发明名称
一种电容式触摸屏的触摸检测方法和检测电路

摘要
本发明公开了一种电容式触摸屏的触摸检测方法和检测电路。电容式触摸屏的触摸检测方法包括分别对触摸屏电容矩阵的行和列进行扫描，在对触摸屏电容矩阵的行进行扫描时，或每次同时扫描两行或两列，获取两行或两列的电容差值，或每次扫描一行或一列，获取行或列与基准电容的电容差值；然后对获取的电容差值数据进行处理。本发明为消除共模干扰创造了条件，极大程度的增加了电容触摸屏的抗干扰能力。
1. 一种电容式触摸屏的触模检测方法，包括分别对触摸屏电容矩阵的行和列进行扫描，其特征在于，在对触摸屏电容矩阵的行进行扫描时，或每次同时扫描两行或两列，获取两行或两列的电容差值，或每次扫描一行或一列，获取行或列与基准电容的电容差值，然后对获取的电容差值数据进行处理。

2. 根据权利要求１所述的电容式触摸屏的触模检测方法，其特征在于，所述的获取的电容差值数据进行处理包括取得开关和列的绝对电容等效差，在每次同时扫描两行或两列，任一行列的绝对电容等效差等于另一行列的绝对电容等效差与两行或两列之间的电容差值的代数和，当每次扫描行列时，任一行列的绝对电容等效差等于基准电容与所述行列与基准电容的电容差值的代数和。

3. 根据权利要求１所述的电容式触摸屏的触模检测方法，其特征在于，包括取得行和列的相对电容等效差的步骤，任一行列的相对电容等效差等于某一行列的相对电容等效值与这两行或两列之间电容差值的代数和。

4. 根据权利要求１所述的电容式触摸屏的触模检测方法，其特征在于，所述获取电容差值的步骤包括充电步骤、电荷分享步骤、电荷求差步骤、采样和放大步骤。

5. 根据权利要求４所述的电容式触摸屏的触模检测方法，其特征在于，所述的充电步骤由电源向第一电容和第二电容充电，所述的电荷分享步骤将第一电容和第二电容充电的电量分配到分别与第一电容和第二电容充电并接的２个中间电容上，所述的电荷求差步骤将２个中间电容在与第一电容和第二电容充电并接的情况下反接保留电荷，所述的采样和放大步骤将剩余电荷值转换为与剩余电荷值成正比的电压值输出，所述的第一电容为行或列的触模电容，所述的第二电容为另一行或另一列的触模电容或基准电容。

6. 根据权利要求１所述的电容式触摸屏的触模检测方法，其特征在于，包括校验步骤，所述的校验步骤在触摸屏没有触模发生时，获取行或列的电容差值作为初始电容值，在有触模发生时，获取行或列的电容差值作为过渡电容差值，将过渡电容差值减去对应的初始电容差值得到有效电容差值，然后对有效电容差值数据进行处理。

7. 根据权利要求１所述的电容式触摸屏的触模检测方法，其特征在于，包括取平均步骤，所述的取平均步骤为对触模电容矩阵的行和列进行扫描至少进行２次后，对各行和各列的获取的至少２个电容差值数据的平均值作为电容差值数据终值进行处理。

8. 根据权利要求３所述的电容式触摸屏的触模检测方法，其特征在于，包括以下步骤：

701）获取初始电容值，将各行和各列的相对电容等效值数据分别减去初始电容值后，得到各行各列的计算电容值；

702）判断行和列计算电容值曲线中是否存在电容值大于零的曲线段，如有，则计算每段电容值大于零的曲线段的重心作为该曲线段对应的接触点坐标；如无，则认定为没有触模；

703）将各接触点列坐标和行坐标发送给处理器进行处理。

9. 一种实现权利要求１所述的方法的检测电路，其特征在于，包括第一电容、第二电容，第一中间电容、第二中间电容，第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关、第八开关、第九开关、第一电容的第一端经第一开关接电源、第二电容的第一端经第二开关接电源、第一电容的第一端经第五开关接第一中间电容的第一端，第二电容的第一端经第六开关接第二中间电容的第一端，第一电容的第二端和第二电容的第二
端分别接地，第一中间电容的第二端经第七开关接地，第二中间电容的第二端经第八开关接地；第一中间电容的第一端、第三开关、第四开关、第二中间电容的第二端依次串联，第一中间电容的第二端经第九开关接第二中间电容的第一端；第一开关、第二开关、第三开关、第四开关在第一时段和第二时段接通，第五开关、第六开关、第七开关、第八开关在第三时段接通；第九开关在第一时段接通。

10. 根据权利要求9所述的检测电路，其特征在于，包括运算放大器、第五电容、第十开关、第十一开关和第十二开关；所述的第五电容、第十开关并联后，一端接运算放大器的反相输入端，另一端接运算放大器的输出端；运算放大器的反相输入端接第三开关与第四开关的接点，运算放大器的同相输入端接基准电平；第一中间电容第二端与第九开关的接点经第十开关接基准电平，第二中间电容第一端与第九开关的接点经第十二开关与基准电平，第十开关在第一时段接通，第十一开关和第十二开关在第二时段接通。
一种电容式触摸屏的触摸检测方法和检测电路

[技术领域]
[0001] 本发明涉及电容式触摸屏，尤其是一种电容式触摸屏的触摸检测方法和检测电路。

[背景技术]
[0002] 图 1 为电容触摸的检测一般流程图，其中 110 为等效电容触摸屏。为了降低微处理器的负载，电容触摸屏一般按照行或列的方式进行扫描，即每个时刻扫描一行或者一列。为了表征触摸前后电容大小的变化，需要将扫描行或者列的电容值线性转换成模拟电路可以分辨的量，如时间或者频率，然后在对这个量进行模数转换，将转换结果送给微处理器来判断是否有触摸的发生。
[0004] 图 2 中，Ct 为待检测电容。当比较器 Vout 输出高压电压 Vdd 时，比较器正端电压为 2/3Vdd，Vdd 通过 R4 对 Ct 充电。当 Ct 上电压充至 2/3Vdd 时，比较器 Vout 输出零电压，此时比较器正端电压为 1/3Vdd，Ct 通过 R4 对地放电。当 Ct 上电压放电至 1/3Vdd 时，Vout 输出 Vdd，重复上面的过程。图 3 为 Vout 和 Ct 电压波形。
[0005] 图 4 中，Ct 为待检测电容，等效电阻 Rt = 1/f* Cc （f 为开关频率），Cm 为固定电容，Iref 为恒定充电电流。Ct 越大，Rt 越小，在相同时间 Cm 充电电压越低。这样即可将 Ct 的大小转换成了对应电压。
[0006] SiliconLab 和 Cypress 的两种触摸检测方法将触摸电容的变化转换成频率或者周期或者电压的变化，通过这些变化来判断触摸电容的变化。这两种检测方法在每个时间都只能针对单行或者单列进行操作，而屏的干扰在每个时间段不一样，可能将触摸被当作未触摸、未触摸当作触摸或者检测坐标相对触摸点漂移，导致抗干扰性能差，产生误判别。

[发明内容]
[0007] 本发明要解决的技术问题是提供一种电容式触摸屏能够提高抗干扰能力的触摸检测方法。
[0008] 本发明另一个要解决的技术问题是提供一种实现上述方法的检测电路。
[0009] 为了解决上述技术问题，本发明采用的技术方案是，一种电容式触摸屏的触摸检测方法，包括分别对触摸屏电容矩阵的行和列进行扫描，在对触摸屏电容矩阵的行进行扫描时，每次扫描两行或两列，获取两行或两列的电容差值，或每次扫描一行或一列，
获取行或列与基准电容的电容差值，然后对获取的电容差值数据进行处理。

[0010] 以上所述的电容式触摸屏的触摸检测方法，所述的获取的电容差值数据进行处理包括取得各行和各列的绝对电容等效值，在每次同时扫描两行或两列，任一行或列的绝对电容等效值等于另一行或列的绝对电容等效值与两行或两列之间的电容差值的代数和；当每次扫描一行或一列时，任一行或列的绝对电容等效值等于基准电容值与所述的行或列与基准电容的电容差值的代数和。

[0011] 以上所述的电容式触摸屏的触摸检测方法，包括取得行和列的相对电容等效值的步骤；任一行或列的相对电容等效值等于某一行或列的相对电容等效值与这两行或两列之间电容差值的代数和。

[0012] 以上所述的电容式触摸屏的触摸检测方法，所述获取电容差值的步骤包括充电步骤、电荷分享步骤、电荷求差步骤、采样和放大步骤。

[0013] 以上所述的电容式触摸屏的触摸检测方法，所述的充电步骤由电源向第一电容和第二电容充电，所述的电荷分享步骤将第一电容和第二电容充电的电量分享到分别与第一电容和第二电容充电并接的2个中间电容上；所述的电荷求差步骤将2个中间电容在与第一电容和第二电容充电断开的情况下反接保留剩余电荷；所述的采样和放大步骤将剩余电荷值转换为与剩余电荷值成正比的电压值输出；所述的第一电容为行或列的触摸电容，所述的第二电容为另一行或另一列的触摸电容或基准电容。

[0014] 以上所述的电容式触摸屏的触摸检测方法，包括自校验步骤，所述的自校验步骤在触摸屏没有触摸发生时，获取行或列的电容差值作为初始电容值；在有触摸发生时，获取行或列的电容差值作为过渡电容差值，将过渡电容差值减去对应的初始电容差值得到有效电容差值，然后对有效电容差值数据进行处理。

[0015] 以上所述的电容式触摸屏的触摸检测方法，包括取平均步骤，所述的取平均步骤为对触摸屏电容矩阵的行和列进行扫描至少进行2次后，对各行和各列的获取的至少2个电容差值数据的平均值作为电容差值数据终值进行处理。

[0016] 以上所述的电容式触摸屏的触摸检测方法，包括以下步骤：

[0017] 701）获取初始电容阈值，将各行和各列的相对电容等效值数据分别减去初始电容阈值后，得到各行各列的计算电容值；

[0018] 702）判断行和列计算电容值曲线中是否存在电容值大于零的曲线段，如有，则计算每段电容值大于零的曲线段的重心作为该曲线段对应的接触点坐标；如无，则认定为没有触摸；

[0019] 703）将各接触点列坐标和行坐标发送给处理器进行处理。

[0020] 一种上述方法的检测电路的技术方案是，包括第一电容、第二电容，第一中间电容，第二中间电容，第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关、第八开关、第九开关；第一电容的第一端经第一开关接电源，第二电容的第一端经第二开关接电源；第一电容的第一端经第五开关接第一中间电容的第一端，第二电容的第一端经第六开关接第二中间电容的第一端；第一电容的第二端和第二电容的第二端分别接地，第一中间电容的第二端经第七开关接地，第二中间电容的第二端经第八开关接地；第一中间电容的第一端、第三开关、第四开关、第二中间电容的第二端依次串联，第一中间电容的第二端经第九开关接第二中间电容的第一端；第一开关、第二开关、第三开关、第四开关在
第一时段和第二时段接通；第五开关、第六开关、第七开关、第八开关在第三时段接通；第九开关在第一时段接通。

[0021] 以上所述的检测电路，包括运算放大器、第五电容、第十开关、第十一开关和第十二开关，所述的第五电容、第十开关并接后，一端接运算放大器的反相输入端，另一端接运算放大器的输出端；运算放大器的反相输入端接第三开关与第四开关的接点，运算放大器的同相输入端接基准电平；第一中间电容第二端与第九开关的接点经第十一开关接基准电平，第二中间电容第一端与第九开关的接点经第十二开关接基准电平；第十开关在第一时段接通，第十一开关和第十二开关在第二时段接通。

[0022] 本发明的方法在对触摸屏电容矩阵的行进行扫描时，或每次同时扫描两行或两列，获取两行或两列的电容差值，或每次扫描一行或一列，获取行或列与基准电容的电容差值，然后对获取的电容差值数据进行处理。

[附图说明]

[0023] 下面结合附图和具体实施方式对本发明作进一步详细的说明。

[0024] 图 1 是现有技术电容触摸屏检测方法流程图

[0025] 图 2 是现有技术 SiliconLab 触摸电容大小检测方法的电路图。

[0026] 图 3 图 2 方法 Vout 和 Ct 的电压波形图。

[0027] 图 4 是现有技术 Cypress 触摸电容大小检测方法的电路图。

[0028] 图 5 本发明触摸检测方法充电阶段的电路图。

[0029] 图 6 本发明触摸检测方法电荷分享阶段的电路图。

[0030] 图 7 本发明触摸检测方法电荷求差阶段的电路图。

[0031] 图 8 本发明触摸检测方法电压采样阶段的电路图。

[0032] 图 9 本发明触摸检测方法电压放大阶段的电路图。

[0033] 图 10 本发明触摸检测方法实现电路的单元电路图。

[0034] 图 11 本发明触摸检测方法的时序图。

[0035] 图 12 本发明触摸检测方法绝对电容等效值图。

[0036] 图 13 本发明触摸检测方法相对电容值图。

[具体实施方式]

[0037] 本发明即面向图 1 中的 120，提出了一种新的电容大小检测方法。这种检测方法既可同时检测两行或者两列，即按照差分的方式工作，也可以每次只检测一行或者一列，即单端工作模式。如果按照差分的工作模式，则图 10 中的 Ct1 和 Ct2 则为两行或者两列的触摸电容。如果按照单端工作模式，则图 10 中 Ct1 和 Ct2 中有一个为内置的基准电容，另一个为行或列的触摸电容。由于这两种模式的实施方式基本一样，这里只描述差分模式的工作原理，即同时检测两行或者两列。具体实现可以分为 5 步：充电、电荷分享、电荷求差、采样和放大。

[0038] 第一步，充电步骤：

[0039] 如图 5 所示，电源 Vdriver 对触摸电容 Ct1 和 Ct2 充电，充电完成后 V_{out1} = V_{out2} = V_{driver}，Ct1 和 Ct2 上的电荷分别为 Q_{t1} = C_{t1} * V_{driver} 和 Q_{t2} = C_{t2} * V_{driver}。
第二步，电荷分享步骤：

如图6所示，将Ct1和Ct2的电荷分享到Cs1和Cs2（Cs1 = Cs2 = Cs），

如下图6，根据电荷守恒，V_{out} = V_{driver} * C_{t1} / (C_{t1} + C_s)。故V_{out} = V_{driver} * C_{t1} / (C_{t1} + C_s)也即Cs1上的电荷为Q_{s1} = V_{driver} * C_s / (C_{t1} + C_s)。同理，Cs2上的电荷为Q_{s2} = V_{driver} * C_s / (C_{t2} + C_s)。

第三步：电荷求差步骤：

如图7所示，断开Ct1和Ct2，将Cs1的正极接Cs2的负极，将Cs1的负极接Cs2的正极。这样Cs1和Cs2上剩余电荷为ΔQ = Q_{s1} - Q_{s2} = V_{driver} * C_{t1} / (C_{t1} + C_s) - V_{driver} * C_{t2} / (C_{t2} + C_s)，化简为ΔQ = V_{driver} * C_s^2 / (C_{t1} + C_s)(C_{t2} + C_s)

在Ct1或Ct2中，有最大值V_{driver} / 8 ∆C_{t1}。其中 ∆C为触摸电容的变化比例，这个求差的过程，可以减去外接信号对触摸屏干扰。

第四步，采样步骤：

如图8所示，由于Cs1和Cs2没有电流通路，两端的电压差ΔV不会改变，此时V_{out} = V_{ref}。

第五步，放大步骤：

如图9所示，由于放大的“虚短”作用，在Cs1和Cs2上的剩余电荷全部转移到Cs上，见下图9，Co两端电压为ΔV_{o} = V_{driver} * C_s^2 / (C_{t1} + C_s)(C_{t2} + C_s)

此时，V_{out} = V_{ref} - ΔV_{o} = V_{ref} - V_{driver} * C_s^2 / (C_{t1} + C_s)(C_{t2} + C_s)

根据上面的分析，当Cs = C_s，C_{t1} - C_{t2} = ∆C_{t1}，C_s + C_{t1} ≈ C_{t1} + C_s，C_{t2} + C_s ≈ C_{t2} + C_s时，V_{out} = V_{ref} - ΔV_{o} = V_{ref} - V_{driver} * C_s / 4C_o。从这个等式可以看出，电容的变化量与V_{out}的变化成正比，这样即可以通过检测V_{out}的大小来检测触摸电容的变化大小。

当V_{driver} = 18V，C_s = 50pF，C_s = 50pF，C_s = 10pF时，图中保持状态时，V_{out} = V_{ref}。处于放大状态时，V_{out} = V_{ref} + 0.675V，即对应于3%的电容变化转换成了0.675V的电压变化。

本发明电容式触摸屏的触摸检测方法检测电路的单元电路如图10所示：包括运
算放大器，第一电容 Ct1，第二电容 Ct2（若为单端模式，则 Ct1 和 Ct2 中一个为触模电容，一个为内置的基准电容；若为差分模式，Ct1 和 Ct2 都是触模电容）。第一中间电容 Cs1，第二中间电容 Cs2 和第五电容 C0，第一开关 P1a，第二开关 P1b，第三开关 P1c，第四开关 P1d，第五开关 P2a，第六开关 P2b，第一开关 P3a，第八开关 P3b，第九开关 P4a，第十开关 P4b，第十一开关 P5a 和第十二开关 P5b。第一电容 Ct1，第二电容 Ct2，分别是触摸屏电容矩阵相邻的两行或两列的触模电容。

【0054】第一电容 Ct1 第一端经第一开关 P1a 接电源 Vdriver，第二电容 Ct2 第一端经第二开关 P1b 接电源 Vdriver；第一电容 Ct1 第一端经第五开关 P2a 接第一中间电容 Cs1 的第一端，第二电容 Ct2 的第一端经第六开关 P2b 接第二中间电容 Cs2 的第一端；第一电容 Ct1 的第二端和第二电容 Ct2 的第二端分别接地，第一中间电容 Cs1 的第二端经第七开关 P3a 接地，第二中间电容 Cs2 的第二端经第八开关 P3b 接地；第一中间电容 Cs1 的第一端、第三开关 P1c、第四开关 P1d、第二中间电容 Cs2 的第二端依次串接，第一中间电容 Cs1 的第二端经第九开关 P4a 接第二中间电容 Cs2 的第一端；第五电容 C0、第十开关 P4b 并接后，一端接运算放大器的反相输入端，另一端接运算放大器的输出端；运算放大器的反相输入端接第三开关 P1e 与第四开关 P1f 的接点，运算放大器的同相输入端接基准电平 Vref；第一中间电容 Cs1 第二端与第九开关 P4a 的接点经第十一开关 P5a 接基准电平 Vref，第二中间电容 Cs2 第二端与第十二开关 P4b 的接点经第十二开关 P5b 接基准电平 Vref。

【0055】第一开关 P1a、第二开关 P1b、第三开关 P1c、第四开关 P1d 在第一时段 t1 和第二时段 t2 接通；第五开关 P2a、第六开关 P2b，第七开关 P3a、第八开关 P3b 在第三时段 t3 接通；第九开关 P4a 和第十开关 P4b 在第一时段 t1 接通；第十一开关 P5a 和第十二开关 P5b 在第二时段 t2 接通。

【0056】第一开关至第十二开关可为 MOS 管，其通断由时序电路控制，当开关的控制端为高电平时，该开关导通，对应的时序图如图 11 所示。

【0057】在第一时段 t1 和第二时段 t2 电源 Vdriver 向相邻 2 行或 2 列触摸电容 Ct1 和 Ct2 充电；在第三时段 t3 触摸电容 Ct1 和 Ct2 的电量分享到与 2 列触摸电容并接的 2 个中间电容 Cs1 和 Cs2 上（电荷分享）；在下一个周期的第一时段 t1, 2 个中间电容 Cs1 和 Cs2 在与 2 列触摸电容 Ct1 和 Ct2 断开的情况下反接保留剩余电荷（电荷求差，同时采样）；在下一个周期的第二时段将中间电容 Cs1 和 Cs2 上的剩余电荷值转换为与剩余电荷值成正比的电压 Vout 输出。

【0058】图 1 中的 130 主要由模数转换器构成，考虑到触摸屏检测需要的精度，可以选择 8 位以上的 ADC，配合图 11 的时序，可以在 P3 高电平期间进行采样，P4 高电平期间进行转换和输出。为了提高信噪比，可以多次转换，然后对转换结果取平均值。

【0059】为了防止电容触摸屏由于生产工艺导致的行或行列电容的不一致，可以对电容初值进行自校验，即没有触摸时，记录检测的两行或者列对的差值，比如 x0，触摸时这两个通道的差值为 x1，则由于触摸导致的有效差值为 x1-x0。

【0060】差分模式实施例：

【0061】如结构图 1 中所示，共 n 行 m 列。首先扫描行电容矩阵，每次扫描两行，得到相邻行电容之间的差值，对于 n 行，需要扫描 n-1 次，得到 n-1 个数据，同理对于列电容矩阵，可以得到 m-1 个数据。如果没有触摸，则这 n+m-2 个数据为行列电容失配数据。如果有触摸，
则这 n+m-2 个数据减去未触摸时的 n+m-2 个数据即为由触摸导致的相邻行或者列之间的电容差值。

[0062] 设扫描第 n-1 行和 n 行电容的差值为 R_{n-1,n}, 第 n 行的绝对电容等效值为 R_n, 则可以通过下述方法还原各行的绝对电容等效值：

[0063] 如图 12 所示，以第一行绝对电容等效值 R_1 为基准，可以得到第二行的绝对电容等效值 R_2 = R_1 + R_2 - R_1 = R_1 + R_{2,1}, 第三行的绝对电容等效值为 R_3 = R_2 + R_3 - R_2 = R_1 + R_{2,1} + R_{3,2}, 第四行的绝对电容等效值为 R_4 = R_3 + R_4 - R_3 = R_1 + R_{2,1} + R_{3,2} + R_{4,3}, 依次类推第 n 行的绝对电容等效值为 R_n = R_{n-1} + R_n - R_{n-1} = R_1 + R_{2,1} + R_{3,2} + R_{4,3} \cdots + R_{n-1,n}, 如图 12 所示，1200 即代表对应行的绝对电容等效值。

[0064] 如图 12 所示，对于自电容屏，触摸后的电容值大于触摸前的电容值。只要有一行未触摸到，该行即具有最小电容值 1210，对应图 12 中的 1210。以 1210 为基准求值，可以得到图 13 的相对电容数据 1300, 1310, 1320。采用下面的办法，可以求出列坐标，将行列坐标组合即可以得到触摸坐标。

[0065] 上面的扫描模式中，为了方便描述，每次扫描时均选择相邻的两行或者两列，其实也可以在行与行之间或者列与列之间进行任意组合，只要每行或者每列均扫描到，都可以获得需要的数据。

[0066] 在对电容数据进行处理时，为了减小数据的处理量，可以首先获取一个初始电容阈值，初始电容阈值大于上述的最小电容值。将各行和各列的相对电容等效值数据分别减去初始电容阈值后，得到各行各列的计算电容值，保留大于零的计算电容值。然后判断行和列计算电容值曲线中是否存在电容值大于零的曲线段，如有，则计算每段电容值大于零的曲线段的重心作为该曲线段对应的接触点坐标，如无，则判定为没有触摸；最后，将各接触点列坐标和行坐标发送给处理器进行处理。因为触摸点的数据量很少，通过初始电容阈值的筛选后，处理器最后处理的数据大为减少。
行或者（和）列电容扫描

110

将电容线性转化为可测量量

120

进行模拟-数字转换

130

判断是否有触摸

图 1
图11

图12

图13