced without physically separating the gas stream for treating with ozone.

[0060] As further illustrated in Figure 4, the scrubber 38 is sprayed with an aqueous medium 36 from a sump 35 via pump 41 through the header spray assembly 37 and spray nozzles 39. Scrubbing medium sprayed in the gas stream removes

remaining contaminants such as SO₂, HCl, etc. The sump 35 is supplied with an aqueous medium 36 made up of water, reagents, etc. Part of the scrubbing medium may be continuously or intermittently purged by stream 43 to maintain dissolved and suspended solids within the operating range. Nitrogen oxides scrubbing is insignificantly affected by pH in the range of 2 to 14 or the presence of dissolved or suspended solids content and, therefore, other parametric controls, such as pH control and purge control, are not described in detail herein. The scrubbed gas stream in the scrubber column 38 then flows through the mist removal/droplet separation device 42 and exits to the atmosphere treated gas as stream 40 from the outlet of scrubber 38. In a typical limestone based wet flue gas desulfurization (FGD), scrubber sump 35 is fitted with an air sparger, not shown, to oxidize calcium sulfite to sulfate.

[0061] Now referring to Figure 5, there is schematically illustrated a multi-Venturi wet scrubbing apparatus. Flue gas from a fluid catalytic cracking (FCC) regenerator off gas stream 44 is treated for up to 50% nitrogen oxides removal in the illustrated example. The scrubbing apparatus consists of four Venturis for gas-liquid contacting. The FCC regenerator off gas stream 44 is scrubbed in four Venturi scrubbers, each designated by the numeral 52, prior to admixing with ozone. The FCC regenerator off gas stream is conveyed to the four Venturi scrubbers 52. Each fluid gas stream 44 is brought into contact with a scrubbing medium in the Venturis to remove acid gas including sulfur oxides, HCl, etc. and particulate matter, such as coke and catalyst fines present in the FCC regenerator off gas. Output ducts from pairs of Venturi scrubbers 52 are united to form an elbow duct. Ozone is introduced and mixed by an injection system 46 into each elbow duct. A partition 48 divides each elbow duct into Zones A and B. The injection system 46 delivers ozone into duct 45 forming Zone B of each elbow duct to treat 50% of the flue gas stream conveyed from each pair of the Venturi scrubbers 52.

[0062] Ozone from injection system 46 is mixed with the portion of gas stream in the duct 45 forming an oxidation zone, designated Zone B which has a larger volume than Zone A. Contaminants including nitrogen oxides are completely oxidized in Zone

B prior to reaching aqueous medium sprays 53 at the end of the elbow duct. Both elbow ducts open into Zone C of a disengagement drum 58. Oxidized contaminants such as N_2O_5 and HNO_3 are readily captured in aqueous sprays 53. The gas streams exiting from the elbow ducts are allowed to mix in Zone C in the bottom section of the drum 58. If the residence time available in the elbow ducts is insufficient, the bottom portion of the drum 58 may also be partitioned to continue oxidation in the drum to allow nitrogen oxides absorbed in the coalescing droplets discharged from a mist eliminator 56.

[0063] The Venturi scrubbers 52 are supplied with an aqueous medium from the sump 49 via pump 55 through a header 51. The same medium is also routed to spray nozzles 53. Scrubbing medium sprayed into the gas stream also removes any remaining contaminants such as SO_2 . The sump 49 is supplied with an aqueous medium 50 made up of water, reagents, etc. Some medium may be continuously or intermittently purged by stream 57 to maintain dissolved and suspended solids within operating range. Nitrogen oxides scrubbing is insignificantly affected by pH in the range of 2 to 14 or the presence of dissolved or suspended solids content and, therefore, other parametric controls, such as pH control and purge control, are not described in detail herein. The gas stream from the disengagement drum 58 flows through the tray and mist eliminator assembly 56 and exhausted to the atmosphere as treated gas stream 54.

[0064] In accordance with the present, nitrogen oxides emissions are lowered from 35 to 45 parts per million to less than 20 parts per million by treating 50% of the gas stream.

[0065] In the embodiment of the present invention shown in Figure 6, a flue gas stream 59 emitted from a combustion device 70 is scrubbed in spray dryer scrubber 63 with alkali or alkaline hydroxide, carbonate or bicarbonates or mixtures thereof in a reagent spray 64 for the removal of contaminants except nitrogen oxides. Environmental regulations mandate lowering the nitrogen oxides by 60 to 65% in two

steps.

[0066] In the spray dryer scrubber 63, the hot gas stream 59 is contacted with the aqueous reagent stream 64 to remove sulfur oxides, HCl, mercury and other contaminants. The aqueous reagent stream due to heat forms finely dusted solids in the gas stream. These solids are carried with the exiting gas stream via duct 60 to a bag house 65 containing bags made of fabric filter. The bag house 65 is generally modular with multiple chambers. Figure 6 illustrates three chambers for bag house 65. An ozone containing gas stream 61 is conveyed through a manifold 71 for mixing with a flue gas stream entering any one or all of the three chambers of bag house 65 depending on nitrogen oxides content and removal required. Assuming the flow of the flue gas stream is distributed equally, adding a slight excess of ozone in one chamber provides around 33% nitrogen oxides removal while adding ozone in any two out of the three chambers provides 66% nitrogen oxides removal. Oxidized nitrogen oxides are then adsorbed on solid reagent in the bag house 65.

[0067] Solids are retained inside the bags while the gas streams flow through the fabric filter medium. Solids retained and collected on the surface of bags eventually fall by pulsating flow and are collected in the bottom section of the bag house. Solids are periodically or continuously discharged as stream 66 for disposal.

[0068] All gas streams from the various chambers are reunited in the exhaust duct 67 forming a treated gas stream 69. On mixing the gas streams exiting various chambers in the duct, any residual ozone present is immediately consumed by the remaining nitrogen oxides in the treated gas stream 69 which is then vented to the atmosphere through stack 68.

[0069] Initially in the first stage, in order to meet the 30% emissions reduction, ozone is introduced only into one chamber of the bag house 65. At a later time, to meet the 60 to 65% reduction, gas streams in any two out of three chambers may be treated with a slight stoichiometric excess of ozone.

[0070] Now referring to Figure 7, there is schematically illustrated a partitioned horizontal spray scrubber. An untreated gas stream 72 is conveyed through duct manifold 73 to a horizontal wet spray scrubber 74. Two partitions 75 extending horizontally in the scrubber 74 divide the scrubber 74 into three equal chambers. The duct manifold 73 divides the gas stream 72 almost equally to three chambers. An ozone containing gas stream 76 is conveyed into manifold 73 via nozzles 84 for mixing with flue gas stream entering any one, two or all three chambers depending on NOx content and removal required.

[0071] For flue gas with 0.4 to 0.45 lb per MMBTU NOx content in the stream 72 requiring NOx reduction to 0.15 lb per MMBTU outlet in stream 77, gas entering two of the three chambers of scrubber 74 is admixed with ozone.

[0072] Ozone quickly oxidizes contaminants such as NOx, Hg etc in the duct entering the scrubber prior to reaching array of nozzles 78 that deliver an aqueous medium spray. Oxidized contaminants such as N_2O_5 and HNO_3 are readily captured in aqueous sprays along with SOx, HCl and other contaminants. If the scrubber volume upstream of the spray zone (spray array 78) is inadequate, the residence time requirement for almost complete removal of NOx can be compensated by using slight excess of ozone.

[0073] Scrubber 74 is sprayed with an aqueous medium 79 from a sump via pump 80 through header spray assembly 81 and the array of spray nozzles 78. The sump is supplied by an aqueous stream make up of water, reagents such as lime, limestone, soda ash, caustic, alkali, alkaline earth metal, ammonia hydroxides, carbonates, bicarbonates and mixtures thereof. Part of the scrubbing medium may be continuously or intermittently purged by stream 82 to maintain dissolved and suspended solids within the operating range. NOx scrubbing is very slightly affected by pH in the range of 2 to 14 or presence of dissolved or suspended solids content and, therefore, other parametric controls such as pH control and purge controls are not described in

detail herein. In a typical limestone based wet FGD (Flue Gas Desulfurization), scrubber sump may also be fitted with air sparger to oxidize of calcium sulfite to sulfate which is not shown in Figure 7.

[0074] The fine droplets and mist from flue gas leaving each of three chambers are removed in a mist removal device 83, and gas streams are reunited in the duct forming treated gas stream 77. Any residual ozone present in the various chambers is immediately consumed by remaining NOx in the treated gas stream 77.

[0075] With the present invention, consumption of ozone is 25 % less in lowering NOx content from 0.45 lb/MMBTU to 0.15 lb/MMBTU compared to what is reported in the prior art (U.S. Patent Nos. 6,162,409; 5,206,002; 6,649,132; and 7,303,735) under identical conditions.

[0076] In an another example, NOx emissions from a bio mass fired boiler is required to be lowered in a first stage from 0.7 lbs/MMBTU to 0.45 lbs and finally in the second stage to less than 0.3 lbs/MMBTU. Environmental regulations do not require scrubbing of any other pollutants. The proposed solution provides flexibility in stage wise reduction of NOx by treating required amount of gas stream with slight stoichiometric excess of ozone at each stage.

[0077] Referring to the embodiment shown in Figure 8, there is shown schematically a device for partial scrubbing of a flue gas stream. An untreated gas stream 85 is conveyed through main gas header 87. A portion of the gas stream in header 87 is diverted by a fan 89 into a duct 90 is almost directly proportional to NOx removal requirements. For 50% NOx removal, 50% gas stream 85 is directed by fan 89 into the duct 90. The flow of the gas is varied by a variable frequency drive control of the fan 89. Ozone supplied from a source 91 is conveyed to ozone injector nozzles 92 where ozone is mixed with the gas stream in duct 90. The amount of ozone injected is in slight excess of stoichiometric requirement based on amount of NOx present in this portion of the gas stream. Stoichiometric requirement is 1.5 moles of ozone per mole

of NO content and 0.5 moles of ozone per mole of NO₂ content in this portion of the flue gas stream.

[0078] The gas stream mixed with ozone is conveyed from duct 90 into a column scrubber 93. The ozone in duct 90 quickly oxidizes contaminants such as NO_x, Hg etc. in the flue gas stream entering the scrubber 93 prior to reaching an aqueous spray from nozzles 94 vertically spaced apart in scrubber 93. Oxidized contaminants such as N₂O₅ and HNO₃ are readily captured in the aqueous sprays from nozzles 94 along with any other contaminants, if present.

[0079] Scrubber 93 is supplied with an aqueous medium from scrubber sump 95 via recirculation 96 through a spray header assembly 97 to the array of spray nozzles 94 in scrubber 93. Sump 95 is supplied with an aqueous medium 98 made up with water, reagents such as lime limestone, soda ash, caustic, alkali, alkaline earth metal, ammonia hydroxides, carbonates, bicarbonates and mixtures thereof. Part of the scrubbing medium 98 may be continuously or intermittently purged by a stream 99 to maintain dissolved and suspended solids within the operating range. NO_x scrubbing is very slightly affected by pH in the range of 2 to 14 or presence of dissolved or suspended solids content and therefore, other parametric controls such as pH control and purge controls are not described in detail herein.

[0080] Fine droplets and mist from the treated flue gas exiting the scrubber 93 after the aqueous sprays are removed by a mist removal device 100. Thereafter, the treated gas stream 101 is reunited with the untreated part of the flue gas stream 85 in the gas header 87. On mixing treated gas stream 101 with untreated gas stream 85 any residual ozone present is immediately consumed by NO_x in the untreated portion of gas stream 85.

[081] While this invention has been described with respect to particular embodiments thereof, it is apparent that numerous other forms and modifications of the invention will be obvious to those skilled in the art. The appended claims in this

invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the present invention.

I claim:

1. A method for the partial removal of contaminants from a process gas stream

2 comprising the steps of:

4 separating a process gas stream into at least two process gas streams,

6 feeding ozone into contact with at least one of the separated process gas streams to oxidize the contaminants in the gas stream, and

8 feeding at least one of the process gas streams contacted by ozone to a 10 scrubber for removal of the oxidized contaminants from the gas streams.

2. A method as set forth in claim 1 which includes,

2 partitioning the scrubber into at least two chambers for receiving the process gas streams,

4 conveying the process gas stream into the partitioned scrubber to divide the gas stream proportionally based on desired NOx removal into at least two process gas 6 streams fed through the two chambers, and

8 selectively feeding ozone into at least one of the chambers for admixing with the process gas stream fed through the chamber to quickly oxidize the contaminants in the 10 gas stream.

3. A method as set forth in claim 1 which includes,

2 capturing the oxidized contaminants in the separated gas stream in a capture 4 device for removal of the oxidized contaminants from the separated gas stream.

4. A method as set forth in claim 1 which includes,

2 conditioning the process gas stream containing contaminants prior to admixing 4

4 with ozone by selectively cooling, quenching, and pre-scrubbing of the contaminants.

5. A method as set forth in claim 1 which includes,

2
4
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
650
652
654
656
658
660
662
664
666
668
670
672
674
676
678
680
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
878
880
882
884
886
888
890
892
894
896
898
900
902
904
906
908
910
912
914
916
918
920
922
924
926
928
930
932
934
936
938
940
942
944
946
948
950
952
954
956
958
960
962
964
966
968
970
972
974
976
978
980
982
984
986
988
990
992
994
996
998
1000
1002
1004
1006
1008
1010
1012
1014
1016
1018
1020
1022
1024
1026
1028
1030
1032
1034
1036
1038
1040
1042
1044
1046
1048
1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070
1072
1074
1076
1078
1080
1082
1084
1086
1088
1090
1092
1094
1096
1098
1100
1102
1104
1106
1108
1110
1112
1114
1116
1118
1120
1122
1124
1126
1128
1130
1132
1134
1136
1138
1140
1142
1144
1146
1148
1150
1152
1154
1156
1158
1160
1162
1164
1166
1168
1170
1172
1174
1176
1178
1180
1182
1184
1186
1188
1190
1192
1194
1196
1198
1200
1202
1204
1206
1208
1210
1212
1214
1216
1218
1220
1222
1224
1226
1228
1230
1232
1234
1236
1238
1240
1242
1244
1246
1248
1250
1252
1254
1256
1258
1260
1262
1264
1266
1268
1270
1272
1274
1276
1278
1280
1282
1284
1286
1288
1290
1292
1294
1296
1298
1300
1302
1304
1306
1308
1310
1312
1314
1316
1318
1320
1322
1324
1326
1328
1330
1332
1334
1336
1338
1340
1342
1344
1346
1348
1350
1352
1354
1356
1358
1360
1362
1364
1366
1368
1370
1372
1374
1376
1378
1380
1382
1384
1386
1388
1390
1392
1394
1396
1398
1400
1402
1404
1406
1408
1410
1412
1414
1416
1418
1420
1422
1424
1426
1428
1430
1432
1434
1436
1438
1440
1442
1444
1446
1448
1450
1452
1454
1456
1458
1460
1462
1464
1466
1468
1470
1472
1474
1476
1478
1480
1482
1484
1486
1488
1490
1492
1494
1496
1498
1500
1502
1504
1506
1508
1510
1512
1514
1516
1518
1520
1522
1524
1526
1528
1530
1532
1534
1536
1538
1540
1542
1544
1546
1548
1550
1552
1554
1556
1558
1560
1562
1564
1566
1568
1570
1572
1574
1576
1578
1580
1582
1584
1586
1588
1590
1592
1594
1596
1598
1600
1602
1604
1606
1608
1610
1612
1614
1616
1618
1620
1622
1624
1626
1628
1630
1632
1634
1636
1638
1640
1642
1644
1646
1648
1650
1652
1654
1656
1658
1660
1662
1664
1666
1668
1670
1672
1674
1676
1678
1680
1682
1684
1686
1688
1690
1692
1694
1696
1698
1700
1702
1704
1706
1708
1710
1712
1714
1716
1718
1720
1722
1724
1726
1728
1730
1732
1734
1736
1738
1740
1742
1744
1746
1748
1750
1752
1754
1756
1758
1760
1762
1764
1766
1768
1770
1772
1774
1776
1778
1780
1782
1784
1786
1788
1790
1792
1794
1796
1798
1800
1802
1804
1806
1808
1810
1812
1814
1816
1818
1820
1822
1824
1826
1828
1830
1832
1834
1836
1838
1840
1842
1844
1846
1848
1850
1852
1854
1856
1858
1860
1862
1864
1866
1868
1870
1872
1874
1876
1878
1880
1882
1884
1886
1888
1890
1892
1894
1896
1898
1900
1902
1904
1906
1908
1910
1912
1914
1916
1918
1920
1922
1924
1926
1928
1930
1932
1934
1936
1938
1940
1942
1944
1946
1948
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010
2012
2014
2016
2018
2020
2022
2024
2026
2028
2030
2032
2034
2036
2038
2040
2042
2044
2046
2048
2050
2052
2054
2056
2058
2060
2062
2064
2066
2068
2070
2072
2074
2076
2078
2080
2082
2084
2086
2088
2090
2092
2094
2096
2098
2100
2102
2104
2106
2108
2110
2112
2114
2116
2118
2120
2122
2124
2126
2128
2130
2132
2134
2136
2138
2140
2142
2144
2146
2148
2150
2152
2154
2156
2158
2160
2162
2164
2166
2168
2170
2172
2174
2176
2178
2180
2182
2184
2186
2188
2190
2192
2194
2196
2198
2200
2202
2204
2206
2208
2210
2212
2214
2216
2218
2220
2222
2224
2226
2228
2230
2232
2234
2236
2238
2240
2242
2244
2246
2248
2250
2252
2254
2256
2258
2260
2262
2264
2266
2268
2270
2272
2274
2276
2278
2280
2282
2284
2286
2288
2290
2292
2294
2296
2298
2300
2302
2304
2306
2308
2310
2312
2314
2316
2318
2320
2322
2324
2326
2328
2330
2332
2334
2336
2338
2340
2342
2344
2346
2348
2350
2352
2354
2356
2358
2360
2362
2364
2366
2368
2370
2372
2374
2376
2378
2380
2382
2384
2386
2388
2390
2392
2394
2396
2398
2400
2402
2404
2406
2408
2410
2412
2414
2416
2418
2420
2422
2424
2426
2428
2430
2432
2434
2436
2438
2440
2442
2444
2446
2448
2450
2452
2454
2456
2458
2460
2462
2464
2466
2468
2470
2472
2474
2476
2478
2480
2482
2484
2486
2488
2490
2492
2494
2496
2498
2500
2502
2504
2506
2508
2510
2512
2514
2516
2518
2520
2522
2524
2526
2528
2530
2532
2534
2536
2538
2540
2542
2544
2546
2548
2550
2552
2554
2556
2558
2560
2562
2564
2566
2568
2570
2572
2574
2576
2578
2580
2582
2584
2586
2588
2590
2592
2594
2596
2598
2600
2602
2604
2606
2608
2610
2612
2614
2616
2618
2620
2622
2624
2626
2628
2630
2632
2634
2636
2638
2640
2642
2644
2646
2648
2650
2652
2654
2656
2658
2660
2662
2664
2666
2668
2670
2672
2674
2676
2678
2680
2682
2684
2686
2688
2690
2692
2694
2696
2698
2700
2702
2704
2706
2708
2710
2712
2714
2716
2718
2720
2722
2724
2726
2728
2730
2732
2734
2736
2738
2740
2742
2744
2746
2748
2750
2752
2754
2756
2758
2760
2762
2764
2766
2768
2770
2772
2774
2776
2778
2780
2782
2784
2786
2788
2790
2792
2794
2796
2798
2800
2802
2804
2806
2808
2810
2812
2814
2816
2818
2820
2822
2824
2826
2828
2830
2832
2834
2836
2838
2840
2842
2844
2846
2848
2850
2852
2854
2856
2858
2860
2862
2864
2866
2868
2870
2872
2874
2876
2878
2880
2882
2884
2886
2888
2890
2892
2894
2896
2898
2900
2902
2904
2906
2908
2910
2912
2914
2916
2918
2920
2922
2924
2926
2928
2930
2932
2934
2936
2938
2940
2942
2944
2946
2948
2950
2952
2954
2956
2958
2960
2962
2964
2966
2968
2970
2972
2974
2976
2978
2980
2982
2984
2986
2988
2990
2992
2994
2996
2998
3000
3002
3004
3006
3008
3010
3012
3014
3016
3018
3020
3022
3024
3026
3028
3030
3032
3034
3036
3038
3040
3042
3044
3046
3048
3050
3052
3054
3056
3058
3060
3062
3064
3066
3068
3070
3072
3074
3076
3078
3080
3082
3084
3086
3088
3090
3092
3094
3096
3098
3100
3102
3104
3106
3108
3110
3112
3114
3116
3118
3120
3122
3124
3126
3128
3130
3132
3134
3136
3138
3140
3142
3144
3146
3148
3150
3152
3154
3156
3158
3160
3162
3164
3166
3168
3170
3172
3174
3176
3178
3180
3182
3184
3186
3188
3190
3192
3194
3196
3198
3200
3202
3204
3206
3208
3210
3212
3214
3216
3218
3220
3222
3224
3226
3228
3230
3232
3234
3236
3238
3240
3242
3244
3246
3248
3250
3252
3254
3256
3258
3260
3262
3264
3266
3268
3270
3272
3274
3276
3278
3280
3282
3284
3286
3288
3290
3292
3294
3296
3298
3300
3302
3304
3306
3308
3310
3312
3314
3316
3318
3320
3322
3324
3326
3328
3330
3332
3334
3336
3338
3340
3342
3344
3346
3348
3350
3352
3354
3356
3358
3360
3362
3364
3366
3368
3370
3372
3374
3376
3378
3380
3382
3384
3386
3388
3390
3392
3394
3396
3398
3400
3402
3404
3406
3408
3410
3412
3414
3416
3418
3420
3422
3424
3426
3428
3430
3432
3434
3436
3438
3440
3442
3444
3446
3448
3450
3452
3454
3456
3458
3460
3462
3464
3466
3468
3470
3472
3474
3476
3478
3480
3482
3484
3486
3488
3490
3492
3494
3496
3498
3500
3502
3504
3506
3508
3510
3512
3514
3516
3518
3520
3522
3524
3526
3528
3530
3532
3534
3536
3538
3540
3542
3544
3546
3548
3550
3552
3554
3556
3558
3560
3562
3564
3566
3568
3570
3572
3574
3576
3578
3580
3582
3584
3586
3588
3590
3592
3594
3596
3598
3600
3602
3604
3606
3608
3610
3612
3614
3616
3618
3620
3622
3624
3626
3628
3630
3632
3634
3636
3638
3640
3642
3644
3646
3648
3650
3652
3654
3656
3658
3660
3662
3664
3666
3668
3670
3672
3674
3676
3678
3680
3682
3684
3686
3688
3690
3692
3694
3696
3698
3700
3702
3704
3706
3708
3710
3712
3714
3716
3718
3720
3722
3724
3726
3728
3730
3732
3734
3736
3738
3740
3742
3744
3746
3748
3750
3752
3754
3756
3758
3760
3762
3764
3766
3768
3770
3772
3774
3776
3778
3780
3782
3784
3786
3788
3790
3792
3794
3796
3798
3800
3802
3804
3806
3808
3810
3812
3814
3816
3818
3820
3822
3824
3826
3828
3830
3832
3834
3836
3838
3840
3842

the gas stream containing contaminants, and

6

oxidizing the excess ozone in the unified gas stream upon contact with the gas
8 stream containing contaminants to thereby remove excess ozone from the unified gas
stream.

8. A method as set forth in claim 1 which includes,

2

mixing a preselected percentage of the process gas stream containing
4 contaminants with a preselected percentage of the process gas stream free of
contaminants and containing excess ozone to form a unified gas stream, and

6

8. consuming the excess ozone by the contaminants present in the unified gas
stream.

9. A method as set forth in claim 1 which includes,

2

4. reducing the residence time of the separated process gas streams in the
scrubber by adding an excess of ozone to the separated gas stream.

10. A method for the partial removal of contaminants from a process gas stream
2 comprising the steps of:

4. conditioning the process gas stream emitted from a combustion process,

6. separating the process gas stream into at least two process gas streams,

8. injecting ozone into at least one of the separated process gas streams to provide
mixing of the ozone with the contaminants including nitrogen oxides in the separated
10 process gas stream,

12 oxidizing nitrogen oxides in the separated process gas stream by mixing with
ozone,

14 capturing the oxidized nitrogen oxides in a capture device to remove the nitrogen
16 oxides from the separated process gas stream, and

18 recombining the separated process gas stream substantially free of nitrogen
oxides with the remainder of process gas stream containing contaminants.

11. A method as set forth in claim 10 which includes,

2 removing the oxidized nitrogen oxides in the separated gas stream on
4 condensing surfaces selected from the group consisting of a heat exchanger, a
condenser, and a coalescing device.

12. A method as set forth in claim 10 which includes,

2 capturing the oxidized contaminants removed from the gas stream in a capture
4 device selected from the group consisting of a fabric filter, wet and dry electrostatic
precipitators, a wet scrubber, a dry scrubber, a bag house, condensing surfaces, and a
6 mist separator.

13. A method as set forth in claim 10 which includes,

2 removing a preselected percentage of the process gas from the process gas
4 stream for oxidation of substantially the same percentage of nitrogen oxides in the
process gas as the percentage of process gas removed from the gas stream.

14. A method as set forth in claim 10 which includes,

2 recombining the gas stream free of nitrogen oxides with the gas stream

4 containing nitrogen oxides, and

6 consuming any excess ozone present in the recombined gas streams by mixing
the ozone with contaminants present in the recombined gas stream.

15. A method as set forth in claim 10 which includes,

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
650
652
654
656
658
660
662
664
666
668
670
672
674
676
678
680
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
878
880
882
884
886
888
890
892
894
896
898
900
902
904
906
908
910
912
914
916
918
920
922
924
926
928
930
932
934
936
938
940
942
944
946
948
950
952
954
956
958
960
962
964
966
968
970
972
974
976
978
980
982
984
986
988
990
992
994
996
998
1000
1002
1004
1006
1008
1010
1012
1014
1016
1018
1020
1022
1024
1026
1028
1030
1032
1034
1036
1038
1040
1042
1044
1046
1048
1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070
1072
1074
1076
1078
1080
1082
1084
1086
1088
1090
1092
1094
1096
1098
1100
1102
1104
1106
1108
1110
1112
1114
1116
1118
1120
1122
1124
1126
1128
1130
1132
1134
1136
1138
1140
1142
1144
1146
1148
1150
1152
1154
1156
1158
1160
1162
1164
1166
1168
1170
1172
1174
1176
1178
1180
1182
1184
1186
1188
1190
1192
1194
1196
1198
1200
1202
1204
1206
1208
1210
1212
1214
1216
1218
1220
1222
1224
1226
1228
1230
1232
1234
1236
1238
1240
1242
1244
1246
1248
1250
1252
1254
1256
1258
1260
1262
1264
1266
1268
1270
1272
1274
1276
1278
1280
1282
1284
1286
1288
1290
1292
1294
1296
1298
1300
1302
1304
1306
1308
1310
1312
1314
1316
1318
1320
1322
1324
1326
1328
1330
1332
1334
1336
1338
1340
1342
1344
1346
1348
1350
1352
1354
1356
1358
1360
1362
1364
1366
1368
1370
1372
1374
1376
1378
1380
1382
1384
1386
1388
1390
1392
1394
1396
1398
1400
1402
1404
1406
1408
1410
1412
1414
1416
1418
1420
1422
1424
1426
1428
1430
1432
1434
1436
1438
1440
1442
1444
1446
1448
1450
1452
1454
1456
1458
1460
1462
1464
1466
1468
1470
1472
1474
1476
1478
1480
1482
1484
1486
1488
1490
1492
1494
1496
1498
1500
1502
1504
1506
1508
1510
1512
1514
1516
1518
1520
1522
1524
1526
1528
1530
1532
1534
1536
1538
1540
1542
1544
1546
1548
1550
1552
1554
1556
1558
1560
1562
1564
1566
1568
1570
1572
1574
1576
1578
1580
1582
1584
1586
1588
1590
1592
1594
1596
1598
1600
1602
1604
1606
1608
1610
1612
1614
1616
1618
1620
1622
1624
1626
1628
1630
1632
1634
1636
1638
1640
1642
1644
1646
1648
1650
1652
1654
1656
1658
1660
1662
1664
1666
1668
1670
1672
1674
1676
1678
1680
1682
1684
1686
1688
1690
1692
1694
1696
1698
1700
1702
1704
1706
1708
1710
1712
1714
1716
1718
1720
1722
1724
1726
1728
1730
1732
1734
1736
1738
1740
1742
1744
1746
1748
1750
1752
1754
1756
1758
1760
1762
1764
1766
1768
1770
1772
1774
1776
1778
1780
1782
1784
1786
1788
1790
1792
1794
1796
1798
1800
1802
1804
1806
1808
1810
1812
1814
1816
1818
1820
1822
1824
1826
1828
1830
1832
1834
1836
1838
1840
1842
1844
1846
1848
1850
1852
1854
1856
1858
1860
1862
1864
1866
1868
1870
1872
1874
1876
1878
1880
1882
1884
1886
1888
1890
1892
1894
1896
1898
1900
1902
1904
1906
1908
1910
1912
1914
1916
1918
1920
1922
1924
1926
1928
1930
1932
1934
1936
1938
1940
1942
1944
1946
1948
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010
2012
2014
2016
2018
2020
2022
2024
2026
2028
2030
2032
2034
2036
2038
2040
2042
2044
2046
2048
2050
2052
2054
2056
2058
2060
2062
2064
2066
2068
2070
2072
2074
2076
2078
2080
2082
2084
2086
2088
2090
2092
2094
2096
2098
2100
2102
2104
2106
2108
2110
2112
2114
2116
2118
2120
2122
2124
2126
2128
2130
2132
2134
2136
2138
2140
2142
2144
2146
2148
2150
2152
2154
2156
2158
2160
2162
2164
2166
2168
2170
2172
2174
2176
2178
2180
2182
2184
2186
2188
2190
2192
2194
2196
2198
2200
2202
2204
2206
2208
2210
2212
2214
2216
2218
2220
2222
2224
2226
2228
2230
2232
2234
2236
2238
2240
2242
2244
2246
2248
2250
2252
2254
2256
2258
2260
2262
2264
2266
2268
2270
2272
2274
2276
2278
2280
2282
2284
2286
2288
2290
2292
2294
2296
2298
2300
2302
2304
2306
2308
2310
2312
2314
2316
2318
2320
2322
2324
2326
2328
2330
2332
2334
2336
2338
2340
2342
2344
2346
2348
2350
2352
2354
2356
2358
2360
2362
2364
2366
2368
2370
2372
2374
2376
2378
2380
2382
2384
2386
2388
2390
2392
2394
2396
2398
2400
2402
2404
2406
2408
2410
2412
2414
2416
2418
2420
2422
2424
2426
2428
2430
2432
2434
2436
2438
2440
2442
2444
2446
2448
2450
2452
2454
2456
2458
2460
2462
2464
2466
2468
2470
2472
2474
2476
2478
2480
2482
2484
2486
2488
2490
2492
2494
2496
2498
2500
2502
2504
2506
2508
2510
2512
2514
2516
2518
2520
2522
2524
2526
2528
2530
2532
2534
2536
2538
2540
2542
2544
2546
2548
2550
2552
2554
2556
2558
2560
2562
2564
2566
2568
2570
2572
2574
2576
2578
2580
2582
2584
2586
2588
2590
2592
2594
2596
2598
2600
2602
2604
2606
2608
2610
2612
2614
2616
2618
2620
2622
2624
2626
2628
2630
2632
2634
2636
2638
2640
2642
2644
2646
2648
2650
2652
2654
2656
2658
2660
2662
2664
2666
2668
2670
2672
2674
2676
2678
2680
2682
2684
2686
2688
2690
2692
2694
2696
2698
2700
2702
2704
2706
2708
2710
2712
2714
2716
2718
2720
2722
2724
2726
2728
2730
2732
2734
2736
2738
2740
2742
2744
2746
2748
2750
2752
2754
2756
2758
2760
2762
2764
2766
2768
2770
2772
2774
2776
2778
2780
2782
2784
2786
2788
2790
2792
2794
2796
2798
2800
2802
2804
2806
2808
2810
2812
2814
2816
2818
2820
2822
2824
2826
2828
2830
2832
2834
2836
2838
2840
2842
2844
2846
2848
2850
2852
2854
2856
2858
2860
2862
2864
2866
2868
2870
2872
2874
2876
2878
2880
2882
2884
2886
2888
2890
2892
2894
2896
2898
2900
2902
2904
2906
2908
2910
2912
2914
2916
2918
2920
2922
2924
2926
2928
2930
2932
2934
2936
2938
2940
2942
2944
2946
2948
2950
2952
2954
2956
2958
2960
2962
2964
2966
2968
2970
2972
2974
2976
2978
2980
2982
2984
2986
2988
2990
2992
2994
2996
2998
3000
3002
3004
3006
3008
3010
3012
3014
3016
3018
3020
3022
3024
3026
3028
3030
3032
3034
3036
3038
3040
3042
3044
3046
3048
3050
3052
3054
3056
3058
3060
3062
3064
3066
3068
3070
3072
3074
3076
3078
3080
3082
3084
3086
3088
3090
3092
3094
3096
3098
3100
3102
3104
3106
3108
3110
3112
3114
3116
3118
3120
3122
3124
3126
3128
3130
3132
3134
3136
3138
3140
3142
3144
3146
3148
3150
3152
3154
3156
3158
3160
3162
3164
3166
3168
3170
3172
3174
3176
3178
3180
3182
3184
3186
3188
3190
3192
3194
3196
3198
3200
3202
3204
3206
3208
3210
3212
3214
3216
3218
3220
3222
3224
3226
3228
3230
3232
3234
3236
3238
3240
3242
3244
3246
3248
3250
3252
3254
3256
3258
3260
3262
3264
3266
3268
3270
3272
3274
3276
3278
3280
3282
3284
3286
3288
3290
3292
3294
3296
3298
3300
3302
3304
3306
3308
3310
3312
3314
3316
3318
3320
3322
3324
3326
3328
3330
3332
3334
3336
3338
3340
3342
3344
3346
3348
3350
3352
3354
3356
3358
3360
3362
3364
3366
3368
3370
3372
3374
3376
3378
3380
3382
3384
3386
3388
3390
3392
3394
3396
3398
3400
3402
3404
3406
3408
3410
3412
3414
3416
3418
3420
3422
3424
3426
3428
3430
3432
3434
3436
3438
3440
3442
3444
3446
3448
3450
3452
3454
3456
3458
3460
3462
3464
3466
3468
3470
3472
3474
3476
3478
3480
3482
3484
3486
3488
3490
3492
3494
3496
3498
3500
3502
3504
3506
3508
3510
3512
3514
3516
3518
3520
3522
3524
3526
3528
3530
3532
3534
3536
3538
3540
3542
3544
3546
3548
3550
3552
3554
3556
3558
3560
3562
3564
3566
3568
3570
3572
3574
3576
3578
3580
3582
3584
3586
3588
3590
3592
3594
3596
3598
3600
3602
3604
3606
3608
3610
3612
3614
3616
3618
3620
3622
3624
3626
3628
3630
3632
3634
3636
3638
3640
3642
3644
3646
3648
3650
3652
3654
3656
3658
3660
3662
3664
3666
3668
3670
3672
3674
3676
3678
3680
3682
3684
3686
3688
3690
3692
3694
3696
3698
3700
3702
3704
3706
3708
3710
3712
3714
3716
3718
3720
3722
3724
3726
3728
3730
3732
3734
3736
3738
3740
3742
3744
3746
3748
3750
3752
3754
3756
3758
3760
3762
3764
3766
3768
3770
3772
3774
3776
3778
3780
3782
3784
3786
3788
3790
3792
3794
3796
3798
3800
3802
3804
3806
3808
3810
3812
3814
3816
3818
3820
3822
3824
382

17. Apparatus for the partial removal of contaminants from a process gas stream
2 comprising,

4 a duct for conveying a process gas stream from the exhaust of a combustion
process,

6 a scrubber connected to said duct for receiving the process gas stream
8 containing contaminants,

10 a source of ozone introduced into a first zone of the process gas stream in said
scrubber for selective mixing with the process gas stream and a second zone of the
12 process gas stream in said scrubber being free of ozone, and

14 the ozone mixed with the process gas stream in said first zone oxidizes the
nitrogen oxides present in the process gas stream first zone.

18. Apparatus for the partial removal of contaminants from a process gas stream as
2 set forth in claim 17 which includes,

4 said duct partitioned into a first chamber and a second chamber for receiving the
process gas stream,

6 said duct first chamber being injected with ozone,

8 said duct first chamber receiving ozone for mixing with the process gas stream in
10 to oxidize the contaminants therein,

12 a third chamber of said duct positioned downstream of the duct first and second
chambers having an aqueous spray medium for capturing the oxidized contaminants in
14 the process gas stream to remove the contaminants oxidized in the first zone of the
process gas stream,

16

18 said duct third chamber conveying the process gas stream from the first zone
18 free of contaminants and the process gas stream from the second zone containing
contaminants to said scrubber,

20

22 said scrubber remixing the process gas streams from the first and second zones,
and

24 said scrubber generating a spray of aqueous medium into the remixed process
gas streams to remove any remaining contaminants oxidized by excess ozone
26 remaining in the remixed process gas streams.

19. Apparatus for the partial removal of contaminants from a process gas stream as
2 set forth in claim 17 which includes,

4 said scrubber including a plurality of Venturi scrubbers for receiving a stream of
process gas from the combustion process,

6 said Venturi scrubbers each provided with a scrubbing medium to contact the
8 process gas stream flowing therethrough to remove acid gases and particulate matter
from the process gas,

10 a duct partitioned into a first chamber and a second chamber for receiving the
12 process gas discharged from said Venturi scrubbers,

14 said duct first chamber selectively injected with ozone for mixing with the process
gas in said duct first chamber so that only a preselected percentage of the process gas
16 flowing from said Venturi scrubbers is oxidized,

18 a capture device for receiving the process gas streams from said duct first and
second chambers, and

22 said capture device provided with aqueous medium sprays for capturing the
oxidized contaminants in the process gas to remove the oxidized contaminants from the
24 process gas stream.

20. Apparatus for the partial removal of contaminants from a process gas stream as
2 set forth in claim 17 which includes,

4 an aqueous reagent stream contacting the process gas stream in said duct to
form finely dusted solids in the process gas stream,

6 a modular capture device including a bag house having a plurality of chambers
8 for receiving the gas stream containing the finely dusted solids,

10 an injector for supplying ozone into preselected chambers of said bag house
having a solid reagent to obtain a preselected percentage of oxidation of contaminants
12 in the gas stream,

14 said solid reagent in said chambers of said bag house absorbing oxidized solid
contaminants while the gas stream free of solid contaminants exits said chamber,

16 an exit duct extending from each of said chambers to unite the gas streams
18 flowing from each of said chambers forming a treated gas stream, and

20 said exit duct providing for mixing of the gas streams exiting said chambers so
that any residual ozone is consumed by the contaminants remaining in the treated gas
22 stream.

21. A method for the partial removal of contaminants from a process gas stream
2 comprising the steps of:

4 conditioning the process gas stream emitted from a combustion process,

6 injecting ozone into a portion of process gas stream to provide mixing of the
ozone with the contaminants including nitrogen oxides in the selected portion of the
8 process gas stream,

10 oxidizing nitrogen oxides in the selected portion of the process gas stream by
mixing with ozone,

12 capturing the oxidized nitrogen oxides in a capture device to remove the nitrogen
14 oxides from the selected portion of the process gas stream, and

16 recombining the selected portion of the process gas stream with the remainder
of process gas stream containing contaminants.

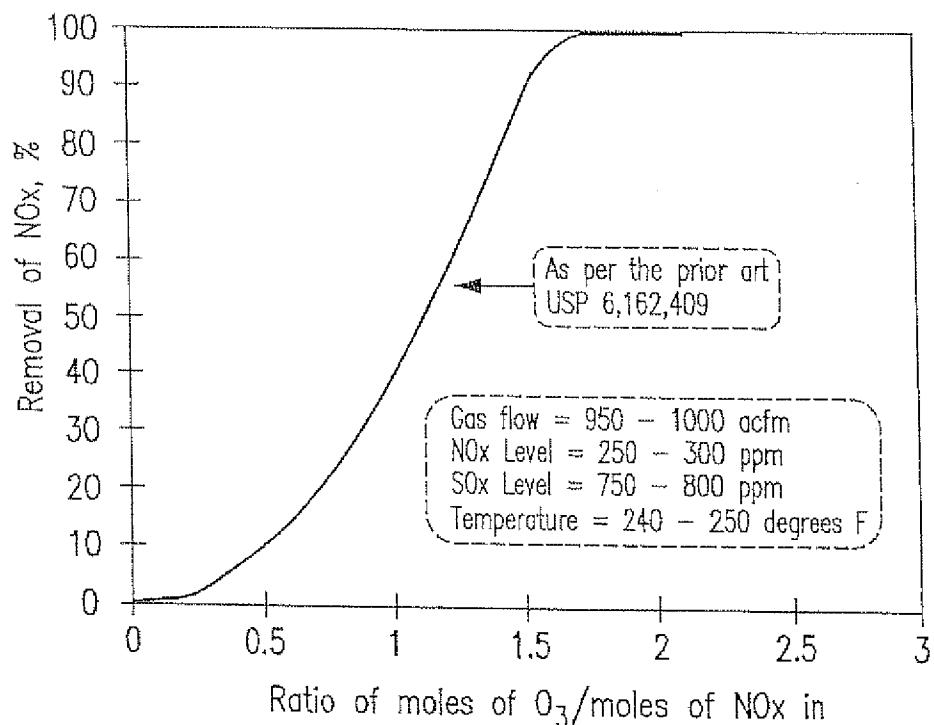


FIG. 1

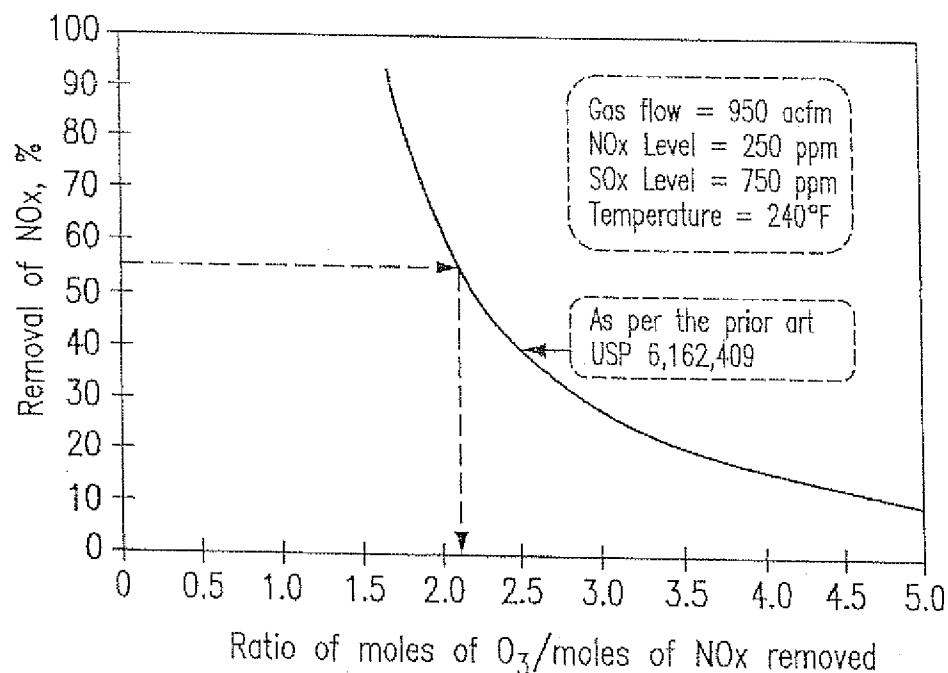


FIG. 2

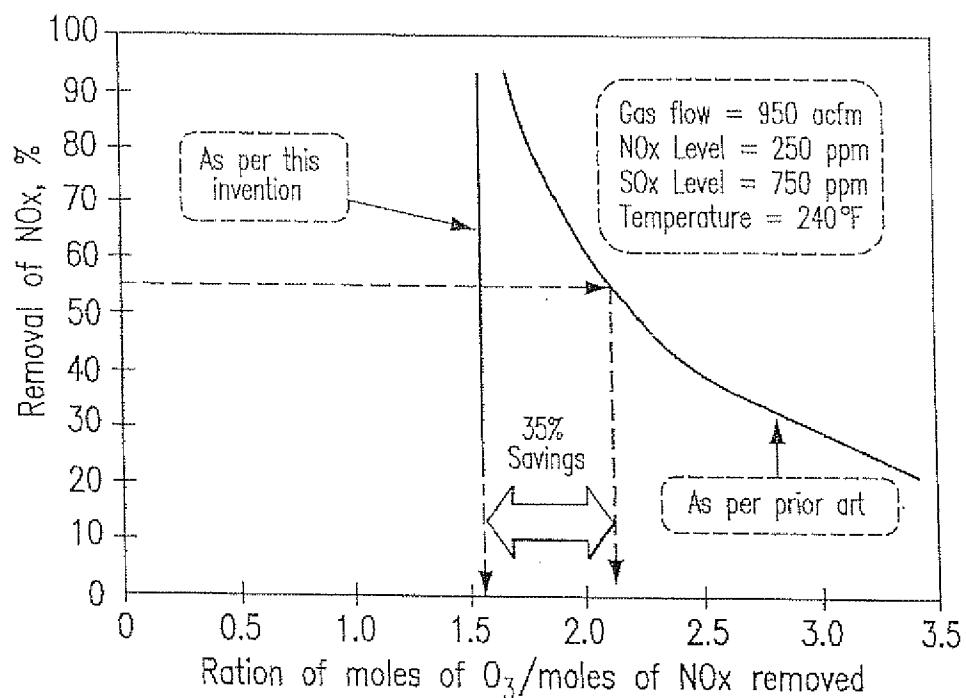


FIG. 3

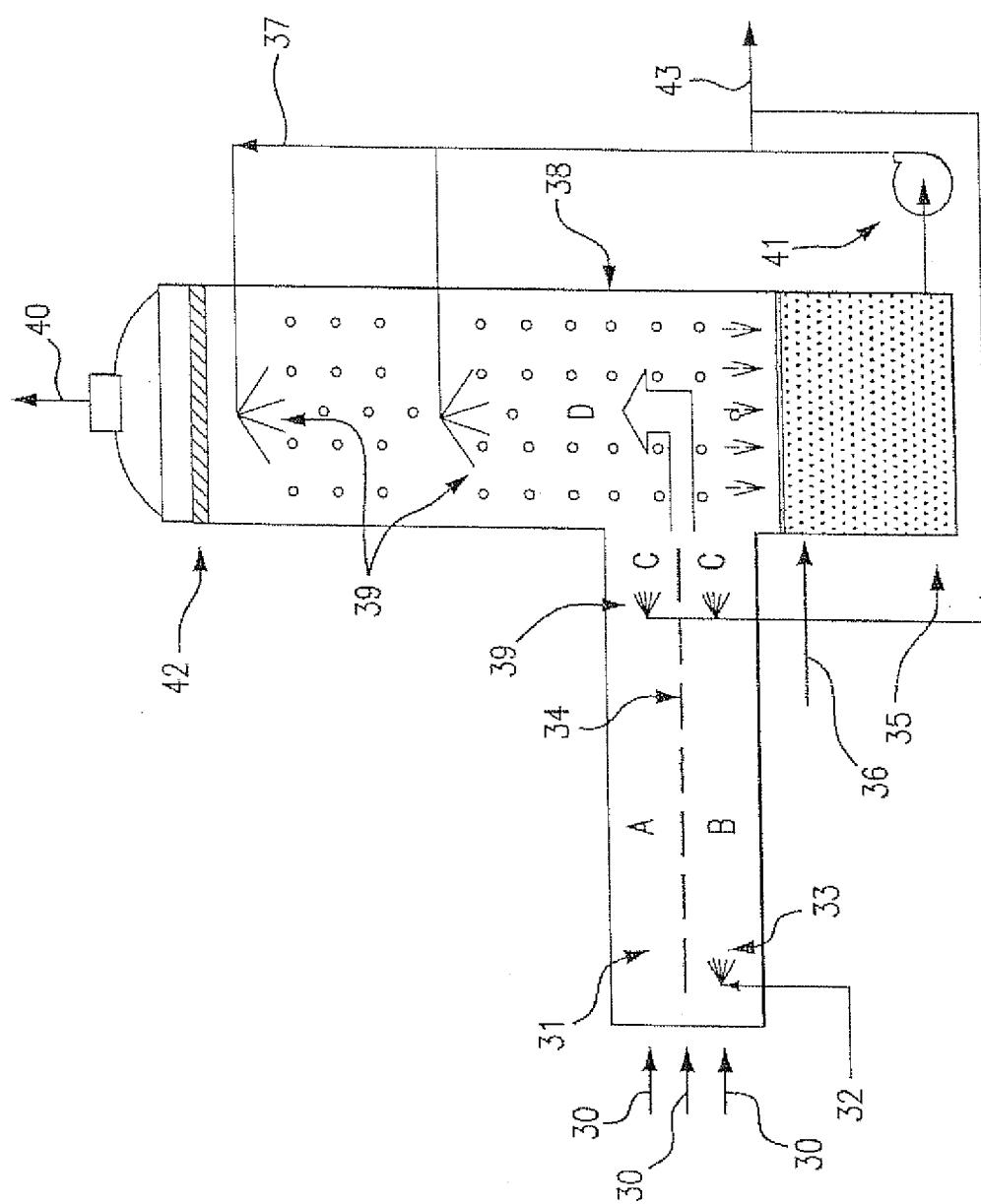


FIG. 4

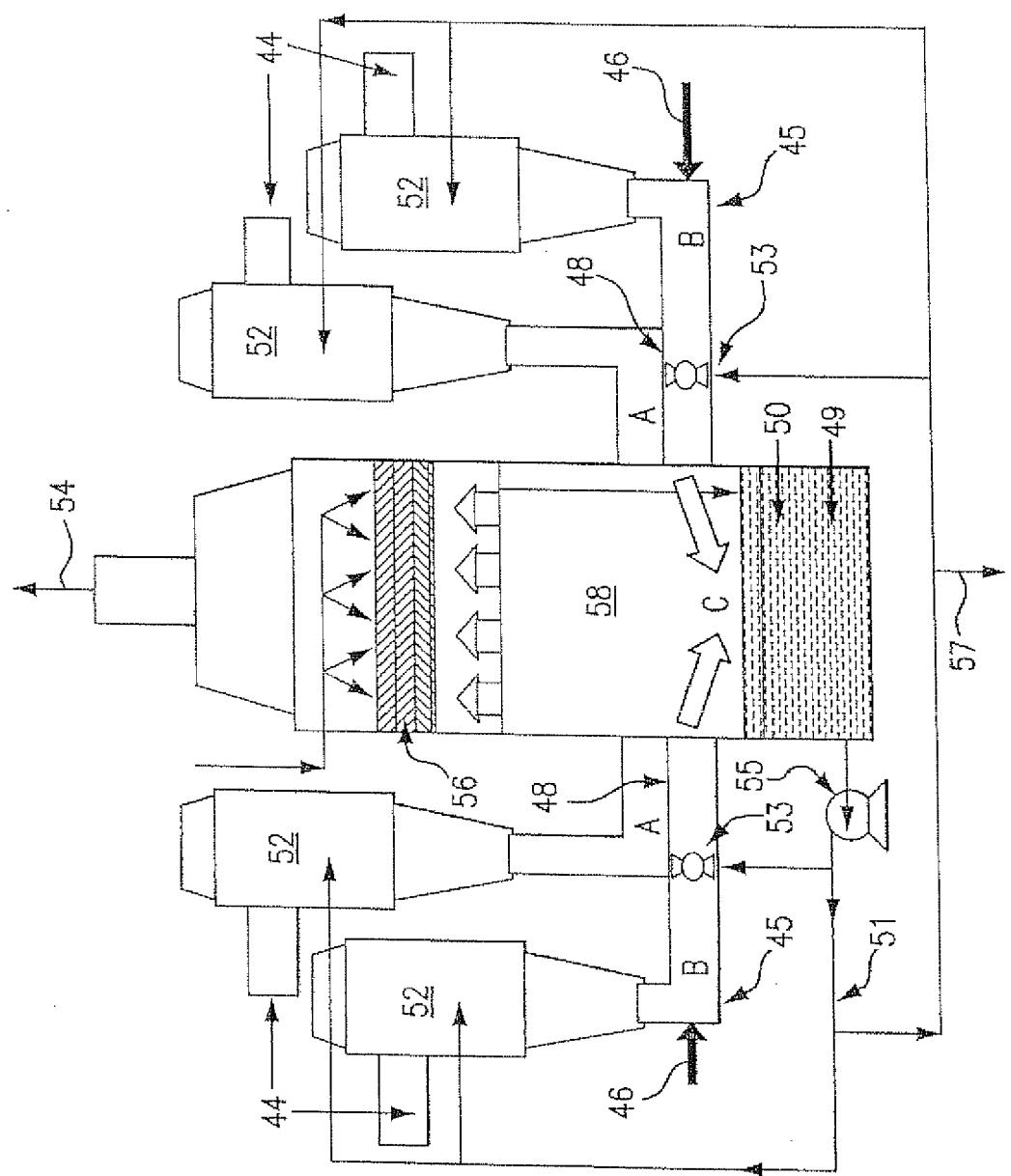


FIG. 5

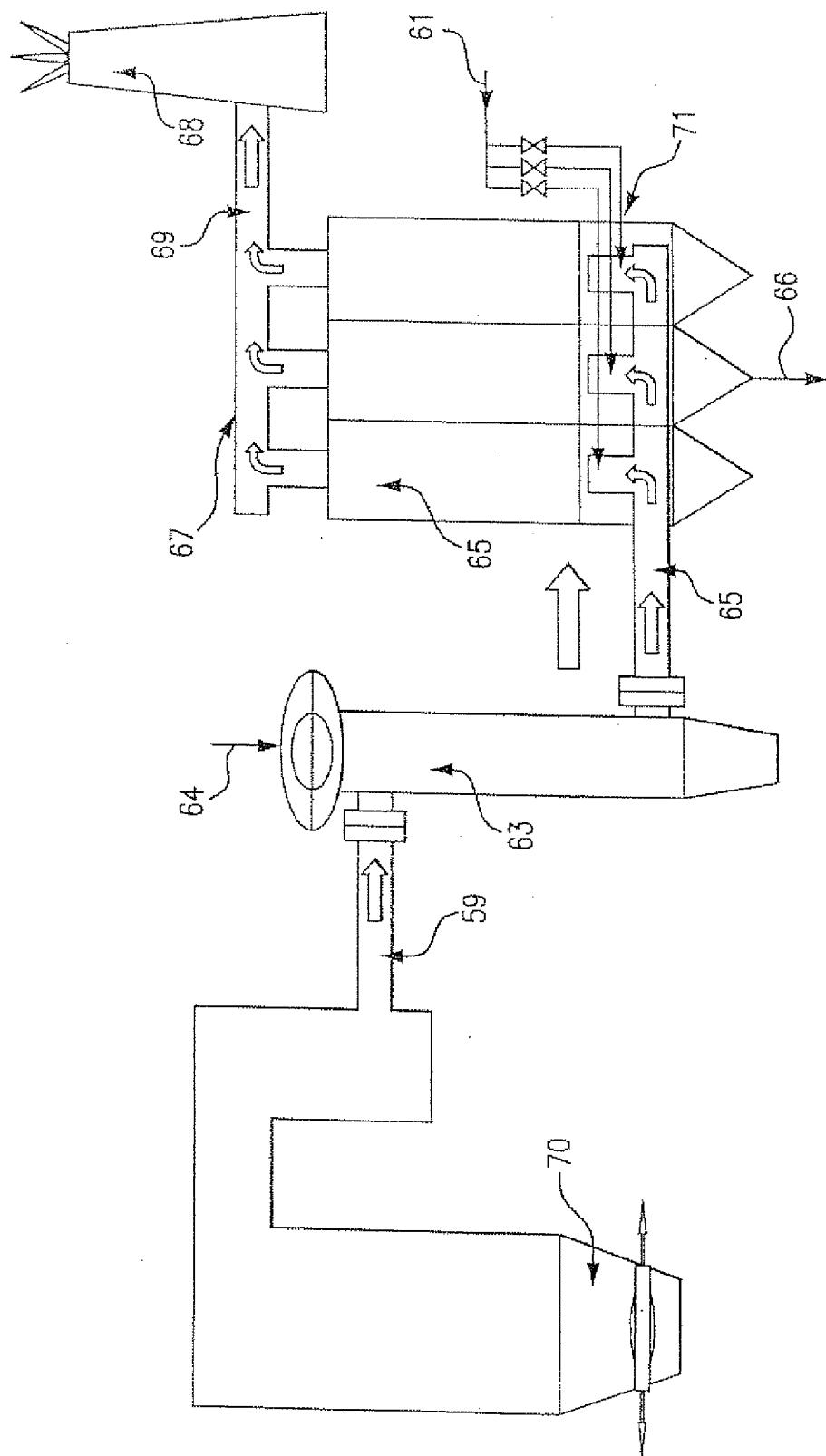


FIG. 6

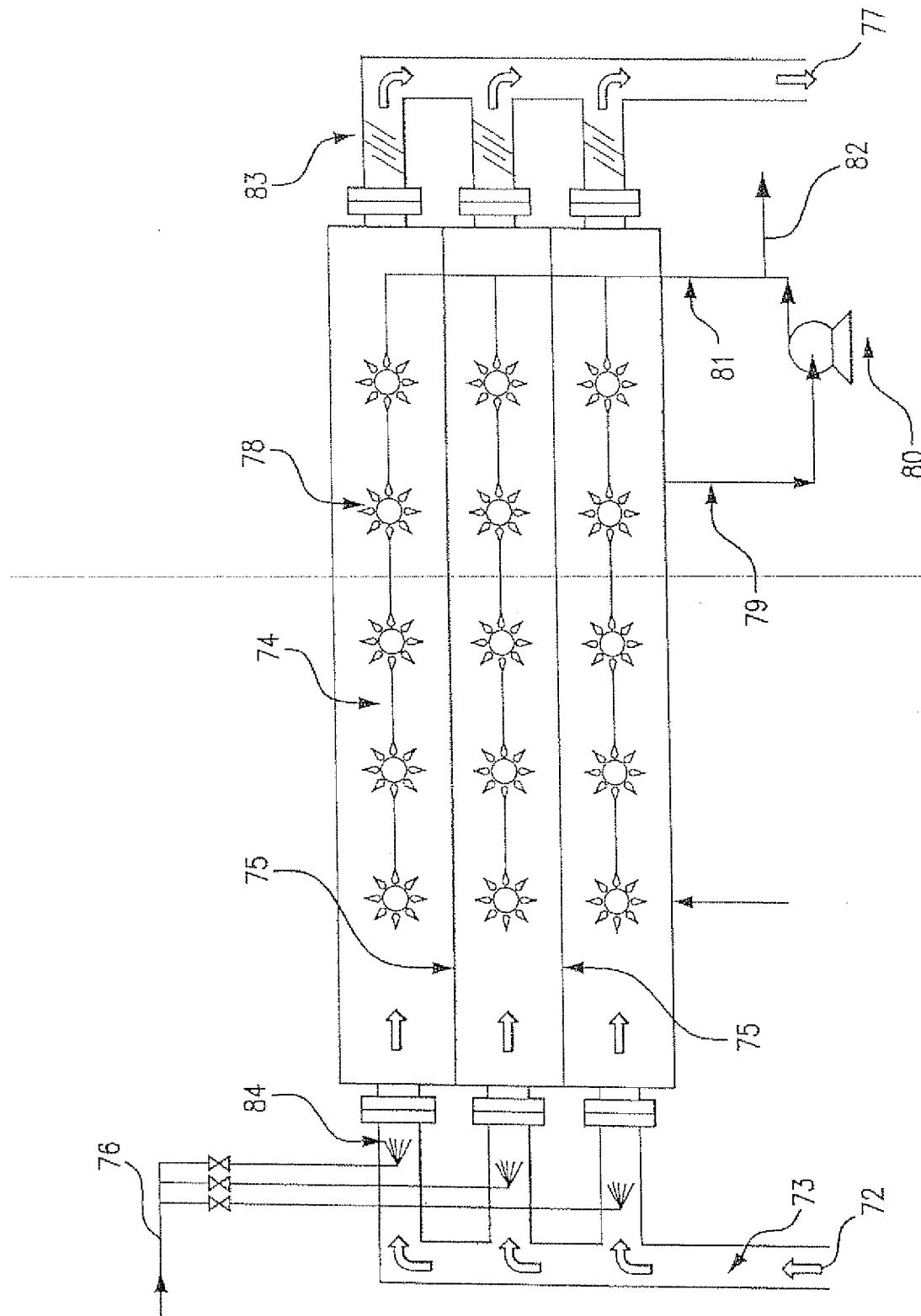
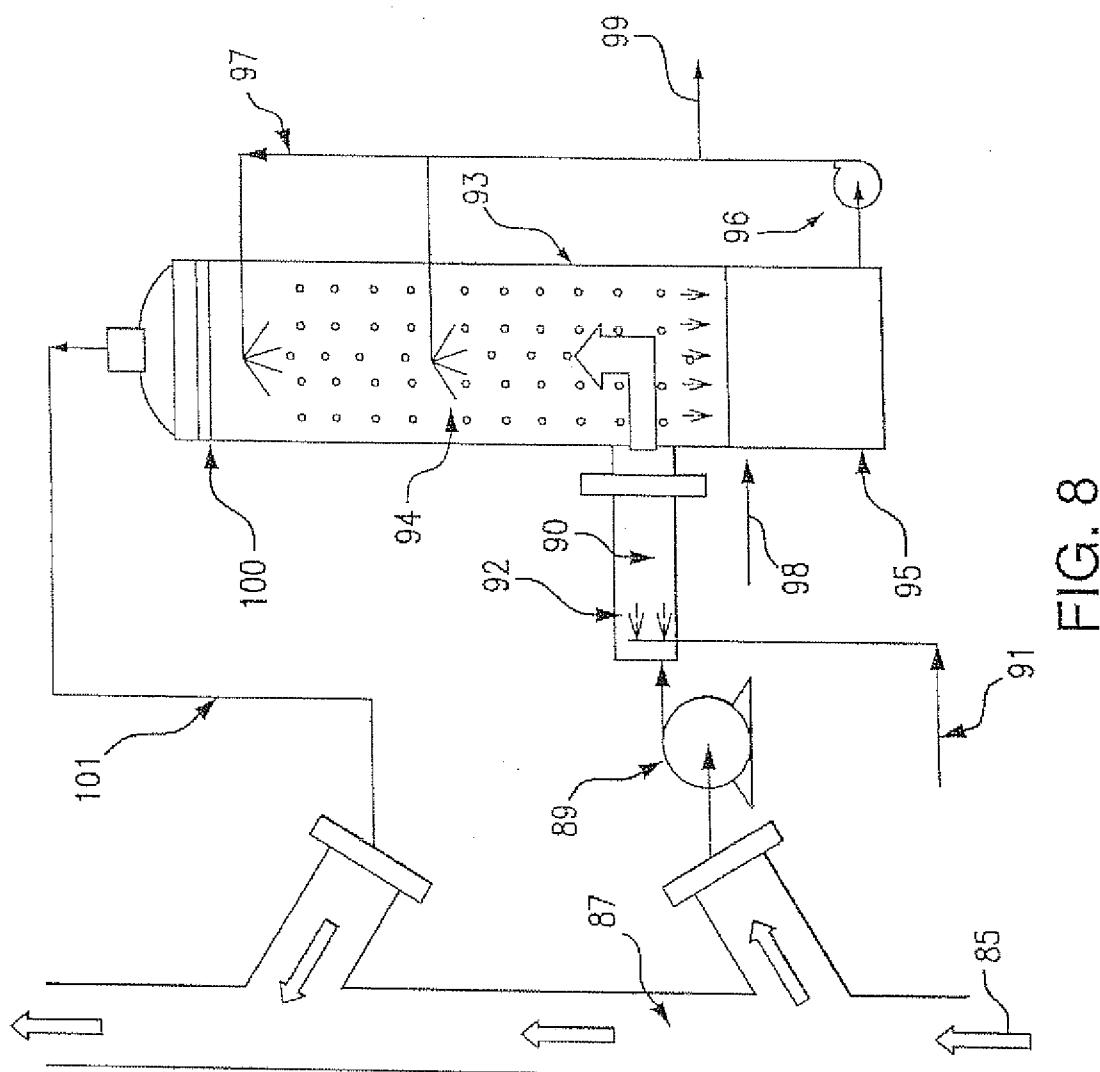



FIG. 7

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/059416

A. CLASSIFICATION OF SUBJECT MATTER
INV. B01D53/56 B01D53/75 B01D53/78
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 136 284 A (HWANG SHUEN-CHENG [US] ET AL) 24 October 2000 (2000-10-24) column 2, lines 55-62; figure 1 column 3, lines 16-62 -----	1-21
X	US 6 197 268 B1 (HWANG SHUEN-CHENG [US] ET AL) 6 March 2001 (2001-03-06) column 5, lines 19-50; figure 1 -----	1-21
X, P	EP 2 719 440 A1 (LINDE AG [DE]) 16 April 2014 (2014-04-16) the whole document -----	1-21
A	EP 1 852 172 A1 (BOC GROUP INC [US] LINDE LLC [US]) 7 November 2007 (2007-11-07) the whole document ----- -/-	1-21

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

28 January 2015

05/02/2015

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer
--	--------------------

Gruber, Marco

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/059416

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 277 347 B1 (STEARNS RANALD [US] ET AL) 21 August 2001 (2001-08-21) figures 1,3,5 -----	1-21

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/059416

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6136284	A	24-10-2000	AU	771046 B2		11-03-2004
			AU	7210200 A		14-06-2001
			EP	1106238 A1		13-06-2001
			JP	4698819 B2		08-06-2011
			JP	2001187316 A		10-07-2001
			KR	20010062242 A		07-07-2001
			TW	586961 B		11-05-2004
			US	6136284 A		24-10-2000
			ZA	200007223 A		06-06-2001
<hr/>						
US 6197268	B1	06-03-2001	AT	277680 T		15-10-2004
			AU	764628 B2		28-08-2003
			AU	4379000 A		04-01-2001
			CA	2312652 A1		02-01-2001
			DE	60014248 D1		04-11-2004
			EP	1064981 A1		03-01-2001
			JP	4512238 B2		28-07-2010
			JP	2001025646 A		30-01-2001
			NZ	505573 A		30-11-2001
			US	6197268 B1		06-03-2001
			ZA	200003249 A		17-01-2001
<hr/>						
EP 2719440	A1	16-04-2014	EP	2719440 A1		16-04-2014
			US	2014127107 A1		08-05-2014
<hr/>						
EP 1852172	A1	07-11-2007	AU	2007201920 A1		22-11-2007
			EP	1852172 A1		07-11-2007
			HK	1117449 A1		07-06-2013
			TW	200808432 A		16-02-2008
			US	2008017590 A1		24-01-2008
<hr/>						
US 6277347	B1	21-08-2001	DE	69820312 D1		22-01-2004
			DE	69820312 T2		18-11-2004
			EP	0861683 A2		02-09-1998
			US	6277347 B1		21-08-2001
<hr/>						