PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/27558
GO6F 19/00 Al

(43) International Publication Date: 31 July 1997 (31.07.97)

(21) International Application Number: PCT/US97/01104 | (81) Designated States: CN, JP, KR, RU, European patent (AT,

(22) International Filing Date: 24 January 1997 (24.01.97)

(30) Priority Data:
60/010,549 25 January 1996 (25.01.96) us
08/680,428 15 July 1996 (15.07.96) Us

(71) Applicant: PATHLIGHT TECHNOLOGY INC. [US/US]; 767
Warren Road, Ithaca, NY 14850-1255 (US).

(72) Inventors: DRACUP, Andrew, D.; 304 Meadow Wood Ter-
race, Ithaca, NY 14850 (US). KELLEHER, Terence, M.;
10 Ringwood Court West, Ithaca, NY 14850 (US). SCAF-
FIDI, Salvatore, G., Jr.; 115 Creamery Road, P.O. Box 81,
Harford, NY 13784 (US). KHEZRI, Said, Rahmani; 700
Warren Road 18-1F, Ithaca, NY 14850 (US).

(74) Agent: BURR, Stephen, P.; Parkhurst, Wendel & Burr, L.L.P.,
Suite 210, 1421 Prince Street, Alexandria, VA 22314 (US).

BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: SERIAL DRIVER INTERFACE FOR MODULAR /O SOFTWARE ARCHITECTURE

(57) Abstract

An operating system (100) and hardware-
independent serial driver interface (113) receives
device driver I/O requests in accordance with a first
protocol, translates the request in accordance with

S

ADAPTER DRIVER 110

113
,_../

a first protocol, translates the request into a second
request according to a second protocol, assembles data
structure, pointed to by a pointer, representative of
the YO requests, and sends the pointer to an adapter
(110) thus enabling the adapter to pass /O request,

SERIAL DRIVER INTERFACE [
OPERATING SYSTEM-DEPENDENT
150 ROUTINES

)

in the appropriate protocol, to a device connected to INITIALIZATION ROUTINES 400
the adapter (110). |, Mailbox Routines | Packet Routines |~
\
200 A A 300
™~
2027 | 203 305
) ™
304 307
306 | /_,/114
Y Y
DEVICE || ASYNC
201 [MALBOX]a0i” | GRas || ‘Chas
ADAPTER 302 —

NODE NODE |— ++» — NODE

115

115 115

applications under the PCT.

AM
AT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Bstonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Tealy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Mw
MX
NE
NL
NO
Nz
PL

RO
RU
SD

SG
SI

SN
sz
D
TG
TJ

UA
UG

vz
VN

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

WO 97/27558 PCT/US97/01104

Serial Driver Interface for Modular
I/0 Software Architecture
Field of Invention
The present invention relates in general to data
processing and computer systems and in particular to
methods and apparatus for implementing an operating
system and hardware independent software interface for

serial data input/output (I/0).

Description of the Prior Art

As microprocessors and storage devices grow in speed
and capacity, many computer users realize that current
storage and networking capabilities and standards are
failing to keep pace and are becoming critical
performance bottlenecks.

For example, video and broadcast providers would
like to avoid the so-called "sneakernet" wherein stored
images on tape must be transferred by hand from one site
to another. There is a demand, therefore, for a purely
digital studio. However, for the digital studio to
become a reality, disk storage systems must be capable of
capturing data at full frame rates without data
compression and, similarly, data distribution systems
must be able to transfer video data between systems at
comparable speeds.

Another industry requiring data transfer and storage
beyond current capabilities is the digital pre-press

industry. Digital pre-press systems are typically called

10

15

20

25

WO 97/27558 PCT/US97/01104

- 2 -

upon to move enormous image data files between editing
stations, Raster Image Processing systems (RIPs), and in
many cases, digital press controllers. The size of these
image data files is often on the order of hundreds of
megabytes per image. It is not uncommon, therefore, that
at present data transfer rates the transfer of these
images can take minutes apiece.

Furthermore, it is noteworthy that the speed of
server systems is also affected by current storage
subsystem input/output (I/0).

Accordingly, better storage and connectivity
solutions are needed in order to address the problems set
forth above.

One emerging solution to the above problem is the
new Serial Storage Architecture (SSA) and connectivity
technology. A full explanation and specification of the
SSA is set out in SSA-Industry Association Reference
Documents:

1. SSA-IA/95PH Serial Storage Architecture

1995 Physical, October 12, 1995 (Rev. 3)

2. SSA-IA/95SP Serial Storage Architecture

t

1995 SCSI -2 Protocol, October 11, 1995 (Rev. 3)

3. Serial Storage Architecture Physical Layer 1
(SSA-PH1) x3T10.1/1145D, March 29, 1996 (Rev. 9a)

4. Serial Storage Architecture Transport Layer 1
(SSA-TL1) x3T10.1/0989D, February 28, 1996 (Rev. 10)

5. Serial Storage Architecture SCSI-2 Protocol

WO 97/27558 PCT/US97/01104

- 3 -
(SSA-S2P) X3T10.1/1121D, February 28, 1996 (Rev. 7)

These above documents are all incorporated herein by
reference. Generally, compared to aging technologies
such as the Small Computer System Interface (SCSI), SSA

5 offers six times the performance, eight times the device
connectivity, fault tolerance, autoconfiguration,
simplified cabling and connections, lower cost, and
dramatically increased efficiency. SSA technology is
therefore becoming a preferred architecture choice to

10 realize the desired data transfer and storage speed
requirements.

Similarly, serial fibre channel technology is
presently being implemented to achieve improved data
transfer and storage speeds. A full explanation of the

15 fibre channel technology is set out in the following
documents:

1. Fibre Channel Arbitrated Loop (FC-AL), March

26, 1996 (Rev. 5.1)

2. Fibre Channel Physical and Signaling Interface
20 (FC-PH) x3.230-1994
3. Fibre Channel Single Byte Command Code Sets

(SBCCS) Mapping Protocol (FC-SB), May 26, 1995 (Rev. 3.4)
4. Fibre Channel Private Loop Direct Attach (FC-
PLDA), January 22, 1996 (Rev. 1.0)
25 5. SCSI-3 Fibre Channel Protocol for SCSI (FCP),
May 30, 1995 (Rev. 12)

These documents are also incorporated herein by

10

15

20

25

WO 97/27558 PCT/US97/01104

reference.

However, in order to replace current I/0 technology,
e.g. SCSI, on a host/peripheral computer system with, for
example, SSA or fibre channel, not only do the physical
I/0 adapter cards need to be replaced with serial adapter
cards supportive of SSA or fibre channel, but also both
software device drivers and adapter drivers need to be
replaced with drivers in accordance with the SSA or fibre
channel standard. The time and expense of redeveloping
these drivers, however, can become prohibitive.

Therefore, a need exists for a method and apparatus
whereby serial architecture-compatible adapter drivers
can be developed inexpensively and quickly and which can

operate with existing device drivers.

S Y OF THE TION

It is an objective of the present invention to
provide a serial driver interface which is operable with
existing device drivers and is portable across multiple
operating systems.

It is a further object of the present invention to
simplify development of new serial I/0 adapter drivers.

Other objects of the present invention will be
apparent from the remainder of the specification and
claims.

The preferred embodiment of the present invention is

a computer operating system and hardware-independent

10

15

20

25

WO 97/27558 PCT/US97/01104

- 5 - '
process for implementing input/output (I/0) between
protocol-incompatible device drivers and targets. The
invention comprises the following steps.

An I/O request is received according to a first
protocol from a device driver and is translated into a
second I/O request according to a second protocol. A
data structure, pointed to by a first pointer, is
assembled and includes the second I/0 request, a unique
token value, and a second pointer to an operating system-
dependent completion function. The first pointer is then
sent to an adapter which is forced to send the second I/0
request to the target. Upon receiving a response from
the target, the process associates the response with the
previously assembled data structure by way of the unique
token value. Finally, the operating system-dependent
completion function is called to process the response in
accordance with the operating systems needs.

Thus, the present invention allows, for example, the
interface of parallel SCSI device drivers and SSA or
fibre channel compatible devices or nodes. Furthermore,
the invention can also pass original SSA commands
directly to SSA compatible devices by simply eliminating
the translating step, or original fibre channel commands

directly to fibre channel compatible devices.

Brief Description of the Drawings

The advantages and features of the présent invention

10

15

20

25

WO 97/27558 PCT/US97/01104

- 6 - -
will become more clearly apparent from the following
description of an illustrative embodiment of the
invention, given as a non-restrictive example only and
represented in the accompanying drawings, in which:

FIG. 1 shows a typical parallel I/0 software
architecture and associated peripheral connectivity
according to the prior art.

FIG. 2 shows a serial I/0 software architecture and
associated peripheral connectivity according to the prior
art.

FIG. 3 depicts a serial I/0 software and hardware
architecture according to the present invention.

FIGs. 4a-c set forth the preferred data structures
in accordance with the present invention.

FIGS. 5-8 set forth software routine prototypes in
accordance with the present invention.

FIG. 9 shows defined registers for an interface
controller in accordance with the present invention.

FIGs. 10-24 and 26-31 show flow diagrams for
implementing the adapter driver use of serial driver
interface software routines.

FIG. 25 shows a data structure comprising
information representative of each adapter and device
connected to the adapter.

FIGs. 32-39 show flow diagrams for implementing the

adapter driver-to-adapter interface.

10

15

20

25

WO 97/27558 PCT/US97/01104

- 7 -
Detailed Description of the Preferred Embodiment

FIG. 1 shows a typical parallel input/output (I/0)
software architecture according to the prior art. The
operating system/application 100 communicates with any of
nodes 104 via device driver 101, adapter driver 102, and
adapter 103. Communication between the operating
system/application 100 and adapter 103 is accomplished
via common bus 105. Nodes 104 can be storage devices
such as hard drives or tape drives or other similar
devices, or alternatively, nodes 104 can be other host
computer systems. The device driver 101, adapter driver
102, and adapter 103 work in conjunction to effect
communication according to a standard parallel protocol
such as the Small Computer System Interface (SCSI), SCSI-
2, or any other standard parallel protocol known in the
art.

FIG. 2 shows a typical serial 1I/0 software
architecture according to the prior art. Referring to
Fig. 2, the operating system/application 100 communicates
with any of serial I/O compatible nodes 115 via device
driver 111, adapter driver 112, and adapter 116.
Communication between the operating system/application
110 and the adapter 116 is accomplished via common bus
105. The architecture depicted in FIG. 2 is particularly
suited to effect communication between the operating
system/application 100 and nodes 115 using the Serial

Storage Architecture (SSA). However, one skilled in the

10

15

20

25

WO 97/27558 PCT/US97/01104

- 8 - »
art will recognize that to take advantage of SSA for
example, device driver 111 and adapter driver 112 must be
redeveloped in accordance with SSA protocol standards.
This can lead to great expense and delay in implementing
serial I/O.

The present invention, however, facilitates and
reduces the cost of implementing serial I/0 by keeping
existing device driver 111, developed in accordance with,
for instance, the SCSI-2 protocol, unmodified.

A preferred embodiment of the present invention is
illustrated in FIG. 3. As shown in FIG. 3, the serial
driver interface (SDI) 113 is incorporated within the
adapter driver 110. Generally, the SDI 113 comprises a
set of routines and data structures that provide a high-
level interface between the adapter driver 110 and
adapter 114. As will be further explained herein, the
SDI 113 and adapter 114 provide all the necessary
translation services, SSA protocol services, and
transport and physical support required to transform, for
example, SCSI-2 command/response exchanges into SSaA-
compatible command/response exchanges. One skilled in
the art will recognize that any discussion in this
specification referring to SSA alone is also equally
applicable to fibre channel technology.

The S8SDI 113 provides routines for initializing
itself, communicating with adapter 114, and interrupt

handling. Several provided routines have an interface

WO 97/27558 PCT/US97/01104

-9 -
but not an implementation. These routines are "operating
system-dependent" as will be explained hereinafter.

More specifically, as shown in FIG. 3, the SDI 113
includes initialization routines 150, mailbox routines
200, packet routines 300, and operating system-dependent
routines 400 to effect the aforementioned functions. 1In
the preferred embodiment, the adapter 114 includes
firmware and sufficient memory capacity for a mailbox 201
comprising random access memory (RAM) , device
command/response queues (CRQs) 301 and an asynchronous
event command/response queue (Async CRQ) 302.

Initialization routines 150 are used to initialize
the SDI 113. Mailbox routines 200 are used for obtaining
information about the adapter 114 and the serial I/0-
compatible nodes 115 attached to the adapter 114. Packet
routines 300 are used for sending, for example, SCSI-2
SSA message structures (SMSs) to a node 115 through the
adapter 114. Finally, the operating system-dependent
routines 400 are used to implement the SDI 113 in
different operating systems. Preferred data structures
to be used with the SDI 113 and the various routines

mentioned above will next be discussed in detail.

SDI Data Structures

With reference to FIGs. 4a-c, the following data
structures are defined for use with the SDI 113, One

skilled in the art will recognize the hierarchical

10

15

20

25

WO 97/27558 PCT/US97/01104

- 10 -
organization of the various structures as defined ﬁsing
the ANSI C programming language. In operation of the
present invention, the defined data structures are
located in host DMA memory, accessible to both the
computer operating system and adapter 114. A discussion
of the elements of each data structure is set forth
hereinafter.

The data structure sdi_xt packet is created by the
SDI 113 and sent to a device CRQ, or Async CRQ.
sdi_xt_packet is one of the following types:
sdi_xt_ssa_packet or sdi_xt_async_packet, both of which
are discussed hereinafter. Complete_callback is a
pointer to a function called by adapter driver 110 when
the packet has been completed. The adapter driver 110
must set the callback function in each packet.
link_space is used for inserting and removing the packet
from internal queues. phys_addr is the physical address
of the packet. driver_space is a 16 byte space allocated
for use by the adapter driver 110. For example, this is
used by a Netware driver to 1link the packet to a
corresponding Host Adapter Control Block (HACB) .

The data structure sdi_xt_ssa_packet contains the
request and response information necessary to issue an
SSA packet to a target, that is a CRQ. The request
section contains the SSA SCSI-2 SMS and data pointers
that the adapter 114 requires in order to process the

request. The response section contains completion status

10

15

20

25

WO 97/27558 PCT/US97/01104

information.

The data structure sdi_xt_ssa_request contains the
command bytes (SMS) and data pointers that the adapter
114 requires in order to process the SMS to the node 115.
crq_num is the CRQ associated with the destination node
115. Each node’'s CRQ is found by calling
sdi_get next _device discussed later in this
specification. token is a 32-bit field that is used to
obtain addressability to the packet during response
processing. When the adapter 114 completes a request, it
will return the token to the SDI 113. The SDI 113 casts
token to a pointer to an sdi_xt packet. The token field
should be set to the appropriate value, typically the
virtual address of the sdi_xt_packet. timeout is the
timeout value in milliseconds for the packet.
dma_address is the physical address of the data to be
transferred. For requests that do not involve data
transfer, this field should be set to zero. dma_size is
the size in bytes of the data transfer to be transferred.
For requests that do not involve data transfer, this
field should be set to zero. dma_type is the type of the
data transfer. For example, constants representative of
normal or scatter/gather types can be used. sms is the
sdi_xt_scsi2_sms discussed hereinafter.

The data structure sdi_xt_ssa response contains the
response information associated with a

sdi_xt_ssa_request. token is a copy of the token in the

10

15

20

25

WO 97/27558 PCT/US97/01104

12
associated sdi_xt_ssa_request. The remaining elementé in
sdi_xt_ssa_response are protocol-dependent. Using SCSI-2
as an example, reason is the completion reason. state
holds the status bits indicating the command progress at
completion. If the command results in the device
returning a SCSI-2 status SSA message, then scsi_status
is set to the status field from that message. residual
is set to the number of bytes not transferred if the
command completes successfully, but with 1less data
transferred than was requested.

The data structure sdi_xt_async_packet contains the
request and response information necessary to queue an
asynchronous packet to the adapter 114. Queue Async
packets are returned to the SDI 113 when asynchronous
events occur. Like the non-Async packet described above,
sdi_xt_async_packet comprises a request section and a
response section.

The data structure sdi_xt_async_request contains the
CRQ number and a token. crg_num should be set to a
constant representative of the async CRQ 1ID. token
contains a value as explained above with regard to
sdi_ssa_xt_request.

The data structure sdi_xt_async_response contains
asynchronous event information returned from the adapter
114. token contains a value as described above with
regard to sdi_ssa_xt_response. reason contains the type

of async packet. Constants representative of the

10

15

20

25

WO 97/27558 PCT/US97/01104

- 13 -
following events can be defined: the adapter 114 has
detected a new node 115 on the SSA web, the adapter 114
has detected that a node 115 was removed from the Ssa
web, an adapter 114 log event has occurred; the data in
log_num is valid, or an adapter 114 or node 115 error
event has occurred; or the data in error_num is valid.
new_target contains information about a new target that
was added to the web. del target contains information
about a target that was deleted from the web. log num
contains a log message representative of, for example, a
web reconfiguration. err_num contains an error message
representative of, for example, total reset, absolute
reset, or internal error of a node 115.

The data structure sdi_xt_sg_element is an entry in
a scatter/gather list that is sent to the adapter 114.
The scatter/gather capability of adapter 114 can be found
by calling sdi_get_scatter_gather info described
hereinafter. sg_buf_size is the 1length of the
scatter/gather request in bytes and sg_buf_phys _addr is
the physical address of the request buffer. T h e
data structure sdi_xt_hba info is wused to return
information about a host bus adapter (HBA), or adapter
114. The structure comprises firmware and hardware
revision numbers and a unique ID assigned to the adapter
114.

The data structure sdi_xt_scsi2 sms is the last

structure in sdi_xt_ssa_request. Each element of this

10

15

20

25

WO 97/27558 PCT/US97/01104

- 14 -
particular structure is disclosed by the SSA
documentation cited earlier, incorporated herein by

reference.

nitjalization Routines

Initialization <routines 150 are provided to
initialize the SDI 113 and the adapter 114, query adapter
114 attributes, and reset the adapter 114. FIG. 5 shows
ANSI C source code prototypes for each of the
initialization routines 150 operable with the SDI 113.
One skilled in the art will recognize the role of each of
the following routines as it is further explained herein.
Further, the use or sequence of use of the initialization
routines 150 will be discussed hereinafter by way of flow
charts.

The routine sdi_get_hba_object size returns the size
in bytes of an adapter data object. The size returned is
used to allocate a block of memory that will be used by
the SDI 113 to internally manage the adapter 114. The
adapter’s pointer is a parameter to most of the SDI 113
routines. As can be seen from the prototype in FIG. 5,
the routine has no parameters.

The routine sdi_initialize detects the presence of
an adapter 114 at a specified host bus adapter (HBA). 1If
an adapter 114 is found, the SDI 113 initializes a data
structure pointed to by a pointer. The parameter

hba_number is the index of an HBA and adptr is a pointer

10

15

20

25

WO 97/27558 PCT/US97/01104

- 15 -

to an HBA object. The parameter caller_context is a
pointer to a driver-defined object and is stored in the
SDI 113 for each HBA. The pointer is passed to the
operating system dependent routines 400 discussed
hereinafter. The pointer should be set to a driver-
defined object or to null if no object is required. The
routine sdi_initialize will return a value of 0 if an HBA
was detected and successfully initialized. Otherwise,
the return value is a constant indicative of one of the
following errors: device not found, bad vendor 1ID,
unknown, or bad register.

The routine sdi_enable_hba is provided for certain
device driver architectures, e.g. Netware, that require
that adapter resources be registered before they can be
used. In the case of Netware, the memory mapped run-time
registers on the adapter 114 must be registered before
they can be used. 1In the prototype of FIG. 5, parameter
adptr is a pointer to an HBA object. The routine
sdi_enable_hba will return a value of 0 if the adapter
114 was enabled. If the adapter 114 was not enabled, a
non-zero constant will be returned.

The routine sdi_reset_hba resets the specified
adapter 114. The parameter adptr is a ptr to an HBA
object. This routine provides no return value.

The routine sdi_hba_count returns the number of
adapters detected in the system. The routine has no

parameters.

10

15

20

25

WO 97/27558 PCT/US97/01104

- 16 -

The routine sdi_hba irq returns the interrupt
request line (IRQ) associated with an adapter 114. The
parameter adptr is a pointer to an HBA object.

The routine sdi_hba_rt_virtual_addr returns the
logical, or virtual, address of the adapter 114 memory
mapped registers. This routine is provided for those
operating systems that require registering the memory
mapped registers, e.g. Netware. The required parameter
is adptr, a pointer to an HBA object.

The routine sdi_hba_rt_physical_addr returns the
physical address of the adapter 114 memory mapped
registers. This routine is provided for those operating
systems that require registering the memory mapped
registers, e.g. Netware. The required parameter is
adptr, a pointer to an HBA object.

The routine sdi_hba rt_size returns the size in
bytes of the adapter memory mapped registers. This
routine is provided for those operating systems that
require registering the memory mapped registers, e.g.
Netware. The required parameter is adptr, a pointer to
an HBA object.

The routine sdi_hba_pci_bus_number returns the PCI
bus number associated with the adapter. The required
parameter is adptr, a pointer to an HBA object.

The routine sdi_hba_pci_device number returns the
PCI device number associated with the adapter 114. The

required parameter is adptr, a pointer to an HBA object.

10

15

20

25

WO 97/27558

PCT/US97/01104

- 17 -
The routine sdi_hba_pci_device number returns the

PCI device number associated with the adapter.

Packet Routines

Packet routines 300 are used to allocate, send,
free, and complete sdi_xt packet structures discussed
above. FIG. 6 shows ANSI C source code prototypes for
each of the packet routines 300 operable with the SDI
113. With reference to FIG. 3, packet routines 300 send
packets 304 or async packets 306 to the adapter 114.
Upon completion of the packet, respective responses 305,
307 are sent from the adapter 114 to the SDI 113. One
skilled in the art will recognize the role of each of the
routines set forth in Fig. 6 as it is further explained
herein. Further, the use or sequence of use of the
packet routines 300 will be discussed hereinafter by way
of flow charts.

The routine sdi_send_packet sends a specified packet
to a specified adapter 114. Parameter adptr is a pointer
to an HBA object and parameter pkt is a pointer to an
sdi_xt_packet structure to be sent to the device at the
CRQ set in the crg_num field of the packet request. This
routine provides no return value.

The routine sdi_stock_packet_pool stocks a pool of
free packets. The packets are carved from memory
beginning at address vaddr. The size of the memory

allocation depends on the number of the packets that are

10

15

20

25

WO 97/27558 PCT/US97/01104

- 18 -
to be created. This routine may be called more than 6nce
to increase the size of the pool. With reference to the
prototype in FIG. 6, the parameter adptr is a pointer to
an HBA object, vaddr is a pointer to a virtual base
address of allocated space, paddr is a pointer to
physical base address of allocated space, and size is the
size of allocated space in bytes. The routine
sdi_stock_packet_pool returns the number of packets
actually stocked in the pool.

The routine sdi_get_packet_from_pool gets a packet
pointer from the pool of created packets. Parameter
adptr is a pointer to an HBA object. The routine returns
the value 0 if no packets are available, or the value 1
if a packet was retrieved successfully.

The routine sdi_get_physical_base_addr sets mapping
registers in the HBA to reference host memory beginning
at base_addr. This function is used if the physical
address range of the system does not begin at 0x00000000.
Parameter adptr is a pointer to an HBA object and
parameter base_addr is the base address in host memory.
There is no return value associated with this routine.

The routine sdi_stock_sglist_pool stocks a pool of
free scatter/gather 1lists. The lists are carved from
memory beginning at wvaddr. The size of the memory
allocation depends on the number of lists that are to be
created. This routine may be called more that once to

increase the size of the pool. The parameter adptr is a

WO 97/27558 PCT/US97/01104

- 19 -
pointer to an HBA object, nelem is the number of
scatter/gather elements in each scatter/gather 1list,
vaddr is a pointer to a virtual base address of allocated
space, and size is the size of allocated space in bytes.
The routine returns the number of scatter/gather 1lists
actually stocked in the pool.

The routine sdi_get_sglist_from_pool gets a
scatter/gather list from the list pocl. The parameter
adptr is a pointer to an HBA object and psgl is a pointer
to a pointer to a scatter/gather list. The routine
returns a value of 0 if no scatter/gather list is
available, or a value 1 if a scatter/gather 1list is
available and pointed to by psgl.

The routine sdi_return_sglist_to pool returns a
scatter/gather list to the 1list pool. Parameter adptr is
a pointer to an HBA object and psgl is a pointer to a
scatter/gather list to be returned to the pool. There is
no return value associated with this routine.

The routine sdi_interrupt is the SDI 113 time entry
point. The interrupt service routine (ISR) of adapter
driver 110 must call this routine for each adapter 114
supported by the driver 110. For those interrupts that
indicate the completion of a packet a callback function
associated with the packet is called. The routine
sdi_interrupt executes in interrupt context. Parameter
adptr is a pointer to an HBA object. The routine returns

a value of 0 if the SDI 113 successfully processed the

10

15

20

25

WO 97/27558 PCT/US97/01104

- 20 -
interrupt, or a value of 1 if the adapter 114 did'not
have a pending interrupt, so that the SDI 113 could not
process one.

The routine packet_complete_callback is an operating
system dependent routine. The SDI 113 will call this
routine for each packet that completes. The routine
eXecutes in interrupt context. Paramater pkt is a
pointer to the sdi_xt_packet that the SDI 113 has
completed. The routine provides no return value. For
example, a command callback routine checks for the
scsi_status upon packet completion.

The routine sdi_return packet_to pool is used to
return a packet to the adapter’s 114 pool of packets set

up by sdi_stock_packet_pool.

Mailbox Routines

Mailbox routines 200 are used to obtain information
about the adapter 114 and, for example, the SSA-
compatible nodes 115 attached to the adapter 114. FIG.
7 shows ANSI C source code prototypes for each of the
mailbox routines 200 operable with the SDI 113. With
reference to FIG. 3, mailbox routines 200 send mailbox
commands 202 expecting immediate responses 203. That is,
the mailbox routines 200 will wait for the message
response 203 before returning. One skilled in the art
will recognize the role of each the following mailbox

routines 200 as each is further explained herein.

10

15

20

25

WO 97/27558 PCT/US97/01104

- 21 -
Further, the use or sequence of use of the mailbox
routines 200 will be discussed hereinafter by way of flow
charts.

The return values of each of the mailbox routines
200, except for one exception described below, are
constants representative of the status of the routine,
namely, success, timeout, or internal error.

The routine sdi_get_hba_info is used to gather
information about each adapter including firmware and
hardware revisions, and the unique ID (UID) of the
adapter. Parameter adptr is a pointer to an HBA object
and rev is a pointer to a driver-declared variable of
type sdi_xt_hba_info. Upon return, the detected firmware
and hardware revisions, and the UID of the adapter 114 is
stored in a data structure as shown in FIG. 9.

The routine sdi_get_next device is used to gather
information about devices that support a particular upper
level protocol, e.g. SSA. Parameter adptr is a pointer
to an HBA object, ulp is a constant representative of the
upper level protocol, e.g. SSA or TCP. Parameter crg_num
is a pointer to a driver-declared variable for the CRQ
number of the target. To obtain the first target, this
parameter should be set to a particular constant. On
return, the crq_num will contain the CRQ number of the
first target. To obtain information of subsequent
targets, the previously returned crq num is used. If

there are no more targets, another constant is returned.

10

15

20

25

WO 97/27558 PCT/US97/01104

- 22 -
Parameter uid_hi and uid_low are, respectively, poinﬁers
to driver-declared variables for the high and low 32 bits
of the target unique ID (UID).

The routine sdi_open_crq is used to instruct the
adapter 114 to logically open the specified
command/response queue (CRQ) with the specified upper
level protocol. Each CRQ, with the exception of the
Async CRQ, must be opened before it can be used. The
parameter adptr is a pointer to an HBA obfect, ulp is the
upper level protocol and crq_num is the CRQ number of the
device or node 115.

The routine sdi_close_crg is used to instruct the
adapter 114 to logically close the specified CRQ.
Parameter adptr is a pointer to an HBA object and crq_num
is the CRQ of the device or node 115.

The routine sdi_get_scatter_gather info is used to
determine the adapter’s 114 scatter/gather capability.
Paramater adptr is a pointer to an HBA object, capability
is the «capability of the adapter 114 to handle
scatter/gather lists, max_entries is the maximum number
of entries in the list, and max xfer is the maximum data
transfer per entry. If either of the latter two
parameters are unlimited, it should be set to a value of
-1.

The routine sdi_get_ssa_web_info obtains SSA web map
information from the adapter 114. The web information

will be transferred by the adapter into an assigned

10

15

20

25

WO 97/27558 PCT/US97/01104

- 23 -
buffer. Parameters include adptr, a pointer to an'HBA
object, web_buff p, a physical address of buffer,
web_buff_ v, a virtual address of buffer, and buff_size,
the size of the buffer in bytes. Web information is
transferred by the adapter 114 into the buffer whose
physical address is web buff p. The amount of

information is limited to buffer size.

Operating System Dependent Routines

Operating system dependent routines 400 enable the
SDI 113 to be portable across multiple operating systems.
FIG. 8 shows ANSI C source code prototypes for each of
the operating system routines operable with the SDI 113.
One skilled in the art will recognize the role of each of
the following routines as it is further explained herein.
Further, the use of the operating system dependent
routines 400 will be discussed hereinafter by way of flow
charts.

The routine sdi_pci_find_device is used to find the
next PCI device. The parameter driver context is a
pointer to a driver-defined object associated with a
particular HBA. The parameter is set by initialization
routine 150 sdi_initialize. Parameter bus is the
returned bus number, device is the returned PCI device
number, function is the returned PCI function number,
vendor_id is the PCI vendor ID, device_id is the PCI

device ID, index is the number of matched adapters to

10

15

20

25

WO 97/27558 PCT/US97/01104

24
skip before beginning the search, and driver-context is
a pointer to the driver defined object associated with an
HBA. The routine sdi_pci_find device returns a constant
indicative of success or error including, no device
found, bad vendor ID, or unknown.

The routine sdi_pci_read config register is used to
read the adapter 114 configuration registers to determine
its configuration information. The routine is also used
to determine the adapter’s 114 IRQ and the address of the
adapter’s 114 memory mapped registers. contents is the
returned contents of the register, reg num is the
register number to read, bus is the PCI bus number,
device is the PCI device number, function is the PpCI
function number, and driver context is a pointer to the
driver defined object associated with an HBA. As noted
above, driver-context is set by initialization routine
150 s8di_initialize. The routine
sdi_pci_read_config_register returns a constant
indicative of success or error including, bad register or
unknown.

The routine sdi_map_physical_to_virtual is used to
map a physical address memory area to a virtual address.
The SDI 113 uses this routine to map the address of the
memory mapped registers from physical to virtual.
Parameter paddr is the physical address to map, size is
the size of the memory area, and driver_context is a

pointer to the driver-defined object associated with the

10

15

20

25

WO 97/27558 PCT/US97/01104

25
HBA. There is no return value associated with this
routine.

The routine sdi_delay task delays a current
operating system task. It is used during SDI 113 mailbox
routines 200. Parameter ticks is the number of ticks to
delay, which is dependent upon the granularity of the
timer. Parameter driver_context is the same as described
above. The routine has no return value.

The routine sdi_ticks_per_second return the
granularity of the operating system’s timer and is used
by the SDI 113 during mailbox routines 200. The
parameter driver context is the same as is explained
above. The routine returns the number of ticks per
second which <can then be used by the routine

sdi_delay_task.

Adapter Functionality

In order for the SDI to operate, many of the
software routines described above must be able to
communicate with the adapter 114. In the preferred
embodiment of the present invention communication is made
operable via defined registers for adapter 114 as shown
in Fig. 9. A PCI 9060 interface controller is an example
of an interface controller suitable for this purpose. It
should be noted, however, that any adapter having similar
functional capability of the 9060 controller can also be

used. Moreover, the registers described could be

10

15

20

25

WO 97/27558 PCT/US97/01104

- 26 -~

implemented via software on the host computer system.

All communication between the adapter driver 110
comprising the SDI 113 is initiated by the adapter driver
110. There are two types of messages: mail messages and
packets. Mail messages, shown in Fig. 3 as 202, 203, are
immediate messages and are placed in registers 5-8 in
Fig. 9. Packets, shown in Fig. 3 as 304-307, are used to
transfer SSA messages (commands) via registers 1, 2, to
the adapter 114 and to receive responses in registers 3,
4 from the adapter 114. These message transfers can be
accomplished across any standard bus architectures
including GIO, PCI, Sbus or VME. Specifically, commands
are sent to the adapter 114 by copying the physical
address of the packet to register 1 or 2. Responses are
received from the adapter 114 in registers 3 or 4.
Register 9 of Fig. 9 is used to indicate to the adapter
114 that a command or mail message has been written to
one of the registers, and register 10 is used to indicate
to the SDI that a response has been written to one of the
registers. In the present embodiment, the registers thus
described are offset 0x40 from the address of the memory

mapped registers.

Operation of the SDI

The operation of the adapter driver 110 comprising
the SDI 113 in combination with the adapter 114 will now

be explained.

WO 97/27558 PCT/US97/01104

10

15

20

25

- 27 -

Fig. 10 shows the highest level of operation of the

SDI 113 and adapter 114. At step 2070, the adapter
driver 110 is initialized. At step 2071, request and
response queues are initialized on adapter 114 to support
the sending and receiving of packets. Final
initialization routines for adapter 114 are implemented
at step 2072 including initializing a serial controller
clock, on-board clock, and PCI interface control. Then
an infinite loop is entered comprising steps 2073 and
2074 in which the response_wait queue is checked and
other functions including for example, serial controller,
timer and clock, and LED control are implemented. Step
2074 is also the point at which internal process gqueues

of the adapter are handled.

Initialization

The SDI 113 and adapter 114 are first initialized
using the SDI routines described earlier. With reference
to FIG. 11, sdi_get_hba_object size is first called in
step 1010 after which sdi_initialize is called in step
1011. From within the routine sdi_initialize, operating
system dependent (OSD) routines sdi_pci_find_device and
sdi_pci_read_config register are called as shown in Fig.
12. That is, each host bus adapter (HBA), that is an
adapter supporting the functions of adapter 114, will be
found via steps 1020, 1021 and 1023. If no more devices

are found, control is passed back to sdi_initialize at

WO 97/27558 PCT/US97/01104

10

15

20

25

_28-

step 1022, Again with reference to Fig.. 11,
sdi_initialize is called via step 1012 until all HBAs in
the system have been found. At this point,
sdi_enable_hba is called in step 1015 for each HBA. One
of the functions of sdi_enable _hba is to call, OSD
function sdi_map_physical to virtual as shown in step
1025 of Fig. 13. After this 0OSD function is called the
control is returned in step 1026 to sdi_enable_hba. If
there are no more HBAs to enable, the process 1is
terminated in step 1014 of Fig. 11.

After each HBA has been enabled, any one, or
combination, of functions A-J can next be called. Each
of these routines is illustrated, respectively, in FIGs.
14-23. Which routines are called depend on the operating
system in which the adapter driver 110 is located. For
example, sdi_hba_rt_virtual_address need only be called
for the Netware operating system, but not for the Windows
NT operating system.

Fig. 14 depicts the calling of sdi_hba_irg in step
3000. The procedure returns at step 3001.

Fig. 15 depicts the calling of
sdi_hba_rt_virtual_addr in step 3010 and returning in
step 3011.

Fig. 16 shows sdi_hba_rt_physical addr being called
in step 3020 and then returning in step 3021.

Fig. 17 illustrates in step 3030 the calling of

routine sdi_hba_rt_size and return in step 3031.

WO 97/27558 PCT/US97/01104

10

15

20

25

- 29 -

Fig. 18 shows sdi_hba_pci_bus_number being called in
step 3040 and then returning in step 3041.

Fig. 19 shows in step 3050 a call to
sdi_hba_pci_device and then return in step 3051.

Fig. 20 depicts a call to sdi_get_physical_base_ addr
in step 3060 and a return in step 3061.

Fig. 21 shows sdi_get_hba_info being called in step
3070 and a return in step 3071.

Fig. 22 shows a call to sdi_get_sg info in step
3080. If at step 3081 the return value of
sdi_get_sg_info indicates that the adapter 114 has
scatter/gather capability then the device driver is
informed that the adapter driver 110 can support
scatter/gather. If the adapter 114 cannot support
scatter/gather, then the device driver is informed
likewise in step 3083. The procedure returns at step
3084,

Fig. 23 shows at step 3090 a call to
sdi_get_web_info. The information returned is processed
in step 3091. That is, the returned values can be stored
in a data structure representative of the serial network

or web. The procedure returns in step 3092.

Identifyving Devices

Once the adapter driver 110 has found and
initialized each HBA or adapter 114, each SSA device

connected to each HBA must be identified and a data

WO 97/27558 PCT/US97/01104

10

15

20

25

- 30 -

Structure representative of the device must be
initialized. This process is explained with reference to
Figs. 24 and 25. 1In step 1090, sdi_get_next_device is
called to identify the first device on a web or network.
This routine returns information about those SSA devices
that support a predetermined upper level protocol. If a
device is found in step 1091, the routine will return a
unique command/request queue (CRQ) number for the upper
level protocol-compatible device found. If no more
devices are found in step 1091 then the procedure is
exited.

For each device found a device structure 1is
initialized in step 1093 and at step 1094 sdi_open_crq is
called to logically open the device.

The result of finding all HBAs and devices connected
to each HBA is a data structure such as that shown in
Fig. 25. Each element 50 represents an HBA, or adapter
114, pointed to by pointer 51. Each HBA 51 is further
associated with device structures 52 representing each
identified device connected to that particular adapter or

HBA.

Sending a Packet

A command from a device driver through the SDI will
next be explained with reference to Fig. 26. Before any
packets can be sent at all, a pool of packets must be

pre-positioned by calling sdi_stock_packet pool in step

WO 97/27558

10

15

20

25

PCT/US97/01104

- 31 -

1030. Upon receipt of an I/O request from the device
driver in step 1031, sdi_get_packet_from pool is called
in step 1032. If no packets are available at step 1033,
the process returns at step 1034. If a packet is
available, the device driver I/0 request, which may be in
accordance with a SCSI protocol for example, 1is
translated into its SSA equivalent in step 1035. Mapping
of the SCSI-2 protocol to SSA is implemented in
accordance with the SSA documentation noted in
Description of the Prior Art section of this
specification. Mapping a SCSI-2 protocol to fibre
channel is 1likewire set out in the fibre channel
documentation.

Once translation has been completed, the Ssa_request
Structure is completed in step 1036 and then
sdi_send_packet is called in step 1037. The sending of
a packet is now complete and the process returns in step
1038.

If the adapter 114 has scatter/gather capability, as
determined by an earlier call to
sdi_get_scatter_gather info, then sending a packet ig
slightly different than as just explained. With
reference to Fig. 27, sdi_stock_sglist_pool is first
called in step 1040 after which sdi_stock_packet pool is
called in step 1041. As in the earlier case, upon
receiving an I/0 request from the device driver in step

1042, sdi_get_packet_from pool is called in step 1043 and

WO 97/27558 PCT/US97/01104

10

15

20

25

32
if none is available in step 1044, the process returns.
If, however, a packet is available the process continues
to step 1046 in which sdi_get_sglist_from pool is called.
If no scatter/gather list is available in step 1047, the
packet previously retrieved is returned to the packet
pool in step 1048 and the process returns.

Assuming a scatter/gather list is available in step
1047, the I/O request is translated to its SSA equivalent
in step 1050, the 88a_request structure is completed in
step 1051, the scatter/gather list is linked to the
packet in step 1052 and then sdi_send_packet is called in
1053. Finally, the process returns at step 1054 after
step 1053.

It was noted earlier that the adapter 114 includes
an asynchronous event command/response queue (Async CRQ
302 in FIG. 3), and that there are special async data
structures as shown in FIG. 4b. The handling of Async
events represents a dramatic difference between handling
of parallel SCSI and SSA. SSA is a network of device
attachments, and the attachments may be dynamic with
devices being removed and added while the network is in
operation. The Async CRQ responds to these events (e.g.,
device removed, device attached, local port disconnected,
local port connected) and passes the information to the
adapter driver 110 which maintains a list of available
nodes 115.

The Async Packet is a command whose function is to

WO 97/27558 PCT/US97/01104

10

15

20

25

33

wait for the next Asynchronous event and report it. The
command may remain pending indefinitely. In the
preferred embodiment, some number of Async Packets are
posted to the Async CRQ to allow a series of event
notifications to pass from the adapter 114 to the adapter
driver 110. The Command/Response mechanism is used in
this way to allow the Async Packet support to make use of
the same interface as the other non-Async CRQ methods.

In other words, the adapter driver 110 may send one
or more Async packets to the adapter 114 using
sdi_sent_packet. The CRQ number for the Async packets
should be set to a constant reserved for the Async CRQ.
When an asynchronous event occurs, the adapter 114
returns the Async packet to the adapter driver 110. The
packet’s callback routine will then initiate the

appropriate processing for the type of Async event.

Ha ing Completed Packets

Fig. 28 illustrates the process for completing
packets. When a response is written to one of the
response registers 3 or 4 of Fig. 9 and the local to PCI
doorbell register 10 is set, as will be further explained
below, the SDI is interrupted to process the response
packet. In step 1060, the packet status is determined
from the scsi_status field of the ssa_response. If the
status is not OK, i.e. non-zero, in step 1061, an error

code is set in step 1062. If the status is zero both the

WO 97/27558 PCT/US97/01104

10

15

20

25

...34..
packet and scatter/gather list are returned in steps 1063
and 1064 and then the status code is returned to the

device driver in step 1065.

Oth Functions

Fig. 29 depicts a process for closing CRQs and
resetting HBAs if necessary or if desired. For instance,
some operating systems, e.g. Netware, can dynamically
unload drivers. The present invention supports such a
capability through the procedure shown in Fig. 29.
Beginning at step 1070, a counter is set to zero and then
at step 1071 it is determined whether the CRQ number
equivalent to that counter number is open. If the CRQ is
open, the CRQ will then be closed at step 1072 by calling
sdi_close_crqg. The procedure proceeds to step 1073. If
the CRQ is not open at step 1071, then the procedure
advances directly to step 1073. At step 1073 it 1is
determined whether the counter exceeds a predetermined
maximum number of devices. If not, the counter is
incremented at step 1074 and the process loops back to
step 1071. If the counter is greater than or equal to
the maximum number of devices at step 1073, then
sdi_reset _hba is called at step 1075, thus resetting the
HBA. If there are more HBAs at step 1076, the process
loops back to step 1070, otherwise, the process returns

at step 1077.

WO 97/27558

10

15

20

25

PCT/US97/01104

-35_

As was noted earlier, mail messages are immediate
messages and the SDI expects responses from the adapter
114 before executing any other routines. Accordingly,
the SDI 113 also includes OSD routines that will delay
other processing until mail messages have completed.
Fig. 30 illustrates the use of these routines which are
called from within each mailbox routine 200. At step
1080, sdi_ticks_per_second is called. A multiple of the
return value of that routine is then passed to
sdi_delay_task at step 1081 in order to effectuate the
delay. Step 1082 then returns control back to the
mailbox routine 200 that was previously called.

Fig. 31 illustrates a typical interrupt handler
operable with the SDI 113. Using the return value of
sdi_hba_count from step 1100, sdi_interrupt is called in
step 1103 after step 1101 for each adapter 114 in the
system. If there are no more HBAs, the process returns
in step 1102. As noted in the earlier description of the
sdi_interrupt routine, the routine
packet_complete_callback is called from within

sdi_interrupt.

Flow of Commands/Responses Between the SDI and Adapter

The adapter driver 110 passes a packet to the
adapter 114 by calling sdi_send_packet. As explained
earlier, the packet field complete_callback points to an

OSD function to be called when the packet completes,

WO 97/27558 PCT/US97/01104

10

15

20

25

...36-
while other packet fields describe the particular
command.

With reference to Fig. 32, at step 2000,
sdi_send_packet places the packet on a request_Q, a
linked list of all packets pending transmission to the
adapter 114. The routine sdi_send_packet also calls
sdi_start_request_gqueue at 2005 which is shown in more
detail in Fig. 33. After step 2005, the procedure
returns. If routine sdi_start_request_gqueue is unable to
service the queue due to no available command slots, Fig.
9 elements 1, 2, the routine will be called again from
the sdi_interrupt function when a constant indicative of
8di_interrupt_slot_free is set in the status register 10
in Fig. 9.

The routine sdi_start*request_queue attempts to
service the first packet of the request queue by writing
the packet pointer to a free command slot register 1, 2.
A command slot register 1, 2 is free when its contents is
Zzero. According to the flow chart of Fig. 33, if there
is no entry on the request queue the routine
start_request_queue returns per step 2010. On the other
hand, if there is an entry on the request gqueue at step
2010, a counter is reset at step 2011. If the counter is
Zzero at step 2013 then the routine goes to step 2014
where it is determined whether command slot 0, register
1 in Fig. 9, is not in use. If command slot 0 is not in

use the packet is removed from the request queue in step

WO 97/27558 PCT/US97/01104

10

15

-20

25

- 37 -
2015 and the packet pointer (pkt) is written to command
slot 0 in step 2016. Then, at step 2017, a constant
sdi_interrupt_packet command is set in the
pci_to_local_doorbell register 9 of Fig. 9 and then the
routine restarts.

If at step 2014 command slot 0 is in use, the
counter is incremented at step 2018 and the routine flows
back to step 2013. Thus if the counter is not 0 at step
2013, the counter is tested as to whether it is equal to
1. If no, the routine returns. If the counter is equal
to 1, then the routine tests if command slot l, register
2 in Fig. 9, is not in use in step 2021. If command slot
1 is not in use, then the packet is removed from the
request queue in step 2022 and the packet pointer (pkt)
is written to command slot 1 in step 2023. Thereafter,
the constant sdi_interrupt_packet_command is set in the
pci_to_local_doorbell register 9 of Fig. 9 and then the
routine restarts as explained earlier. If at step 2021
command slot 1 was in use, the counter is incremented at
step 2018 as shown.

If a command slot register 1, 2 has been written by
the sdi_start_request queue routine, the interrupt to the
adapter 114 is set by writing an
sdi_interrupt_packetucommand bit to the
pci_to_local doorbell register 9 as explained above. In
response to the interrupt, the adapter 114 enters a

doorbell_interrupt routine as shown in Fig. 34. This

WO 97/27558 PCT/US97/01104

10

15

20

25

- 38 -

routine, at step 2030, reads the Interrupt and Control
Status register 11 of Fig. 9 and determines if the
sdi_interrupt_packet_command bit has been set. If it has
not been set the routine, at step 2034, writes the
constant sdi_interrupt_packet_command bit clear in the
pci_to_local_doorbell register 9, thus clearing the
interrupt, and then returns. If, on the other hand, the
sdi_interrupt_packet command bit is set at step 2031,
then the doorbell interrupt routine calls the
check_emd_list routine, shown in detail in Fig. 35.

Generally the check _cmd list function gets the
pointer to the packet from the valid command list entry
and passes it to adapter 114 firmware for processing
according to well known processes. The command list
entry is cleared thus making it available for new
packets. Then, the adapter 114 signals availability of
a command slot register 1, 2 to the adapter driver 110 by
writing the sdi_interrupt_slot_ free bit in the
local_to_pci_doorbell register 10 of Fig 9.

In particular, with reference to Fig. 35, a counter
cmds_taken is reset to zero in step 2040. Thereafter, at
step 2041, if command slot 0 is not zero the packet
pointer is read from command slot 0 in step 2042, command
slot 0 is reset in step 2043, the counter cmds_taken is
incremented in step 2044, and finally, the read packet
pointer is placed on an internal process queue of the

adapter 114. If command slot 0 has a zero value at step

WO 97/27558 PCT/US97/01104

10

15

20

25

- 39 -
2041, then command slot 1 is tested for a zero value in
step 2050. If command slot 1 is nonzero, the packet
pointer is read from command slot 1 in step 2051, command
slot 1 is reset in step 2052, the counter cmds_taken is
incremented in step 2044, and finally, as with the
command read from command slot 0, the read packet pointer
from command slot 1 is placed on an internal process
queue of the adapter 114.

If both command slots registers 1, 2 of Fig. 9 have
zero values, step 2055 determines whether the counter
cmds_taken is not zero. If cmds_taken is in fact not
zero, then a constant sdi_interrupt_slot free is set in
the local_to_pci_doorbell in step 2056 and the function
returns. If cmds_taken is zero the function immediately
returns.

Upon command completion, that is the adapter 114
properly processed the command, the adapter 114 calls the
resp_send routine shown in Fig. 36. The resp_send
routine in step 2060 places the pointer to the packet in
the resp_wait_queue. The resp_wait_queue is a linked
list of packets pending for transmission to the adapter
driver 110. In step 2061, resp send calls the function
check_resp wait_gqueue and then returns. The routine
check_resp wait_queue attempts to service the
resp_wait_queue’s first entry by writing the packet
pointer to a free response slot 3, 4 of Fig. 9. A slot

is free if its contents is zero. If, however,

WO 97/27558 PCT/US97/01104

10

15

20

25

40
check_resp_wait_queue is unable to immediately service
the queue due to nonzero response slot registers 3, 4,
the routine will eventually be called again from the
adapter driver 110 main loop, shown in Fig. 10.

Fig. 37 shows the check_resp_wait_queue function in
detail. 1In step 2080, the flag resp sent is reset to
zero. Thereafter, at step 2081 it is determined whether
there is an entry on the resp_wait_queue. If not, it is
determined at step 2082 whether counter resp_sent is not
0. If the counter is zero the function returns.
Otherwise, in step 2083, an sdi_interrupt_packet_response
bit is set in the local_to_pci_doorbell register 10.

If there is an entry on the resp_wait_gqueue at step
2081, step 2085 determines whether response slot 0, i.e.
register 3, is zero. If 80, the packet is taken from the
resp_wait_queue in step 2086 and the token is written to
response slot 0 in step 2087. In step 2088 flag
resp_sent is set to 1 and the function goes back to step
2081. If response slot 0 is not zero in step 2085, then
response slot 1, i.e. register 4, 1is tested for its
value. If zero, then the packet is taken from the
resp_wait_queue in step 2091 and the token is written to
response slot 1 in step 2092. 1If neither response slot
has a zero value, then the function is routed back to
step 2082 as shown in Fig. 38.

As explained earlier the token is used as a means

for the adapter driver 110 to map a response back to the

PCT/US97/01104

WO 97/27558

10

15

20

25

- 41 - .
original command. The token is set to the logical (or
virtual) address of the packet. Upon reading the token
from the response slot register 3, 4, the adapter driver
110 looks up pkt based on the token value and the
completed packet status can then be processed as
explained earlier with reference to FIG. 28.

As described above, if a response slot register 3,
4 has been written, the adapter driver 110 is signaled by
setting the sdi_interrupt_packet response bit in the
local_to_pci_doorbgll register 10. With the
local_to_pci_doorbell set, the adapter driver’s 110
sdi_interrupt function is entered. This function is
illustrated in Fig. 38.

In step 2100 of Fig. 38, the cause is read from the
local_to_pci_doorbell register 10 and then is written
back to local_to_pci_doorbell register 10 to clear the
interrupt cause. If the interrupt cause ANDED with a
constant representative of sdi_interrupt_slot free is yes
in step 2102 then sdi_start_request_queue is called in
step 2110. Otherwise, if the interrupt cause ANDED with
a constant representative o f
sdi_interrupt_packet_response is yes in step 2103,
sdi_process_response list is called in step 2111. The
cause is again evaluated in step 2104. If the cause is
zero the function returns. Otherwise, the function loops
back to step 2100.

The routine sdi_process_response_list, depicted in

WO 97/27558 PCT/US97/01104

10

15

20

25

- 42 -

Fig. 39, is used to check for entries in the response
slot registers 3, 4. According to the figure, on start-
up a counter is set to zero in Sstep 2120. The counter'’s
value is thereafter checked in step 2121. If the counter
is zero, then response slot 0 is checked for a nonzero
value in step 2123. If response slot 0 is not nonzero
then the counter is incremented in step 2135 and the
routine proceeds back to step 2121. 1If response slot 0
is nonzero then the packet is read therefrom in step
2123, the response slot 0 is reset to zero to make it
available, the complete_callback function for the packet
is called in step 2125, and then the counter is
incremented.

If at step 2121, the counter is not equal to zero,
and the counter equals 1 at step 2130, response slot 1 is
checked for a nonzero value in step 2131. If response
slot 1 has a nonzero value, the packet is read from
response slot 1, response slot 1 is then reset to zero in
step 2133 to make it available, the complete callback
function is called in step 2134 and the counter is
incremented. 1If response slot 1 has a 0 value at step
2131 then the counter is simply incremented. However, if
at step 2130, the counter is not equal to 1, then the
function returns. 1In other words, there are no responses
to be read.

The SDI 113 routines and data structures described

herein enable economical development of adapter drivers

WO 97/27558

10

15

PCT/US97/01104

- 43 -
to permit protocol incompatible device drivers and
targets to pass I/0 requests and responses to and from
one another. Moreover, the routines described herein are
designed to operate independent of operating system
environment.

While the present invention has been described with
reference to particular routines and data structures,
those skilled in the art will recognize that some of the
routines may be combined and others may be broken down
further and the data structures may be arranged
differently. Furthermore, as noted previously, the SDI
invention is operable in a plurality of operating systems
including MIPS, Intel I960, Pentium, Power PC and SPARC
based systems. Accordingly, not all disclosed routines
are necessary for any particular implementation. Further
still, those skilled in the art will appreciate that
additional error trapping and handling routines, for

example, may be included in any completed program code.

10

15

20

WO 97/27558 PCT/US97/01104

- 44 -

What is claimed is:

1. A computer operating system and hardware-
independent process for implementing I/0 between a device
driver and a target, comprising the steps of:

receiving a first I/0 request according to a first
protocol from said device driver;

translating said first I/0 request into a second I/0
request according to a second protocol;

assembling a data structure pointed to by a first
pointer including said second I/0 request, a unique token
value, and a second pointer to an operating system-
dependent completion function;

sending said first pointer to an adapter;

signalling said adapter to send said second I/0
request to said target;

receiving a response from said target;

associating said response with said data structure
via said unique token value; and

calling said operating system-dependent completion

function by way of said second pointer.
2. The process of claim 1 wherein said first
protocol is parallel SCSI and said second protocol 1is

SSA.

3. The process of claim 1 wherein said first

PCT/US97/01104

WO 97/27558

10

15

20

- 45 -

protocol is parallel SCSI and said second protocol is

fibre channel.

4. The process of claim 1 wherein said

first

protocol is parallel SCSI-2 and said second protocol is

SSA.

5. The process of claim 1 wherein said

first

protocol is parallel SCSI-2 and said second protocol is

fibre channel.

6. The process of claim 1 wherein said

protocol is TCP and said second protocol is SSA.

7. The process of claim 1 wherein said
protocol is TCP and said second protocel is
channel.

8. The process of claim 1 wherein said

protocol is SSA and said second protocol is SSA.
9. The process of claim 1 wherein said
protocol is SSA and said second protocol is

channel .

10. The process of claim 1 wherein said

first

first

fibre

first

first

fibre

first

protocol is fibre channel and said second protocol is

10

15

20

WO 97/27558 PCT/US97/01104

SSA.

11. The process of claim 1 further comprising:

determining the number of adapter cards, supportive
of a predetermined I/0 protocol, in a computer system;

determining the number and type of target devices
connected to each one of said previously identified
adapter cards; and

building a data structure representative of each
adapter card and associated targets such that each target

can be logically enabled or disabled.

12. The process of claim 1 further comprising
initializing a plurality of said data structures prior to

said receiving a first I/0 request.

13. The process of claim 1 wherein said response

from said target répresents an asynchronous event.

14. The process of claim 11 wherein processing in
said computer system is delayed until completion of

determining the number of adapter cards.

15. A computer operating system and hardware-
independent process for implementing I/0 between a
standard device driver and an SSA compatible target,

comprising the steps of:

WO 97/27558

10

15

20

25

PCT/US97/01104

- 47 -

receiving a first 1I/0 request according to a
standard protocol from said standard device driver;

translating said first I/0 request into a second I/0
request according to an SSA compatible protocol;

assembling a data structure pointed to by a first
pointer including said second I/0 request, a unique token
value, and a second pointer to an operating system-
dependent completion function;

sending said first pointer to an adapter;

signalling said adapter to send said second I/0
request to said target;

receiving a response from said target;

associating said response with said data structure
via said unique token value; and

calling said operating system-dependent completion

function by way of said second pointer.

16. The process of claim 15 further comprising:

determining the number of adapter cards, supportive
of said SSA compatible protocol, in a computer system;

determining the number and type of target devices
connected to each one of said previously identified
adapter cards; and

building a data structure representing each adapter
card and associated targets such that each target can be

logically enabled or disabled.

WO 97/27558 PCT/US97/01104

10

15

20

25

- 48 -

17. A computer operating system and hardware-
independent process for implementing I/O between a
standard device driver and a fibre channel compatible
target, comprising the steps of:

receiving a first 1I/0 request according to a
standard protocol from said standard device driver;

translating said first I/0 request into a second I/0
request according to a fibre channel compatible protocol;

assembling a data structure pointed to by a first
pointer including said second I/0 request, a unique token
value, and a second pointer to an operating system-
dependent completion function;

sending said first pointer to an adapter;

signalling said adapter to send said second I/0
request to said target;

receiving a response from said target;

associating said response with said data structure
via said unique token value; and

calling said operating system-dependent completion

function by way of said second pointer.

18. The process of claim 17 further comprising:

determining the number of adapter cards, supportive
of said fibre channel compatible protocol, in a computer
system;

determining the number and type of target devices

connected to each one of said previously identified

WO 97/27558

10

15

20

25

PCT/US97/01104

adapter cards; and
building a data structure representing each adapter
card and associated targets such that each target can be

logically enabled or disabled.

19. An apparatus for implementing computer
operating system and hardware-independent I/O between a
protocol-incompatible device driver and target,
comprising:

means for receiving a first I/0 request according to
a first protocol from a device driver;

means for translating said first I/0 request into a
second I/0 request according to a second protocol;

means for assembling a data structure pointed to by
a first pointer including said second I/0 request, a
unique token value, and a second pointer to an operating
system-dependent completion function;

means for sending said first pointer to an adapter;

means for signalling said adapter to send said
second I/O request to said target;

means for receiving a response from said target;

means for associating said response with said data
Structure via said unique token value; and

means for calling said operating system-dependent

completion function.

20. The apparatus of claim 19 wherein said means

WO 97/27558 PCT/US97/01104

10

15

20

- 50 -
for sending said pointer and said means for receiving
said response comprises a memory register on said

adapter.

21. A computer system having a serial interface,
comprising:

an adapter driver including a serial driver
interface;

an adapter card having at least one port, including
memory for a control register and device command/request
queues; and

at least one device, connected to said at least one

port of said adapter card.

22. The computer system according to claim 21
wherein said serial driver interface provides an
interface between a device driver operable according to
a first protocol and a device operable according to an

SSA protocol.

23. The computer system according to claim 21
wherein said serial driver interface provides an
interface between a device driver operable according to
a first protocol and a device operable according to a

fibre channel protocol.

24. The computer system according to claim 22

WO 97/27558 PCT/US97/01104

- 51 -

wherein said first protocol is parallel SCSI.

25. The computer system according to claim 23

wherein said first protocol is parallel SCSI.

WO 97/27558

PCT/US97/01104

OPERATING SYSTEM/APPLICATION
™ 100
DEVICE DRIVER N o1
ADAPTER DRIVER L~
102
- COMMON
) BUS
105
ADAPTER
" 03
[) I
nobe| |noDE NODE
104 104 104

FIG. 1

PRIOR ART

1/37

WO 97/27558 PCT/US97/01104

OPERATING SYSTEM/APPLICATION
" 100
DEVICE DRIVER N 111
ADAPTER DRIVER a
COMMON
_7 BUS
105
ADAPTER 116
NODE NODE|— -+ — NODE

)))

115 115 115

FIG. 2
PRIOR ART

R \37

WO 97/27558

PCT/US97/01104

ADAPTER DRIVER

SERIAL DRIVER INTERFACE

150)

L.\

_—

110
113

—

ROUTINES

OPERATING SYSTEM-DEPENDENT

INITIALIZATION ROUTINES

Mailbox Routines

Packet Routines ~

/ \
200 A A A 300
N
202 | 203 - 305
304 307
py
306
~IMAI ~"] DEVICE || ASYNC
201 [MAILBOX| 304 CRQs CRQs
ADAPTER 302)
NODE NODE }— «:«- —| NODE
115 115 115

FIG. 3

3/37

)

400

WO 97/277558 PCT/US97/01104

STRUCTURE DEFINITION FOR sdi_ xt_ packet
typedef struct sdi_x packet

union
{
sdi_xt_ ssa_ packet ssa;
sdi_xt_async_packet async;
} type;
#ifdef _ DRIVER _

void (*complete callback) (struct sdi_x packet *pkt);
uint32 link space([4];
struct sdi x packet *phys addr;
uint32 driver space[4];
#endif
} sdi xt packet;

STRUCTURE DEFINITION FOR sdi xt ssa packet
typedef struct sdi x ssa packet

sdi_xt ssa request request;
sdi_xt ssa response response;
} sdi_xt ssa packet;

STRUCTURE DEFINITION FOR sdi_ xt ssa_request
typedef struct sdi_x ssa request

uint32 crqg num;

uint32 token;

uint32 timeout;

uint32 dma_ address;

uint32 dma_size;

uint32 dma_ type;

sdi_ xt_scsi2_sms sms;
} sdi_xt ssa request;

STRUCTURE DEFINITION FOR sdi xt ssa_response
typedef struct sdi_x ssa response

uint32 token;
uint32 reason;
uint32 state;
uint32 scsi_status;
uint32 residual;

} sdi_xt ssa_response;

FIG. 4a

Y/37

WO 97/27558 PCT/US97/01104

STRUCTURE DEFINITION FOR sdi_ xt_ async_packet
typedef struct sdi_x async_packet

sdi_xt async_request request;
sdi_xt async_response response;
} sdi xt async_packet;

STRUCTURE DEFINITION FOR sdi_xt_ async request

typedef struct sdi x async_request
{

uint32 crqg num;

uint32 token;
}sdi_xt async_request;

STRUCTURE DEFINITION FOR sdi_xt_async_response

typedef struct sdi x async_response
{

uint32 token;

uint32 reason;

union

{

struct

uint32 crq num;

uint32 uid_hi;

uint32 uid lo;
} new_target;

struct

uint32 crq num;
uint32 uid_hi;
uint32 uid lo;
} del target;
uint32 log num;
uint32 err_num;
}type:
} sdi_xt_async_response;

STRUCTURE DEFINITION FOR sdi_ xt sg element
typedef struct sdi_xt sg element
uint32 sg buf size;

uint32 sg_buf phys addr;
} sdi_xt sg element;

FIG. 4b

5737

WO 97/27558 PCT/US97/01104

STRUCTURE DEFINITION FOR sdi_xt_hba info
typedef struct sdi_x hba info

byte fw maj rev;
byte fw min rev;
byte hw maj _rev;
byte hw min rev;
uint32 uid hl,
uint32 uid lo:

} sdi_xt hba_info;

STRUCTURE DEFINITION FOR sdi_xt scsi2 sms

typedef union sdi_x scsi2 sms

{

sdi_xt scsi2 resposne repsonse;

sdi_xt scsi2 command command ;

sdi_ xt scsi2_ _status status;

sdi xt “secsi2 abort _tag abort tag;

sdi xt scsi2 abort abort;

sdi . _xt_scsi2 clear _queue clear queue;
sdi_xt scsi2 device reset device reset;

sdi_xt_scsi2-clear aca clear aca;
} sdi_xt scsi2_sms;

FIG. 4c

G137

WO 97/27558 PCT/US97/01104

INITIALIZATION ROUTINE PROTOTYPES

sdi_get hba object size
uint32 sdi_get hba object size();

sdi initialize
uint32 sdi_initialize hba(uint8 hba number,
void *adptr,
void *caller context);

sdi enable hba
uint32 sdi_enable hba(void *adptr);

sdi_reset_hba
void sdi reset_hba(void *adptr);

8di_hba count
uint32 sdi_hba count();

sdi_hba irgqg
uint32 sdi_hba irg(void *adptr);

sdi_hba rt virtual addr
uint32 sdi_hba rt virtual addr(void *adptr);

sdi_hba rt physical_addr
uint32 sdi hba_rt_ physical addr(void *adptr);

sdi_hba rt size
uint32 sdi_hba rt size(void *adptr);

sdi_hba pci_ bus_ number
uint8 sdi_hba pci bus_ number(void *adptr);

sdi_hba pci device number
uint8 sdi_hba pci_device number (void *adptr);

FIG. 5

7137

WO 97/27558 PCT/US97/01104

PACKET ROUTINE PROTOTYPES

sdi_send packet
void sdi_send packet(wvoid *adptr,
sdi xt packet *pkt);

sdi_stock packet_pool
uint32 sdi_stock_packet pool (void *adptr,
void *vaddr,
void *paddr,
uint32 size);

sdi get packet from pool
sdi _xt _packet *sdi get packet from pool (void *adptr,
sdi_xt packet**pkt);

sdi_set physical base_addr
void sdi_set physical base addr (void *adptr
uint32 base_addr);

sdi stock sglist pool
uint32 sdi stock _8glist_pool(void *adptr,
uint32 nelem,
void *vaddr,
uint32 size);

sdi_get sglist from pool
uint32 sdi _get sglist from pool (void *adptr,
sd1 xt_sg element *psgl);

sdi_return_sglist_to pool
void *sdi_ return sglist to pool (void *adptr,
sdi_xt sg _element *psgl);

sdi_interrupt
uint32 sdi_interrupt(void *adptr):

packet complete_ callback
void packet_complete callback(sdi xt packet *pkt);

sdi_return packet to pool

void *sdi return packet to pool (void *adptr,
sdi_xt packet *pkt);

FIG. 6

/3"

WO 97/27558 PCT/US97/01104

MAILBOX ROUTINE PROTOTYPES

sdi_get_hba info
uint32 sdi _get _hba info(void *adptr,
sdi_xt hba_info *pinfo);

sdi get next device
uint32 sdi _get next device(void *adptr,
uintls ulp,
uint32 *crq num,
uint32 *uid hi,
uint32 #*uid lo);
sdi_ open crq
uint32 sdi_open crg (void *adptr,
uintlé ulp,
int32 crqg num);

sdi_close_crgq
uint32 sdi _close_crg(void *adptr,
uintlé crqg num);

s8di_get_ scatter gather info
uint32 sdi _get_scatter gather info(void *adptr,
uintlé *capability,
uint32 *max entries,
uint32 *max xfer);

sdi_get ssa web info
int sdi_get ssa_web_info(void *adptr,
void *web buff v
uint32 web buff P
uint32 buff size);

FIG. 7

9/37

WO 97/27558 PCT/US97/01104

OPERATING SYSTEM DEPENDENT ROUTINE PROTOTYPES

sdi_pci find device
uint32 sdi_pci_ find device(void *driver_context,

uint8 *bus,
uint8 +*device,
uint8 *function,
uintl6é vendor id,
uintlé device_id,
uintlé index);

sdi_ pci read config register
uint32 sdi_pci read config register (void *driver context,
uintlé *contents,
uintl6é reg num,
uint8 bus,
uint8 device,
uint8 function);

sdi map physical to virtual
uint32 sdi map physlcal to_virtual (void *driver context
uint32 paddr,
uint32 size);

sdi_ delay task
void sdi_delay_ task(void *driver context,
uint32 ticks);

sdi_ticks_per second
uint32 sdi_delay task(void *driver context);

FIG. 8

10/37

WO 97/27558

PCT/US97/01104

COMMAND SLOT 0

COMMAND SLOT 1

RESPONSE SLOT 0

RESPONSE SLOT 1

MAIL MESSAGE SLOT 0

MAIL MESSAGE SLOT 1

MAIL MESSAGE SLOT 2

MAIL MESSAGE SLOT 3

PCI TO LOCAL DOORBELL

LOCAL TO PCI DOORBELL

FIG. 9

137

WO 97/27558 PCT/US97/01104

INITIALIZE ADAPTERDRIVER | 2070

INITIALIZE REQUEST_Q, _— 2071
RESP_WAIT_QUEUE

INITIALIZE OTHER ADAPTER | _— 2072
FUNCTIONS AND HARDWARE

g

CALL CHECK_RESP_WAIT_QUEUE

V

PROCESS OTHER ADAPTER FUNCTIONS | _— 2074

FIG. 10

1237

WO 97/27558

1014

PCT/US97/01104

SDI_GET_HBA_OBJECT_SIZE [™_ 1010

RETURN

V\

SDI_INITIALIZE

N\ 1011

YES

1013

SDI_ENABLE_HBA

_ 1015

(RN

FIG. 11

13/37

WO 97/27558

\

PCT/US97/01104

SDI_PCI_FIND_DEVICE [™_ 1020

DEVICE
FOUND?

RETURN K~ __ 1022

SDI_PCI_READ_CONFIG_REGISTER

\— 1023

FIG. 12

SDI_MAP_PHYSICAL_TO_VIRTUAL

L\, 1025

/
RETURN |™_1026

FIG. 13

14/37

WO 97/277558 PCT/US97/01104

1

SDI_HBA_IRQ \— 3000

\
RETURN I™_ 3001

FIG. 14

15/37

WO 97/27558

SDI_HBA_RT_VIRTUAL_ADDR

PCT/US97/01104

\— 3010

4
RETURN I™_ 3011

FIG. 15

SDI_HBA_RT_PHYSICAL_ADDR

15/37

RETURN N_ 3001

WO 97/27558 PCT/US97/01104

SDI_HBA_RT_SIZE _ 3030

L4
RETURN I™_ 3031

FIG. 17

SDI_HBA_PCI_BUS_NUMBER _— 3040

/
RETURN N_ 3041

FIG. 18

17/37

WO 97/27558

SDI_HBA_PCI_DEVICE

PCT/US97/01104

L\, 3050

\4

FIG. 19

RETURN ™_ 3051

SDI_GET_PHYSICAL_BASE_ADDR _ 3050

\

FIG. 20

13/37

RETURN N_ 3061

WO 97/27558 PCT/US97/01104

SDI_GET_HBA_INFO _— 3070

\
RETURN N_ 3071

14137

WO 97/27558

PCT/US97/01104

SDI_GET_SG_INFO

\— 3080

3081

3082
/\/

INFORM DEVICE
DRIVER THAT THE
ADAPTER DRIVER

SUPPORTS SG

3083 ’\ﬂ

INFORM DEVICE DRIVER
THAT ADAPTER DRIVER
DOES NOT SUPPORT SG

\

/

RET

URN

FIG. 22

20/37

WO 97/27558

PCT/US97/01104

SDI_GET_WEB_INFO ™N_ 3090

\

PROCESS

WEBMAP N 5091

\

RETURN [™_ 3092

FIG. 23

21/37

WO 97/27558 PCT/US97/01104

SDI_GET_NEXT_DEVICE [™_ 1090

A

DEVICE
FOUND?

1083 1 INITIALIZE DEVICE STRUCTURE

\2
1094 _ SDI_OPEN_CRQ

FIG. 24

33\/3’7

WO 97/27558 PCT/US97/01104

/A
50 | APPLICATION ADAPTER
STRUCTURE N
A
50 [APPLICATION ADAPTER
STRUCTURE 1
s [4
APPLICATION ADAPTER :
STRUCTURE 0 [Device Structure 0] \52
SDI Adapter [Device Structure 1]
Structure P%inter \52
[Device Structure N}

\52
/

51

FIG. 25

23/37

WO 97/27558

PCT/US97/01104

SDI_STOCK_PACKET_POOL

[/ 1030

\2

RECEIVE /O REQUEST FROM
DEVICE DRIVER

|~ 1031

!

SDI_GET_PACKET_FROM_POOL

|~ 1032

1034

/_J

RETURN

1033

PACKET
AVAILABLE?

TRANSLATE I/0O REQUEST FROM

DEVICE DRIVER TO SSA EQUIVALENT

|~ 1035

FIG. 26

l

Y

!

24/37

RETURN | — 1038

COMPLETE PACKET (/1036

SDI_SEND_PACKET |~ 1037

WO 97/27558 PCT/US97/01104

SDI_STOCK_SGLIST_POOL |~/ 1040

SDI_STOCK_PACKET_POOL |~/ 1041

A4

RECEIVE /O REQUEST FROM | _—~1042 °
DEVICE DRIVER

\ 4
SDI_GET_PACKET_FROM_POOL}~/ 1043

V
SDI_GET_SGLIST_FROM_POOL |/ 1046

\

/
TRANSLATE /O REQUEST
FROM DEVICEDRIVERTO | 1950

SSA EQUIVALENT
1048 \/
b y COMPLETE PACKET |~/ 1051
SDI_RETURN_PACKET_TO_POOL
WV
L LINK SG LIST TO PACKET |/~ 1052
1049 _—~RETURN

\\4
SDI_SEND_PACKET |_—1053

\
FlG 27 RETURN |~ 1054

25/31
SUBSTITUTE SHEET (RULE 26)

WO 97/27558

1061
NO

YES

PCT/US97/01104

PROCESS PACKET STATUS [_ 1060

SET ERROR
CODE [\— 1062

SDI_RETURN_PACKET_TO_POOL

\— 1063

V4

SDI_RETURN_SGLIST_TO_POOL

_ 1064

\4

TO DEVICE DRIVER

FIG. 28

26/37

RETURN STATUSCODE |~ _ 1065

WO 97/27558

PCT/US97/01104

1074

| = 1+1

CRQ FOR
DEVICE | OPEN?

YES

1072

/,_/

SDI_CLOSE_CRQ

SDI_RESET_HBA

1073

/1075

1076

YES

-1G. 29

27[37

RETURN T 1077

WO 97/27558

SDI_TICKS_PER_SECOND

PCT/US97/01104

\— 1080

\
SDI_DELAY_TASK

\

FIG. 30

28/37

RETURN I™_ 1082

~__ 1081

WO 97/27558 PCT/US97/01104

SDI_HBA_COUNT \— 1100

1101

1103) SDI_INTERRUPT

FIG. 31

WO 97/27558

PCT/US97/01104

PLACE PKT ON REQUEST_Q \— 2000

N4

CALL SDI_START_REQUEST_QUEUE [_ 2005

\ 4

RETURN

\— 2006

FIG. 32

36/37

WO 97/27558

IF ENTRY ON
REQUEST_Q

SET I=0

2018

SET I=l+1

IF COMMAND
SLOT OIS NOTIN
USE

YES 2015

RETURN

~_ 2011

IF COMMAND
SLOT 1ISNOTIN
USE

T\ 2025

2022

PCT/US97/01104

2024
L

RETURN

31/37

py "y
REMOVE PKT REMOVE PKT
FROM FROM
REQUEST_Q REQUEST_Q
2016 2023
\ ~ V4 ~
WRITE PKT POINTER WRITE PKT POINTER
TO COMMAND TO COMMAND
SLOT 0 SLOT 1
YV Y
|| SET SDI_INTERRUPT_PACKET_COMMAND 5017
IN"PCI_TO_LOCAL_DOORBELL —

FIG. 33

WO 97/27558

READ CAUSE
FROM
PCI_LOCAL_DOORBELL

|~ 2030

2231

IF
SDI_INTERRUPT_

YES

PACKET_ COMMAND
BIT IS SET IN CAUSE

/

PCT/US97/01104

CALL
CHECK_CMD_LIST

_— 2032

WRITE
SDI_INTERRUPT_PACKET_
COMMAND BIT CLEAR IN
PCI_TO_LOCAL_DOORBELL

|~ 2034

RETURN

FIG. 34

3R /67

WO 97/27558 PCT/US97/01104

SET CMDS_TAKEN =0 |~__2040

IF
COMMAND SLOT
0 ISNOTO

COMMAND SLOT
1 ISNOTO

NO

YES 2042 2051 YES

2055
N
READ PKT READ PKT
FROM COMMAND FROM COMMAND
SLOTO SLOT 1
2043 2052
WRITE 0TO WRITEO TO YES
COMMAND COMMAND
SLOT 0 SLOT 1
l 2056
N~V
./ SET
2044 SDI_INTERRUPT_SLOT_FREE
SET CMDS_TAKEN = L~/ IN LOCAL TO PCI DOORBELL
CMDS_TAKEN +1

Y \L 2057

2045
PLACE PKT ON INTERNAL RETURN

PROCESS QUEUE

FIG. 35

33/37

WO 97/27558

PCT/US97/01104

ADD RESPONSE PKT TO _—2060
RESP_WAIT_QUEUE

CALL 2061
CHECK_RESP WAIT QUEUE | 2%

RETURN | 2062

FIG. 36

34/37

PCT/US97/01104

WO 97/27558

880z ” |

~{3sNods3ad oL

¢60¢

/& Old

I =1N3S dS3H 13S

I 101S

N3XOL 31IHM
A

Fmoml

MDMDOIF_<>>In_wm_E
WOHH IMd 139

/

0 1018
3SNOdS3H Ol
N3XNOL FLIHM

A N
1802

N3N0 LIVM ™ dS3d
WOHd Did 139

0802 /| O0=LN3S dS3H i3S

5602 —] NuN13Y
£802 A

-

T138HO0QA I0d”OL ¥DOTNI Lig
3ISNOJS3Y L3N0V 1dNUHILINIIas| | on
13

0 LON
IN3S ds3d
4l

35/37

2802
1802 \

3IN3ANO LIVM dS3Yd
NO AHLN3 ON
dl

S3A

-~
-

WO 97/27558 PCT/US97/01104

READ INTERRUPT CAUSE

FROM
LOCAL_TO_PCI_DOORBELL 2100

\ 4

WRITE INTERRUPT CAUSE BACK TO
LOCAL_TO_PCI_DOORBELL, |~ 2101
TO CLEAR INTERRUPT CAUSE

2102

IF
INTERRUPT
CAUSE YES
INDICATES A SLOT IS FREE

2110
CALL
NO |« | SDI_START_REQUEST _QUEUE
2103
IF
INTERRUPT YES

CAUSE
INDICATES A PACKET RESPONSE

2111

v

CALL
NO SDI_PROCESS_REQUEST_LIST
2104
NO IF YES
CAUSE =0 RETURN [—2112

FIG. 38

36/37

WO 97/27558

SET I=0

2120

PCT/US97/01104

2135

Yad

2121
NO

SET I= I1+1

DN

2122

IF
RESONSE
SLOT 0
IS NOT ZERO

2123

O

READ PKT FROM
RESPONSE SLOT 0

2124

NV

SET RESONSE
SLOT 0 TO ZERO

.]

CALL
COMPLETE_CALLBACK
FUNCTION FOR PKT

“

IF
RESONSE
SLOT 1
IS NOT ZERO

2130

READ PKT FROM
RESPONSE SLOT 1

i,

SET RESONSE
SLOT 1 TO ZERO

i

RETURN

~

2136

2131
NO

CALL

COMPLETE_CALLBACK

FUNCTION FOR PKT

!

FIG. 39

39/37

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/01104

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 19/00
US CL : 395/681, 285, 182.03, 182.05, 828, 825, 835

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.Ss. : 395/681, 285, 182.03, 182.05, 828, 825, 835

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the reicvant passages Relevant to claim No.
Y US 5,307,491 A (FERIOZI ET AL) 26 APRIL 1994 col. 5,| 1-25
lines 1-68, col. 7, lines 7-68, col. 8, lines 1-55
Y,P US 5,564,061 A (DAVIES ET AL) 08 OCTOBER 1996 col. 7,| 1-25
lines 20-68
Y US 5,530,897 A (MERITT) 25 JANUARY 1996 col. 7, lines| 1-25
25-68, col. 8, lines 1-68, col. 9, lines 20-50
E Further documents are listed in the continuation of Box C. D Sec patent family annex.
. Sp gorics of cited d i ::::unﬂpubldie‘a@:‘hlﬁ:ﬂ::lﬁh'dmmm
AT doomment defning the goneral e of thear which ot covaidered e o e iy e v chod > onderstnad the
B carlier document published on or after the intemational filing dste X docwncnt of particulr selevance; the claimod invention “":‘n:
L dwvhnhmyhmdmhonmchn@)orwhd:- whea the document is taken alone
cited o establish the - or other .y dmoﬁmﬁmﬁr ; the claimed & cannot be
Mm(-m - wcp when the doamt s
*0° document referring o an oral disclosure, use, exhibition or other mbndwnhouormoﬁxﬂeh‘m sxch combination
means being obvious 10 & person skilled in the art
P mﬂmﬁwumﬁmdmmw&n o % document member of the same patent family

Date of the actual completion of the international search

09 APRIL 1997

Dutc of mailing of the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

14 9AY 1997

(703) 305-4005

Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

