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ATOMIC PROGRAM VERIFICATION

BACKGROUND

Modern trends in computer architecture have seen a move
toward multi-processing, where a single system and/or pro-
cessor includes multiple processing cores that share memory
and are each capable of independent concurrent execution. It
is now relatively common to see chip multi-processors
(CMPs) with 2, 4, or 8 processing cores on a single chip, or
general-purpose graphics processing units (GPGPUs) with
many more processing cores. Additionally, the number of
processing cores on each chip and/or system is likely to
increase even further in the future.

To utilize the increased parallelism capabilities of modern
processors, software programmers utilize various synchroni-
zation facilities such as ISA-supported atomic instructions. A
processing core can execute such instructions atomically with
respect to other processing cores in the system, even though
the instruction itself contains multiple microinstructions. For
example, the atomic instruction CMPXCHG (compare &
exchange) in x86 architectures is a general-purpose atomic
instruction that instructs a processing core to atomically com-
pare the contents of a given memory location to a given value
and, only if the two values are the same, modify the contents
of that memory location to a given new value.

ISAs sometimes provide a limited number of specific-
purpose atomic instructions, such as atomic XADD, BTS,
etc. Where no specific-purpose instructions exist for particu-
lar functionality desired by a programmer, the programmer
may attempt to construct such logic using general-purpose
instructions such as CMPXCHG. However, such construc-
tions can be complex, difficult to implement, and slow to
execute.

SUMMARY OF EMBODIMENTS

An apparatus for executing an atomic memory transaction
comprises a processing core in a multi-processing core sys-
tem, where the processing core is configured to store an
atomic program in a cache line. The apparatus further com-
prises an atomic program execution unit that is configured to
execute the atomic program as a single atomic memory trans-
action with a guarantee of forward progress.

In some embodiments, the execution unit is able to execute
the atomic program with a guarantee of forward progress, at
least in part because the atomic program meets a set of one or
more atomicity criteria, including that executing the atomic
program does not require accessing memory other than the
cacheline. In some embodiments, the programming language
in which the program is encoded may implicitly guarantee
that all programs expressible by the programming language
meet the atomicity criteria. In some embodiments, the pro-
gramming language may be a stack based language that the
atomic execution unit may be able to execute in place, within
the cache line.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a computer system
configured to validate and execute atomic instruction
sequences with guarantees of forward progress, according to
some embodiments.

FIG. 2 is a flow diagram illustrating a method for executing
a custom sequence of microinstructions atomically, where the
instruction sequence conforms to given atomicity criteria,
according to some embodiments.
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FIG. 3 is a flow diagram illustrating a method of a process-
ing core validating and executing an atomic sequence of
instructions using a runtime validation unit in the instruction
execution pipeline, according to some embodiments.

FIG. 4 is a flow diagram illustrating a method of a process-
ing core validating and executing an atomic sequence of
instructions using pre-execution validation (e.g., microcoded
validation agent), according to some embodiments.

FIG. 51s aflow diagram illustrating a more detailed method
for validating and executing an atomic sequence before runt-
ime using a microcoded validation agent, according to some
embodiments.

FIG. 6 is a block diagram illustrating a system that includes
a special-purpose processor configured to execute atomic
sequences of instructions on behalf of one or more processing
cores and/or devices, according to some embodiments.

FIG. 7 is a flow diagram illustrating a method for executing
an atomic sequence using an atomic program execution unit,
according to some embodiments.

FIG. 8 is a block diagram illustrating a computer system
configured to execute an atomic sequence of instructions as a
single atomic transaction using code validation agent, accord-
ing to some embodiments, as described herein.

DETAILED DESCRIPTION OF EMBODIMENTS

This specification includes references to “one embodi-
ment” or “an embodiment.” The appearances of the phrases
“in one embodiment” or “in an embodiment” do not neces-
sarily refer to the same embodiment. Particular features,
structures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure (includ-
ing the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “An appara-
tus comprising one or more processor units. . . . Such a claim
does not foreclose the apparatus from including additional
components (e.g., a network interface unit, graphics circuitry,
etc.).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to” perform
a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs those
task or tasks during operation. As such, the unit/circuit/com-
ponent can be said to be configured to perform the task even
when the specified unit/circuit/component is not currently
operational (e.g., is not on). The units/circuits/components
used with the “configured to” language include hardware—
for example, circuits, memory storing program instructions
executable to implement the operation, etc. Reciting that a
unit/circuit/component is “configured to” perform one or
more tasks is expressly intended not to invoke 35 U.S.C.
§112, sixth paragraph, for that unit/circuit/component. Addi-
tionally, “configured to” can include generic structure (e.g.,
generic circuitry) that is manipulated by software and/or firm-
ware (e.g., an FPGA or a general-purpose processor execut-
ing software) to operate in manner that is capable of perform-
ing the task(s) at issue. Configured to may also include
adapting a manufacturing process (e.g., a semiconductor fab-
rication facility) to fabricate devices (e.g., integrated circuits)
that are adapted to implement or perform one or more tasks.

“First,” “Second,” etc. As used herein, these terms are used
as labels for nouns that they precede, and do not imply any
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type of ordering (e.g., spatial, temporal, logical, etc.). For
example, in a processor having eight processing elements or
cores, the terms “first” and “second” processing elements can
be used to refer to any two of the eight processing elements.
In other words, the “first” and “second” processing elements
are not limited to logical processing elements 0 and 1.

Based on As used herein, this term is used to describe one
or more factors that affect a determination. This term does not
foreclose additional factors that may affect a determination.
That is, a determination may be solely based on those factors
orbased, at least in part, on those factors. Consider the phrase
“determine A based on B.”” While B may be a factor that
affects the determination of A, such a phrase does not fore-
close the determination of A from also being based on C. In
other instances, A may be determined based solely on B.

General-purpose atomic instructions, such as CMPXCHG,
can be used to construct arbitrary logic for accessing single
memory locations (e.g., single cache lines) atomically. As
used herein, the term atomically refers to execution whose
intermediate results are not observable by other threads of
program execution. Therefore, instructions in an atomically
executed sequence (i.e., an atomic sequence) appear to all
other threads as having been executed as a single atomic
operation.

The approach of constructing atomic logic using general-
purpose atomic instructions has several shortcomings. First,
implementing various functions using these general-purpose
instructions often requires rather complex lock-free algo-
rithms or software semaphores. Furthermore, because
CMPXCHG operations can be aborted in the presence of
contention, algorithms utilizing these operations cannot guar-
antee forward progress and require software contention man-
agement mechanisms to arbitrate between concurrent threads
of execution. This leads to performance loss since the user
program or guest OS utilizing CMPXCHG cannot be guar-
anteed that it will proceed through an algorithm with no
possibility of interrupt or page fault. Furthermore, CMPX-
CHG operations are themselves somewhat inefficient to
execute, requiring at least two accesses to the target cache line
for the one operation.

Programmers often require single-line atomic transactions
that are not simple to perform with the limited set of fixed-
function atomic operations and/or would suffer performance
degradation if built using these atomic instructions. For
example, some multi-core task management techniques
require atomic transactions to two or more data values that
may be in the same cache line.

Recently, hardware-transactional memory systems (HTM)
have been proposed as a means for allowing programmers to
execute custom sequences of instructions atomically. How-
ever, such systems require complex hardware support and are
still subject to livelock situations, such as aborted transaction
attempts. Therefore, such systems remain subject to perfor-
mance degradation in the presence of contention and require
contention management mechanisms to avoid deadlock and/
or livelock.

As used herein, the term deadlock refers to a situation in
which a given thread of execution stalls indefinitely due to
contention with another thread (e.g., each of two threads
concurrently waits for the other to release a respective lock).
Asused herein, the term livelock refers to a situation in which
athread of execution repeatedly attempts to execute the same
instruction sequence and fails (at least once) due to contention
with another thread (e.g., an HTM system repeatedly attempts
and aborts execution of a transactional region due to memory
contention). While a given thread is deadlocked or livelocked,
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it cannot make forward progress (i.e., execute and move
beyond the instruction sequence).

According to various embodiments, a computer system
may be configured to provide facilities allowing a program-
mer to designate a custom sequence of instructions as an
atomic sequence that the system can execute as a single
atomic transaction that is guaranteed to make forward
progress. As used herein, a guarantee of forward progress
means that execution of the atomic instruction sequence will
not be subject to deadlock or livelock, as defined above.

In some embodiments, the system may include a validation
agent configured to verify whether a sequence that has been
designated as atomic conforms to specific atomicity criteria.
In such embodiments, meeting the atomicity criteria ensures
that the system can execute the sequence atomically with a
guarantee of forward progress. In various embodiments dis-
cussed in more detail below, the validation agent may be
placed in a processor, in a memory subsystem, or elsewhere in
the system.

FIG. 1 is a block diagram illustrating a computer system
configured to validate and execute atomic instruction
sequences with guarantees of forward progress, according to
some embodiments.

According to the illustrated embodiment, system 190 com-
prises chip multi-processor (CMP) 100, which is connected
via interconnect 160 to various other CMPs 150 and to shared
memory 155. In some embodiments, shared memory 155
may be arranged in a memory hierarchy—for example, one
comprising an [.3 cache and main memory.

Although FIG. 1 illustrates an embodiment with multiple
interconnected CMPs, the systems and techniques described
herein may be applied generally to other systems with mul-
tiple processing cores regardless of how they are distributed
in the system. For example, in some embodiments, CMP 100
and/or any of other CMPs 150 may be replaced with regular
single-core processors. In other embodiments, CMP 100 may
comprise multiple cores and the system may comprise no
other CMPs (e.g., 150), processors, or processing cores.

In the illustrated embodiment, CMP 100 comprises mul-
tiple processing cores (i.e., 105, 135) connected by and con-
figured for communication over on-chip network 145. On-
chip network 145 may correspond to any of various types of
point-to-point networks arranged according to different net-
work topologies (e.g., 2D or 3D grid, Torus, linear, ring, etc.).
In other embodiments, cores 105 and 135 may be connected
via a bus and/or another type of interconnect.

In some embodiments, an on-chip interconnect (e.g., on-
chip network 145) may connect cores on a CMP (e.g., cores
105 and 135 on CMP 100) to one or more shared data caches,
such as data caches 140 (e.g., L.2) cache. In some embodi-
ments, a core may also include one or more private data
caches, such as cache(s) 115 of core 105, which the core may
use to store data cached from the shared memory 155.

In order to maintain coherency of cached data, each core
may also include various cache coherence mechanisms, such
as 120. Cache coherence mechanisms 120 may include facili-
ties to exchange cache coherence messages with other pro-
cessing cores (e.g., MESI protocol messages) and/or to per-
form synchronization functions (e.g., marking cache lines in
cache 115 as exclusively owned, rejecting, accepting, and/or
answering cache coherence probes from other processing
cores, etc.).

According to the illustrated embodiment, core 105 may
also include various registers 110 usable for temporarily stor-
ing data, such as instruction or stack pointers, intermediate
results, or other data. Registers 110 may include various
special-purpose and/or general-purpose registers.
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In the illustrated embodiment, core 105 includes private
memory area 130, which may comprise a protected, fast
memory area for storing private data, such as microcode 132.
Microcode 132 may include microinstructions executable by
processing core 105 to implement different program instruc-
tions (e.g., CMPXCHG) and/or arbitrary microprograms. In
some embodiments, microcode 132 may include micropro-
grams and/or atomic microprograms that have been verified
by a validation agent (e.g., 134) to meet certain atomicity
criteria, as described below.

In the particular embodiment of FIG. 1, private memory
area 130 includes microcode to implement microcoded vali-
dation agent 134, which is configured to receive an indication
of a sequence of instructions, validate whether they are an
atomic sequence that meets given atomicity criteria, store a
copy of the sequence in private memory area 130, and/or
return a handle identifying the stored copy of the sequence to
other program code. This method is described in more detail
in the description of FIG. 3.

In other embodiments, validation agent 134 need not nec-
essarily be microcoded and stored in memory area 130. For
example, in some embodiments, validation agent 134 may be
implemented by hardware logic built into a hardware unit of
core 105, such as instruction decoder 165. In yet other
embodiments, validation agent 134 may be implemented
separately from core 105 altogether, such as by a special-
purpose processor in the memory subsystem, as described
below.

FIG. 2 is a flow diagram illustrating a method for executing
a custom sequence of microinstructions atomically, where the
instruction sequence conforms to given atomicity criteria,
according to some embodiments. Method 200 may be
executed by a processing core, such as processing core 105 of
FIG. 1, as part of executing an atomic instruction sequence
with a guarantee of forward progress.

As shown in FIG. 2, method 200 includes three phases: a
prolog phase 210 (in which any data to be used in the trans-
actionmay be read), a body execution phase 220 (in which the
instructions are executed), and an epilog phase 230 (in which
any results are written back to memory). During the prolog
phase, the processing core locks a given source cache line, as
in 212. As used herein, a processing core that locks a cache
line has exclusive read/write privileges to the cache line such
that no other processing core may read the cache line contents
or cause them to be modified until the core holding the lock
releases it. The particular step(s) necessary to ensure this
property will vary between implementations and depend on
other system details, such as the particular cache coherence
mechanisms and protocols employed. For example, in some
embodiments, a core that locks a given cache line may refuse
probes or other cache coherence messages that it receives
from another processor when those messages concern a
locked cache line. In some embodiments, the core may also
delay handling various hardware interrupts and/or software
signals that the core receives until after executing the atomic
sequence and unlocking the cache line. By performing such
steps, a core may read and/or modify the contents of the cache
line without interruption.

After locking the cache line, as in 212, the processor may
read data from the source cache line, as in 214. Reading the
source cache line in 214 may include storing the data from the
cache line in one or more target registers for subsequent
access by one or more instructions of the sequence. In some
instances, the processor may read less than the entire source
cache line into the target registers. For example, the processor
may read only one portion of the source cache line (e.g.,
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64-bytes) into a single target register or may read a number of
(orall) portions of the source cache line, each into a respective
target register.

As shown in FIG. 2, once the prolog phase is complete,
execution may proceed to the body execution phase 220
where the core executes the atomic sequence of instructions
as a single atomic transaction, such as in 222. Various ones of
these instructions may read data from and/or write data to the
target register(s).

As indicated in 222, the atomic sequence of instructions
conforms to specific atomicity criteria that enable the core to
execute the sequence as a single atomic transaction. In some
embodiments, atomicity criteria may be chosen to ensure that
the sequence is quick and simple to execute and can be guar-
anteed forward progress by the executing core. Such criteria
may include conditions that no instruction in the sequence
accesses memory or jumps to sections of code outside the
atomic sequence. In some embodiments, atomicity criteria
may include conditions on the entire sequence, such as an
instruction count limit or time limit on executing the
sequence. Atomicity criteria are discussed in more detail
below.

When all the instructions in the atomic sequence have been
executed, the process enters epilog phase 230. In epilog phase
230, the processing core may write results of the execution
back to the locked cache line 232. For example, the core may
write the data in the target register to the source cache line.
Once this is done, the executing core may release the source
cache line, as in 234.

Before executing the sequence of instructions, the system
may first determine that the sequence is in fact an atomic
sequence that conforms to the specific atomicity criteria. In
different embodiments, this determination may be done at
different times and/or by difterent components of the system.
For example, in some embodiments, the sequence may be
validated as it is being executed, such as by a hardware-
implemented validation agent within the instruction execu-
tion pipeline (e.g., indecoder 165). In other embodiments, the
sequence may be validated statically before being executed,
such as by a microcoded validation agent invoked before the
instruction sequence is executed. In yet other embodiments,
the sequence may be validated and/or executed by a special-
purpose, off-chip processor configured to execute atomic
instruction sequences on behalf of other processing cores.
Although other possibilities exist, these three configurations
are further elaborated upon below.

FIG. 3 is a flow diagram illustrating a method of a process-
ing core validating and executing an atomic sequence of
instructions using a runtime validation unit in the instruction
execution pipeline (e.g., in the decoder), according to some
embodiments. Some processing cores may be configured to
execute program instructions using a multi-stage instruction
pipeline, which may include stages such as instruction fetch,
instruction decode, instruction execute, memory access, reg-
ister write back, etc. In some embodiments, a processing
core’s instruction pipeline may include a validate stage in
which the processing core verifies whether an instruction in
an atomic sequence meets a set of one or more atomicity
criteria. The validation stage may be implemented as a sepa-
rate stage or as part of a pre-existing stage (e.g., the decode
stage) that is performed before an execution stage of the
pipeline. An execution stage refers to a pipeline stage in
which the processing core computes a result of the instruc-
tion. Whether the instruction reaches the execution stage may
depend on the processing core successfully validating, in the
validation stage, that the instruction meets the atomicity cri-
teria.
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In some such embodiments, a decoder (e.g., 165 in FIG. 1)
may include a validation unit configured to validate each
instruction in the sequence during the decode stage. In
response to discovering that the sequence (and/or any instruc-
tion in the sequence) does not conform to the atomicity cri-
teria, such a validation agent may halt execution, raise an
exception, and/or otherwise indicate an error and unlock the
source cache line.

FIG. 3 illustrates an example of one method by which a
validation agent in such an embodiment may operate. In
different embodiments, method 300 of FIG. 3 may be
executed by the decoder, by a validation unit implemented as
part of the decoder, and/or by another hardware component of
a processor or processing core.

As shown in 305, method 300 is initiated in response to the
system detecting the start of a sequence of program instruc-
tions designated for atomic execution. For example, in some
embodiments, the sequence may be demarcated in program
code using “START” and “STOP” program instructions
respectively denoting the start and end of the sequence.

In response to reading a START instruction, as in 305, the
core may perform one or more steps corresponding to the
prolog of FIG. 2. These steps may include reading a source
cache line (as in 212) and locking the cache line (as in 214).

In some embodiments, the source cache line and/or target
register may be indicated by the START instruction (e.g., in
one or more fields or parameters). For example, in embodi-
ments utilizing an x86-compatible architecture, a START
instruction may include the memory address of the source
cache line in one field of the START instruction (e.g.,
modrm.r/m field) and an indication of the target register in
another field (e.g., modrm.reg field). In response to reading
these values, the core may lock the identified source cache
line (as in 310) and load data from that indicated source cache
line into the identified target register (as in 315) for subse-
quent access by one or more of the instructions in the
sequence.

In some embodiments, executing the START instruction
may further comprise recording the memory address of the
data in the source cache line (as in 320) and/or the number of
instructions in the atomic sequence (as in 325). In some
embodiments, the number of instructions in the atomic region
may be indicated by a value stored in another field of the
START instruction, such as the xop.vvvv field.

After completing steps 305-325 (which may correspond to
the prolog phase of execution), the core may execute the body
of'the transaction, as illustrated by steps 330-345. During this
phase, the core proceeds through the code sequence and if the
next instruction in the sequence meets the atomicity criteria
(as indicated by the affirmative exit from 330), the core
executes that instruction (as in 340). If the next instruction
does not meet the atomicity criteria (as indicated by the nega-
tive exit from 330), the system may raise an exception, halt
execution of the sequence, jump to error handling code, and/
or otherwise indicate that the sequence does not meet the
atomicity criteria, as in 335.

In some embodiments, the atomicity criteria may be cho-
sen to ensure that the sequence is quick and simple to execute
and can be guaranteed forward progress by the executing
core. For example, in some embodiments, the criteria may
include the criterion that no instruction in the sequence may
access memory. In some embodiments, the criteria may also
include the criterion that no instruction in the sequence may
access (read and/or write) a register that is not a general-
purpose register (GPR). Since instructions that meet these
criteria cannot themselves cause a data conflict with another
thread of execution, an instruction sequence composed of
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only such operations may not be subject to deadlock or live-
lock, and may therefore be guaranteed to make forward
progress when executed. In various embodiments, the atom-
icity criteria may include various other or additional condi-
tions (e.g. no jump instructions, no immediate forms of
instructions, etc.) In addition to criteria that relate to the type
of instructions that an atomic sequence may contain, the
enforced atomicity criteria may include a limit on the number
of instructions in the sequence.

Although instructions that meet the atomicity criteria can-
not access shared memory directly, they may indirectly
access the data in the source cache line via the target register.
Thus, instructions that would normally access data in the
source cache line may instead read that data from and/or write
other data to the target register. Once the core finishes execut-
ing the atomic sequence (e.g., encounters a STOP instruc-
tion), as indicated by the negative exit from 345, the core may
write the computation results stored in the target register back
to the source cache line, as in 350, and release the source
cache line, as in 355. Thus, the core is able to effectively
execute the instructions in the atomic sequence as a single
atomic operation.

In some embodiments, the decoder determining whether
the instruction meets the atomicity criteria (step 330) may
comprise examining an opcode of the instruction to deter-
mine whether it indicates an instruction that is known to meet
the atomicity criteria. For example, in some embodiments, a
decoder in an x86 system may determine that the instruction
meets the atomicity criteria if the opcode of the instruction
indicates any instruction chosen from the set of: ADD, ADC,
AND, XOR, OR, SBB, SUB, CMP, CMOVcc, BT, BTS,
BTC, BTR, TEST, and XCHG. In this example, the listed
instructions meet the atomicity criteria that none accesses
memory or non-general-purpose registers and that none can
instruct the processor to transfer program control to a point
outside of an atomic sequence (i.e., no jump instruction).

Although steps 330-345 indicate a linear execution of
instructions, one of ordinary skill in the art will recognize that
various cores may utilize instruction pipelines such that mul-
tiple instructions may be executing in 340 concurrently while
a subsequent instruction is decoded and/or compared against
atomicity criteria in 330. Additionally, the presence of con-
ditionals may cause different instructions in the sequence to
be executed multiple times or not at all.

In some embodiments, releasing the source cache line in
355 may include undoing the lock procedure performed in
310, such as by accepting subsequent probes regarding the
cache line, re-enabling interrupts, and/or other implementa-
tion-specific steps.

In some embodiments, the validation agent may be config-
ured to validate the instruction sequence before execution
rather than at runtime (as in FIG. 3). For example, such a
validation agent may be implemented in microcode (e.g.,
microcode 132).

FIG. 4 is a flow diagram illustrating a method of a process-
ing core validating and executing an atomic sequence of
instructions using pre-execution validation (e.g., microcoded
validation agent), according to some embodiments. In such
embodiments, a private memory area (such as 130 of FIG. 1)
may store program instructions implementing a validation
agent (e.g., 134) configured to validate whether a sequence of
instructions is an atomic sequence conforming to one or more
atomicity criteria.

According to the illustrated embodiment, method 400
begins in 405, when the user code registers a sequence of
program instructions with the validation agent as an atomic
sequence. In some embodiments, the user code may register
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the sequence using a special-purpose instruction (e.g.,
ATOMICDEEF). Such an instruction may include parameters
and/or fields that indicate the sequence of instructions.

In response to the attempt to register the sequence of
instructions in 405, the microcode validation agent attempts
to validate that the sequence of instructions is an atomic
sequence, as in 410. As indicated in 410, validating the
sequence as atomic may comprise examining each instruction
in the sequence and determining that it meets one or more
atomicity criteria.

Like the runtime validation agent, the microcode valida-
tion agent may check that each instruction in the sequence
meets the validation criteria. These criteria may include those
enforced by the runtime validation agent (e.g., no instruction
in the sequence may access memory or a register other than a
GPR). In addition, the microcode validation agent may ensure
that each instruction is quick and easy to decode (e.g., each
instruction is of limited length, such as 4-bytes, and does not
include immediate forms of instructions). Like the hardware-
based runtime validation agent, the microcode validation
agent may determine that an instruction meets the atomicity
criteria in response to detecting that the instruction includes
an opcode known to indicate one of a given set of acceptable
instructions that meet the atomicity criteria.

If the sequence is an atomic sequence (i.e., meets the ato-
micity criteria), the validation agent may store the atomic
sequence in a private, protected memory area, as in 415. In
some embodiments, a core may include a private memory
area (such as 130) where the atomic sequence may be stored.
Private memory area 130 may include various protected areas
(e.g., c6 save area or subset of c6 save area) where the micro-
code validation agent may store the instruction sequence
without the possibility of it being overwritten by another
processor. The term protected memory area may referto those
memory areas of a processor that are accessible to microcode
but not to software or to other processors.

In 420, the validation agent returns a handle to the invoking
user code, as in 420. The handle may comprise a unique
identifier for the stored atomic sequence. When the user code
needs to execute the atomic sequence, it may invoke the
stored atomic sequence using this handle, as in 425. For
example, the system may recognize a special instruction for
invoking the atomic sequence, as described below.

In response to the user code invoking the stored sequence
using the identifying handle (as in 425), the processing core
may execute the pre-validated atomic sequence atomically, as
in 430. In some embodiments, executing the atomic sequence
in 430 may comprise reading a source cache line into a target
register, executing the atomic sequence, writing the results in
the target register back to the source cache line, and unlocking
the source cache line. Since the sequence has already been
validated, executing the atomic sequence in 430 may not
comprise re-validating the sequence.

FIG. 51s aflow diagram illustrating a more detailed method
for validating and executing an atomic sequence before runt-
ime using a microcoded validation agent, according to some
embodiments. Method 500 illustrated in FIG. 5 may corre-
spond to a specific implementation of method 400 in FIG. 4
for an x86 architecture. However, in different embodiments,
implementation may vary somewhat, including the particular
instruction names, instruction fields used to communicate
data, particular registers used, etc. It is intended that this
disclosure encompass all such embodiments.

According to the illustrated embodiment, to register a
sequence of instructions with the microcode validation agent,
the user code first executes, e.g., an ATOMICDEF instruc-
tion, as in 505. In the illustrated embodiment, the ATOMIC-
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DEF instruction includes a modrm.r/m field, in which the
relative instruction pointer address of the first instruction in
the sequence is stored. In addition, the ATOMICDEF instruc-
tion in this embodiment includes an xop.vvvv field, which
stores a count of (i.e., the number of) instructions in the
sequence.

In 510, as part of (or in response to) executing the ATOM-
ICDEF instruction, the microcode validation agent attempts
to validate that the instruction sequence identified by the
ATOMICDEF (e.g., in the modrm.r/m field) meets the atom-
icity criteria. As described above, this validation may com-
prise determining that each of the instructions in the sequence
is one of a pre-known acceptable set of instructions that meets
the atomicity criteria. In some embodiments, this atomicity
criteria may include requirements that (a) no instruction in the
sequence may access memory, (b) no instruction in the
sequence may access a register that is not a GPR, (c¢) each
instruction is specified using a particular, limited length form,
(d) no instruction in the sequence uses an immediate form (an
immediate instruction form includes a parameter specified as
a number rather than as a register identifier), and/or various
other requirements that enable a core to execute the atomic
sequence as a single atomic transaction with a guarantee of
forward progress.

If one or more instructions in the sequence do not meet the
atomicity criteria, the validation fails (as indicated by the
negative exit from 515). In some embodiments, the micro-
code validation agent may signal this failure of the sequence
to meet the atomicity criteria by returning an indication of
failure to the user code, as in 520, rather than returning a
handle to a stored version of the sequence. For example, if the
validation fails, the validation agent may return the value 0 to
the invoking user code rather than a handle to a stored atomic
sequence.

If the validation is successful, as indicated by the affirma-
tive exit from 515, then at sequence indicated by the ATOM-
ICDEF instruction is an atomic sequence that meets the ato-
micity criteria. In this case, the microcode agent may copy the
instruction sequence to a protected memory area, such as the
c6 save area in 525, or to another implementation-specific
area that ensures software does not rewrite the instructions
after an ATOMICDETF instruction is executed, thereby creat-
ing the possibility of deadlock.

In some embodiments, the agent may preface the saved
version of the instruction sequence with one or more instruc-
tions executable to perform a prolog phase for the atomic
sequence of instructions. For example, in 530, the agent pref-
aces the saved instruction sequence with a START instruc-
tion. As described above, the START instruction may include
respective fields usable to indicate a source cache line and
target register for a given atomic execution of the sequence. In
such embodiments, the START instruction may be executable
to lock the source cache line and to load data from it to the
target register.

In 535, the microcode validation agent returns (to the
invoking user code) a handle that uniquely identifies the
stored atomic sequence. The user code may then use the
unique handle to invoke the pre-validated atomic sequence
and thereby execute it atomically. For example, in 540, the
user code invokes the stored atomic sequence by executing an
ATOMICSTART instruction. The ATOMICSTART instruc-
tion includes parameters and/or fields specifying the unique
handle and the memory locations/inputs for the sequence
(e.g., source cache line and target register).

In response to the invocation of 540, the processing core
executes the stored atomic sequence atomically, as in 545.



US 8,793,471 B2

11

Executing the sequence atomically in 545 may include
executing prolog, body, and epilog phases, such as those of
method 200 in FIG. 2.

In some embodiments, the basic START functionality
described above may be extended to allow an atomic
sequence to operate on multiple cache lines. For example, a
START?2 instruction may be defined to allow a prolog phase
of'an atomic sequence to lock and load a second source cache
line. Thus, an atomic instruction sequence may operate on
data from multiple cache lines.

In some embodiments, the prolog of an atomic sequence
that accesses multiple cache lines (e.g., using START and
START2) may be implemented in a manner that avoids dead-
lock conditions. For example, in some embodiments,
START2 may be executable to read and lock only the cache
line that immediately follows the one locked by the preceding
START instruction. By doing this, the system avoids dead-
lock situations in which two threads attempt to lock the same
two cache lines in the opposite order, each succeeding in
locking a first cache line, but then waiting indefinitely for the
other thread to release the other cache line.

In some embodiments, START2 may be used to specify an
arbitrary source cache line that need not be the one immedi-
ately following the source cache line specified by a preceding
START instruction. However, to avoid deadlock, the system
may enforce an ordering on the locking. For example, micro-
code can be used to ensure that a core executing START and
START2 locks each of the source cache lines in an order
determined by the respective physical memory addresses of
those source cache lines (e.g., ascending or descending). By
imposing this ordering across all threads, the system can
avoid the deadlock situation associated with locking multiple
cache lines.

Some atomic sequences may require executing jump
instructions. However, a jump instruction may be problematic
if it causes program flow to jump outside of the atomic
sequence. This may not necessarily cause adverse effects for
embodiments with a runtime-validation scheme (e.g., in the
decoder) since the runtime validation agent detects any
instructions that do not meet the atomicity criteria before they
are executed. However, since a pre-runtime validation agent
(e.g., microcoded validation agent) checks the atomic
sequence in advance, jumping outside of the sequence at
runtime may allow instructions that do not meet the atomicity
criteria to be executed.

In some embodiments, to avoid jumping outside of a pre-
validated atomic instruction sequence, the atomicity criteria
may include a stipulation that jump instructions are not per-
mitted. In other embodiments, the criteria may allow jump
instructions, but check to ensure that they do not cause execu-
tion to jump beyond the atomic sequence.

A microcoded validation agent, as described herein, may
also enforce various implementation-specific atomicity crite-
ria in different systems. For example, in some embodiments,
the microcoded validation agent may disallow instructions
that utilize instruction pointer relative addressing modes.
Since invoking a saved atomic sequence may modify the
instruction pointer, instructions that include IP-relative
parameters may cause unexpected program behavior.

In some embodiments, the atomic sequence validation and/
or execution may be performed by an entity other than the
core. For example, in some embodiments, the system may
include a separate, oft-chip atomic program execution unit
configured for use by multiple processing cores and/or by
other system devices. The off-chip unit may be configured to
receive an indication of an atomic sequence from a processing
core and/or from another system device and in response, to
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execute the atomic sequence as a single atomic memory trans-
action. In such embodiments, the atomic execution unit may
validate that an indicated sequence of instructions meets a set
of atomicity criteria explicitly or implicitly. For example, the
atomic execution unit may implicitly validate a sequence if
the unit is able to interpret only those sequences that meet the
set of atomicity criteria. Such embodiments are described in
more detail below.

FIG. 6 is a block diagram illustrating a system that includes
a special-purpose processor configured to execute atomic
sequences of instructions on behalf of one or more processing
cores and/or devices, according to some embodiments. In the
illustrated embodiment, system 600 includes a chip-multi-
processor 605, which includes processing cores 610 and 630.
The processing cores are connected to each other and to
shared cache 635 by on-chip network 640. Each core itself
includes one or more private caches (e.g., 615) and registers
(e.g., 620). As described above with relation to FIG. 1, in
various embodiments, processing cores in system 600 may be
distributed in different arrangements, including on one or
more separate chips. For example, system 600 may include
one or more other CMPs and/or processors, such as 650.

According to the illustrated embodiment, interconnect 645
connects CMP 605 to other processors/CMPs 650 and a
shared memory subsystem 655. The shared memory sub-
system 655 may include facilities to store and/or provide
access to shared data (i.e., data shared by multiple processing
cores in the system). For example, in the illustrated embodi-
ment, shared memory subsystem 655 includes one or more
shared caches 665 for storing data and a memory controller
660 for facilitating access by the system’s processing cores to
that shared data.

In the illustrated embodiment of FIG. 6, system 600
includes atomic program execution unit 670, which may be
implemented as a special-purpose processor for executing
atomic programs. In various embodiments, atomic program
execution unit 670 may be implemented as part of shared
memory subsystem 655 and/or placed in different parts of the
system as to facilitate fast access to a memory controller (e.g.,
660), shared caches (e.g., 665), and/or other components
and/or functionality in the shared memory subsystem.

In some embodiments, a processing core (e.g., 610) or
peripheral device (e.g., 680) may utilize a special-purpose
instruction set (ISA) to encode an atomic program and send
the atomic program (or an indication thereof) to the atomic
execution unit (e.g., 670) for execution. In some embodi-
ments, the expressiveness of the ISA may be limited such that
any valid program encoded using the ISA necessarily meets
the set of atomicity criteria. In response to receiving the
atomic program or indication thereof, the atomic execution
unit may interpret and execute the atomic program as a single
atomic memory transaction.

In various embodiments, the atomic program execution
unit may be configured for use by one or more processing
cores or by peripheral devices, such as devices 680. In various
embodiments, devices 680 may include graphics adapters,
audio adapters, 1/O devices such as disk or optical drives,
and/or other devices.

FIG. 7 is a flow diagram illustrating a method for executing
an atomic sequence using an atomic program execution unit
(such as 670), according to some embodiments. In the illus-
trated embodiment, method 700 begins with a processing
core specifying an atomic sequence of instructions using a
special-purpose atomic programming language, as in 705.
The processing core may specify the atomic sequence of
instructions as an atomic program in a single cache line of the
processing core (i.e., the source cache line).



US 8,793,471 B2

13

In some embodiments, the special-purpose programming
language may be designed to implicitly enforce various ato-
micity criteria that allow the atomic execution unit to execute
the sequence with a guarantee of forward progress. For
example, in some embodiments, these criteria may include
those that no instruction in the atomic sequence instructs the
atomic execution unit to access shared memory and/or to
jump to an instruction outside of the atomic sequence. By
limiting the expressiveness of the atomic programming lan-
guage to exclude such instructions, the system can guarantee
that any valid program composed in step 700 meets these
atomicity criteria. Other atomicity criteria may be enforced
similarly (e.g., no access to registers other than general pur-
pose registers, etc.)

In some embodiments, the language may be a stack-based
language that can be executed in place in the cache line. In
place execution refers to a technique of executing a program
using no more than the memory space in which the program
is specified. For example, a stack-based program stored in a
single cache line may be executed in place by popping
instructions and/or operands from the stack and pushing
results of those instructions and operands back onto the stack
such that the stack never outgrows the single cache line. The
following instructions define an example stack-based lan-
guage for encoding an atomic program that meets one or more
atomicity criteria, such that an atomic execution unit may
execute the atomic program as a single atomic memory trans-
action:

LOAD ADDRO: loads one word (e.g., 8-bytes) from address
0 and pushes the result

LOAD ADDR1: loads one word from address 1 and pushes
the result

STORE ADDRO: pops the top of stack and stores word to
address 0 (stores are pending until END)

STORE ADDRI: pops the top of stack and stores word to
address 1 (stores are pending until END)

ADD, SUB: Pop2, Add/subtract the values and push the result

DUP: push a copy of top of stack

DUP2: push copies of the top 2 stack elements

SWAP: swap top and second stack elements

END: end program and write out stores

BTn: pop, push value of bit N of popped value

PUSHimm: push immediate #N

CMPSIGNED: Pop2 and push -1, 0, 1 according to sign of
difference of signed values popped

CMPUNSIGNED: Pop2 and push -1, 0, 1 according to sign
of difference of unsigned values popped

DUP2CMP: Pop2, push popped values back onto stack, and
push -1, 0, 1 according to sign of difference of popped
values

JE, JG, JL: pop stack and conditionally jump forward N
instructions (if new instruction address is outside of cache
line, abort the transaction)

J: unconditionally jump forward N instructions (if new
instruction address is outside of cache line, abort the trans-
action)

CMOVE, CMOVG, CMOVL: Pop 3 items from the stack.
The top of the stack is used as the condition code: if the
condition is true, then push the 2"? item on the stack, else
push the 3" item

ENDRETURN: Like END but returns the value at the top of
the stack cc: conditional “if true”

E: true if top of stack (TOS) is 0

L: true if bottom of stack is 1

G: true if both the top and bottom of the stack are 0
The example instruction set above includes no instructions

that access shared memory outside of the cache line where the

20

25

30

35

40

45

50

55

60

65

14

program is encoded. Furthermore, the instruction set includes
no jump instructions that might cause execution to be trans-
ferred to a location outside of the program. Therefore, any
valid program encoded using the example instruction set
meets at least the atomicity criteria forbidding access to
shared memory and jumps to locations outside of the atomic
sequence.

The stack-based language above is only one example of a
possible instruction set for expressing atomic programs.
Other variations are possible and may become evident to
those skilled in the art given the benefit of this disclosure. For
example, in some embodiments, the instruction set may
implement a register-to-register language rather than a stack-
based language. Other languages and schemes for encoding
atomic sequences that meet a set of atomicity criteria guar-
anteeing atomicity and forward progress are possible.

Once the core composes the atomic program, as in 705, the
core may send a request to the atomic execution agent to
execute the program, as in 710. In some embodiments, the
core may send the encoded atomic program to the execution
unit and the execution unit may then store the program in a
line ofa local cache. In other embodiments, the core may send
an address or other indication usable by the execution unit to
locate the atomic program.

In some embodiments, a processing core may communi-
cate the atomic program to an atomic execution unit via
memory mapping (e.g., as in MMIO) or port mapping (e.g., as
in PMIO). For example, using memory mapping, a process-
ing core may use the same address bus to address both
memory and the atomic execution unit. In such embodiments,
areas of the core’s addressable memory space may be tem-
porarily or permanently reserved for the memory mapped
atomic unit. The core may then compose atomic programs in
the mapped memory area and subsequently notify the atomic
execution unit when such programs are ready for execution.
In response to such an indication, the execution unit may read
and execute the program as a single atomic memory transac-
tion, as in 715. In some embodiments, the memory mapped
execution unit may be configured to monitor the processor’s
address bus for modifications to the assigned address space
and thus detect when new atomic programs are ready for
execution without explicit notification.

As shown in the illustrated embodiment, after receiving the
atomic program, the atomic program execution unit may
interpret and execute the program as a single atomic transac-
tion, as in 715. In some embodiments, such as those using the
stack-based program encoding, executing the atomic pro-
gram may include locking the local cache line in which the
atomic program is stored, executing the program in place, and
unlocking the cache line. Thus, the program execution unit
may execute the encoded program atomically in 715. In this
example, since the atomic program execution unit executes a
program all within a single locked cache line, the unit may
avoid deadlock situations.

In various embodiments, devices other than a processing
core (e.g., audio/video cards, other peripheral devices, etc.)
may utilize the atomic program execution unit as in method
700. For example, such a device may compose an atomic
program and (as in 705) and request execution (as in 710) of
that program.

In some embodiments, some code (e.g., an operating sys-
tem) may compose and store one or more atomic programs in
protected memory (705) and later use an indentifying handle
to invoke the atomic execution unit (710) to execute the
corresponding program (715). Thus, an operating system
may create a set of one or more trusted atomic programs for
later invocation by the kernel.
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FIG. 8 is a block diagram illustrating a computer system
configured to execute an atomic sequence of instructions as a
single atomic transaction using code validation agent, accord-
ing to some embodiments, as described herein. In some
embodiments, computer system 800 may correspond to com-
puter system 190 of FIG. 1.

The computer system 800 may correspond to any of vari-
ous types of devices, including, but not limited to, a personal
computer system, desktop computer, laptop or notebook
computer, mainframe computer system, handheld computer,
workstation, network computer, a consumer device, applica-
tion server, storage device, a peripheral device such as a
switch, modem, router, etc, or in general any type of comput-
ing device.

Computer system 800 may include one or more processors
860, any of which may include multiple physical and/or logi-
cal cores. Processors 860 may include respective mechanisms
to validate that custom atomic sequences meet certain atom-
icity criteria as described herein, such as validation agent 870.
In different embodiments, validation agent 870 may be cor-
respond to a hardware-implemented, runtime validation
agent (e.g., in a decoder) or as a micro-coded pre-runtime
validation agent, as described herein.

Computer system 800 may also include one or more per-
sistent storage devices 850 (e.g. optical storage, magnetic
storage, hard drive, tape drive, solid state memory, etc), which
may persistently store data.

In some embodiments, system 800 may include a special-
purpose processor for executing atomic sequences of instruc-
tions, such as atomic program execution unit 824. Although
FIG. 8 illustrates both an out-of-core atomic program execu-
tion unit 824 and a validation agent 870, other embodiments
may include only one or the other of these components.

According to the illustrated embodiment, computer system
800 may include one or more shared memories 810 (e.g., one
or more of cache, SRAM, DRAM, RDRAM, EDO RAM,
DDR 10 RAM, SDRAM, Rambus RAM, EEPROM, etc.),
which may be shared between multiple processing cores,
such as on one or more of processors 860. The one or more
processors 860, the storage device(s) 850, the atomic program
execution unit 824, and shared memory 810 may be coupled
via interconnect 840. In various embodiments, the system
may include fewer or additional components not illustrated in
FIG. 8 (e.g., video cards, audio cards, additional network
interfaces, peripheral devices, a network interface such as an
ATM interface, an Ethernet interface, a Frame Relay inter-
face, monitors, keyboards, speakers, etc.). Additionally, dif-
ferent components illustrated in FIG. 8 may be combined or
separated further into additional components.

In some embodiments, shared memory 810 may store pro-
gram instructions 820, which may be encoded in platform
native binary, any interpreted language such as Java™ byte-
code, or in any other language such as C/C++, Java™, etc or
in any combination thereof. Program instructions 820 may
include program instructions to implement one or more
multi-threaded applications 822, which require synchroniza-
tion mechanisms and may include atomic instruction
sequences, as described herein. In some embodiments, pro-
gram instructions 820 may also include instructions execut-
able to implement an operating system 824 that provides
software support for executing applications 822 (e.g., sched-
uling, software signal handling, etc.).

According to the illustrated embodiment, shared memory
810 may include shared data 830, which may be accessed by
multiple ones of processors 860 and/or processing cores
thereof. Ones of processors 860 may cache various compo-
nents of shared data 830 in local caches, and coordinate the
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data in these caches by exchanging messages according to a
cache coherence protocol, as described herein.

Program instructions 820, such as those used to implement
multithreaded applications 822 and/or operating system 824,
may be stored on a computer-readable storage medium. A
computer-readable storage medium may include any mecha-
nism for storing information in a form (e.g., software, pro-
cessing application) readable by amachine (e.g., acomputer).
The computer-readable storage medium may include, but is
not limited to, magnetic storage medium (e.g., floppy dis-
kette); optical storage medium (e.g., CD-ROM); magneto-
optical storage medium; read only memory (ROM); random
access memory (RAM); erasable programmable memory
(e.g., EPROM and EEPROM); flash memory; electrical, or
other types of medium suitable for storing program instruc-
tions.

A computer-readable storage medium as described above
may be used in some embodiments to store instructions read
by a program and used, directly or indirectly, to fabricate
hardware comprising one or more of processors 860. For
example, the instructions may describe one or more data
structures describing a behavioral-level or register-transfer
level (RTL) description of the hardware functionality in a
high level design language (HDL) such as Verilog or VHDL..
The description may be read by a synthesis tool, which may
synthesize the description to produce a netlist. The netlist
may comprise a set of gates (e.g., defined in a synthesis
library), which represent the functionality of processor 500.
The netlist may then be placed and routed to produce a data
set describing geometric shapes to be applied to masks. The
masks may then be used in various semiconductor fabrication
steps to produce a semiconductor circuit or circuits corre-
sponding to processors 100, 605, and/or 860. Alternatively,
the database may be the netlist (with or without the synthesis
library) or the data set, as desired.

The scope of the present disclosure includes any feature or
combination of features disclosed herein (either explicitly or
implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accord-
ingly, new claims may be formulated during prosecution of
this application (or an application claiming priority thereto)
to any such combination of features. In particular, with ref-
erence to the appended claims, features from dependent
claims may be combined with those of the independent
claims and features from respective independent claims may
be combined in any appropriate manner and not merely in the
specific combinations enumerated in the appended claims.

What is claimed:

1. An apparatus comprising:

a processing core in a multi-processing core system, the

processing core being configured to:

assemble an atomic program; and

store the atomic program in a cache line;

wherein the processing core is configured to verity that:
each instruction in the atomic program accesses only
data that was stored in the cache line before execution
of the atomic program; and

anatomic program execution unit configured to execute the

stored atomic program as a single atomic memory trans-
action with a guarantee of forward progress.

2. The apparatus of claim 1, wherein the atomic program
includes at least one branch instruction.

3. The apparatus of claim 1, wherein the atomic program is
specified using a stack-based language and wherein the
atomic program is executed in place in the cache line.

4. The apparatus of claim 3, wherein every instruction
expressible by the stack-based language meets a set of one or
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more atomicity criteria, including that executing the instruc-
tion does not require accessing shared memory.

5. The apparatus of claim 1, wherein executing the atomic
program comprises locking the cache line, executing a
sequence of instructions specified by the atomic program, and
unlocking the cache line.

6. The apparatus of claim 1, wherein the atomic program
execution unit is configured to execute atomic programs for
multiple processing cores.

7. The apparatus of claim 1, further comprising:

aperipheral device configured to store another atomic pro-
gram in a cache line of the peripheral device, wherein the
atomic program execution unit is separate from the
peripheral device and is configured to execute the
another atomic program as a single atomic memory
transaction with a guarantee of forward progress.

8. The apparatus of claim 1, wherein the atomic program
execution unit executes the atomic program in response to
receiving a request from the processing core.

9. The apparatus of claim 8 wherein the apparatus is con-
figured to associate the stored atomic program with a handle
identifier; and

wherein the request from the processing core comprises the
handle identifier.

10. A method comprising:

a processing core in a multi-processing core system vali-
dating that: each instruction in an atomic program
accesses only data that was stored in a cache line before
execution of the atomic program;

storing the validated atomic program in the cache line; and

an atomic program execution unit executing the stored
atomic program as a single atomic memory transaction
with a guarantee of forward progress.

11. The method of claim 10, wherein the atomic program

comprises a plurality of instructions.

12. The method of claim 10, wherein the atomic program is
specified using a stack-based language and wherein the
atomic program is executed in place in the cache line.

13. The method of claim 12, wherein every instruction
expressible by the stack-based language meets a set of one or
more atomicity criteria, including that executing the instruc-
tion does not require accessing shared memory.
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14. The method of claim 10, wherein executing the atomic
program comprises locking the cache line, executing a
sequence of instructions specified by the atomic program, and
unlocking the cache line.

15. The method of claim 10, wherein the cache line is
mapped to a memory space of the atomic program execution
unit.

16. The method of claim 10, further comprising:

a peripheral device storing another atomic program in a
cache line of the peripheral device, wherein the atomic
program execution unit is separate from the peripheral
device and is configured to execute the another atomic
program as a single atomic memory transaction with a
guarantee of forward progress.

17. The method of claim 10, wherein the atomic program
execution unit executes the atomic program in response to
receiving a request from the processing core.

18. The method of claim 17, further comprising:

associating a the stored atomic program with a handle
identifier and wherein the request from the processing
core comprises the handle identifier.

19. A non-transitory computer readable storage medium
comprising a data structure which is operated upon by a
program executable on a computer system, the program oper-
ating on the data structure to perform a portion of a process to
fabricate an integrated circuit including circuitry described
by the data structure, the circuitry described in the data struc-
ture including:

a processing core in a multi-processing core system, the
processing core being configured to assemble an atomic
program and store the atomic program in a cache line,
wherein the processing core is configured to verity that:
each instruction in the atomic program accesses only
data that was stored in the cache line before execution of
the atomic program; and

anatomic program execution unit configured to execute the
stored atomic program as a single atomic memory trans-
action with a guarantee of forward progress.

20. The non-transitory computer readable storage medium

of'claim 19, wherein the storage medium stores at least one of
HDL, Verilog, or GDSII data.
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