发明名称 安全可靠地固定到局部皮肤上且可舒适除去的胶粘剂

摘要

本发明涉及用于固定到皮肤上的局部用胶粘剂。本发明特别涉及用于将用品固定到皮肤上的这类局部用胶粘剂。所述用品如防护性用品、衣物、假体、热包、紧身衣、包裹物、或包裹材料、冷包材料、助听器、防护性面罩、装饰性用品或护目用品，但排除吸湿用品。在施用时局部用胶粘剂提供了安全固定且皮肤感觉舒适，在除去用品时不会引起不舒适，并且在皮肤上的胶粘剂残留物的量较低。通过选择局部用胶粘剂的化学组成和流变学特性，特别是根据局部用胶粘剂的弹性模量 G' 和粘性模量 G'' 的相互关系来实现这些目的。
1. 一种将用品固定到皮肤上的局部用胶粘剂，所述用品如防护性用品、衣物、假体、热包裹物、包裹垫和/或包裹材料、冷包裹物、助听器、防护性面罩、装饰性用品或护目用品，但除一次性的吸湿用品如伤口包扎用品、卫生巾、短裤衬里、失禁用品或腋下吸汗垫，
所述胶粘剂在 37 ℃（100 ° F）的温度下有一弹性模量 G''37 和一粘性模量 G''37，以及 1 弧度/秒的频率下的弹性模量 G''37 和粘性模量 G''37 的差值 △(G''37 - G''37)，
选择所述胶粘剂以具有下列特征：
· G''37(1 弧度/秒) 在 1500 - 20000Pa 的范围内，优选 1500 - 15000Pa，最优选 3000 - 10000Pa；
· G''37(1 弧度/秒) 在 100 - 15000Pa 的范围内，优选 100 - 10000Pa，最优选 300 - 5000Pa；
· 比值 G''37(1 弧度/秒)/G''37(1 弧度/秒)在 3 - 30 的范围内；
· 比值 G''37(100 弧度/秒) - G''37(100 弧度/秒)
G''37(1 弧度/秒) - G''37(1 弧度/秒)
不小于 0.5，优选在 0.7-3 的范围内，更优选在 1-1.8 的范围内；
· G''37(100 弧度/秒) - G''37(1 弧度/秒)不大于 10000Pa，优选小于 5000Pa，更优选小于 2000Pa；或者比值(G''37(100 弧度/秒) - G''37(1 弧度/秒))/G''37(1 弧度/秒)不大于 1.5，优选不大于 1，最优选不大于 0.8；或者两者都满足；
· 差值 △(G''37 - G''37) (1 弧度/秒)大于或等于 1250Pa，优选大于或等于 2500Pa，更优选大于或等于 3500Pa。
2. 根据权利要求 1 的局部用胶粘剂，其特征在于所述胶粘剂以连续层的形式提供。
3. 根据权利要求 1 或 2 的局部用胶粘剂，含有：
45 ～ 99.5 %，优选 51 ～ 99.5 % 重量的在 20 ℃呈液态的增塑化合物或组分；
0.5 ～ 20 % 重量的可溶解或可溶胀于所述增塑化合物或组分中的聚合化合物或组分；
增粘性树脂，其用量为0～50%重量，优选为所述聚合化合物或组分重量的0～600%。

4. 根据权利要求3的局部用胶粘剂，其中：
所述聚合化合物或组分选自水、醇、甘醇、油或其组合；以及
所述聚合化合物或组分选自聚酯共聚物－热塑性弹性体－聚乙二醇－聚酯共聚物和氢化的聚乙烯－聚酯共聚物。

5. 根据权利要求1－4中任一项的局部用胶粘剂，其中80%重量的所述胶粘剂由疏水性组分构成，优选所述胶粘剂的所有组分是疏水性的。

6. 一种用局部用胶粘剂固定到佩戴者皮肤上的用品，所述用品如防护用品、衣物、假体、热包裹物、包裹垫和/或包裹材料、冷包裹物、助听器、防护性面罩、装饰性用品或护目用品，但排除一次性吸湿用品如口罩包扎用品、卫生巾、短裤和围裙、灰色产品或腋下吸汗垫，所述用品具有一个朝向佩戴者的表面和一个朝向衣物的表面，所述用品在所述朝向佩戴者的表面的至少一部分上含有权利要求1的局部用胶粘剂用于所述用品的局部胶粘剂固定。

7. 权利要求1的局部用胶粘剂在防护性用品、衣物、假体、热包裹物、包裹垫和/或包裹材料、冷包裹物、助听器、防护性面罩、装饰性用品、护目用品或化妆品上的应用。
说明书

安全可靠地固定到局部皮肤上且可舒适除去
的胶粘剂

发明领域

本发明涉及用于固定到皮肤上的局部用胶粘剂(topical adhesives)。本发明特别涉及这类局部用胶粘剂，它们可以用于固定到皮肤上，尤其是用于粘结防护性用品如护生殖器、护膝盖或护肘用品或绷带；衣物如胸罩、外科手术衣或裁缝拼合期间用的部分衣物；鼻用硬膏；假体如胸部假体或假发；热包裹物、包裹垫和/或包裹材料，如用于局部缓解疼痛或简单供暖；冷包裹物如用于缓解伤口疼痛或减少肿胀；助听器；防护面罩；装饰用品如珠宝、耳饰、服饰、纹身；防护镜或其它护目品。在施用时局部用胶粘剂提供了安全可靠的固定且皮肤感觉舒适，在除去用品时不会引起不舒适，并且在皮肤上的胶粘剂残留物的量较低。通过选择局部用胶粘剂的化学组成和流变学特性，特别是根据局部用胶粘剂的弹性模量G'和粘性模量G的相互关系来实现这些目的。

背景技术

用于局部固定到皮肤上的局部用胶粘剂领域的一般现有技术在邦迪创伤带、膏药(plaster)和绷带领域得到了特别的开发。但是，这些用品通常在紧急情况下，例如佩戴者皮肤内出现了伤口，需要吸收伤口排出的体液的情况。在这个意义上，用品的性能特征，如舒适和容易使用和施用、无痛去除、离散性(discreteness)居于次要地位，而如伤口的无菌性、支持治疗及机械保护作用等指标则居主要地位。而且这类覆盖伤口的吸湿用品大多数用于这类皮肤部位上，即在施用吸湿用品前，可以除去体毛或者此处不长体毛或体毛很少的部位。

本发明涉及局部用胶粘剂，其特别适用于防护性用品如护生殖器、护膝盖或护肘用品或绷带；衣物如胸罩、外科手术衣或裁缝拼合期间用的部分衣物；鼻用硬膏；假体如乳房假体或假发；热包裹物、包裹垫和/或包裹材料，如用于局部缓解疼痛或简单供暖；冷包裹物如用于缓解伤口疼痛或减少肿
胀；助听器；防护面罩；装饰用品如珠宝、耳饰、服饰、纹身；防护镜或其它护目品。这类用品不用来吸收体液。本发明的胶粘剂可以将假发固定到头皮上或将护肘和护膝直用品固定到这些经受大量拉伸和起皱的身体表面上。

用于吸湿用品如卫生巾和短裤衬里的局部用胶粘剂在美国法定发明登记 H 1602 或 WO 96/33683 中已作了一般性的披露。胶粘剂的更多的细节在 PCT 申请 WO 95/16424 中作了研究。该文件中披露了具有沿卫生巾整个周边施用到卫生巾的朝向佩戴者侧上的局部用胶粘剂的卫生用品。该文件存在的问题主要是如何安全固定到皮肤上，同时还提到使用后在不使佩戴者感到过度疼痛下分离这类用品的问题。

WO 95/16424 的公开部分包括详细分析局部用胶粘剂的流变学标准。但是，该文件几乎没有涉及到这类用品的无痛去除问题，体现在描述的流变学标准包括脱毛(即去除毛发)组合物，如在意大利由 Laboratori Vaj S.p.A 销售的 STREP MIELE(TM)。在 WO 95/16424 中提到的局部固定用的胶粘剂还包括用于将卫生巾固定在内裤上的压敏胶粘剂。而且，该文件仅提到了静态流变学特征，没有描述局部用胶粘剂的动态流变学特征。

WO 96/13238 公开了依赖于频率的局部用胶粘剂模型。但是，公开的所有测量值，如在第 9 页上，都是在-60℃～+120℃的温度下和在 0.1 ～ 100弧度/秒(rad/s)的实际频率下测定的。为了得到应用温度(约 20℃，一般浴室，即储存温度)下的必要数据，使用了 Williams-Landel-Ferry(下文称 WLF)公式。

该 WLF 公式是经验式，并且只在特定的范围内有效，如它不能用于外推到低于聚合物胶粘剂的玻璃化转变温度以下的温度，同样 WLF 公式也不能用于基于玻璃化转变温度以下得到的数值。有关 WLF 公式及其应用性的细节可以在下列文献中找到：Z.Tadmor 和 C.G.Gogos 的 “Principles of Polymer Processing ”(聚合物加工原理)，由 John Wiley & Sons 出版或 J.D.Ferry 的 “Viscoelastic Properties of Polymers”(聚合物的粘弹性性质)，也由 John Wiley & Son 出版。由于 WO 96/13238 中对此未作记载，所以不能评估公开的数据的适用性。

欧洲专利申请 EP-638 303 披露了在卫生巾的侧箱上使用局部用胶粘剂以便使侧箱保持在直立位置。瑞士公开号 CH-643730 披露了具有外削边的特长卫生巾的用途，在外边的四个角部有局部用胶粘剂以便正好在耻骨的毛发
生长区的外侧提供局部用胶粘剂区域。这两个申请都没有涉及胶粘剂组合物。

基于上述现有技术，本发明的一个目的是提供用于安全可靠的固定并且从皮肤上无痛除去的局部用胶粘剂，而且在除去局部用胶粘剂后留在皮肤或毛发上的残留胶粘剂的量减少，该局部用胶粘剂用于吸湿用品领域外的用品。

本发明再一个目的是局部固定用的胶粘剂在施用时不会引起冷的或其它的不可接受的温度感，尽管胶粘剂与皮肤温度有温差。

除了本发明的上述目的外，还需要局部用胶粘剂提供附加的好处如供给分散通常对皮肤或身体有益的化合物或组合物。并且，优选不影响自然皮肤状况的局部用胶粘剂，如透气或透水蒸汽。

发明概述

本发明涉及局部用胶粘剂，用于护肤品用品如护肤生殖器、护肤唇或护耳的用品或绷带；衣物如头罩、外科手术衣或缝拼合期间用的部分衣物；鼻用硬膏；假体如胸部假体或假发；热包覆物、包覆垫和/或包覆材料，如用于局部缓解疼痛或简单保暖；冷包覆物如用于缓解伤口疼痛或减少肿胀；助听器；防护面罩；装饰用品如珠宝、耳饰、服饰、纹身；防护镜或其它护目用品。这类用品不用于吸收体液。本发明的胶粘剂可以将假发固定到头皮上或将护耳和护膝盖用品固定到这些经受大量拉伸和起皱的皮肤表面上。

对从这类用品的施用至除去这类用品时出现的通常情况的先后参数的详细分析已表明必须满足具体的胶粘剂的特性以实现所需的性能目的，特别是最初的安全固定、使用期间的安全固定、最后的无痛去除以及除去后在皮肤上减少残留。在这种情况下已经考虑的特性是描述材料的弹性性能的弹性模量和描述胶粘剂材料的粘性性能的粘性模量。

胶粘剂的粘性性能可以解释为表示胶粘剂迅速固定并安全粘结的能力的一个指标。弹性性能可解释为表示胶粘剂的“硬度”性能的一个指标。其值对良好的最初固定也是重要的。据信它们的总体效应决定了除去时所需力的大小。弹性模量和粘性模量的关系被认为是表示哪些部分除去能量将耗散在胶粘剂内，哪些部分除去能量可用于引起实际的去除。弹性模量和粘性模量的关系也是胶粘剂的内部粘结性的指标，其又与除去局部用胶粘剂组合物后可
能在皮肤上存在胶粘剂残留物有关。

为了提供用于安全可靠的最初和长时间固定和容易/无痛除去的局部用胶粘剂，弹性模量和粘性模量的关系以及其动力学性质是特别重要的。

局部用胶粘剂在37℃(100°F)的温度下具有弹性模量，简写为G′_{37}，在37℃(100°F)的温度下具有粘性模量，简写为G″_{37}。还定义局部用胶粘剂在1弧度/秒的频率下的弹性模量G′_{37}和1弧度/秒的频率下粘性模量G″_{37}的差值为△G′_{37} - G″_{37}。该差值通过在除去局部用胶粘剂后在皮肤上残留的胶粘剂残留物的量来表示局部用胶粘剂的性质。胶粘剂还具有动态弹性性质，定义为△G′_{37}，它是100弧度/秒的频率下的G′_{37}和1弧度/秒的频率下的G′_{37}的差值，胶粘剂还具有动态粘性性能△G″_{37}，它是100弧度/秒的频率下的G″_{37}和1弧度/秒的频率下的G″_{37}的差值。

本发明的局部用胶粘剂满足下面条件。

- G′_{37}(1弧度/秒) 在1500 - 20000Pa的范围内，优选1500 - 15000Pa，最优选3000 - 10000Pa；
- G″_{37}(1弧度/秒) 在100 - 15000Pa的范围内，优选100 - 10000Pa，最优选300 - 5000Pa；
- 比值 G′_{37}(1弧度/秒)/G″_{37}(1弧度/秒)在3 - 30的范围内；
- 比值 G′_{37}(100弧度/秒) - G″_{37}(100弧度/秒)
 \[G′_{37}(1弧度/秒) - G″_{37}(1弧度/秒) \]

不小于0.5，优选在0.7 - 3的范围内，更优选在1 - 1.8的范围内；
- 比值△G′_{37}/G′_{37}(1弧度/秒)不大于1.5，优选不大于1，最优选不大于0.8；或者△G″_{37}不大于10000Pa，优选小于5000Pa，最优选小于2000Pa；或者两者都满足；
- 差值△(G′_{37} - G″_{37})(1弧度/秒)大于或等于1250Pa，优选大于或等于2500Pa，更优选大于或等于3500Pa。

进一步优选的条件是：
- 至少在1 - 100弧度/秒的频率范围内的G′_{37}/G″_{37}的比值应当优选是3.3或更大，更优选5或更大，最优选10或更大，同时在该频率范围内的任一处，不超过约30，优选20；
- 流变学性质也可与玻璃化转变温度Tg的值相关。对于本发明的局部用胶粘剂来说，Tg应优选小于-15℃，更优选小于-20℃，最优选小
于 -25 ℃；

流变学性质和局部用胶粘剂的接受性也与比热容有关。优选的是局部用胶粘剂的比热容小于 4J/g/K，更优选小于 3 J/g/K，最优选小于 2 J/g/K。

流变学性质和局部用胶粘剂的接受性也与胶粘剂的比热导率有关。优选的是比热导率应尽可能低，优选 1 - 0.1 W/m/K，最优选 0.6 - 0.1 W/m/K。但是，即使在这些范围内可选择适当的胶粘剂，在热或冷包裹物的情况下，理想的是具有相当高的热导率值以支持这类用品的功能。

满足上述标准的胶粘剂组合物可用作上述提到的用品用的局部用胶粘剂，条件是它们还满足使用期间和一般在除去用品后对人或动物的皮肤安全的通常要求。

卫生的外观和接触时的舒适感通常也是重要的，从而优选透明或白色的且防止施用时带来冰冷、不舒适感的胶粘剂组合物。

上述流变学标准和其它考虑事项可以通过下列胶粘剂组合物来满足，该组合物包含 45 % ~ 99.5 %、优选 51 % ~ 99.5 % 的在 20 ℃时是液体的增塑化合物或组分，0.5 ~ 20 %、优选 5 ~ 15 % 的在增塑化合物中可溶或可溶胀的聚合化合物或组分和一种增粘树脂，该树脂的用量范围是组合物重量的 0 ~ 50 %，优选是聚合化合物重量的 0 ~ 600 %。增塑化合物或组分优选选自水、醇(优选甘油)、甘醇、聚乙二醇、液态聚丁烯、油或其组合。聚合化合物或组分优选选自嵌段—共聚物—热塑性弹性体、苯乙烯—嵌段—共聚物和氯化的苯乙烯—嵌段—共聚物、聚丙烯酸类、聚乙烯醇、天然胶或明胶、聚环氧乙烷、聚乙烯吡咯烷酮(PVP)、聚乙烯醚、纤维素衍生物或其组合。

发明详述

局部固定用的胶粘剂

本发明的局部用胶粘剂是直接用到皮肤上的。在具体的应用中，胶粘剂可以用水在防护性用品上如护生殖器、护膝盖或护肘用品或绷带；衣物如胸罩、外科手术衣或裁缝拼合期间用的部分衣物；鼻用硬膏；假体如胸部假体或假发；热包装物、包裹垫和/或包裹材料，如用于局部缓解疼痛或简单供暖；冷包装物如用于缓解伤口疼痛或减少肿胀；助听器；防护面罩；装饰性用品如珠宝、耳饰、服饰、纹身；防护镜或其它护目用品。本发明用的术语“皮肤”是指人或动物的表皮的外表面。
为了将本发明的用品固定到使用者的皮肤上，有必要在用品的朝向皮肤侧上的特定区域上设置局部用胶粘剂。

以优选的图案设置局部用胶粘剂，通常设置在用品的朝向佩戴者的表面上，优选以恒定厚度的层设置。该层优选是连续的或不连续的，如呈点状、螺旋状或条状。

局部用胶粘剂的物理、流变学和胶粘特性

虽然局部用胶粘剂象压敏胶粘剂那样被用于人体皮肤毛发和粘液分泌组织上，但是应理解的是，只有根据鉴别局部用胶粘剂组合物的最具特征性的流变学性能，才可能很困难地将局部用胶粘剂看作是典型的压敏胶粘剂(下文称为 PSA)。

事实上，就胶粘剂领域的普通技术人员所知，将 PSA 区别于能暂时性地粘住物品(如两块玻璃板之间的水那样)的其它物质的最具特征的特征是其流变学参数，特别是弹性模量 G' 随着所施加的应力的频率变化很大。更加特别的是，当所施加的应力的频率从典型的粘结频率变化到典型的剥离频率时，即下文所述的 1 弧度/秒至 100 弧度/秒时，PSA 的 G' 的大小可以增加几个数量级以上。

因此，可以得出：通过在给定的频率值下给出流变学参数特别是 G' 的值将打算使用的材料定义为“局部胶粘剂”是不允许的。这可能会使人误解，因为在缺乏其它特性的情况下，将会包括没有实际价值的材料。因此，流变学特性以动力学条件为根据是必要的。

这不仅适用于弹性模量 G'，而且适用于粘性模量 G"，因此也适用于 tan(δ)=G"/G'。众所周知的是，在所考虑的频率下典型的 PSA 不仅 G' 的变化较大，而且 G" 的变化更大，G" 可能趋近于 G'，或者甚至比 G' 大，即 tan(δ) 大约或甚至大于 1，特别是在剥离的典型的频率下。

不希望多理论的结束，这可以解释为意味着大部分用于剥离的能量消耗在胶粘剂中(因此在剥离时不能有效地起作用)，尽管该事实宏观上导致表现为记录很大的粘结力。

如上所述，用作本发明的局部用胶粘剂的材料所具有的流变学特性是在作为人体正常体温的 37 ℃ 的参考温度下和一定范围的频率下测量的。现已发现，在使用如带有局部用胶粘剂的假发用品时，在较低的频率下形成胶粘剂接触，而在去除用品的速度下发生剥离。该速度用 100 弧度/秒的频率来表
示，而现仅发现形成胶粘剂粘结的低频率是在 1 弧度/秒的数量级上。因此，
本发明所用的频率范围是 1 ～100 弧度/秒。

人们认为在体温下选择胶粘剂的粘结特性最为适合。由于本发明的局部
用胶粘剂直接应用在皮肤上，本领域普通技术人员将选择具有小的比热容(如
优选小于 4J/g/K)的胶粘剂组合物，局部用胶粘剂的实际温度将很快达到 37
℃或者甚至在施用前由佩戴者预热。

为了提供良好的粘结条件，即在约 1 弧度/秒的频率下，弹性模量的绝对
值不应太高，否则胶粘剂太硬且不能够紧密连接或成型到它将要粘附的表面
上。G''具有较低的绝对值以便具有对使用频繁除去并再次粘附或更换的用
品特别有别值的良好的粘结也是重要的，同时材料保持柔软并且能够柔和地
粘结到皮肤上。

比值 G''/G'(1 弧度/秒)是重要的，以保证在粘结到皮肤上时这两个值
是平衡的。同时，在所考虑的频率范围内，需要限制 G''的绝对变化。因此，
应保持△G''(即 G''(100 弧度/秒) - G''(1 弧度/秒))与 G'(1 弧度/秒)的比值
较小，以便随时间推移或者在除去/剥离时保持局部用胶粘剂的安全固定，而
不会引起不舒适。这也可以通过将△G''保持在特定值以下用绝对值来表
示。

重要的是，比值

\[\frac{G''(100\text{弧度/秒}) - G''(1\text{弧度/秒})}{G'(1\text{弧度/秒}) - G''(1\text{弧度/秒})} \]

需要足够大以保证以这样一种关系(即，提供安全粘结和无痛和容易除去)保
持弹性和粘性模量的动力学性质。

而且，当特别考虑用于将用品固定到佩戴者皮肤上的局部用胶粘剂组合
物的除去状态时，通常应认识到当胶粘剂容易从皮肤上除去时，特别是易干
从用品接触佩戴者身体处的皮肤上生长的毛发上除去而不会给佩戴者引起
疼痛时，即得到了局部用胶粘剂的良好的除去条件，因此在除去时会太牢固
地粘结到佩戴者的皮肤和毛发上。特别是，正如本领域普通技术人员来
说是显而易见的，良好的去除也意味着局部用胶粘剂不会在皮肤或毛发上留
下残留物痕迹。本发明的局部用胶粘剂的弹性模量 G'(1 弧度/秒)和粘性模
量 G''(1 弧度/秒)的差值 △(G' - G'')与除去局部用胶粘剂后在佩戴者的皮
肤上得到的胶粘剂残留物的减少的范围有关。事实上，就从佩戴者的皮肤上
除去局部用胶粘剂后皮肤上的胶粘剂残留物的量来说，这样的差值表示本发
明的局部用胶粘剂的性能指标。

不受理论的束缚，据信弹性模量 G'和粘性模量 G'' 的差值是局部用胶粘剂的内部粘结性的直接量度。因此，假设满足其它的流变学条件，差值 $\Delta (G'_{37} - G''_{37})$ 的增加提高了局部用胶粘剂的内部粘结性，并减少了除去局部用胶粘剂时留在皮肤上的胶粘剂残留物的可能性。

最后，本领域普通技术人员也会认识到胶粘剂组合物的玻璃化转变温度 T_g、比热容和比热导率是更全面限定有用的局部用胶粘剂的有用的参数。

应当满足下列特征：

- G'_{37} (1 弧度/秒) 在 1500 - 20000Pa 的范围内，优选 1500 - 15000Pa，最优选 3000 - 10000Pa；
- G''_{37} (1 弧度/秒) 在 100 - 15000Pa 的范围内，优选 100 - 10000Pa，最优选 300 - 5000Pa；
- 比值 G'_{37}/G''_{37} (1 弧度/秒) 在 3 - 30 的范围内；
- 比值 G'_{37} (100 弧度/秒) - G''_{37} (100 弧度/秒)

$$G'_{37} - G''_{37}$$

不小于 0.5，优选在 0.7-3 的范围内，更优选在 1-1.8 的范围内；
- 比值 $\Delta G'_{37}$ 不大于 1.5，优选不大于 1，最优选不大于 0.8；或者
- $\Delta G'_{37}$ 不大于 10000Pa，优选小于 5000Pa，最优选小于 2000Pa；或者上述两都满足；
- 差值 $\Delta (G'_{37} - G''_{37})$ (1 弧度/秒) 大于或等于 1250Pa，优选大于或等于 2500Pa，更优选大于或等于 3500Pa。

进一步优选的条件是：

- 至少在 1 ~ 100 弧度/秒的频率范围内的 G'_{37}/G''_{37} 的比值应当优选是 3.3 或更大，更优选 5 或更大，最优选 10 或更大，同时在频率范围内的任一处，不超过约 30，优选 20；
- 流变学性质也可与玻璃化转变温度 T_g 的值相关。对于本发明的局部用胶粘剂来说，T_g 应优选小于 -15 ℃，更优选小于 -20 ℃，最优选小于 -25 ℃；
- 流变学性质和局部用胶粘剂的接受性也与比热容有关。优选的是局部用胶粘剂的比热容小于 4J/g/K，更优选小于 3 J/g/K，最优选小于 2 J/g/K；
流变学性质和局部用胶粘剂的接受性也与胶粘剂的比热导率有关。
优选的是比热导率应尽可能低(除需要较高值的能量传递用品外)，更优选是 0 - 0.1 W/mK，最优选是 0.6 - 0.1 W/mK。

局部用胶粘剂的化学和组成特征

为了提供满足局部用胶粘剂的上述的流变学和物理特性需要的局部用胶粘剂组合物，另外可以使用下列配制标准。应注意的是，用作局部用胶粘剂的大多数组合物具有基本上凝胶状的结构，优选是凝胶。这来自于下列事实：
- 主要组分是在室温下呈液体的增塑剂。
- 大分子或聚合物组分与增塑剂相比以较少的量存在。在优选的实施方案中，它形成由分子间的物理或化学键形成的三维网络。特别有用的物理键是含有嵌段热塑性弹性体的系统中存在的那些键。
 更具体地，组合物通常含有：
 a) 0.5 ~ 20 %、优选 5-15 % 重量的可溶解或胀溶于下面提到的增塑剂中的大分子的聚合物或这类物质的混合物。作为非限制性的实例，这类大分子的或聚合物物质是天然的(或/或合成的，如天然胶或衍生物如天然胶和明胶、其衍生物和藻酸盐；聚丙烯酸类(polyacrylics)；聚乙烯醇；聚环氧乙烷；聚乙烯吡咯烷酮(PVP)或聚乙烯醚及其它聚合物和衍生物；纤维素衍生物；嵌段共聚物热塑弹性体，优选是苯乙烯的嵌段共聚物，更优选是氢化级的苯乙烯/乙烯-丁烯/苯乙烯(SEBS)、苯乙烯/异戊二烯/苯乙烯(SIS)和苯乙烯/乙烯-丙烯/苯乙烯(SEPS)。
 b) 45 ~ 99.5 % 重量，优选 51 ~ 99.5 % 重量的增塑物质或增塑物质的混合物，其在室温下是液体。作为非限制性的实例，增塑剂可以是水、各种醇(如特别是甘油)、甘醇和其醚、聚乙二醇、液态聚丁烯、酯如邻苯二甲酸酯、己二酸酯、硬脂酸酯、棕榈酸酯、癸二酸酯或肉豆蔻酸酯，天然或合成油如植物油、矿物油或其组合。
 c) 0 ~ 50 % 组合物重量，优选 0 ~ 600 % 大分子聚合物的重量的增粘树脂，其主要作用是调整 Tg，特别是基于合成聚合物的系统的 Tg。
 d) 0 ~ 10 %，更优选 0 ~ 5 % 重量的用于方便和稳定亲水或疏水液态增塑剂凝胶和凝胶形成过程的物质。这些物质可以用于油状系统，如 C₈ ~ C₂₂ 的脂肪酸、其金属盐和其多氧代衍生物；羊毛脂衍生物；二氧化硅；膨润
土、蒙脱土及其衍生物，聚酰胺、蜡或其混合物。

也可以含有每种用量高达 10 % 的本领域已知如防腐剂、抗氧化剂、抗紫外线剂、颜料、矿物填料、流变学改变剂等的常规添加剂。

当系统中形成化学交联时，交联剂可以优选以高达 5 % 重量的量存在。

化学交联也可以通过具有不同官能团的聚合物的相互中和来形成，如酸性聚丙烯酸类和聚多糖之间的反应。

所得的局部用胶粘剂的组合物根据主要组分（即液态增塑剂）的性质可以分成三类：

1) 疏水组合物，其中增塑剂通常是一种油或植物或矿物来源的油的共
混合物，聚合物通常是可溶于或溶胀于油中的合成聚合物，优选是弹性体。

2) 混合相组合物，其中疏水性和亲水性组分（可能在增塑剂和聚合物中）
形成两个或多个分开的相。在这种情况下，乳化剂/表面活性剂优选以合适的
含量存在以形成不相容的相间的稳定乳液。对于本发明的局部用胶粘剂，优
选的是与亲水组分相比疏水组分是主要的。

3) 亲水组合物，其中增塑剂通常是水/甘油/甘醇等和/或其混合物，而聚
合物相是合成的（如聚丙烯酸类）或天然（如天然胶）来源的或其混合物。

应强调的是，与医学领域和引用的现有技术不同的是，亲水性组合物不
是优选的，而疏水性和混合相组合物 1)和 2)在本发明的应用中是优选的。

这部分取决于技术原因，因为医学领域所用的许多亲水组合物表现出太
低的对本发明有用的弹性性质和内聚力。

而且，亲水的局部用胶粘剂还往往会被想成凉和湿的，其在施用于人的
皮肤上时不能符合一般消费者的期望。另外的问题来自于含有水作为增塑剂
的局部用胶粘剂特别具有干燥的趋势，除非它们密封成不可渗透的包装
物。

局部用胶粘剂的施用

可以用本领域常用的任何方法制备用品，其中本发明的局部用胶粘剂可
以用于该用品上。将胶粘剂涂敷到这类用品的朝向皮肤的表面上对本领域普
通技术人员来说不会引起大问题，因为它可通过通常用于其它胶粘剂的任何
公知技术提供。由局部用胶粘剂覆盖的用品的朝向皮肤或佩戴者表面的总面
积取决于用品的预期用途。为了保存胶粘剂，胶粘剂的覆盖面积不应超过用
品的朝向佩戴者表面的 80 %，最好是 30 - 60 %。优选的是，胶粘剂靠近
吸湿用品的周边延伸，但是，由于它不用于吸湿用品，它也可覆盖用品的中心区域。最优选的是，以小的间断的区域图案如点或类似形状提供局部用胶粘剂。

局部用胶粘剂优选以恒定厚度的层设置在用品的朝向佩戴者的表面的至少一部分上，或者另一方面局部用胶粘剂涂层在表面上的厚度可以变化。

如果可能，用品还至少是透水蒸汽的、优选是透空气的，这样来提供透气性以防不透气。透气性，如果不由局部用胶粘剂本身来支持得到，可以限制于未涂敷胶粘剂的用品区域。

用品上的局部用胶粘剂优选在使用前进行保护。这种保护需要由防粘衬如硅氧烷化的或表面活性剂处理过的纸来提供，条件是该纸容易从所选的局部用胶粘剂上剥离。

为了评估本发明的局部用胶粘剂的差值△(G'_{37} - G''_{37})对除去局部用胶粘剂时在皮肤上留下胶粘剂残留物的量的影响，现已发展了残留物测试。在该测试中，将标准底物(其上设置有具有给定值的△(G'_{37} - G''_{37})的局部用胶粘剂层)粘结到佩戴者的前臂皮肤上，再陆续的除去后，评估留在皮肤上的胶粘剂残留物的量。

残留物测试

用残留物测试来评估除去用品后在佩戴者的皮肤上留下的胶粘剂残留物的量，所述用品上设置有局部用胶粘剂层并早已固定到佩戴者的前臂皮肤上。该测试根据由胶粘剂残留物引起的残留皮肤粘性具体评估了胶粘剂残留物的量，所述皮肤粘性以除去具有局部用胶粘剂的样品后移除粘附到皮肤上的标准钢板所需的拉伸力(牛顿)表示。

样品制备

该试验在由 23 微米厚聚酯膜构成的 50 × 20 毫米的长方形样品上进行，如由 Effegidi S.p.A., Colorno(Parma, Italy)出售，将具有 1.35 毫米恒定厚度的所选的局部用胶粘剂的连续层设置在样品的一侧上，利用 Acumeter Model LH-1 挤出机得到。应用防粘纸保护胶粘剂层。分别制备各样品，在制备后 1 小时后测试。

装置

1) 气候控制的实验室。保持在 23℃ 和 50% 的相对湿度。
2) Instron Limited UK Model 6021 测力计
压力盒 = 10 牛顿
测试速度 = 1000 毫米/分钟。

3) 载荷
 1 千克，直径为 44 毫米，高度为 82 毫米的圆柱形载荷。

4) 卡纸板
 60 × 60 毫米的方形卡纸板。

5) 钢板
 50 × 60 毫米的长方形钢板，具有光滑的平坦表面，备有与测力计的可移动的夹子相连接的部件。

残留物测量

除用水和皂的正常的清洁/洗涤且在试验前干燥至少两小时以使皮肤达到与室内条件的平衡外，佩戴者的皮肤不需要特别的处理。在佩戴者前臂的内侧部分上选择比样晶的尺寸长约 10 毫米，宽约 10 毫米的长方形区域，如用合适的方式标在皮肤上，所述区域的中心位于腕和肘之间，区域的长边与臂的长度平行。操作员将样品施用到皮肤上，其中心位于前面所定义的选定区域内，操作员用手将载荷放在样晶上并放置在那里 30 秒以施加压力，卡纸板插在载荷与样品之间以覆盖样品的整个表面。

当除去载荷和卡纸板之后，样品由佩戴者佩戴 1 小时，然后由操作员用慢而平缓的拉力从佩戴者的前臂皮肤上除去具有局部用胶粘剂的样晶，并且不接触施用有样品处的皮肤。将钢板与测力计的上面的可移动的夹子相连接从而使其平坦表面水平放置，与夹子的运动方向垂直，并且面朝下。佩戴者将其胳膊水平地放置在测力计的可移动的夹子下的合适的支架上。已施用有样品的所选的皮肤区域直接放在钢板下面。佩戴者的前臂和夹子上的钢板的相互位置和方向应使得钢板的中心正对前臂上的所选区域，钢板的长边和所选区域的长边平行，钢板的表面和所选区域内前臂皮肤的表面大约彼此平行。

操作 Instron 使得具有钢板的夹子朝所选区域移动直到钢板的平坦表面和皮肤完全接触，施用压缩力 9.8 牛顿 30 秒，然后升起夹子，记录作为残留物重量的从所选的区域上移去钢板所需的以牛顿表示的最大拉伸力。

在相同型的 5 个样品上进行测量并将测量值平均以确保所测定的要研究的样品的残留物值具有代表性。
现已评估了设置有本发明的两种不同的局部用胶粘剂组合物的两个不同样品 A 和 B 除去局部用胶粘剂后留在皮肤上的胶粘剂残留物的量。

样品 A 和 B 上分别设置有组合物 1 和 2 的局部用胶粘剂层，如下文所描述。

5 组合物 1

使用 9.9 % 重量的 Kraton G-1651，其是一种购自 Shell Co. 的含有 33 % 重量的苯乙烯-乙烯/丁烯/苯乙烯共聚物，和 59.3 % 重量的 Kaydol，其是一种购自 Witco Co. 的石蜡矿物油来配制本发明的油基的组合物。

而且，组合物含有 301 份增粘树脂每 100 份 Kraton 聚合物。增粘树脂是 Escorez 5300，其是一种购自 Exxon Co. 的氢化的树脂。

使用购自 Carlo Erba S.p.A 的硬脂酸镁作为油用的助胶凝剂，其用量为 0.7 % 重量。

加入 Irganox 1010，其是一种购自 Ciba-Geigy 的抗氧剂，其用量为 0.3 % 重量。

因此，组合物最终具有下列百分组成：

<table>
<thead>
<tr>
<th>组合物 1 的成分</th>
<th>重量百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraton G-1651</td>
<td>9.9 %</td>
</tr>
<tr>
<td>Kaydol</td>
<td>59.3 %</td>
</tr>
<tr>
<td>Escorez 5300</td>
<td>29.8 %</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>0.7 %</td>
</tr>
<tr>
<td>Irganox 1010</td>
<td>0.3 %</td>
</tr>
</tbody>
</table>

在 37 °C 时，组合物表现出下列流变学特性：

a) 在 1 弧度/秒时的弹性模量，$G'_{37}=6876\text{Pa}$；
b) 在 1 弧度/秒时的粘性模量，$G''_{37}=550.5\text{Pa}$；

c) 在 1 弧度/秒时弹性模量与粘性模量的比例 $G'_{37}/G''_{37}=12.49$；
d) 比值 $\frac{G'_{37}(100\text{弧度/秒}) - G''_{37}(100\text{弧度/秒})}{G'_{37}(1\text{弧度/秒}) - G''_{37}(1\text{弧度/秒})}$

$= 1.22$；
e) 比值 $\Delta G_{37}'/G'_{37}(1\text{弧度/秒})$ 是 0.308，$\Delta G_{37}' = 2124\text{Pa}$。

30 组合物 2

局部用胶粘剂是油基的组合物，其含有 10 % 重量的 Kraton G-1651，其
是一种购自 Shell Co. 的苯乙烯/乙烯-丁烯/苯乙烯嵌段共聚物；49 % 量的 Kaydol，其是一种购自 Witco Co. 的石蜡矿物油；40 % 量的 Escorez 5300，其是一种购自 Exxon Co. 的氢化的增粘树脂；0.7 % 量的硬脂酸镁，其是一种购自 Carlo Erba S.p.A 的助胶凝剂，和 0.3 % 量的 Irganox 1010，其是一种购自 Ciba-Geigy 的抗氧化剂。

因此，组合物最终具有下列百分组成：

<table>
<thead>
<tr>
<th>成分</th>
<th>百分量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraton G-1651</td>
<td>10 % 量</td>
</tr>
<tr>
<td>Kaydol</td>
<td>49.0 % 量</td>
</tr>
<tr>
<td>Escorez 5300</td>
<td>40.0 % 量</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>0.7 % 量</td>
</tr>
<tr>
<td>Irganox 1010</td>
<td>0.3 % 量</td>
</tr>
</tbody>
</table>

在 37 ℃ 时，组合物表现出下列流变学特性：

a) 在 1 弧度/秒时的弹性模量，$G'_{37}=7038 Pa$；
b) 在 1 弧度/秒时的粘性模量，$G''_{37}=487 Pa$；
c) 在 1 弧度/秒时弹性模量与粘性模量的比例 $G'_{37}/G''_{37}=14.45$；
d) 比值 $\frac{G'_{37}(100 弧度/秒) - G''_{37}(100 弧度/秒)}{G'_{37}(1 弧度/秒) - G''_{37}(1 弧度/秒)} = 1.11$；
e) 比值 $\triangle G'_{37}/G''_{37}(1 弧度/秒)$ 是 0.291，$\triangle G'_{37} = 2051 Pa$。

测试结果概括在下表中：

<table>
<thead>
<tr>
<th>样品</th>
<th>$\triangle (G'{37} - G''{37})$</th>
<th>残留物值(牛顿)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6326</td>
<td>0.33</td>
</tr>
<tr>
<td>B</td>
<td>6551</td>
<td>0.27</td>
</tr>
</tbody>
</table>

结果表明差值 $\triangle (G'_{37} - G''_{37})$ 的值增加对应于除去本发明的局部用胶粘剂组合物后留在皮肤上的胶粘剂残留物的量较低。

而且，开始涂敷且从敏感多毛皮肤上除去时，本发明的上述局部用胶粘剂组合物已被判定为舒适的，不会引起疼痛。