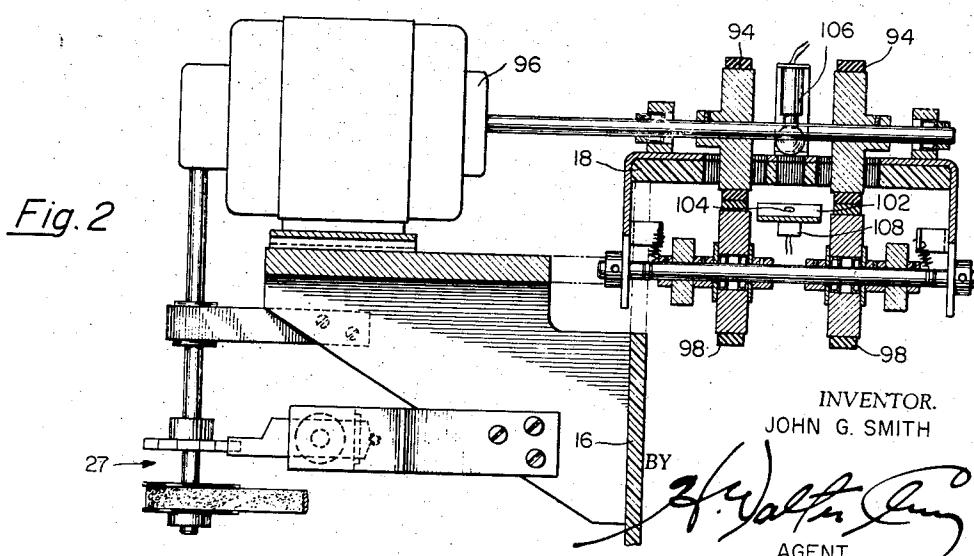

Sept. 20, 1960

J. G. SMITH


2,953,371

SHEET FEEDER

Filed Dec. 31, 1957

Fig. 1

Sept. 20, 1960

J. G. SMITH

2,953,371

SHEET FEEDER

Filed Dec. 31, 1957

2 Sheets-Sheet 2

Fig. 3

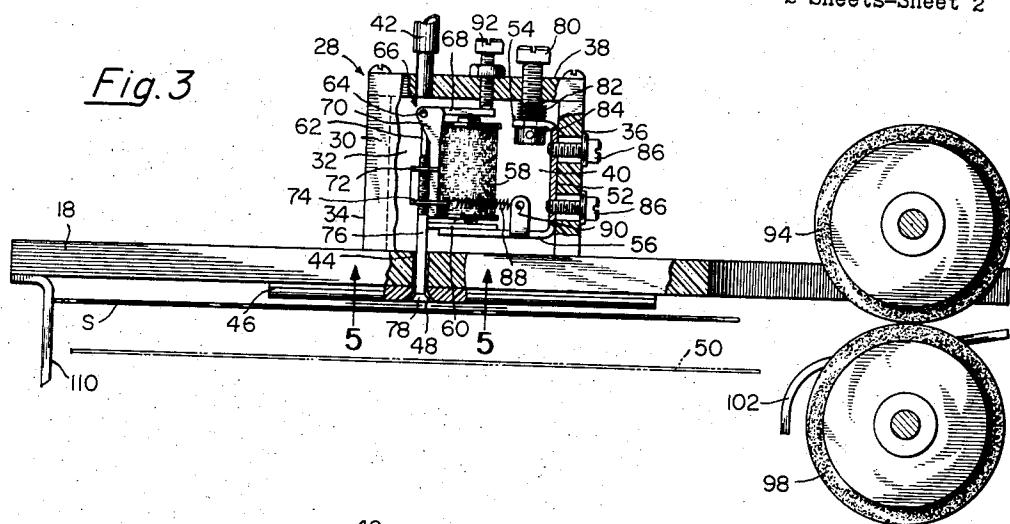


Fig. 4

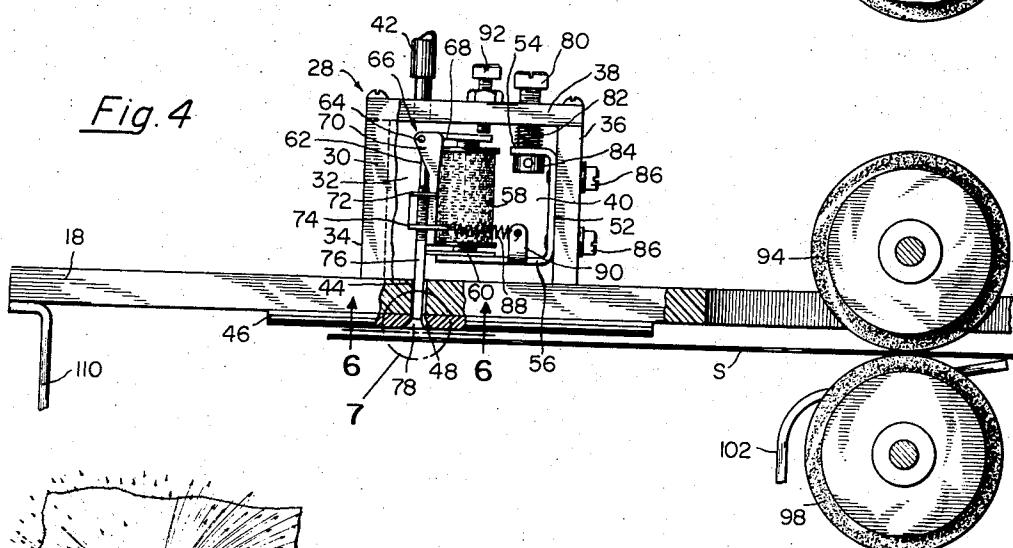


Fig. 5

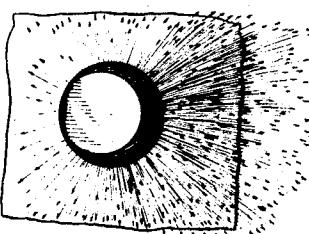
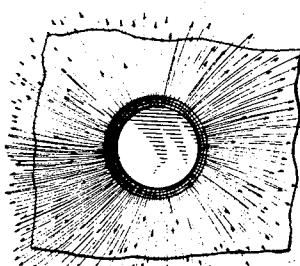



Fig. 6

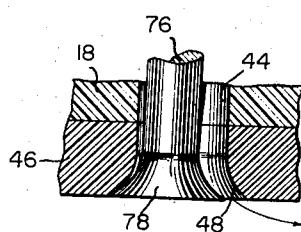


Fig. 7

INVENTOR.
JOHN G. SMITH

BY

Agent

United States Patent Office

2,953,371

Patented Sept. 20, 1960

1

2,953,371

SHEET FEEDER

John G. Smith, Philadelphia, Pa., assignor to Burroughs Corporation, Detroit, Mich., a corporation of Michigan

Filed Dec. 31, 1957, Ser. No. 706,460

13 Claims. (Cl. 271—26)

This invention relates generally to sheet feeding and more particularly to means for separating a sheet of material from a support or a stack of such sheets and feeding it away from the support or stack to a predetermined position.

In some instances, prior art devices utilize suction means as part of apparatus for feeding sheets one at a time from a stack of sheets. Such devices are subject to certain limitations. For example, in feeding perforated sheet material such as punched cards or thin porous paper material, the suction is often transmitted through the perforations or pores of the material to the next succeeding sheet with the result that two or more sheets are fed at the same time. Suction devices are also limited in certain respects in feeding sheets of material from a stack having a mixed assortment of sheets of different sizes such as, for example, a stack of bank checks. In such case, design of the ports in the suction device is limited to the common area of the checks to assure that no part is uncovered or partially uncovered when a check is engaged and that no loss in suction results.

An object of the present invention is to provide a sheet feeding device of improved design which will avoid the above limitations.

Another object of the invention is to provide a sheet feeder for feeding sheets one at a time from a stack of sheets with a minimum of friction and without abrasion of the sheet surfaces.

A further object of the present invention is to provide instrumentalities for separating a sheet of material from a supporting surface or from a stack of sheets by altering the atmospheric pressure on one side of the sheet to create a pressure differential between the two sides thereof.

A still further object is to provide such instrumentalities which will separate a sheet from a sheet support or a stack of sheets and feed it away from the support or stack without making contact with the separated sheet.

These and other objectives will be revealed more clearly in the following detailed description of a specific apparatus embodying the principles of the invention when read in conjunction with the accompanying drawings in which:

Fig. 1 is an elevation of a sheet feeder utilizing form of the invention;

Fig. 2 is a section taken on line 2—2 of Fig. 1;

Fig. 3 shows a portion of the apparatus of Fig. 1 on an enlarged scale and illustrates a position of a sheet after its separation from the sheet stack;

Fig. 4 is a view similar to Fig. 3 and illustrating a sheet separated from the stack and fed into the grip of withdrawal feed rolls;

Fig. 5 is a view on an enlarged scale taken in the direction of arrows 5—5 of Fig. 3 and illustrating also the flow of a fluid under pressure;

Fig. 6 is a view taken on an enlarged scale taken in

2

the direction of arrows 6—6 of Fig. 4 and showing also the flow of a fluid under pressure; and

Fig. 7 is an enlarged view of an encircled section 7 of Fig. 4.

5 The illustrated form of the invention is shown in a sheet feeder (Fig. 1) comprising an open box frame indicated generally at 10 having a base plate 12, a front plate 14, a rear plate 16 spaced from and similar to front plate 14, and a top plate 18 extending rightwardly beyond plates 14 and 16. Plates 14 and 16 are secured to base plate 12 while top plate 18 is secured to plates 14 and 16. Plates 14, 16 and 18 are shown to be of a transparent material, however, this is not critical but illustrative only, as is also the case with other transparent parts hereinafter described.

15 Within frame 10 between plates 14 and 16 is a sheet support or stack table 20 secured to an arm 22 having at its lower end a half-nut 24 engaging a stack elevating screw 26 which may be operated in any well-known manner by stack advance mechanism 27 which in this disclosure forms no part of the present invention and need not be further described.

20 On the upper surface of top plate 18 is secured a transparent box-like enclosure 28 comprising a front wall 30 (partially broken away) a rear wall 32, left and right side walls 34 and 36 respectively and a top cover plate 38. Cover plate 38 is provided with an aperture for admitting fluid into the inside or fluid chamber 40 of enclosure 28 by means of a hose 42 leading from a source of fluid supply, not shown. Fluid chamber 40 communicates with an aperture 44 extending through top plate 18 and an orifice plate 46 secured to the top plate and lying, preferably, in a horizontal plane, the aperture terminating in a bell-shaped orifice 48 (see also Fig. 7) so that fluid may be discharged from fluid chamber 40 across the top sheet of a stack 50 in a manner to be hereinafter described.

25 On the inside face of right side wall 36 (Fig. 3) is secured a mounting bracket 52 having a leftwardly extending lug 54 at its top and a longer leftwardly extending arm 56 at its bottom. Secured to arm 56 is an electromagnet 58 and an angle bracket 60 having its vertical leg 62 provided with a pivot pin 64 for pivotally mounting an L-shaped armature 66 having a horizontal arm 68 and a depending arm 70, the arm 70 being formed with forwardly projecting ears 72, 74 having threaded holes therein for receiving the threaded shank end of a circular deflector bell 76 having its lower portion disposed within aperture 44 and flared orifice 48

30 and having its lower end 78 formed preferably bell-shaped to conform substantially with the shape of orifice 48. Mounting bracket 52 and the elements mounted thereon may be adjusted vertically within fluid chamber 40 by means of a screw 80 threadedly engaging top cover plate 38 and passing through a helical compression spring 82 and lug 54 to threadedly engage a collar 84 secured on the end of the screw. Threading screw 80 outwardly of plate 38 will move bracket 52 upwardly while threading it inwardly will cause the bracket to be moved downwardly under the biasing action of helical spring 82. Bracket 52 is secured in its adjusted position to right side wall 36 by means of clamping screws 86 passing through enlarged holes in the side wall and engaging tapped holes in the bracket.

35 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345

At the right or feed-off end of the sheet feeder are mounted withdrawal feed rolls for feeding the sheets away from the stack comprising drive rolls 94 (Fig. 2) driven by a motor 96 and idler pressure rolls 98 spring-pressed against the drive rolls. Secured to plates 14 and 16 (Fig. 1) is a bracket 100 having its upper portion reduced to form a guide plate 102 extending upwardly and rightwardly between the withdrawal feed rolls. Adjacent the rightward end of guide plate 102 and slightly rightward of the contact point of the drive rolls 94 and idler rolls 98 is an aperture 104 (see also Fig. 2) in guide plate 102 for admitting rays from a source of radiation such as lamp 106 mounted above the guide plate to a radiation sensitive means such as a phototransistor element 108 mounted on the underside of guide plate 102.

In operation, a stack of sheets 50 is placed on the stack table 20 and a stream of high velocity fluid of proper volume, preferably air, is supplied through hose 42 to fluid chamber 46. The air flows from the fluid chamber through aperture 44 and orifice 48 and is caused to flow in radially opposite directions with respect to aperture 44 across the entire upper surface of the top sheet S of the stack by means of orifice 48 and the bell-shaped end 78 of deflector bell 76, as depicted by the arrows shown in Fig. 5. As the stream of high velocity air passes across sheet S between the sheet and orifice plate 46 a drop in pressure results therebetween so that atmospheric pressure on the underside of the sheet is greater than the resultant pressure on the top of the sheet, thereby causing the sheet to separate from the stack and rise toward the orifice plate. The sheet will continue to rise until it reaches a point at which the pressures on both surfaces of the sheet are in balance, which will be some spaced distance away from the orifice plate. The sheet will thus be held in suspension, or, in other words, held on an "air bearing" beneath the orifice plate until it is fed away in a manner presently to be described.

After a sheet has been thus separated from the stack and a feed is called for, magnet 58 is energized, thereby attracting arm 68 of armature 66 and rocking the armature clockwise about pivot pin 64 to position deflector bell 76 leftwardly in aperture 44 and orifice 48, as seen in Fig. 7 whereby a larger quantity of air flows from the rightward side of orifice 48 than from the leftward side as depicted in Fig. 6 while maintaining a pressure differential between the two surfaces of the sheet, and causing the separated top sheet S to move rightwardly in the direction of the larger flow of air and into the nip of withdrawal feed rolls 94 and 98 (Fig. 4). Guide plate 102 directs the sheet into the feed rolls.

When the leading edge of the sheet passes through the feed rolls it passes over aperture 104 in guide plate 102 thereby cutting off the rays of light of lamp 106 from the phototransistor element 108 so that by suitable circuitry and electrical components, not shown, magnet 58 is de-energized and armature 66 is returned to its normal or rest position under the biasing action of spring 88. As the fed sheet passes beyond the vicinity of orifice plate 46 and sheet stack 50, the next succeeding sheet will immediately separate from the stack under the action of the continuously flowing high velocity air and be held in an upward position on an air bearing as explained heretofore until another feed is called for. In this connection, it should be mentioned that while deflector bell 76 may be adjusted for its normal or rest position in concentric relation with aperture 44 and orifice 48 it is preferable, as shown more clearly in Fig. 5, to adjust the deflecting bell so that it is slightly rightward within the aperture and orifice. This will cause a slightly larger quantity of air to flow leftwardly from the orifice and thereby urge the separated sheet against a stop plate 110 (Fig. 3) where it will be held until a feed is called for. In this manner, a sheet which is held upwardly in a separated position for any appreciable time before being fed

into the withdrawal feed rolls will remain against the stop plate, and any tendency to drift toward the feed rolls and possibly cause a premature or misfeed, as might be encountered if the deflecting bell were set concentrically within the aperture and orifice, is thus avoided.

As the fed sheet passes beyond the grip of the feed rolls and the trailing edge of the sheet passes over aperture 104, rays of light are again admitted through the aperture from lamp 106 to phototransistor element 108 causing magnet 58 again to be energized whereby armature 66 is rocked clockwise and the next succeeding separated sheet is fed rightwardly to the withdrawal feed rolls as explained above.

To aid in separating the sheets one at a time from the top of the stack it is preferable to use an auxiliary air stream to preliminarily separate the upper layers of sheets one from another. For this purpose there is provided a hose 112 (Fig. 1) leading from a source of air supply, not shown, and positioned adjacent the top layers of sheets at one side of the stack, shown illustratively at the rear side of the stack, so that air flows therefrom substantially in the planes of the uppermost sheets in the stack.

From the foregoing description of a specific embodiment of the invention, it will be apparent that the invention is an improvement over the vacuum or suction type feeders in that perforated as well as porous sheets of material may be separated one at a time from a stack of sheets more efficiently, particularly since the lifting force of the present invention is effective across the entire area of a sheet as compared to the limited area of the suction orifice in a vacuum feeder; and furthermore, the invention provides a low-friction feeder for feeding sheets one at a time from a support or stack of sheets and without any abrasion of the sheet surfaces.

While there has been described a specific sheet feeding apparatus incorporating the principles of the present invention, it will be apparent to those skilled in the art that the invention may be constructed in various forms.

Accordingly, it is to be understood that the invention as herein shown and described is to be taken as a preferred embodiment thereof, and that various changes in size, shape and arrangement of parts may be resorted to without departing from the spirit of the invention or the scope of the subjoined claims.

What is claimed is:

1. In a sheet feeding apparatus for feeding sheets one at a time from a stack of sheets, means to conduct fluid at a predetermined volumetric rate, means to direct said fluid across the top sheet of said stack in radially opposite directions, said fluid moving at a velocity to create a lower pressure on the top surface of said sheet than the atmospheric pressure on the bottom surface of said sheet whereby said sheet is caused to separate from said stack and rise toward said directing means, means to increase the volume of flow of said fluid in a given direction while maintaining a pressure differential between said sheet surfaces whereby said sheet is fed away from said stack, and means in the path of the fed sheet and actuated thereby to return the volume flow to said radially opposite directions.

2. In a sheet feeding apparatus for feeding sheets one at a time from a stack of sheets, means to conduct fluid at a predetermined volumetric rate, means to direct said fluid across the top sheet of said stack in radially opposite directions, said fluid moving at a velocity to create a lower pressure on the top surface of said sheet than the atmospheric pressure on the bottom surface of said sheet whereby said sheet is caused to separate from said stack and rise toward said directing means, means for directing a stream of fluid in the planes of the uppermost sheets in said stack to aid in said separation, means to increase the volume of flow of said fluid in a given direction while maintaining a pressure differential between said sheet surfaces whereby said sheet is fed away from said stack,

and means in the path of the fed sheet and actuated thereby to return the volume flow to said radially opposite directions.

3. In a sheet feeding apparatus for feeding sheets one at a time from a stack of sheets, orifice means adjacent the top of said stack, a fluid chamber communicating with said orifice means, means to conduct fluid at a predetermined volumetric rate into said chamber and through said orifice means to the upper surface of the top sheet of said stack, said fluid moving at a velocity to create a lower pressure on said surface than the atmospheric pressure on the bottom surface of said sheet, means for directing the flow of fluid through the orifice means, and control means in the path of sheet feeding and actuated by a moving sheet to effect alternate changes in said directing means whereby alternate changes in fluid flow volume and direction will cause sheets to be fed successively in spaced relation from said stack.

4. In a sheet feeding apparatus for feeding sheets one at a time from a stack of sheets, orifice means adjacent the top of said stack, a fluid chamber communicating with said orifice means, means to conduct fluid at a predetermined volumetric rate into said chamber and through said orifice means to the upper surface of the top sheet of said stack, said fluid moving at a velocity to create a lower pressure on said surface than the atmospheric pressure on the bottom surface of said sheet, means for directing the flow of fluid through the orifice means, auxiliary means for partial separation of the upper sheets of said stack, and control means in the path of sheet feeding and actuated by a moving sheet to effect alternate changes in said directing means whereby alternate changes in fluid flow volume and direction will cause sheets to be fed successively in spaced relation from said stack.

5. In a sheet feeding apparatus according to claim 4 wherein the fluid flow directing means is a deflector element disposed within the orifice means.

6. In a sheet feeding apparatus according to claim 4 wherein the fluid flow directing means is an element with an actuator portion disposed within said fluid chamber and a deflector portion disposed within said orifice means.

7. In a sheet feeding apparatus according to claim 5 wherein said deflector element and orifice means are complementally bell-shaped to direct said fluid across said sheet in radially opposite directions.

8. In a sheet feeding apparatus according to claim 5 and including electromagnetic means under control of said control means for operating said deflector element.

9. In a sheet feeding apparatus according to claim 4 wherein said control means includes means responsive to radiation.

10. In a sheet feeding apparatus for feeding sheets one

at a time from a stack of sheets, means to conduct fluid at a predetermined volumetric rate, means to direct said fluid across the top sheet of said stack in radially opposite directions, said fluid moving at a velocity to create a lower pressure on the top surface of said sheet than the atmospheric pressure on the bottom surface of said sheet whereby said sheet is caused to separate from said stack and rise toward said directing means, and means to increase the volume of flow of said fluid in a given direction while maintaining a pressure differential between said sheet surfaces whereby said sheet is fed away from said stack.

11. In a sheet feeder, means to conduct fluid at a predetermined volumetric rate, and means within said conducting means to direct said fluid in radially opposite directions across a surface of a sheet, said fluid moving at a velocity to produce a lower pressure on said surface than the atmospheric pressure on the opposite surface of said sheet to move the sheet toward said directing means.

12. In a sheet feeder, means to conduct fluid at a predetermined volumetric rate, means including an element having a surface lying in a plane parallel to the plane of a sheet to be moved to direct said fluid in radially opposite directions across a surface of a sheet, said fluid moving at a velocity to produce a lower pressure on said surface than the atmospheric pressure on the opposite surface of said sheet to move the sheet toward and perpendicular to said first-mentioned plane, and means to change the volume of flow of said fluid in a given direction while maintaining a pressure differential between said surfaces to move the sheet laterally away from said fluid directing means.

13. In a sheet feeding apparatus for feeding sheets one at a time from a stack of sheets, means to conduct fluid at a predetermined volumetric rate, means to direct said fluid in radially opposite directions across the top sheet of said stack, said fluid moving at a velocity to produce a lower pressure on the top surface of said sheet than the atmospheric pressure on the bottom surface thereof, and means to direct a stream of fluid in the planes of the uppermost sheets in said stack to partially separate said sheets one from another.

References Cited in the file of this patent

UNITED STATES PATENTS

197,569	Seabury	-----	Nov. 27, 1877
1,154,633	Hoberg	-----	Sept. 28, 1915
1,382,951	Breen	-----	June 8, 1921
1,488,673	Henderson	-----	Apr. 1, 1924
1,617,656	Stern et al.	-----	Feb. 15, 1927
1,710,706	Maxner	-----	Apr. 30, 1929
2,337,724	Mackie	-----	Dec. 28, 1943