ABSTRACT OF THE DISCLOSURE

The present invention provides a method and system for generating negative test
input data. A set of attributes and a set of attribute properties can be extracted from a requirement
specification. A constraint representation syntax can be framed from the extracted set of attribute
properties. A structured diagram is modeled from the framed constraint representation syntax and
a set of use cases, a set of path predicates can be constructed from the structured diagram. One or
more attribute classes can be determined from the set of path predicates based on an attribute
constraint and an attribute dependency. The negative test input data shall be generated from the

one or more attribute classes using genetic algorithm.

REF FIG: 1

19

We claim:

1.

A method of generating a negative test input data, the method comprising:

extracting a set of attributes and a set of attribute properties from a requirement
specification;

framing a constraint representation syntax from the extracted set of attribute properties;

modeling a structured diagram from the framed constraint representation syntax and a
set of use cases;

constructing a set of path predicates from the structured diagram;

determining one or more attribute classes from the set of path predicates based on an
attribute constraint and an attribute dependency; and

generating the negative test input data for the one or more attribute classes.

The method of claim 1, wherein the attribute class is one of a string attribute class, a numeric
attribute class with boundary constraints, and a numeric attribute class with relational
constraints.

The method of claim 2, wherein the step of determining one or more attribute classes further
comprises: .
parsing a set of paths of the structured diagram; and

extracting the set of path predicates, a set of attribute constraints and a set of attribute
dependencies from the parsed set of paths.

The method of claim 1 further comprising:
identifying an attribute test data as the negative test input data when the attribute test
data complies negatively with an attribute constraint of a path predicate.

The method of claim 3, wherein the step of generating the negative test input data further
comprises:

selecting a generation algorithm based on the attribute class.
The method of claim 5, wherein the numeric attribute class with relational constraints
comprises at least one of the set of attribute dependencies.
The method of claim 5, wherein the step of generating the negative test input data further
comprises:

falsifying the set of attribute constraints; and

creating a new set of attribute constraints by combining an attribute constraint with one
or more inner constraints of the attribute constraint, whereby one inner constraint of the
attribute constraint is deleted in a combination, when the attribute class is the string attribute
class.

16

10.

11.

12.

13.

14,

The method of claim 4, wherein;

the generation algorithm comprises a genetic algorithm when the attribute class is the
string attribute class;

the generation algorithm comprises a boundary value analysis and equivalence
partitioning when the attribute class is the numeric attribute class with boundary constraints;
and

the generation algorithm comprises a genetic algorithm when the attribute class is the
numeric attribute class with relational constraints.
A computer program product consisting of a plurality of program instructions stored on a
non-transitory computer-readable medium that, when executed by a computing device,
performs a method of generating a negative test input data, the method comprising:

extracting a set of attributes and a set of attribute properties from a requirement
specification;

framing a constraint representation syntax from the extracted set of attribute properties;

modelling a structured diagram from the framed constraint representation syntax and a
set of use cases;

constructing a set of path predicates from the structured diagram;

determining one or more attribute classes from the set of path predicates based on an
attribute constraint and an attribute dependency; and

generating the negative test input data for the one or more attribute classes.
The computer program product of claim 9, wherein the attribute class is one of a string attribute
class, a numeric attribute class with boundary constraints, and a numeric attribute class with
relational constraints.

The computer program product of claim 9, wherein the step of determining one or more
attribute classes further comprises:
parsing a set of paths of the structured diagram; and

extracting the set of path predicates, a set of attribute constraints and a set of attribute
dependencies from the parsed set of paths.

The computer program product of claim 9further comprising:
identifying an attribute test data as the negative test input data when the attribute test
data complies negatively with an attribute constraint of a path predicate.

The computer program product of claim 10, wherein the step of generating the negative test
input data further comprises:

selecting a generation algorithm based on the attribute class.
The computer program product of claim 13, wherein the numeric attribute class with relational
constraints comprises atleast one of the set of attribute dependencies.

17

15. The computer program product of claim 13, wherein the step of generating the negative test
input data further comprises:
falsifying the set of attribute constraints; and
creating a new set of attribute constraints by combining an attribute constraint with one
or more inner constraints of the attribute constraint, whereby one inner constraint of the
attribute constraint is deleted in a combination, when the attribute class is the string attribute
class.

16. The computer program product of claim 12, wherein;

the generation algorithm comprises a genetic algorithm when the attribute class is the
string attribute class;

the generation algorithm comprises a boundary value analysis and equivalence
partitioning when the attribute class is the numeric attribute class with boundary constraints;
and

the generation algorithm comprises a genetic algorithm when the attribute class is the
numeric attribute class with relational constraints.

Dated this 18" day of December, 2013

Patent Agent No 1652

18

20DEC 2013 -

ORIGINAL

3

59095 |cHEl 20T

Applicant Name: INFOSYS LIMITED
Application No.:

Page 1 of 3

102

Extract a set of attributes and a set of attribute |/

properties from a requirement specification

]

Frame a constraint representation syntax from |/

the extracted set of attribute properties

Model a structured diagram from the framed
constraint representation syntax and a set of use
cases

:

structured diagram

'

Determine one or more attribute classes from
the set of path predicates based on an attribute
constraint and an attribute dependency

;

or more attribute classes

Stop

FI1G. 1

Generate the negative test input data for the one| /

106

108

Construct a set of path predicates fromthe |~

110

112

Dosd Wonipa Spvae
|nrecis LinayTep

Taeewt Qe Mot e

Applicant Name: INFOSYS LIMITED Page 2 of 3

Application No.:
Extract a set of attributes and a set of attribute properties from a requirement 202

specification

¢

Frame a constraint representation syntax from the extracted set of attribute properties |~

204

)
Model a structured diagram from the framed constraint representation syntax and a set o L 206

use cases
Construct a set of path predicates from the structured diagram L~ 208
- 210

Parse a set of paths of the structured diagram

v
Extract the set of path predicates, a set of attribute constraints and a set of attribute /2 12
dependencies from the parsed set of paths

- , 214
Determine one or more aftribute classes from the set of path predicates based onan |/ e

attribute constraint and an attribute dependency
]

218

3 the attribute class the
numeric attribute class with
boundary constraints

s the attribute class the
string attribute class

Falsify the set of attribute constraints

|

Create a new set of attribute constraints by attribute class comprise

combining an attribute constraint with one | 594 rglational constraints
or more inner constraints of the attribute |~
constraint, whereby one inner constraint of ' : 228
the attribute constraint is deleted in a Select a genetic algorithm for e
combination generating a negative test input data

v 224 230
Selecting a gen-et‘lc algor}th,m for generating / Select a boundary value analysis and
a negative test input data equivalence partitioning for generating *

a negative test input data

o5

I’JN{ Konspo Sprochs-
Jrogosus Limere®

et Neot No 1660

FIG. 2

Page 3 of 3

Applicant Name: INFOSYS LIMITED

Application No.:

=
(s)uoi3oauuod uonEesIUNWWOD)

(0) 745
abeloyg ...

IIIIIIIIII

fiowapy olLe

09¢ Jiun BuIssa00.

(s)ao1n8p INdINO

0S€
(s)ao1n8p nduy

Nsnef domape Spevear

\.NA‘«Q\-\; LJM\’(ED
Drrert Pgeor 0 1662

METHODS, SYSTEMS AND COMPUTER-READABLE MEDIA FOR GENERATING A

NEGATIVE TEST INPUT DATA

FIELD OF THE INVENTION

The present invention relates generally to a method and system for verifying functionality of an
application. More specifically, the present invention relates to a method and system for generating
a negative test input data for testing a functionality of an application.

BACKGROUND

A typical commercial business application must be able to handle a situation when a non-
compliant user presents invalid data to the application. In order to determine how the application
behaves in such a scenario, it may be essential to provide a tester of the application with a
comprehensive set of conditions which need to be handled by appropriate exception messages and
a set of negative test input data respectively to verify the exception messages. Providing the set of
negative test input data to the application usually discovers existing bugs in the application and
the application’s fault tolerance capabilities.

Techniques for generating negative test input data automatically for an application exist in prior
art. For instance, an evolutionary search and model based test data generation technique is
currently used in commercial organizations for generating the negative test input data for testing
the application. In another instance, Genetic Algorithm (GA) can be used for creating positive test
input data that satisfy stipulated properties of software attributes and input fields of the
application. Further, while specification models provide attribute properties, techniques for
generating the negative test input data for string data is currently unavailable. Hence there is a
need for a method for generating the negative test input fata for an attribute from a specification
model, where the attribute maybe of a string, numeric, or character type.

The alternate system and method must automate generation of the negative test input data from
the requirements specifications model. Existing attributes and a set of properties of the attributes
shall be extracted from the requirements specifications model, for automatically generating
negative test input data along with test scenarios. Thus a system and method for automatic
generation of the negative test input data from given requirements specifications model of an

application is proposed.

SUMMARY

The present invention provides a method and system for generating negative test input
data. In accordance with a disclosed embodiment, the method may include extracting a set of
attributes and a set of attribute properties from -requirements specification. Further, the method
shall include framing constraint representation syntax from the extracted set of attribute properties
and modeling a structured diagram from the framed constraint representation syntax and a set of
use cases. A set of path predicated shall be constructed from the modeled structured diagrams.
One or more attribute classes from the set of path predicates shall be determined based on an
attribute constraint and an attribute dependency. Finally, the negative test input data for the

determined one or more attribute classes can be generated.

In an additional embodiment, a computer program product for generating negative test
input data. In accordance with a disclosed embodiment, the computer program product may
include extracting a set of attributes and a set of attribute properties from requirements
specification. Further, the computer program product shall include framing constraint
representation syntax from the extracted set of attribute properties and modeling a structured
diagram from the framed constraint representation syntax and a set of use cases. A set of path
predicates shall be constructed from the modeled structured diagrams. One or more attribute
classes from the set of path predicates shall be determined based on an attribute constraint and an
attribute dependency. Finally, the negative test input data for the determined one or more attribute
classes can be generated.

These and other features, aspects, and advantages of the present invention will be better

understood with reference to the following description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart illustrating an embodiment of a method for generating negative test input
data.

FIG. 2 is a flowchart illustrating a preferred embodiment of a method for generating negative test
input data.

FIG. 3 illustrates a generalized example of a computing environment 300.
3

While systems and methods are described herein by way of example and embodiments,
those skilled in the art recognize that systems and methods for electronic financial transfers are
not limited to the embodiments or drawings described. It should be understood that the drawings
and description are not intended to be limiting to the particular form disclosed. Rather, the
intention is to cover all modifications, equivalents and alternatives falling within the spirit and
scope of the appended claims. Any headings used herein are for organizational purposes only and
are not meant to limit the scope of the description or the claims. As used herein, the word “may”
is used in a permissive sense (i.e., meaning having the potential to) rather than the mandatory

sense (i.e., meaning must). Similarly, the words “include”, “including”, and “includes” mean

including, but not limited to.

DETAILED DESCRIPTION

FIG. 1 is a flowchart that illustrates a method for generating negative test input data of an
application in accordance with an embodiment of the invention. In order to generate positive test
input data or negative test input data of the application, each system attribute and a set of attribute
properties of the each system attribute needs to be identified. A system attribute is usually an
input given to an application, and the test input data is a possible set of values the system attribute
can take. At step 102, a set of attributes and a set of attribute properties can be extracted from a
requirement specification such as a software requirements specifications document. The each
system attribute and the set of attribute properties thus extracted are in a textual form, composed
in a natural language that a computing machine may not understand. Hence it is essential for
converting the textual form into a machine readable format, and at the same time representing the
textual form in a constraint representation syntax (CRS) for further processing. At step 104, the
CRS can be framed from the extracted set of attribute properties. For instance, a requirement of
choosing a password while entering an internet banking application, may require satisfying a set
of properties such as: the password must be alphanumeric, the password must have a minimum of
eight characters and a maximum of twelve characters, the password must have at least two
numeric characters, and one special character form a permissible set of ($, @, #) and the first
character must be an alphabet. The aforesaid properties of the password attribute define

constraints or attribute properties of the password attribute. However, the attribute properties are

4

expressed in the natural language or the textual form. The CRS of the attribute properties of the
password can be expressed by following a general structure of a constraint expression in the CRS.
The general structure of the constraint expression is:

Attribute Constraint = <Type ID> [<length ID>, <positional ID>, <inclusion char_set>, <non-
inclusion char set>, <nested constraints>]

In the general structure, <Type ID> defines a type of an attribute. The type of the attribute
can be alphabetic, alphanumeric, string, numeric and the like. The type of the attribute can be
identified by a type identifier. In an instance, a plurality of types of the attributes can be expressed
in Table 1, as:

Table 1: The Type of the attribute and the Type Identifier

Type Description

Identifier

A Alphanumeric string types

C Character string, alphabets only

CcC Character string, uppercase alphabets

CS Character string, lowercase alphabets

N Numeric or Number type)
S Special Characters allowed in the alphanumeric strings

D Date type

In the Table 1, the type identifier specified by N, the numeric type identifier, can be used
to specify both integer and float data types. For a positive integer, N[x] is used, where x is the
number of digits in the attribute’s numeric value. Hence, N[2] may imply a number with two
digits. For negative integers ‘~N [x]’ can be used. Floating point numbers can be specified as Nx,
y] where x and y represent number of digits before and after the decimal point respectively. A
numeric value range can be specified as N[x-y]. Further, the type identifier S, may refer to a

string attribute.

Further, <length ID> provides the range or permissible number of characters in attribute
values. The range can be specified as a [Min-Max] pair. In the instance of the password attribute,
[8-12] implies that a number of characters should be a minimum of 8 and a maximum of 12
characters in length. A fixed length of the attribute can be represented by a single number. The
<positional ID>, can. refer to a specific character set required to be present at a particular
position. The <positional ID> can be represented with ‘p’ followed by an arrow sign (->) and the
specific character set. For example, ‘p1->R’ indicates that character ‘R’ should be at the first
position. Character ranges can also be provided to the positional identifier. For example, p1->(A-
z,a-z) specifies that only an alphabetical character can be at the first position. The
<inclusion _char_set> identifier implies the permissible set of characters. The syntax can be an ‘i’
followed by a comma separated list of permissible characters enclosed in brackets. Character
ranges may also be permitted in order to specify a set of permissible characters. For example,
‘i#,$,*,&) may refer to the set of permissible characters. Similarly, the <non-
inclusion_char_set> identifier means the specified set of characters should not be part of data
 being generated. The syntax can be similar to the syntax of the <inclusion char set> identifier
except ‘ni” maybe used instead of ‘i’. The <nested_constraints> identifier, refers to constraints
specified with in a constraint predicate. For example, in a constraint attribute <C> A[8-12, N[1-
2]], the A[8-12, ...] is the main constraint, whereas N[1-2] is the nested or inner constraint.
Multiple nested or inner constraints can be specified for an attribute and properties of the
attribute.

At step 106, the CRS and a set of use case behavior can be utilized for modeling a
structured diagram such as a Use Case Activity Diagram (UCAD). Initially the set of use cases of
the application must be identified, every use case functionality or behavior can be further
decomposed into a sequence of ‘units of behavior’. A unit of behavior can be a specific
functional interaction between a user and a system, consisting of a user input, a set of system
processes, a set of conditions, and a system output. A plurality of unit of behaviors can be
modeled using the UCAD. In the UCAD, the constraints can be part of decisions, represented by
conditional nodes. The attribute properties can be represented in the conditional nodes using the
CRS. A generic manner of representation of the constraint of the attribute can be:

Attribute_name <C> attribute_properties_in_ constraint_syntax ,

where <C> means contains. For instance constraints on the password attribute maybe
expressed as: password <C> A[8-12,p1->[A-Z, a-z], N[2], S[1,i(#, §, *, &)]]

At step 108, a set of path predicates can be constructed from the UCAD. A Depth First
Search maybe conducted in order to extract all paths of the UCAD. Each path may comprise f a
set of nodes connected sequentially in a directional flow of the path. The conditional nodes of the
path, representing the attribute properties, maybe framed into the set of path predicates. A path
predicate can be constructed by aggregating the constraints present in the path with a logical
AND combination.

Consider an instance of a web application where a user can create a user account. The user
maybe prompted to enter his name and age. On verifying the age to be above eighteen years, the
web application may expect an alphanumeric UserID and a password to be chosen. In an event
specified attributes get satisfied, the web application may permit the user towards registration. In
an event an invalid input is provided by the user, the web application may throw an appropriate
exceptional message. A use case behavior for the given instance can be‘ modeled as shown in

Figure A, below:

I 3

Start

[Enter Name i

Name <C> C[1-50]

Enter Age

Please Give a
proper name

—

Age must be
Age>=18 greater than 18
for registration

Enter UserID

UserID must be 6
to 15 characters
long and must not
contain any special
character

Password must be 6 to
12 characters long,
must have at least one
upper case character,
one digit and one
special character

assword <C> A[8-12,p1->]
.a-z], N[2], S[Li#, $, *, &)]]

Register

A longest path from the UCAD as shown in the Figure A, can be extracted to have a

Figure A

predicate as:

Name <C> C[1-100] = Yes, Age > 18 = Yes, UserID <C> A[6-15] = Yes, Password <C>
A[8-12,p1->[A-z,a-z], N[2], S[1,i(#,$,*,&)]] = Yes.

On extracting the set of path predicates, the attributes maybe identified by a constraint

syntax parser. At step 110, based on the attribute constraint and an attribute dependency, the set
8

of path predicates can be analyzed for determining one or more attribute classes. In the disclosed
embodiment, the one or more attribute classes may include a string attribute class, a numeric
attribute class with boundary constraints, and a numeric attribute class with relational constraints.
The string attribute class may include character data governed by a set of properties that need to
be met. The string attribute can be identified by the presence of the constraint representation
syntax to represent string properties. The numeric attribute class with boundary constraints
usually includes Boolean comparisons against specific values. For instance, if a path gives a
following predicate X>10 = Yes, where X is a numeric attribute, with a boundary condition of
being greater than 10, then the attribute class associated with such path is the numeric attribute
with boundary constraints. Further, if a path predicate is represented as:

X>10=Yes AND Y<20=YES AND X<100=Yes AND Z>0=NO AND Y+Z<10=Yes
then, as X, Y and Z have boundary conditions, and Y and Z are related by a relational constraint
Y+Z<10=Yes, the attribute class associated is the numeric attribute class with relational
constraints.

Finally at step 112, negative test input data shall be generated for the one or more attribute classes
that are extracted from the path predicates. On the UCAD, the data which fails to meet the
constraints specified in the CRS, can be considered as the negative test input data. An advantage
of the negative test input data is to cover alternate functionalities that increase a functional
coverage. In the given instance, if the Age attribute has a value less than 18 years, then an
exception is thrown “Age must be greater than 18 years”. Hence, in the instance, the negative
data for the Age attribute is <18. Further, the type of the attribute usually has a predefined
format. A value that does not conform to the format may lead to format violation. Negative data
that meet violations of the format of the attribute and specified range value, can be instrumental in
determining whether attribute verification and respective error handling mechanism of software
has been properly incorporated or not. Hence negative data can be helpful in evaluating fault

tolerance capabilities of software.

FIG. 2 illustrates an alternate embodiment of a method of practicing the present invention.
At step 202, a set of attributes and a set of attribute properties can be extracted from a
requirement specification such as a software requirements specifications document. The each

system attribute and the set of attribute properties thus extracted are in a textual form, composed
9

in a natural language that a computing machine may not understand. It is essential for converting
the textual form into a machine readable format, and at the same time representing the textual
form in a constraint representation syntax (CRS) for further processing. Hence at step 204, the
CRS is framed from the extracted set of attribute properties. At step 206, a structured diagram
such as a use case activity diagram (UCAD), can be modeled from the framed CRS and a set of
use case behaviors. Further, at step 208, a set of path predicates can be extracted from the UCAD,
by following a set of paths. At step 210, each of the set of paths can be parsed on the UCAD. At
step 212, a set of path predicates, a set of attribute constraints, and a set of attribute dependencies,
shall be extracted from the parsed set of paths. Based on the set of attribute constraints and the
set of attribute dependencies, of the set of path predicates, one or more attribute classes can be
determined at step 214. The one or more attribute classes can be a string attribute class, a
numeric attribute class with bounddry constraints, or a numeric attribute class with relational
constraints.

At step 216, if the attribute class is verified to be of the string attribute class, a negative
test input data for the string attribute class shall be generated by a generation algorithm known as
a genetic algorithm. Attribute properties of the string attribute can be broadly classified in two
categories, namely a length property and a content and structural property. Any data value that
does not satisfy either the length or a structural based property is considered as the negative test
input data. In order to achieve the negative test input data, a number of negative strings shall be
calculated based on a length of the string. The negative string data can be divided in three parts
based on the length. A first part also known as a less than lower bound part, being data values,
with a length less than a lower bound of the length specified in the attribute constraint, a second
part, known as a within bounds part, being data values with a length within bounds of the length
specified in the constraint, and a third part, known as a more than upper bound part, being data
values with a length larger than an upper bound of the length specified in the attribute constraint.
The three parts can be represented on a length graph as below:

String length
| | 1] i 1 i

v

A° [T

1
Region 1 Region 2 i
g Lower g Upper Region 3

Bound Bound

The less than lower bound part can be represented as a region 1, the within bounds part
can be represente\d as a region 2, and the more than upper bounds part can be represented as a
region 3. A Boundary Proximity Weightage (BPW) method can be used for determining a number
of negative string values required based on the length of the string. A ‘N’ number of the negative
test input data can be specified to be generated across all three regions. Consider, N1, N2, and N3
can be a number of string values to be generated in the region 1, the region 2 and the region 3
respectively. In an instance, the N number of negative test input data can be divided uniformly
among the three regions as N1 = N2=N3=N/3. There could be several exceptions to the division.
Further, each region may have multiple string lengths, for instance, region 2 can accommodate
string of lengths 1, 1+1, 142, , u-1 and u. In order to determine a number of negative data
values to be generated for each length, for all the regions, approaches well established in prior art

maybe deployed. In an approach, for calculation of number of data values (Nso1) for a given string

length L from the region 1, following equation may be used:
N, (1) =K (;—-z --- Equation 1
where K is an empirical constant. As N1 is a number of negative test input data from the

region 1, a summation over all string lengths of region 1 must total to N1;

;._::}) NM!(L) = Nl’

K(G+3+ 3 +-+75)= Nyor

K (é) = N, --- Equation 2
Solving the Equation 2, we can get an appropriate value of K for N1. Similar procedure may be
applied for the region 3. However, for the region 2, as each string length has an equal chance of
being selected, a number of data values with respect to each string length need not be determined.
A GA based data generation that randomly selects lengths from the region 2, while creating an
initial population by the length properties specified in the attribute constraint can be utilized.
Further, the attribute constraints need to be modified for generating realistic negative data
values. At step 220, the set of attribute constraints can be falsified. In a process of falsifying the
set of attribute constraints, a new set of attribute constraints can be created by comt;ining an

attribute constraint with one or more inner constraints of the attribute constraint, whereby one
11

inner constraint of the attribute constraint is deleted in a combination, at step 222. Once the new
set of attribute constraints are created, they can be used for generating the negative test input data
by a genetic algorithm, at step 224. The Genetic Algorithm (GA) is an optimization technique
well-known in art. The GA may iteratively determine a series of constraints by a concept of
fitness value. Initially a random set of negative string input data, referred to as an initial
population of individuals, shall be generated. A fitness value of each individual of the initial
population shall be determined, where the fitness value is directly proportional to a number of
constraints the individual satisfies. A selected number of best fit individuals shall be selected for
a Ccross-over process, to create a new set of individuals. Initial set of individuals along with the
new set of individuals shall be carried forward to form a next candidate population. The next
candidate population can be shrunk to a size of the initial population by a process of eliminating
least fit individuals. Individuals, present in the shrunken population can be subjected to a process
of mutation, succeeded with the cross-over process. An individual, with a highest fitness value,
that satisfies the series of constraints can be selected as a candidate solution extraction, and added
to a solution set. Aforementioned process can be iteratively repeated till a required number of

candidate solutions are generated.

However, if at step 218, and step 226 the attribute class, is verified to be of the numeric
attribute class with boundary constraints, a boundary value analysis and an equivalence
partitioning method shall be followed for generating the negative data. In the boundary value
analysis method, each conditional node of the UCAD, that results in a ‘No’ label, of a path
predicate, and which involves only boundary conditions and no relational constraints, shall be
reversed and the label shall be changed to ‘Yes’. As a result, the objective changes to generation
of data through boundary value analysis that satisfy all the comparisons, in the new predicate. If
at the step 226, the attribute class is verified to be of the numeric attribute class with relational
constraints, at step 228, a genetic algorithm shall be utilized for generating the negative test input
data. In the genetic algorithm approach, each attribute can be extracted from a path predicate
having relational constraints. Based on a number of attributes extracted, an individual vector size
can be determined. An initial population can be created by random generations, after the
individual vector size is determined. If a size of the initial population is ‘n’, then ‘n’ vectors can

be created each of size ‘m’, and every vector shall be populated randomly with numbers. Further,
12

the conditional nodes, present in the path predicate can be segregated based on an outcome of a
label. The attribute constraints that have a Yes label, are placed in a yes set and the attribute
constraints that have a No label are placed in a no_set. The initial populatidn, shall be processed
by the genetic algorithm, for generating a first test input data. The genetic algorithm usually
extracts a highest fit individual in every cycle from the initial population and marks, it as a
candidate solution. In order to calculate a fitness of the individual, on the path predicate,
involving the yes set, corresponding elements from the vectors are placed in the condition
expression and a truth value is computed. In an event the condition evaluates to true, then the
fitness of the individual can be incremented by one. If the attribute data value leads to a false
outcome in the no_set, then the fitness value can be incremented by one. A sorted list of
individual in an order of decreasing fitness maybe presented for candidate solution extraction and
cross-over selection.

One or more of the above-described techniques can be implemented in or involve one or more
computer systems. FIG. 3 illustrates a generalized example of a computing environment 400.
The computing environment 400 is not intended to suggest any limitation as to scope of use or
functionality of described embodiments.

With reference to Fig. 3, the computing environment 300 includes at least one processing unit
310 and memory 320. In Fig. 3, this most basic configuration 330 is included within a dashed
line. The processing unit 310 executes computer-executable instructions and may be a real or a
virtual processor. In a multi-processing system, multiple processing units execute computer-
executable instructions to increase processing power. The memory 320 may be volatile memory
(e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM,V flash memory, etc.),
or some combination of the two. In some embodiments, the memory 320 stores software 380
implementing described techniques.

A computing environment may have additional features. For example, the computing
environment 300 includes storage 340, one or more input devices 340, one or more output devices
360, and one or more communication connections 370. An interconnection mechanism (not
shown) such as a bus, controller, or network interconnects the components of the computing
environment 300. Typically, operating system software (not shown) provides an operating
environment for other software executing in the computing environment 300, and coordinates

activities of the components of the computing environment 300.
13

The storage 340 may be removable or non-removable, and includes magnetic disks, magnetic
tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium which can be used to store
information and which can be accessed within the computing environment 300. In some
embodiments, the storage 340 stores instructions for the software 380.

The input device(s) 350 may be a touch input device such as a keyboard, mouse, pen, trackball,
touch screen, or game controller, a voice input device, a scanning device, a digital camera, or
another device that provides input to the computing environment 300. The output device(s) 360
may be a display, printer, speaker, or another device that provides output from the computing
environment 300.

The communication connection(s) 370 enable communication over a communication medium to
another computing entity. The communication medium conveys information such as computer-
executable instructions, audio or video information, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its characteristics set or changed in such
a manner as to encode information in the signal. By way of exampie, and not limitation,
communication media include wired or wireless techniques implemented with an electrical,
optical, RF, infrared, acoustic, or other carrier.

Implementations can be described in the general context of computer-readable media.
Computer-readable media are any available media that can be accessed within a computing
environment. By way of example, and not limitation, within the computing environment 300,
computer-readable media include memory 320, storage 340, communication media, and
combinations of any of the above. .

Having described and illustrated the principles of our invention with reference to described
embodiments, it will be recognized that the described embodiments can be modified in
arrangement and detail without departing from such principles. It should be understood that the
programs, processes, or methods described herein are not related or limited to any particular type
of computing environment, unless indicated otherwise. Various types of general purpose or
specialized computing environments may be used with or perform operations in accordance with
the teachings described herein. Elements of the described embodiments shown in software may
be implemented in hardware and vice versa.

As will be appreciated by those brdinary skilled in the art, the foregoing example,

demonstrations, and method steps may be implemented by suitable code on a processor base
14

system, such as general purpose or special purpose computer. It should also be noted that
different implementations of the present technique may perform some or all the steps described
herein in different orders or substantially concurrently, that is, in parallel. Furthermore, the
functions may be implemented in a variety of programming languages. Such code, as will be
appreciated by those of ordinary skilled in the art, may be stored or adapted for storagé in one or
more tangible machine readable media, such as on memory chips, local or remote hard disks,
optical disks or other media, which may be accessed by a processor based system to execute the
stored code. Note that the tangible media may comprise paper or another suitable medium upon
which the instructions are printed. For instance, the instructions may be electronically captured
via optical scanning of the paper or other medium, then compiled, interpreted or otherwise
processed in a suitable manner if necessary, and then stored in a computer memory.

The following description is presented to enable a person of ordinary skill in the art to make and
use the invention and is provided in the context of the requirement for a obtaining a patent. The
present description is the best presently-contemplated method for carrying out the present
invention. Various modifications to the preferred embodiment will be readily apparent to those
skilled in the art and the generic principles of the present invention may be applied to other
embodiments, and) some features of the present invention may be used without the corresponding
use of other features. Accordingly, the present invention is not intended to be limited to the
embodiment shown but is to be accorded the widest scope consistent with the principles and
features described herein.

While the foregoing has described certain embodiments and the best mode of practicing the
invention, it is understood that various implementations, modifications and examples of the
subject matter disclosed herein may be made. It is intended by the following claims to cover the
various implementations, modifications, and variations that may fall within the scope of the

subject matter described.

15

	IN-CHE-2013-05995
	BIBLIOGRAPHY
	ABSTRACT
	CLAIMS
	DRAWINGS
	DESCRIPTION

