
(74) Agent: CASSELL, Justin J.; Bacon & Thomas, PLLC, 625 Slaters Lane - 4TH Floor, Alexandria, Virginia 22314 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIP (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ.

[Continued on next page]
UG, ZM, ZW), Eurasian (AM, AZ, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
SPINAL ORTHOSIS AND METHOD FOR USING THE SAME

[1] FIELD OF THE INVENTION

[2] The invention relates to an orthopedic device, and more particularly to a spinal orthosis for providing corrective assistance to a spinal column.

[3] BACKGROUND

[4] Many osteoporosis related fractures occur in the wrist, spine, or hip. Bones become weak due to osteoporosis and require support when healing from a fracture. The incidence of these fractures caused by osteoporosis, particularly vertebral, is rapidly rising with aging in both sexes.

[5] Regarding spinal or vertebral osteoporosis, it is believed that a fourth of women 50 years of age in the general population have one or more vertebral fractures resulting in loss of height and increased kyphosis. Kyphotic postural change is the most physically disfiguring and psychologically damaging effect of osteoporosis and can contribute to an increase in vertebral fractures and risk of falling. Spinal osteoporosis may be associated with reduced pulmonary function, chronic pain, limitations in everyday life, and emotional problems related to appearance.

[6] Therapeutic interventions with proven efficacy include alendronate, risedronate, and raloxifene, which improve bone quality. These therapeutics, however, only prevent approximately 50% of spinal fractures. There is a need to improve back muscle strength because muscle atrophy parallels the decline of bone mineral density of the spine and contributes significantly to kyphotic postural changes. The multi-disciplinary rehabilitation concept of spinal osteoporosis includes back-strengthening exercises to counteract thoracic kyphosis in hyperkyphotic subjects.

[7] Using a spinal orthosis can increase trunk muscle strength and improve posture in individuals with vertebral fractures caused by osteoporosis. Wearing a spinal orthosis can lead to a better quality-of-life by pain reduction, decreased limitations of daily living, and an improvement of well-being. Use of an orthosis may represent an efficacious nonpharmacologic treatment option for spinal osteoporosis. Indications for a spinal orthosis include osteoporosis inclusive of acute and chronic
pain due to osteoporosis, hyperkyphosis, compression fracture, pain relieved by thoracic extension, spinal stenosis, post-operative support, and vertebral collapse.

[8] Traditionally, spinal orthoses have been used in the management of thoracolumbar injuries treated with or without surgical stabilization. The vast majority of orthoses, however, are used in individuals with low back pain. In the United States alone, nearly 250,000 corsets are prescribed each year.

[9] The orthotic treatment modality in the management of vertebral fractures caused by osteoporosis revolves around keeping the spinal column extended to relieve the pressure on the anterior side of the vertebrae, which is the most common area of fracture. This can be done through compression of the lumbar spine with a corset having an anterior panel for intracavitary compression, a posterior panel that extends over the shoulders and auxiliary straps that come across the chest to pull the upper back into extension. There are challenges with these designs in that they are found to be bulky and difficult to don and doff, and often fail to provide the correct tension. It is perceived by many that long term immobilization of such devices can have a negative effect on back extensor strength essential to long term outcomes for such individuals.

[10] SUMMARY

[11] The spinal orthosis embodiments of this disclosure are provided to reduce loads on a vertebra or vertebrae in acute and chronic phases to minimize pain and increase mobility of the individual by reducing functional disability.

[12] The embodiments offer a comfortable and low profile lumbar assembly providing efficient compression around the lumbar area in combination with a rigid posterior frame assembly extending along the spine while securing to the lumbar brace and connecting to a strapping system extending over the shoulders and securing to the lumbar assembly. The strapping system of the spinal orthosis is intended for uncomplicated and effortless use for the wearer and enables the chest to be pulled into extension while counteracting with the posterior spinal frame. The spinal orthosis provides a system for consistent donning and immobilization that allows the wearer to use the spinal orthosis in a prescribed manner under the dictates of a practitioner and despite physical limitations of the wearer.
By providing wearer comfort and means for encouraging wearer compliance for wearing the spinal orthosis, the spinal orthosis provides functional relief of vertebral fracture pain, and facilitates a return to mobility. Particularly, while not limited to such treatment, the spinal orthosis is aimed at reducing pain and improving function in individuals with vertebral fractures from L5 (lumbar vertebrae) to T4 (thoracic vertebrae).

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood regarding the following description, appended claims, and accompanying drawings.

Fig. 1 is a front view of an embodiment of a spinal orthosis on a wearer.

Fig. 2 is a rear view of the spinal orthosis embodiment of Fig. 1.

Fig. 3 is a side view of the spinal orthosis embodiment of Fig. 1.

Fig. 4A is an exterior elevational view of a variation of the spinal orthosis of Fig. 1.

Fig. 4B is an interior elevational view of the spinal orthosis of Fig. 4A.

Figs. 5A-5D show various stages in applying the spinal orthosis and removing the spinal orthosis of Figs. 4A and 4B.

Fig. 6 is an interior view of a posterior frame assembly and lumbar panel in accordance with the spinal orthosis of Fig. 1.

Fig. 7 is an exterior view of the posterior frame assembly and lumbar panel of Fig. 6.

Fig. 8 is an elevational view of padding for the posterior frame assembly and lumbar panel of Fig. 6.

Fig. 9 is an interior view of the posterior frame assembly and lumbar panel of Fig. 6 with the padding of Fig. 8 mounted thereon.

Fig. 10 is an exterior view of the posterior frame assembly and lumbar panel of Fig. 6 with the padding of Fig. 8 mounted thereon.
[27] Fig. 11 is a schematic view of another embodiment of a posterior frame assembly having an adjustable strap system.

[28] Fig. 12 is a schematic view of attaching the posterior frame assembly of Fig. 11 to a panel.

[29] Fig. 13 is a schematic view of providing locking tabs on the posterior frame assembly and the panel of Fig. 12.

[30] Fig. 14 is a schematic view of adjusting the strap assembly of Fig. 11.

[31] Fig. 15 is a schematic view showing a padding cover for the strap assembly of Fig. 1.

[32] Fig. 16 is a schematic view of the strap guide of Fig. 11 on a belt segment.

[33] Fig. 17 is a schematic view of another embodiment of a strap assembly for the spinal orthosis of Fig. 1.

[34] Fig. 18 is another schematic view of the strap assembly of Fig. 17.

[35] Fig. 19 is a schematic view of a variation of the strap assembly of Fig. 17.

[36] Fig. 20 is a schematic view of the compression system in the lumbar assembly for the spinal orthosis of Fig. 1.

[37] Fig. 21 is a cross-sectional schematic view of a handle for the spinal orthosis of Fig. 20.

[38] Fig. 22 is a schematic view of a bladder for the spinal orthosis of Fig. 1.

[39] Fig. 23 is a schematic view of attachment points for the strap assembly on the belt segments of the lumbar assembly.

[40] Fig. 24 is a schematic view showing an attachment point for temporary attachment on a side of the belt segment.

[41] Fig. 25 is a schematic view of a variation of a consistent donning system in an open configuration.

[42] Fig. 26 is a schematic view of the donning system of Fig. 25 when adjusting the brace.
DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

A. Overview

A better understanding of different embodiments of the invention may be had from the following description read with the accompanying drawings in which like reference characters refer to like elements.

For further ease of understanding the embodiments of an orthopedic device in the exemplary form of a spinal orthosis and variants as disclosed, a description of a few terms is necessary. As used, the term "proximal" has its ordinary meaning and refers to a location situated next to or near the point of attachment or origin or a central point, or located toward the center of the body. Likewise, the term "distal" has its ordinary meaning and refers to a location situated away from the point of attachment or origin or a central point, or located away from the center of the body. The term "posterior" also has its ordinary meaning and refers to a location behind or to the rear of another location. Last, the term "anterior" has its ordinary meaning and refers to a location ahead of or to the front of another location.

The terms "rigid," "flexible," "compliant," and "resilient" may be used to distinguish characteristics of portions of certain features of the orthopedic device. The term "rigid" should denote that an element of the device is generally devoid of flexibility. Within the context of features that are "rigid," it is intended to indicate that they do not lose their overall shape when force is applied, and may break if bent with sufficient force. The term "flexible" should denote that features are capable of repeated bending such that the features may be bent into retained shapes or the features do not retain a general shape, but continuously deform when force is applied.

The term "compliant" may qualify such flexible features as generally conforming to the shape of another object when placed in contact therewith, via any suitable natural or applied forces, such as gravitational forces, or forces applied by external mechanisms, for example, strap mechanisms. The term "resilient" may qualify such flexible features as generally returning to an initial general shape without permanent deformation. As for the term "semi-rigid," this term may be used to connote properties of support members or shells that provide support and are free-standing; however such support members or shells may have some degree of flexibility or resiliency.
The embodiments of the disclosure are adapted for a human body, and may be dimensioned to accommodate different types, shapes and sizes of human body sizes and contours. For explanatory purposes, the orthosis embodiments described are referred to as corresponding to different sections of a body and are denoted by general anatomical terms for the human body.

The embodiments of the orthosis are particularly referred to as corresponding to anterior and posterior body sections by an anterior-posterior plane. The anatomical terms described are not intended to detract from the normal understanding of such terms as readily understood by one of ordinary skill in the art of orthopedics.

B. Various Embodiments of the Orthopedic Device and Components for Use Therewith

Under the embodiment in Figs. 1-5, an orthopedic device in the exemplary form of a spinal orthosis 10 is provided, among other functions, for increasing trunk muscle strength and improving posture in individuals with vertebral fractures.

The orthosis 10 includes a lumbar assembly 12, a posterior frame assembly or spinal frame 14, and a strap assembly 16. The strap assembly 16 includes elongate straps 18 that engage an upper portion of the spinal frame 14 near or at the posterior shoulders and extend over the shoulders and under the armpits to orient a middle bracket assembly 24 on a middle portion of the spinal frame 14. The straps 18 are redirected by brackets 26 carried by the middle bracket assembly 24 toward the anterior side of the lumbar assembly 12 whereat the strap ends 20 secure to the surface of the lumbar assembly 12.

The strap assembly 16 permits downward pulling of the straps at a location, such as the waist or abdomen, which is easier for a geriatric individual to pull than at the shoulders, as in many prior art orthoses. Wearers of the orthosis that are arthritic or have poor dexterity need only pull down the straps at a location roughly below the chest to tighten the strap assembly over the shoulders. They may similarly attach the strap ends to the lumbar support at a relatively low location that is comfortable and easy for the wearer to manipulate.

Both the closure system of the lumbar assembly 12 and the spinal frame 14 may be covered by suitable sleeves or covers 22, 46 to cushion and conceal these various features, leading to an aesthetically pleasing and comfortable arrangement.
The lumbar assembly 12 includes first and second belt segments 38A, 38B (collectively 38) which permit easy donning of the assembly over the waist. Suitable additional padding may be provided along the strap assembly, for example over the shoulders to provide compressive relief to the wearer when the strap assembly is tensioned, or along the spinal frame and lumbar assembly.

When assembling the spinal orthosis on a wearer, as shown in Figs. 1-3 under the orthosis in Figs. 4A and 4B, the wearer is preferably in a standing position and is encouraged to stand in an upright position. The wearer places the strap assemblies around shoulders similar to a backpack, whereas the strap ends are either freely extending from the middle bracket assembly downwardly toward or unattached to the lumbar support, or the strap ends are placed at temporary attachment points. The lumbar panel is centered on the spine with the bottom of the rigid posterior panel at approximately the sacrococcygeal joint. If the lumbar assembly includes a rigid or semi-rigid anterior panel, the anterior panel should be centered on the abdomen with the bottom edge just above the symphysis pubis while still allowing the individual to sit comfortably.

As shown in Fig. 5A, the belt segments are then secured to one another overlapping one another and wrapping over the abdomen of the wearer. Once the belt segments are secured to the wearer, the wearer simultaneously pulls the handles 30 of the tensioning elements 28 toward the anterior center of the belt segments 38A, 38B and attaches the handles onto the surface of the belt segments when the appropriate tightness is obtained.

The wearer then removes handles of strap ends 20 of the strap assembly from temporary attachment points or hooks 42 on the left and right sides of the belt segments. The wearer is encouraged to lean into the posterior frame assembly as this makes it easier to tighten the strap assembly. The strap assembly is pulled so that the handles are attached to the belt segments, such as in an overlapping manner as shown in Fig. 1, until a corrective and comfortable amount of compression is obtained in the strap assembly, or attached to attachment points or anterior hooks 76, 78 on the belt segments at predetermined locations as shown in Fig. 5B and Fig. 23.

The bottom edge of the belt segments preferably sit below the hip. The end portion on the belt segment 38B should be centered on the abdomen, and the handles
30 and the strap ends 20 are likewise placed on the end portion. It is preferable that
the belt segments grip the waist, and have a higher level of tightness than the shoulder
straps.

[60] The tightening of the belt segments induces lordosis in the lower back, which
improves the overall posture and reduces the load on the fractured vertebrae. The
tightened belt arms also anchor the orthosis properly on the body. The strap assembly
pulls the shoulders back without limiting mobility in the shoulder and arm area, and
without impairing chest and abdominal breathing. With optimum adjustment, the
wearer experiences pain alleviation and increased mobility.

[61] When removing the brace, the strap ends 20 are removed from the hooks 76,
78, and attached to hooks on the sides of the belt segments 38A, 38B, as shown in
Fig. 5C. This allows for loosening of the strap system 16. As for the lumbar
assembly 12, the handles 30 are adjusted to the sides of the belt segments proximate
to the hooks 76, 78 which loosens the tension in the lumbar assembly. The wearer
can then freely remove the belt segments 38A, 38B and the strap assembly 16, as
shown in Fig. 5D, since all are loosened to the point of brace removal.

[62] Turning to Figs. 6 and 7, the posterior frame assembly includes the spinal
frame 14 defining an elongate frame having a lower portion 15 corresponding to and
extending from a lower portion of a lumbar panel or support 32, such as a flexible or
semi-rigid plate or frame, a middle portion 17 located above the lumbar support 32
and carrying the bracket assembly 24, and an upper portion 19 carrying an upper
bracket assembly 34. The spinal frame 14 defines a plurality of openings 21 along its
length, and is fixedly secured to the lumbar support 32 by a plurality of fasteners 23.
The spinal frame 14 may have a profile, as shown, in which the lower portion 15
flares outwardly and the spinal frame narrows in width as it approaches the upper
portion 19 to anatomically conform to the wearer's anatomy.

[63] The spinal frame 14 is preferably constructed from a malleable aluminum
which can be shaped by a practitioner according to the individual anatomy of a
wearer. The lumbar panel of the lumbar assembly may be formed from a plastic that
is flexible relative to the spinal frame. Lateral side portions of the lumbar panel may
flex relative to the spinal frame. While the spinal frame can be shaped according to
an individual's anatomy, it is also provided to assure additional rigidity to ensure that
the wearer's back can be pulled into extension. Alternatively, the spinal frame may be formed by injection molding a plastic covering over the metal strut.

[64] A soft plastic or other suitable material may be attached to or formed on the lower end of the spinal frame to serve as a cushion element 25 for a wearer's sacrum. A method for forming a metallic frame within an overmolded plastic or various plastic layers is described more fully in U.S. patent 7,727,174, granted on June 1, 2010. Yet another alternative is hot forming the spinal frame under known materials and principles.

[65] In observing Figs. 8-10, the orthosis 10 may include a cover that is dimensioned and configured to extend beyond the lumbar assembly 12 and the spinal frame 14. The cover 132 is located adjacent the wearer, and generally follow the contours of the lumbar assembly 12 and spinal frame 14. The lower and upper brace assemblies 24, 34 may extend in part beyond the periphery of the cover 132, and the handles 30 of the lumbar assembly 12.

[66] In this embodiment, the spinal frame 14 is located along the inside of the lumbar assembly 12 so the spinal frame is located between the lumbar assembly 12 and the wearer's back when the spinal orthosis is worn. The padding may comprise a strip only corresponding to the spinal frame and may not necessarily cover the entire spinal frame and the lumbar assembly. Alternatively, padding may be provided over the entire spinal frame and the lumbar assembly.

[67] The middle bracket assembly 24 includes at least two brackets 26 extending from opposed side portions of the spinal frame 14 and pivoting about pivot points 27. The bracket assembly 24 is located particularly above the lumbar support 32, and the brackets 26 individually pivot at least above the lumbar support 32 in directions toward the upper and lower portions of the spinal frame. The upper bracket assembly 34 likewise has at least two brackets 36 that extend from opposed side portions of the spinal frame 14 at the upper portion, preferably the uppermost end of the upper portion, and similarly rotate about pivot points 37. The pivoting nature of the bracket assemblies is such that they conform to the anatomy of the wearer and can be oriented at angles that facilitate tightening of the strap assemblies.

[68] Each of the bracket assemblies includes the brackets 26, 36 and extensions 29, 39 secured to the spinal frame and carry the brackets 26, 36. The extensions may be
flexible to conform to the anatomy of the wearer or alternatively they may be rigid or semi-rigid. The brackets are preferably D-rings sized accordingly to receive the straps.

[69] The spinal frame 14 may come in predetermined sizes, or in the alternative may be selectively reducible in size. In one variation, the spinal frame 14 may include a plurality of key hole slots along its length, and the lumbar support includes a plurality of locking tabs which permit selective placement of the length of the spinal frame 14 relative to the lumbar frame, as particularly taught in U.S. patent application publication 2011/0105971, published on May 5, 2011.

[70] In an example shown by Fig. 11, another embodiment of the posterior frame assembly 100 includes a posterior frame 102 and a strap assembly 104 connected to the frame 102. The strap assembly 104 adjustably secures to a pair of arms 105 depending from a generally U-shaped or alternatively shaped upper portion 103 of the frame 102 with padding 114.

[71] As shown in Figs. 12 and 13, the posterior frame 102 may be removably mounted onto a panel 124, whether a rigid panel or a panel for use with the lumbar assembly described. The extension 107 of the posterior frame 102 defines a plurality of keyhole slots 120 that secure to pegs 122 extending from the panel 124. To maintain the pegs 122 within the keyhole slots 120, keyhole caps 126 may be placed within the keyhole slots 120 and wedge against the corresponding peg to prevent the extension 107 from becoming loose from the panel 124.

[72] Referring to Fig. 11, the strap assembly 104 defines a pair of strap segments 104A extending from the arms 105 to a slidable strap mount 106 located along an elongate extension 107 that may correspond to a posterior thoracic extension. The strap mount 106 defines a pair of brackets 110 on opposed sides of the extension 107 through which the strap segments 104A extend. The strap mount 106 can adjustably slide along the extension 107 to an appropriate location to suit the needs of the wearer.

[73] The strap mount 106 can be tensioned at strap ends 112, or opened for removal from the extension at the strap ends 112 which removably secure to one another. An elongate strap pad 108 may cover at least part of the strap segment 104A to provide additional padding to the chest and shoulder of the wearer when the strap
segment 104A is tensioned. The strap assembly 104 defines a strap segment 104B which can be secured to the belt segments 38, as similarly shown in Fig. 1, by strap ends or tabs 118.

[74] Figs. 14 and 15 depict adjustment of the strap assembly 104 with a strap segment 104C extending from the arms 105 and securing onto the strap segment 104A to adjust the length of the strap assembly at the upper portion 103 of the frame 102. A strap tab 128, preferably having an alligator clip with opposed sides of hook material arranged for clamping and securing onto loop material of the strap segment 104C, is adjustably secured to the strap assembly 104. At an initial fitting of the orthosis, the clinician can trim the length of the strap assembly and then secure the strap tab 128 onto the trimmed strap assembly. The strap tab 128 is secured by hook fasteners onto a surface of the strap segment 104A.

[75] A strap padding sleeve 108 slidably adjusts along the strap segment 104A, and provides additional cushioning for the wearer when the strap assembly 104 is tensioned and urged against the shoulders and chest of the wearer. The padding sleeve 108 is adjusted to slide over the strap tab 128 to conceal the strap tab 128, and minimize the strap tab 128 from catching on the clothing of the wearer.

[76] Figs. 11 and 16 depict the strap assembly 104 as including strap guides 116 having a loop 117 through which the strap segment 104B passes through, and a base portion 119 for affixation onto side portions of the belt segments 38. The strap segment 104B slides through the loop 117 and the base portion 119 allows for adjustment of the strap segment 104B according to the anatomy of the wearer and to assure proper location of securing the tabs 118 on the belt segment 38.

[77] As shown in Figs. 17 and 18, another embodiment of the strap assembly 16 may include a dosing system 58. In the example shown, the strap assembly is tightened by pulling the strap 18 from near or at the shoulder, the dosing system 58 involves pulling the strap end 62 back through a bracket assembly 63. Depending on the needed travel and the final placement of the strap end 62, a clip or handle 65 is used for grasping to pull the strap 18 downward to affix it to the strap. If the strap end 62 ends in the armpit, one can remove the clip 65 and simply let the strap hang so it is not too difficult for the wearer to attach and deattach.
[78] A plurality of indicia 60, such as numbers, are displayed on the strap to represent relative tightening levels on the strap. A removable tab or stopper 59 with a window is then placed on the appropriate number by a clinician, where a number, such as 10 in the depicted example, indicates a dosing level, such as in maximum tension or a maximum tightening level of the strap 18.

[79] In an example, the strap end 62 is pulled by the wearer until the tab or stopper 59 prevents the strap from going any further. That way, it is ensured that the dosing is correct without the wearer having to look at the numbers. This may be advantageous for wearers with chronic pain of the back and having sensitivity to pressure on the impaired back.

[80] In another strap assembly embodiment of Fig. 19, a buckle 67 is located along or adjacent the shoulder (whether on the anterior side, as shown, or on the posterior side of the shoulder) makes it easier for the wearer to adjust the strap rather than a D-ring. The buckle 67 makes it so the wearer need not hold the strap 18 while placing the strap end 62 down onto the strap. The strap end and the strap engage one another by known means, such as by hook and loop fasteners.

[81] The strap assembly includes an intermediary strap 64 connecting to the spinal frame via one of the upper bracket assemblies discussed above. A tab 66 preferably has two flaps connected at one end, and have opposed faces with hook material so the flaps can enclose an end of the intermediary strap 64 by sandwiching a strap end of the intermediary strap 64 having hook receivable material to allow for a firm grasp of the strap. This arrangement is able to adjust the strap so the buckle 67 rests on top of the shoulders, slightly to the front, to assure the pull is easiest for the wearer since this reduces friction between the strap and buckle.

[82] Fig. 20 illustrates a compression system 40 belonging to the lumbar assembly and having tensioning elements 44 (similar to tensioning element 28) carrying handles 30 extending alongside each of the belt segments 38A, 38B in Fig. 1. The compression system 40 has mounts 48 that slide relative to a lumbar panel 32 and individually secure to the belt segments via attachments 50. The lumbar assembly may include anterior panels that are securable to an anterior portion of the belt segments. The lumbar assembly 12 may be a known assembly or one modified under

[83] In reference to Fig. 21, the handle 30 may comprise a soft structure constructed from at least three layers. The top layer 52 is a soft loop material so another handle can attach on top of this surface and hence the handle itself. A bottom layer 56 is constructed from a hook material having hook elements 61 used to attach it to the belt segments. The center layer is a plastic layer 54 that attaches to the tensioning element or drawstring from the compression system.

[84] The handle 30 defines an opening 53 through which a finger may be extended therethrough to simplify pulling of the tensioning element. The top layer 52 or other suitably soft material may extend about the periphery to provide a cushion about the opening. The strap ends of the strap assembly may likewise have a similar construction to the handle including the opening to facilitate pulling of the straps and affixation.

[85] The bottom layer 56 may be configured so that only a portion 57 is secured against the plastic layer 54. A portion 61 of the bottom layer 56 does not secure to the plastic layer 54 and corresponds to the opening 53. When removing the handle from the belt segments, the wearer can slip a thumb through the opening 53, and have better leverage by fully extending a thumb or finger through the opening 53. The handle 30 is detached from the belt segments by peeling the hook elements of the bottom layer 56 downward and then outward for easy removal of the handle from the belt segments.

[86] According to this embodiment, the handle is advantageous in that it is generally flexible and resilient so it can generally conform to the wearer's anatomy when secured over the belt segments but is also sufficiently durable to withstand forces exerted thereon when used to pull the tensioning elements. The handle is further advantageous in that it is sufficiently soft to enable easy use by geriatric or arthritic wearers.

[87] Fig. 22 depicts an air bladder pad 68 that may be inserted into the cover 46 of the lumbar support to provide a dynamic padding element on the inside of the spinal orthosis, particularly against the spinal frame. The pad may be preinflated or adjustable so the wearer can inflate the pad to a given level, or alternatively the pad
may be a foam or of similar construction that the wearer can selectively place between the cover and the spinal frame when necessary.

[88] According to Fig. 23, the spinal orthosis includes a consistent donning system that ensures that the wearer always places tension on the strap assembly in a consistent manner. The practitioner can set the strap assembly so that when placed on the wearer, it will exert the same tension. This has practical benefits in that the practitioner can regulate the tension in the strap assembly, and takes the guesswork away from the wearer to prevent over tightening of the strap assembly, and potential deleterious usage of the spinal orthosis.

[89] The embodiment of Fig. 23 employs a plurality of hooks or brackets 70, 76, 78 oriented to receive the strap ends 20. The plurality of brackets may be placed at a plurality of sequential locations according to different tightening levels. Each of the brackets has a hook or pin 72 arranged to receive an opening 74 at the strap end 20. The strap end may be arranged in a manner similar to the embodiment of Fig. 21 regarding the handle, or may define a keyhole type configuration as depicted in Fig. 24.

[90] It follows from the consistent donning system that an attachment point is created in the front or anterior side of the belt segments so that when the straps are engaged in that location, the spinal orthosis is in tension. The additional brackets serve likewise as possible attachment points at different locations that may incur more or less tension. As shown in Fig. 24, an attachment point may be provided that is used so the strap assembly is in a substantially loose configuration so the wearer can easily remove the spinal orthosis.

[91] In reference to the embodiment of Figs. 25 and 26, a magnetic locking system 79 is provided in which the strap end 20 includes a locking element 84 that mechanically and magnetically locks to one of a plurality of receptacles 80, 82 on the belt segments 38. The lock receptacles have a slot 90 and mount 88 that permit a pin 86 carried by the locking element to slide into the slot 90 and rest in the mount 88. Fidlock GmbH of Hannover, Germany, provides an example of a magnetic locking system by the SNAP product.

[92] The magnetic locking system is arranged in principle similar to the consistent donning system of Fig. 14 in that the magnetic locking system in the system allows
for consistent donning of the spinal orthosis, particularly affixation of the strap assembly.
CLAIMS

1. A spinal orthosis (10) comprising:

 an elongate and substantially rigid spinal frame (14) having lower, middle and upper portions (15, 17, 19);

 a lumbar assembly (12) including a lumbar belt (38) connected to the lower portion of the spinal frame (14);

 a first middle bracket assembly (24) pivotally connected to the middle portion (17) of the spinal frame (14);

 a first strap (18) having first and second ends, the first end secured to the upper portion (19) of the spinal frame (14);

 characterized in that the first strap (18) extends from the upper portion (19) of the spinal frame (14) to the first middle bracket assembly (24), the first strap (18) redirecting from the first middle bracket assembly (24) and the second end (20) of the first strap (18) securing to the lumbar belt (38).

2. The spinal orthosis according to claim 1, characterized in further comprising at least one attachment point (42, 76, 78) mounted to and extending from an end portion of the lumbar belt (38), the second end (20) of the first strap (18) engaging the at least one attachment point (76, 78).

3. The spinal orthosis according to claim 1, characterized in that the at least one attachment point includes a first pair of opposed attachment points (76, 78).

4. The spinal orthosis according to claim 3, characterized in that the at least one attachment point includes a second pair of attachment points (42) located on opposed sides of the lumbar belt (38) proximate to the spinal frame (14) relative to the first pair of attachment points (76, 78).
5. The spinal orthosis according to claim 2, characterized in that the at least one attachment point (42, 76, 78) defines a hook (70, 72), the second end (20) of the first strap (18) defining an opening (74) adapted to receive and engage the hook (70, 72).

6. The spinal orthosis according to any one of the preceding claims, characterized in that the first middle bracket assembly (24) defines a pivot point (27) along the spinal frame (14) and includes a flexible extension (29) connecting at the pivot point (27) and carrying a bracket (26) for securing to the first strap (18).

7. The spinal orthosis according to any one of the preceding claims, characterized in further comprising an upper bracket assembly (34) pivotally extending from the upper portion (19) of the spinal frame (14).

8. The spinal orthosis according to claim 7, characterized in that the upper bracket assembly (34) defines a pivot point (37) at the upper portion (19) of the spinal frame (14) and includes a flexible extension (39) connecting at the pivot point and carrying a bracket (36) for securing to the first strap (18).

9. The spinal orthosis according to any one of the preceding claims, characterized in comprising a lumbar panel (32) located at the lower portion (15) of the spinal frame (14) extending laterally beyond the spinal frame (14), the first middle bracket assembly (24) located above the lumbar panel (32).

10. The spinal orthosis according to any one of the preceding claims, characterized in that the lumbar panel (32) is at least flexible relative to the spinal frame (14).

11. The spinal orthosis according to claim 9, characterized in that the lumbar belt (38) includes first and second segments (38A, 38B) slidably mounted to the lumbar panel (32).

12. The spinal orthosis according to claim 11, characterized in further comprising a compression system (40) belonging to the lumbar assembly (12) and having tensioning elements (44) carrying handles extending alongside and securable to each of the belt segments (38A, 38B).
13. The spinal orthosis according to claim 1, wherein the first middle bracket assembly slidably secures to the middle portion of the spinal frame and has opposed extensions extending laterally from the spinal frame.

14. The spinal orthosis according to any one of the preceding claims, characterized in that the first strap (18) is tensionable by a downward force directed toward the lumbar belt from the upper portion of the spinal frame.

15. The spinal orthosis according to any one of the preceding claims, characterized in further comprising a second strap (18) having first and second ends, the first end secured to the upper portion of the spinal frame (14) at an opposite side from the first strap (18);

wherein the second strap (18) extends from the upper portion (19) of the spinal frame (14) to a second middle bracket assembly (24) mounted on a side of the middle portion (15) of the spinal frame (14) opposite the first middle bracket assembly (24), the second strap (18) redirecting from the second middle bracket assembly (24) and the second end (20) of the second strap (18) securing to the lumbar belt (38) on a side opposite the second end (20) of the first strap (18);

wherein the first and second straps (18) are tensioned by a downward force directed toward the lumbar belt (28) from the upper portion (19) of the spinal frame (14).
C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>paragraph [0023] - paragraph [0025] paragraph [0028]; figures 1-6</td>
<td>11,12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason as specified
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

PCT/US2013/021170

Form PCT/ISA210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 10329454 A1</td>
<td>27-01-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2010217167 A1</td>
<td>26-08-2010</td>
<td>CN 102333502 A</td>
<td>25-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2400936 A1</td>
<td>04-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010217167 A1</td>
<td>26-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012022419 A1</td>
<td>26-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013006158 A1</td>
<td>03-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010098880 A1</td>
<td>02-09-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1743608 A2</td>
<td>17-01-2007</td>
</tr>
</tbody>
</table>