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ATOMIC PROGRAMVERIFICATION 

BACKGROUND 

Modern trends in computer architecture have seen a move 
toward multi-processing, where a single system and/or pro 
cessor includes multiple processing cores that share memory 
and are each capable of independent concurrent execution. It 
is now relatively common to see chip multi-processors 
(CMPs) with 2, 4, or 8 processing cores on a single chip, or 
general-purpose graphics processing units (GPGPUs) with 
many more processing cores. Additionally, the number of 
processing cores on each chip and/or system is likely to 
increase even further in the future. 
To utilize the increased parallelism capabilities of modern 

processors, software programmers utilize various synchroni 
Zation facilities Such as ISA-supported atomic instructions. A 
processing core can execute such instructions atomically with 
respect to other processing cores in the system, even though 
the instruction itself contains multiple microinstructions. For 
example, the atomic instruction CMPXCHG (compare & 
exchange) in x86 architectures is a general-purpose atomic 
instruction that instructs a processing core to atomically com 
pare the contents of a given memory location to a given value 
and, only if the two values are the same, modify the contents 
of that memory location to a given new value. 

ISAs sometimes provide a limited number of specific 
purpose atomic instructions, such as atomic XADD, BTS, 
etc. Where no specific-purpose instructions exist for particu 
lar functionality desired by a programmer, the programmer 
may attempt to construct such logic using general-purpose 
instructions such as CMPXCHG. However, such construc 
tions can be complex, difficult to implement, and slow to 
eXecute. 

SUMMARY OF EMBODIMENTS 

An apparatus for executing an atomic memory transaction 
comprises a processing core in a multi-processing core sys 
tem, where the processing core is configured to store an 
atomic program in a cache line. The apparatus further com 
prises an atomic program execution unit that is configured to 
execute the atomic program as a single atomic memory trans 
action with a guarantee of forward progress. 

In Some embodiments, the execution unit is able to execute 
the atomic program with a guarantee of forward progress, at 
least in part because the atomic program meets a set of one or 
more atomicity criteria, including that executing the atomic 
program does not require accessing memory other than the 
cacheline. In some embodiments, the programming language 
in which the program is encoded may implicitly guarantee 
that all programs expressible by the programming language 
meet the atomicity criteria. In some embodiments, the pro 
gramming language may be a stack based language that the 
atomic execution unit may be able to execute in place, within 
the cache line. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram illustrating a computer system 
configured to validate and execute atomic instruction 
sequences with guarantees of forward progress, according to 
Some embodiments. 

FIG. 2 is a flow diagram illustrating a method for executing 
a custom sequence of microinstructions atomically, where the 
instruction sequence conforms to given atomicity criteria, 
according to some embodiments. 
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2 
FIG.3 is a flow diagram illustrating a method of a process 

ing core validating and executing an atomic sequence of 
instructions using a runtime validation unit in the instruction 
execution pipeline, according to some embodiments. 

FIG. 4 is a flow diagram illustrating a method of a process 
ing core validating and executing an atomic sequence of 
instructions using pre-execution validation (e.g., microcoded 
validation agent), according to Some embodiments. 

FIG.5 is a flow diagram illustrating a more detailed method 
for validating and executing an atomic sequence before runt 
ime using a microcoded validation agent, according to some 
embodiments. 

FIG. 6 is a block diagram illustrating a system that includes 
a special-purpose processor configured to execute atomic 
sequences of instructions on behalf of one or more processing 
cores and/or devices, according to some embodiments. 

FIG. 7 is a flow diagram illustrating a method for executing 
an atomic sequence using an atomic program execution unit, 
according to some embodiments. 

FIG. 8 is a block diagram illustrating a computer system 
configured to execute an atomic sequence of instructions as a 
single atomic transaction using code validation agent, accord 
ing to Some embodiments, as described herein. 

DETAILED DESCRIPTION OF EMBODIMENTS 

This specification includes references to “one embodi 
ment” or “an embodiment.” The appearances of the phrases 
“in one embodiment” or “in an embodiment” do not neces 
sarily refer to the same embodiment. Particular features, 
structures, or characteristics may be combined in any Suitable 
manner consistent with this disclosure. 

Terminology. The following paragraphs provide defini 
tions and/or context for terms found in this disclosure (includ 
ing the appended claims): 

“Comprising.” This term is open-ended. As used in the 
appended claims, this term does not foreclose additional 
structure or steps. Consider a claim that recites: An appara 
tus comprising one or more processor units....” Such a claim 
does not foreclose the apparatus from including additional 
components (e.g., a network interface unit, graphics circuitry, 
etc.). 

“Configured To. Various units, circuits, or other compo 
nents may be described or claimed as “configured to perform 
a task or tasks. In such contexts, “configured to’ is used to 
connote structure by indicating that the units/circuits/compo 
nents include structure (e.g., circuitry) that performs those 
task or tasks during operation. As such, the unit/circuit/com 
ponent can be said to be configured to perform the task even 
when the specified unit/circuit/component is not currently 
operational (e.g., is not on). The units/circuits/components 
used with the “configured to language include hardware— 
for example, circuits, memory storing program instructions 
executable to implement the operation, etc. Reciting that a 
unit/circuit/component is “configured to perform one or 
more tasks is expressly intended not to invoke 35 U.S.C. 
S112, sixth paragraph, for that unit/circuit/component. Addi 
tionally, "configured to can include generic structure (e.g., 
generic circuitry) that is manipulated by Software and/or firm 
ware (e.g., an FPGA or a general-purpose processor execut 
ing Software) to operate in manner that is capable of perform 
ing the task(s) at issue. Configured to may also include 
adapting a manufacturing process (e.g., a semiconductor fab 
rication facility) to fabricate devices (e.g., integrated circuits) 
that are adapted to implement or perform one or more tasks. 

“First “Second, etc. As used herein, these terms are used 
as labels for nouns that they precede, and do not imply any 
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type of ordering (e.g., spatial, temporal, logical, etc.). For 
example, in a processor having eight processing elements or 
cores, the terms “first and “second processing elements can 
be used to refer to any two of the eight processing elements. 
In other words, the “first and “second processing elements 
are not limited to logical processing elements 0 and 1. 

Based on As used herein, this term is used to describe one 
or more factors that affect a determination. This term does not 
foreclose additional factors that may affect a determination. 
That is, a determination may be solely based on those factors 
or based, at least in part, on those factors. Consider the phrase 
“determine A based on B. While B may be a factor that 
affects the determination of A, such a phrase does not fore 
close the determination of A from also being based on C. In 
other instances. A may be determined based solely on B. 

General-purpose atomic instructions, such as CMPXCHG, 
can be used to construct arbitrary logic for accessing single 
memory locations (e.g., single cache lines) atomically. As 
used herein, the term atomically refers to execution whose 
intermediate results are not observable by other threads of 
program execution. Therefore, instructions in an atomically 
executed sequence (i.e., an atomic sequence) appear to all 
other threads as having been executed as a single atomic 
operation. 
The approach of constructing atomic logic using general 

purpose atomic instructions has several shortcomings. First, 
implementing various functions using these general-purpose 
instructions often requires rather complex lock-free algo 
rithms or software semaphores. Furthermore, because 
CMPXCHG operations can be aborted in the presence of 
contention, algorithms utilizing these operations cannot guar 
antee forward progress and require Software contention man 
agement mechanisms to arbitrate between concurrent threads 
of execution. This leads to performance loss since the user 
program or guest OS utilizing CMPXCHG cannot be guar 
anteed that it will proceed through an algorithm with no 
possibility of interrupt or page fault. Furthermore, CMPX 
CHG operations are themselves somewhat inefficient to 
execute, requiring at least two accesses to the target cacheline 
for the one operation. 

Programmers often require single-line atomic transactions 
that are not simple to perform with the limited set of fixed 
function atomic operations and/or would suffer performance 
degradation if built using these atomic instructions. For 
example, Some multi-core task management techniques 
require atomic transactions to two or more data values that 
may be in the same cache line. 

Recently, hardware-transactional memory systems (HTM) 
have been proposed as a means for allowing programmers to 
execute custom sequences of instructions atomically. How 
ever, Such systems require complex hardware Support and are 
still Subject to livelock situations, such as aborted transaction 
attempts. Therefore, such systems remain subject to perfor 
mance degradation in the presence of contention and require 
contention management mechanisms to avoid deadlock and/ 
or livelock. 
As used herein, the term deadlock refers to a situation in 

which a given thread of execution stalls indefinitely due to 
contention with another thread (e.g., each of two threads 
concurrently waits for the other to release a respective lock). 
As used herein, the term livelock refers to a situation in which 
a thread of execution repeatedly attempts to execute the same 
instruction sequence and fails (at least once) due to contention 
with another thread (e.g., an HTMsystem repeatedly attempts 
and aborts execution of a transactional region due to memory 
contention). While a given thread is deadlocked or livelocked, 
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4 
it cannot make forward progress (i.e., execute and move 
beyond the instruction sequence). 

According to various embodiments, a computer system 
may be configured to provide facilities allowing a program 
mer to designate a custom sequence of instructions as an 
atomic sequence that the system can execute as a single 
atomic transaction that is guaranteed to make forward 
progress. As used herein, a guarantee of forward progress 
means that execution of the atomic instruction sequence will 
not be subject to deadlock or livelock, as defined above. 

In Some embodiments, the system may include a validation 
agent configured to verify whether a sequence that has been 
designated as atomic conforms to specific atomicity criteria. 
In Such embodiments, meeting the atomicity criteria ensures 
that the system can execute the sequence atomically with a 
guarantee of forward progress. In various embodiments dis 
cussed in more detail below, the validation agent may be 
placed in a processor, in a memory Subsystem, or elsewhere in 
the system. 

FIG. 1 is a block diagram illustrating a computer system 
configured to validate and execute atomic instruction 
sequences with guarantees of forward progress, according to 
Some embodiments. 

According to the illustrated embodiment, system 190 com 
prises chip multi-processor (CMP) 100, which is connected 
via interconnect 160 to various other CMPs 150 and to shared 
memory 155. In some embodiments, shared memory 155 
may be arranged in a memory hierarchy—for example, one 
comprising an L3 cache and main memory. 

Although FIG. 1 illustrates an embodiment with multiple 
interconnected CMPs, the systems and techniques described 
herein may be applied generally to other systems with mul 
tiple processing cores regardless of how they are distributed 
in the system. For example, in some embodiments, CMP 100 
and/or any of other CMPs 150 may be replaced with regular 
single-core processors. In other embodiments, CMP 100 may 
comprise multiple cores and the system may comprise no 
other CMPs (e.g., 150), processors, or processing cores. 

In the illustrated embodiment, CMP 100 comprises mul 
tiple processing cores (i.e., 105,135) connected by and con 
figured for communication over on-chip network 145. On 
chip network 145 may correspond to any of various types of 
point-to-point networks arranged according to different net 
work topologies (e.g., 2D or 3D grid, Torus, linear, ring, etc.). 
In other embodiments, cores 105 and 135 may be connected 
via a bus and/or another type of interconnect. 

In some embodiments, an on-chip interconnect (e.g., on 
chip network 145) may connect cores on a CMP (e.g., cores 
105 and 135 on CMP 100) to one or more shared data caches, 
Such as data caches 140 (e.g., L2) cache. In some embodi 
ments, a core may also include one or more private data 
caches, such as cache?s) 115 of core 105, which the core may 
use to store data cached from the shared memory 155. 

In order to maintain coherency of cached data, each core 
may also include various cache coherence mechanisms. Such 
as 120. Cache coherence mechanisms 120 may include facili 
ties to exchange cache coherence messages with other pro 
cessing cores (e.g., MESI protocol messages) and/or to per 
form synchronization functions (e.g., marking cache lines in 
cache 115 as exclusively owned, rejecting, accepting, and/or 
answering cache coherence probes from other processing 
cores, etc.). 

According to the illustrated embodiment, core 105 may 
also include various registers 110 usable for temporarily stor 
ing data, Such as instruction or stack pointers, intermediate 
results, or other data. Registers 110 may include various 
special-purpose and/or general-purpose registers. 
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In the illustrated embodiment, core 105 includes private 
memory area 130, which may comprise a protected, fast 
memory area for storing private data, Such as microcode 132. 
Microcode 132 may include microinstructions executable by 
processing core 105 to implement different program instruc 
tions (e.g., CMPXCHG) and/or arbitrary microprograms. In 
Some embodiments, microcode 132 may include micropro 
grams and/or atomic microprograms that have been Verified 
by a validation agent (e.g., 134) to meet certain atomicity 
criteria, as described below. 

In the particular embodiment of FIG. 1, private memory 
area 130 includes microcode to implement microcoded vali 
dation agent 134, which is configured to receive an indication 
of a sequence of instructions, validate whether they are an 
atomic sequence that meets given atomicity criteria, store a 
copy of the sequence in private memory area 130, and/or 
return a handle identifying the stored copy of the sequence to 
other program code. This method is described in more detail 
in the description of FIG. 3. 

In other embodiments, validation agent 134 need not nec 
essarily be microcoded and stored in memory area 130. For 
example, in some embodiments, validation agent 134 may be 
implemented by hardware logic built into a hardware unit of 
core 105, such as instruction decoder 165. In yet other 
embodiments, validation agent 134 may be implemented 
separately from core 105 altogether, such as by a special 
purpose processor in the memory Subsystem, as described 
below. 

FIG. 2 is a flow diagram illustrating a method for executing 
a custom sequence of microinstructions atomically, where the 
instruction sequence conforms to given atomicity criteria, 
according to some embodiments. Method 200 may be 
executed by a processing core, such as processing core 105 of 
FIG. 1, as part of executing an atomic instruction sequence 
with a guarantee of forward progress. 
As shown in FIG. 2, method 200 includes three phases: a 

prolog phase 210 (in which any data to be used in the trans 
action may be read), a body execution phase 220 (in which the 
instructions are executed), and an epilog phase 230 (in which 
any results are written back to memory). During the prolog 
phase, the processing core locks a given Source cache line, as 
in 212. As used herein, a processing core that locks a cache 
line has exclusive read/write privileges to the cache line such 
that no other processing core may read the cache line contents 
or cause them to be modified until the core holding the lock 
releases it. The particular step(s) necessary to ensure this 
property will vary between implementations and depend on 
other system details, such as the particular cache coherence 
mechanisms and protocols employed. For example, in some 
embodiments, a core that locks a given cache line may refuse 
probes or other cache coherence messages that it receives 
from another processor when those messages concern a 
locked cache line. In some embodiments, the core may also 
delay handling various hardware interrupts and/or software 
signals that the core receives until after executing the atomic 
sequence and unlocking the cache line. By performing Such 
steps, a core may read and/or modify the contents of the cache 
line without interruption. 

After locking the cache line, as in 212, the processor may 
read data from the Source cache line, as in 214. Reading the 
Source cacheline in 214 may include storing the data from the 
cache line in one or more target registers for Subsequent 
access by one or more instructions of the sequence. In some 
instances, the processor may read less than the entire source 
cache line into the target registers. For example, the processor 
may read only one portion of the Source cache line (e.g., 
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6 
64-bytes) into a single target register or may read a number of 
(orall) portions of the Source cacheline, each into a respective 
target register. 
As shown in FIG. 2, once the prolog phase is complete, 

execution may proceed to the body execution phase 220 
where the core executes the atomic sequence of instructions 
as a single atomic transaction, such as in 222. Various ones of 
these instructions may read data from and/or write data to the 
target register(s). 
As indicated in 222, the atomic sequence of instructions 

conforms to specific atomicity criteria that enable the core to 
execute the sequence as a single atomic transaction. In some 
embodiments, atomicity criteria may be chosen to ensure that 
the sequence is quick and simple to execute and can be guar 
anteed forward progress by the executing core. Such criteria 
may include conditions that no instruction in the sequence 
accesses memory or jumps to sections of code outside the 
atomic sequence. In some embodiments, atomicity criteria 
may include conditions on the entire sequence. Such as an 
instruction count limit or time limit on executing the 
sequence. Atomicity criteria are discussed in more detail 
below. 
When all the instructions in the atomic sequence have been 

executed, the process enters epilog phase 230. In epilog phase 
230, the processing core may write results of the execution 
back to the locked cache line 232. For example, the core may 
write the data in the target register to the source cache line. 
Once this is done, the executing core may release the Source 
cache line, as in 234. 

Before executing the sequence of instructions, the system 
may first determine that the sequence is in fact an atomic 
sequence that conforms to the specific atomicity criteria. In 
different embodiments, this determination may be done at 
different times and/or by different components of the system. 
For example, in some embodiments, the sequence may be 
validated as it is being executed. Such as by a hardware 
implemented validation agent within the instruction execu 
tion pipeline (e.g., in decoder 165). In other embodiments, the 
sequence may be validated Statically before being executed, 
Such as by a microcoded validation agent invoked before the 
instruction sequence is executed. In yet other embodiments, 
the sequence may be validated and/or executed by a special 
purpose, off-chip processor configured to execute atomic 
instruction sequences on behalf of other processing cores. 
Although other possibilities exist, these three configurations 
are further elaborated upon below. 

FIG.3 is a flow diagram illustrating a method of a process 
ing core validating and executing an atomic sequence of 
instructions using a runtime validation unit in the instruction 
execution pipeline (e.g., in the decoder), according to some 
embodiments. Some processing cores may be configured to 
execute program instructions using a multi-stage instruction 
pipeline, which may include stages such as instruction fetch, 
instruction decode, instruction execute, memory access, reg 
ister write back, etc. In some embodiments, a processing 
core's instruction pipeline may include a validate stage in 
which the processing core verifies whether an instruction in 
an atomic sequence meets a set of one or more atomicity 
criteria. The validation stage may be implemented as a sepa 
rate stage or as part of a pre-existing stage (e.g., the decode 
stage) that is performed before an execution stage of the 
pipeline. An execution stage refers to a pipeline stage in 
which the processing core computes a result of the instruc 
tion. Whether the instruction reaches the execution stage may 
depend on the processing core successfully validating, in the 
validation stage, that the instruction meets the atomicity cri 
teria. 
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In some such embodiments, a decoder (e.g., 165 in FIG. 1) 
may include a validation unit configured to validate each 
instruction in the sequence during the decode stage. In 
response to discovering that the sequence (and/or any instruc 
tion in the sequence) does not conform to the atomicity cri 
teria, such a validation agent may halt execution, raise an 
exception, and/or otherwise indicate an error and unlock the 
Source cache line. 

FIG. 3 illustrates an example of one method by which a 
validation agent in Such an embodiment may operate. In 
different embodiments, method 300 of FIG. 3 may be 
executed by the decoder, by a validation unit implemented as 
part of the decoder, and/or by another hardware component of 
a processor or processing core. 
As shown in 305, method 300 is initiated in response to the 

system detecting the start of a sequence of program instruc 
tions designated for atomic execution. For example, in some 
embodiments, the sequence may be demarcated in program 
code using “START and "STOP program instructions 
respectively denoting the start and end of the sequence. 

In response to reading a START instruction, as in 305, the 
core may perform one or more steps corresponding to the 
prolog of FIG. 2. These steps may include reading a source 
cache line (as in 212) and locking the cache line (as in 214). 

In some embodiments, the Source cache line and/or target 
register may be indicated by the START instruction (e.g., in 
one or more fields or parameters). For example, in embodi 
ments utilizing an x86-compatible architecture, a START 
instruction may include the memory address of the Source 
cache line in one field of the START instruction (e.g., 
modrm.r/m field) and an indication of the target register in 
another field (e.g., modrm.reg field). In response to reading 
these values, the core may lock the identified source cache 
line (as in 310) and load data from that indicated source cache 
line into the identified target register (as in 315) for subse 
quent access by one or more of the instructions in the 
Sequence. 

In some embodiments, executing the START instruction 
may further comprise recording the memory address of the 
data in the source cache line (as in 320) and/or the number of 
instructions in the atomic sequence (as in 325). In some 
embodiments, the number of instructions in the atomic region 
may be indicated by a value stored in another field of the 
START instruction, such as the Xop.VVVV field. 

After completing steps 305-325 (which may correspond to 
the prolog phase of execution), the core may execute the body 
of the transaction, as illustrated by steps 330-345. During this 
phase, the core proceeds through the code sequence and if the 
next instruction in the sequence meets the atomicity criteria 
(as indicated by the affirmative exit from 330), the core 
executes that instruction (as in 340). If the next instruction 
does not meet the atomicity criteria (as indicated by the nega 
tive exit from 330), the system may raise an exception, halt 
execution of the sequence, jump to error handling code, and/ 
or otherwise indicate that the sequence does not meet the 
atomicity criteria, as in 335. 

In some embodiments, the atomicity criteria may be cho 
Sen to ensure that the sequence is quick and simple to execute 
and can be guaranteed forward progress by the executing 
core. For example, in some embodiments, the criteria may 
include the criterion that no instruction in the sequence may 
access memory. In some embodiments, the criteria may also 
include the criterion that no instruction in the sequence may 
access (read and/or write) a register that is not a general 
purpose register (GPR). Since instructions that meet these 
criteria cannot themselves cause a data conflict with another 
thread of execution, an instruction sequence composed of 
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only Such operations may not be subject to deadlock or live 
lock, and may therefore be guaranteed to make forward 
progress when executed. In various embodiments, the atom 
icity criteria may include various other or additional condi 
tions (e.g. no jump instructions, no immediate forms of 
instructions, etc.) In addition to criteria that relate to the type 
of instructions that an atomic sequence may contain, the 
enforced atomicity criteria may include a limit on the number 
of instructions in the sequence. 

Although instructions that meet the atomicity criteria can 
not access shared memory directly, they may indirectly 
access the data in the source cache line via the target register. 
Thus, instructions that would normally access data in the 
Source cache line may instead read that data from and/or write 
other data to the target register. Once the core finishes execut 
ing the atomic sequence (e.g., encounters a STOP instruc 
tion), as indicated by the negative exit from 345, the core may 
write the computation results stored in the target registerback 
to the source cache line, as in 350, and release the source 
cache line, as in 355. Thus, the core is able to effectively 
execute the instructions in the atomic sequence as a single 
atomic operation. 

In some embodiments, the decoder determining whether 
the instruction meets the atomicity criteria (step 330) may 
comprise examining an opcode of the instruction to deter 
mine whetherit indicates an instruction that is known to meet 
the atomicity criteria. For example, in Some embodiments, a 
decoder in an x86 system may determine that the instruction 
meets the atomicity criteria if the opcode of the instruction 
indicates any instruction chosen from the set of ADD, ADC, 
AND, XOR, OR, SBB, SUB, CMP CMOVcc, BT, BTS, 
BTC, BTR, TEST, and XCHG. In this example, the listed 
instructions meet the atomicity criteria that none accesses 
memory or non-general-purpose registers and that none can 
instruct the processor to transfer program control to a point 
outside of an atomic sequence (i.e., no jump instruction). 

Although steps 330-345 indicate a linear execution of 
instructions, one of ordinary skill in the art will recognize that 
various cores may utilize instruction pipelines such that mul 
tiple instructions may be executing in 340 concurrently while 
a Subsequent instruction is decoded and/or compared against 
atomicity criteria in 330. Additionally, the presence of con 
ditionals may cause different instructions in the sequence to 
be executed multiple times or not at all. 

In some embodiments, releasing the source cache line in 
355 may include undoing the lock procedure performed in 
310, Such as by accepting Subsequent probes regarding the 
cache line, re-enabling interrupts, and/or other implementa 
tion-specific steps. 

In some embodiments, the validation agent may be config 
ured to validate the instruction sequence before execution 
rather than at runtime (as in FIG. 3). For example, such a 
validation agent may be implemented in microcode (e.g., 
microcode 132). 

FIG. 4 is a flow diagram illustrating a method of a process 
ing core validating and executing an atomic sequence of 
instructions using pre-execution validation (e.g., microcoded 
validation agent), according to some embodiments. In Such 
embodiments, a private memory area (such as 130 of FIG. 1) 
may store program instructions implementing a validation 
agent (e.g., 134) configured to validate whether a sequence of 
instructions is an atomic sequence conforming to one or more 
atomicity criteria. 

According to the illustrated embodiment, method 400 
begins in 405, when the user code registers a sequence of 
program instructions with the validation agent as an atomic 
sequence. In some embodiments, the user code may register 
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the sequence using a special-purpose instruction (e.g., 
ATOMICDEF). Such an instruction may include parameters 
and/or fields that indicate the sequence of instructions. 

In response to the attempt to register the sequence of 
instructions in 405, the microcode validation agent attempts 
to validate that the sequence of instructions is an atomic 
sequence, as in 410. AS indicated in 410, validating the 
sequence as atomic may comprise examining eachinstruction 
in the sequence and determining that it meets one or more 
atomicity criteria. 

Like the runtime validation agent, the microcode valida 
tion agent may check that each instruction in the sequence 
meets the validation criteria. These criteria may include those 
enforced by the runtime validation agent (e.g., no instruction 
in the sequence may access memory or a register other than a 
GPR). In addition, the microcode validation agent may ensure 
that each instruction is quick and easy to decode (e.g., each 
instruction is of limited length, Such as 4-bytes, and does not 
include immediate forms of instructions). Like the hardware 
based runtime validation agent, the microcode validation 
agent may determine that an instruction meets the atomicity 
criteria in response to detecting that the instruction includes 
an opcode known to indicate one of a given set of acceptable 
instructions that meet the atomicity criteria. 

If the sequence is an atomic sequence (i.e., meets the ato 
micity criteria), the validation agent may store the atomic 
sequence in a private, protected memory area, as in 415. In 
Some embodiments, a core may include a private memory 
area (such as 130) where the atomic sequence may be stored. 
Private memory area 130 may include various protected areas 
(e.g., c6 save area or Subset of co save area) where the micro 
code validation agent may store the instruction sequence 
without the possibility of it being overwritten by another 
processor. The term protected memory area may refer to those 
memory areas of a processor that are accessible to microcode 
but not to software or to other processors. 

In 420, the validation agent returns a handle to the invoking 
user code, as in 420. The handle may comprise a unique 
identifier for the stored atomic sequence. When the user code 
needs to execute the atomic sequence, it may invoke the 
stored atomic sequence using this handle, as in 425. For 
example, the system may recognize a special instruction for 
invoking the atomic sequence, as described below. 

In response to the user code invoking the stored sequence 
using the identifying handle (as in 425), the processing core 
may execute the pre-validated atomic sequence atomically, as 
in 430. In some embodiments, executing the atomic sequence 
in 430 may comprise reading a source cache line into a target 
register, executing the atomic sequence, writing the results in 
the target registerback to the Source cacheline, and unlocking 
the Source cache line. Since the sequence has already been 
validated, executing the atomic sequence in 430 may not 
comprise re-validating the sequence. 

FIG.5 is a flow diagram illustrating a more detailed method 
for validating and executing an atomic sequence before runt 
ime using a microcoded validation agent, according to some 
embodiments. Method 500 illustrated in FIG. 5 may corre 
spond to a specific implementation of method 400 in FIG. 4 
for an x86 architecture. However, in different embodiments, 
implementation may vary somewhat, including the particular 
instruction names, instruction fields used to communicate 
data, particular registers used, etc. It is intended that this 
disclosure encompass all Such embodiments. 

According to the illustrated embodiment, to register a 
sequence of instructions with the microcode validation agent, 
the user code first executes, e.g., an ATOMICDEF instruc 
tion, as in 505. In the illustrated embodiment, the ATOMIC 
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10 
DEF instruction includes a modrm.r/m field, in which the 
relative instruction pointer address of the first instruction in 
the sequence is stored. In addition, the ATOMICDEF instruc 
tion in this embodiment includes an xop.VVVV field, which 
stores a count of (i.e., the number of) instructions in the 
Sequence. 

In 510, as part of (or in response to) executing the ATOM 
ICDEF instruction, the microcode validation agent attempts 
to validate that the instruction sequence identified by the 
ATOMICDEF (e.g., in the modrm.r/m field) meets the atom 
icity criteria. As described above, this validation may com 
prise determining that each of the instructions in the sequence 
is one of a pre-known acceptable set of instructions that meets 
the atomicity criteria. In some embodiments, this atomicity 
criteria may include requirements that (a) no instruction in the 
sequence may access memory, (b) no instruction in the 
sequence may access a register that is not a GPR, (c) each 
instruction is specified using a particular, limited length form, 
(d) no instruction in the sequence uses an immediate form (an 
immediate instruction form includes a parameter specified as 
a number rather than as a register identifier), and/or various 
other requirements that enable a core to execute the atomic 
sequence as a single atomic transaction with a guarantee of 
forward progress. 

If one or more instructions in the sequence do not meet the 
atomicity criteria, the validation fails (as indicated by the 
negative exit from 515). In some embodiments, the micro 
code validation agent may signal this failure of the sequence 
to meet the atomicity criteria by returning an indication of 
failure to the user code, as in 520, rather than returning a 
handle to a stored version of the sequence. For example, if the 
validation fails, the validation agent may return the value 0 to 
the invoking user code rather thana handle to a stored atomic 
Sequence. 

If the validation is successful, as indicated by the affirma 
tive exit from 515, then at sequence indicated by the ATOM 
ICDEF instruction is an atomic sequence that meets the ato 
micity criteria. In this case, the microcode agent may copy the 
instruction sequence to a protected memory area, such as the 
c6 save area in 525, or to another implementation-specific 
area that ensures software does not rewrite the instructions 
after an ATOMICDEF instruction is executed, thereby creat 
ing the possibility of deadlock. 

In some embodiments, the agent may preface the saved 
version of the instruction sequence with one or more instruc 
tions executable to perform a prolog phase for the atomic 
sequence of instructions. For example, in 530, the agent pref 
aces the saved instruction sequence with a START instruc 
tion. As described above, the START instruction may include 
respective fields usable to indicate a source cache line and 
target register for a given atomic execution of the sequence. In 
such embodiments, the START instruction may be executable 
to lock the source cache line and to load data from it to the 
target register. 

In 535, the microcode validation agent returns (to the 
invoking user code) a handle that uniquely identifies the 
stored atomic sequence. The user code may then use the 
unique handle to invoke the pre-validated atomic sequence 
and thereby execute it atomically. For example, in 540, the 
user code invokes the storedatomic sequence by executing an 
ATOMICSTART instruction. The ATOMICSTART instruc 
tion includes parameters and/or fields specifying the unique 
handle and the memory locations/inputs for the sequence 
(e.g., source cache line and target register). 

In response to the invocation of 540, the processing core 
executes the stored atomic sequence atomically, as in 545. 
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Executing the sequence atomically in 545 may include 
executing prolog, body, and epilog phases, such as those of 
method 200 in FIG. 2. 

In some embodiments, the basic START functionality 
described above may be extended to allow an atomic 
sequence to operate on multiple cache lines. For example, a 
START2 instruction may be defined to allow a prolog phase 
ofanatomic sequence to lock and load a second source cache 
line. Thus, an atomic instruction sequence may operate on 
data from multiple cache lines. 

In some embodiments, the prolog of an atomic sequence 
that accesses multiple cache lines (e.g., using START and 
START2) may be implemented in a manner that avoids dead 
lock conditions. For example, in some embodiments, 
START2 may be executable to read and lock only the cache 
line that immediately follows the one locked by the preceding 
START instruction. By doing this, the system avoids dead 
lock situations in which two threads attempt to lock the same 
two cache lines in the opposite order, each Succeeding in 
locking a first cache line, but then waiting indefinitely for the 
other thread to release the other cache line. 

In some embodiments, START2 may be used to specify an 
arbitrary source cache line that need not be the one immedi 
ately following the Source cache line specified by a preceding 
START instruction. However, to avoid deadlock, the system 
may enforce an ordering on the locking. For example, micro 
code can be used to ensure that a core executing START and 
START2 locks each of the source cache lines in an order 
determined by the respective physical memory addresses of 
those source cache lines (e.g., ascending or descending). By 
imposing this ordering across all threads, the system can 
avoid the deadlock situation associated with locking multiple 
cache lines. 
Some atomic sequences may require executing jump 

instructions. However, a jump instruction may be problematic 
if it causes program flow to jump outside of the atomic 
sequence. This may not necessarily cause adverse effects for 
embodiments with a runtime-validation scheme (e.g., in the 
decoder) since the runtime validation agent detects any 
instructions that do not meet the atomicity criteria before they 
are executed. However, since a pre-runtime validation agent 
(e.g., microcoded validation agent) checks the atomic 
sequence in advance, jumping outside of the sequence at 
runtime may allow instructions that do not meet the atomicity 
criteria to be executed. 

In some embodiments, to avoid jumping outside of a pre 
validated atomic instruction sequence, the atomicity criteria 
may include a stipulation that jump instructions are not per 
mitted. In other embodiments, the criteria may allow jump 
instructions, but check to ensure that they do not cause execu 
tion to jump beyond the atomic sequence. 
A microcoded validation agent, as described herein, may 

also enforce various implementation-specific atomicity crite 
ria in different systems. For example, in Some embodiments, 
the microcoded validation agent may disallow instructions 
that utilize instruction pointer relative addressing modes. 
Since invoking a saved atomic sequence may modify the 
instruction pointer, instructions that include IP-relative 
parameters may cause unexpected program behavior. 

In some embodiments, the atomic sequence validation and/ 
or execution may be performed by an entity other than the 
core. For example, in some embodiments, the system may 
include a separate, off-chip atomic program execution unit 
configured for use by multiple processing cores and/or by 
other system devices. The off-chip unit may be configured to 
receive an indication of an atomic sequence from a processing 
core and/or from another system device and in response, to 
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execute the atomic sequence as a single atomic memory trans 
action. In Such embodiments, the atomic execution unit may 
validate that an indicated sequence of instructions meets a set 
of atomicity criteria explicitly or implicitly. For example, the 
atomic execution unit may implicitly validate a sequence if 
the unit is able to interpret only those sequences that meet the 
set of atomicity criteria. Such embodiments are described in 
more detail below. 

FIG. 6 is a block diagram illustrating a system that includes 
a special-purpose processor configured to execute atomic 
sequences of instructions on behalf of one or more processing 
cores and/or devices, according to some embodiments. In the 
illustrated embodiment, system 600 includes a chip-multi 
processor 605, which includes processing cores 610 and 630. 
The processing cores are connected to each other and to 
shared cache 635 by on-chip network 640. Each core itself 
includes one or more private caches (e.g., 615) and registers 
(e.g., 620). As described above with relation to FIG. 1, in 
various embodiments, processing cores in system 600 may be 
distributed in different arrangements, including on one or 
more separate chips. For example, system 600 may include 
one or more other CMPs and/or processors, such as 650. 

According to the illustrated embodiment, interconnect 645 
connects CMP 605 to other processors/CMPs 650 and a 
shared memory subsystem 655. The shared memory sub 
system 655 may include facilities to store and/or provide 
access to shared data (i.e., data shared by multiple processing 
cores in the system). For example, in the illustrated embodi 
ment, shared memory subsystem 655 includes one or more 
shared caches 665 for storing data and a memory controller 
660 for facilitating access by the system's processing cores to 
that shared data. 

In the illustrated embodiment of FIG. 6, system 600 
includes atomic program execution unit 670, which may be 
implemented as a special-purpose processor for executing 
atomic programs. In various embodiments, atomic program 
execution unit 670 may be implemented as part of shared 
memory subsystem 655 and/or placed in different parts of the 
system as to facilitate fast access to a memory controller (e.g., 
660), shared caches (e.g., 665), and/or other components 
and/or functionality in the shared memory Subsystem. 

In some embodiments, a processing core (e.g., 610) or 
peripheral device (e.g., 680) may utilize a special-purpose 
instruction set (ISA) to encode an atomic program and send 
the atomic program (or an indication thereof) to the atomic 
execution unit (e.g., 670) for execution. In some embodi 
ments, the expressiveness of the ISA may be limited such that 
any valid program encoded using the ISA necessarily meets 
the set of atomicity criteria. In response to receiving the 
atomic program or indication thereof, the atomic execution 
unit may interpret and execute the atomic program as a single 
atomic memory transaction. 

In various embodiments, the atomic program execution 
unit may be configured for use by one or more processing 
cores or by peripheral devices, such as devices 680. In various 
embodiments, devices 680 may include graphics adapters, 
audio adapters, I/O devices such as disk or optical drives, 
and/or other devices. 

FIG. 7 is a flow diagram illustrating a method for executing 
an atomic sequence using an atomic program execution unit 
(such as 670), according to some embodiments. In the illus 
trated embodiment, method 700 begins with a processing 
core specifying an atomic sequence of instructions using a 
special-purpose atomic programming language, as in 705. 
The processing core may specify the atomic sequence of 
instructions as an atomic program in a single cache line of the 
processing core (i.e., the source cache line). 
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In some embodiments, the special-purpose programming 
language may be designed to implicitly enforce various ato 
micity criteria that allow the atomic execution unit to execute 
the sequence with a guarantee of forward progress. For 
example, in some embodiments, these criteria may include 
those that no instruction in the atomic sequence instructs the 
atomic execution unit to access shared memory and/or to 
jump to an instruction outside of the atomic sequence. By 
limiting the expressiveness of the atomic programming lan 
guage to exclude Such instructions, the system can guarantee 
that any valid program composed in step 700 meets these 
atomicity criteria. Other atomicity criteria may be enforced 
similarly (e.g., no access to registers other than general pur 
pose registers, etc.) 

In some embodiments, the language may be a stack-based 
language that can be executed in place in the cache line. In 
place execution refers to a technique of executing a program 
using no more than the memory space in which the program 
is specified. For example, a stack-based program stored in a 
single cache line may be executed in place by popping 
instructions and/or operands from the stack and pushing 
results of those instructions and operands back onto the stack 
Such that the Stack never outgrows the single cache line. The 
following instructions define an example stack-based lan 
guage for encoding an atomic program that meets one or more 
atomicity criteria, Such that an atomic execution unit may 
execute the atomic program as a single atomic memory trans 
action: 
LOAD ADDR0: loads one word (e.g., 8-bytes) from address 

0 and pushes the result 
LOAD ADDR1: loads one word from address 1 and pushes 

the result 
STORE ADDR0: pops the top of stack and stores word to 

address 0 (stores are pending until END) 
STORE ADDR1: pops the top of stack and stores word to 

address 1 (stores are pending until END) 
ADD, SUB: Pop2. Add/subtract the values and push the result 
DUP: push a copy of top of stack 
DUP2: push copies of the top 2 stack elements 
SWAP: swap top and second stack elements 
END: end program and write out stores 
BTn: pop, push value of bit N of popped value 
PUSHimm: push immediate iiN 
CMPSIGNED: Pop2 and push -1, 0, 1 according to sign of 

difference of signed values popped 
CMPUNSIGNED: Pop2 and push -1, 0, 1 according to sign 

of difference of unsigned values popped 
DUP2CMP: Pop2, push popped values back onto stack, and 

push -1, 0, 1 according to sign of difference of popped 
values 

JE, JG, JL: pop stack and conditionally jump forward N 
instructions (if new instruction address is outside of cache 
line, abort the transaction) 

J: unconditionally jump forward N instructions (if new 
instruction address is outside of cache line, abort the trans 
action) 

CMOVE, CMOVG, CMOVL: Pop 3 items from the stack. 
The top of the stack is used as the condition code: if the 
condition is true, then push the 2" item on the stack, else 
push the 3" item 

ENDRETURN: Like END but returns the value at the top of 
the stack cc: conditional “if true' 

E: true if top of stack (TOS) is 0 
L: true if bottom of stack is 1 
G: true if both the top and bottom of the stack are 0 
The example instruction set above includes no instructions 

that access shared memory outside of the cacheline where the 
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program is encoded. Furthermore, the instruction set includes 
no jump instructions that might cause execution to be trans 
ferred to a location outside of the program. Therefore, any 
valid program encoded using the example instruction set 
meets at least the atomicity criteria forbidding access to 
shared memory and jumps to locations outside of the atomic 
Sequence. 
The stack-based language above is only one example of a 

possible instruction set for expressing atomic programs. 
Other variations are possible and may become evident to 
those skilled in the art given the benefit of this disclosure. For 
example, in some embodiments, the instruction set may 
implement a register-to-register language rather than a stack 
based language. Other languages and Schemes for encoding 
atomic sequences that meet a set of atomicity criteria guar 
anteeing atomicity and forward progress are possible. 
Once the core composes the atomic program, as in 705, the 

core may send a request to the atomic execution agent to 
execute the program, as in 710. In some embodiments, the 
core may send the encoded atomic program to the execution 
unit and the execution unit may then store the program in a 
line of a local cache. In other embodiments, the core may send 
an address or other indication usable by the execution unit to 
locate the atomic program. 

In some embodiments, a processing core may communi 
cate the atomic program to an atomic execution unit via 
memory mapping (e.g., as in MMIO) orport mapping (e.g., as 
in PMIO). For example, using memory mapping, a process 
ing core may use the same address bus to address both 
memory and the atomic execution unit. In Such embodiments, 
areas of the core's addressable memory space may be tem 
porarily or permanently reserved for the memory mapped 
atomic unit. The core may then compose atomic programs in 
the mapped memory area and Subsequently notify the atomic 
execution unit when Such programs are ready for execution. 
In response to such an indication, the execution unit may read 
and execute the program as a single atomic memory transac 
tion, as in 715. In some embodiments, the memory mapped 
execution unit may be configured to monitor the processor's 
address bus for modifications to the assigned address space 
and thus detect when new atomic programs are ready for 
execution without explicit notification. 
As shown in the illustrated embodiment, after receiving the 

atomic program, the atomic program execution unit may 
interpret and execute the program as a single atomic transac 
tion, as in 715. In some embodiments, such as those using the 
stack-based program encoding, executing the atomic pro 
gram may include locking the local cache line in which the 
atomic program is stored, executing the program in place, and 
unlocking the cache line. Thus, the program execution unit 
may execute the encoded program atomically in 715. In this 
example, since the atomic program execution unit executes a 
program all within a single locked cache line, the unit may 
avoid deadlock situations. 

In various embodiments, devices other than a processing 
core (e.g., audio/video cards, other peripheral devices, etc.) 
may utilize the atomic program execution unit as in method 
700. For example, such a device may compose an atomic 
program and (as in 705) and request execution (as in 710) of 
that program. 

In some embodiments, some code (e.g., an operating sys 
tem) may compose and store one or more atomic programs in 
protected memory (705) and later use an indentifying handle 
to invoke the atomic execution unit (710) to execute the 
corresponding program (715). Thus, an operating system 
may create a set of one or more trusted atomic programs for 
later invocation by the kernel. 



US 8,793,471 B2 
15 

FIG. 8 is a block diagram illustrating a computer system 
configured to execute an atomic sequence of instructions as a 
single atomic transaction using code validation agent, accord 
ing to some embodiments, as described herein. In some 
embodiments, computer system 800 may correspond to com 
puter system 190 of FIG. 1. 

The computer system 800 may correspond to any of vari 
ous types of devices, including, but not limited to, a personal 
computer system, desktop computer, laptop or notebook 
computer, mainframe computer system, handheld computer, 
workstation, network computer, a consumer device, applica 
tion server, storage device, a peripheral device Such as a 
Switch, modem, router, etc, or in general any type of comput 
ing device. 

Computer system 800 may include one or more processors 
860, any of which may include multiple physical and/or logi 
cal cores. Processors 860 may include respective mechanisms 
to validate that custom atomic sequences meet certain atom 
icity criteria as described herein, such as validation agent 870. 
In different embodiments, validation agent 870 may be cor 
respond to a hardware-implemented, runtime validation 
agent (e.g., in a decoder) or as a micro-coded pre-runtime 
validation agent, as described herein. 

Computer system 800 may also include one or more per 
sistent storage devices 850 (e.g. optical storage, magnetic 
storage, hard drive, tape drive, Solid state memory, etc), which 
may persistently store data. 

In some embodiments, system 800 may include a special 
purpose processor for executing atomic sequences of instruc 
tions, such as atomic program execution unit 824. Although 
FIG. 8 illustrates both an out-of-core atomic program execu 
tion unit 824 and a validation agent 870, other embodiments 
may include only one or the other of these components. 

According to the illustrated embodiment, computer system 
800 may include one or more shared memories 810 (e.g., one 
or more of cache, SRAM, DRAM, RDRAM, EDO RAM, 
DDR 10 RAM, SDRAM, Rambus RAM, EEPROM, etc.), 
which may be shared between multiple processing cores, 
such as on one or more of processors 860. The one or more 
processors 860, the storage device(s) 850, the atomic program 
execution unit 824, and shared memory 810 may be coupled 
via interconnect 840. In various embodiments, the system 
may include fewer or additional components not illustrated in 
FIG. 8 (e.g., video cards, audio cards, additional network 
interfaces, peripheral devices, a network interface Such as an 
ATM interface, an Ethernet interface, a Frame Relay inter 
face, monitors, keyboards, speakers, etc.). Additionally, dif 
ferent components illustrated in FIG.8 may be combined or 
separated further into additional components. 

In some embodiments, shared memory 810 may store pro 
gram instructions 820, which may be encoded in platform 
native binary, any interpreted language such as JavaM byte 
code, or in any other language such as C/C++, JavaTM, etc or 
in any combination thereof. Program instructions 820 may 
include program instructions to implement one or more 
multi-threaded applications 822, which require synchroniza 
tion mechanisms and may include atomic instruction 
sequences, as described herein. In some embodiments, pro 
gram instructions 820 may also include instructions execut 
able to implement an operating system 824 that provides 
Software Support for executing applications 822 (e.g., Sched 
uling, Software signal handling, etc.). 

According to the illustrated embodiment, shared memory 
810 may include shared data 830, which may be accessed by 
multiple ones of processors 860 and/or processing cores 
thereof. Ones of processors 860 may cache various compo 
nents of shared data 830 in local caches, and coordinate the 
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data in these caches by exchanging messages according to a 
cache coherence protocol, as described herein. 

Program instructions 820, such as those used to implement 
multithreaded applications 822 and/or operating system 824, 
may be stored on a computer-readable storage medium. A 
computer-readable storage medium may include any mecha 
nism for storing information in a form (e.g., software, pro 
cessing application) readable by a machine (e.g., a computer). 
The computer-readable storage medium may include, but is 
not limited to, magnetic storage medium (e.g., floppy dis 
kette); optical storage medium (e.g., CD-ROM); magneto 
optical storage medium; read only memory (ROM); random 
access memory (RAM); erasable programmable memory 
(e.g., EPROM and EEPROM); flash memory; electrical, or 
other types of medium suitable for storing program instruc 
tions. 
A computer-readable storage medium as described above 

may be used in Some embodiments to store instructions read 
by a program and used, directly or indirectly, to fabricate 
hardware comprising one or more of processors 860. For 
example, the instructions may describe one or more data 
structures describing a behavioral-level or register-transfer 
level (RTL) description of the hardware functionality in a 
high level design language (HDL) such as Verilog or VHDL. 
The description may be read by a synthesis tool, which may 
synthesize the description to produce a netlist. The netlist 
may comprise a set of gates (e.g., defined in a synthesis 
library), which represent the functionality of processor 500. 
The netlist may then be placed and routed to produce a data 
set describing geometric shapes to be applied to masks. The 
masks may then be used in various semiconductor fabrication 
steps to produce a semiconductor circuit or circuits corre 
sponding to processors 100, 605, and/or 860. Alternatively, 
the database may be the netlist (with or without the synthesis 
library) or the data set, as desired. 
The scope of the present disclosure includes any feature or 

combination of features disclosed herein (either explicitly or 
implicitly), or any generalization thereof, whether or not it 
mitigates any orall of the problems addressed herein. Accord 
ingly, new claims may be formulated during prosecution of 
this application (or an application claiming priority thereto) 
to any such combination of features. In particular, with ref 
erence to the appended claims, features from dependent 
claims may be combined with those of the independent 
claims and features from respective independent claims may 
be combined in any appropriate manner and not merely in the 
specific combinations enumerated in the appended claims. 
What is claimed: 
1. An apparatus comprising: 
a processing core in a multi-processing core system, the 

processing core being configured to: 
assemble an atomic program; and 
store the atomic program in a cache line; 
wherein the processing core is configured to Verify that: 

each instruction in the atomic program accesses only 
data that was stored in the cacheline before execution 
of the atomic program; and 

anatomic program execution unit configured to execute the 
stored atomic program as a single atomic memory trans 
action with a guarantee of forward progress. 

2. The apparatus of claim 1, wherein the atomic program 
includes at least one branch instruction. 

3. The apparatus of claim 1, wherein the atomic program is 
specified using a stack-based language and wherein the 
atomic program is executed in place in the cache line. 

4. The apparatus of claim 3, wherein every instruction 
expressible by the stack-based language meets a set of one or 
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more atomicity criteria, including that executing the instruc 
tion does not require accessing shared memory. 

5. The apparatus of claim 1, wherein executing the atomic 
program comprises locking the cache line, executing a 
sequence of instructions specified by the atomic program, and 
unlocking the cache line. 

6. The apparatus of claim 1, wherein the atomic program 
execution unit is configured to execute atomic programs for 
multiple processing cores. 

7. The apparatus of claim 1, further comprising: 
a peripheral device configured to store another atomic pro 
gram in a cacheline of the peripheral device, wherein the 
atomic program execution unit is separate from the 
peripheral device and is configured to execute the 
another atomic program as a single atomic memory 
transaction with a guarantee of forward progress. 

8. The apparatus of claim 1, wherein the atomic program 
execution unit executes the atomic program in response to 
receiving a request from the processing core. 

9. The apparatus of claim 8 wherein the apparatus is con 
figured to associate the stored atomic program with a handle 
identifier; and 

wherein the request from the processing core comprises the 
handle identifier. 

10. A method comprising: 
a processing core in a multi-processing core system vali 

dating that: each instruction in an atomic program 
accesses only data that was stored in a cache line before 
execution of the atomic program; 

storing the validated atomic program in the cache line; and 
an atomic program execution unit executing the stored 

atomic program as a single atomic memory transaction 
with a guarantee of forward progress. 

11. The method of claim 10, wherein the atomic program 
comprises a plurality of instructions. 

12. The method of claim 10, wherein the atomic program is 
specified using a stack-based language and wherein the 
atomic program is executed in place in the cache line. 

13. The method of claim 12, wherein every instruction 
expressible by the stack-based language meets a set of one or 
more atomicity criteria, including that executing the instruc 
tion does not require accessing shared memory. 
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14. The method of claim 10, wherein executing the atomic 

program comprises locking the cache line, executing a 
sequence of instructions specified by the atomic program, and 
unlocking the cache line. 

15. The method of claim 10, wherein the cache line is 
mapped to a memory space of the atomic program execution 
unit. 

16. The method of claim 10, further comprising: 
a peripheral device storing another atomic program in a 

cache line of the peripheral device, wherein the atomic 
program execution unit is separate from the peripheral 
device and is configured to execute the another atomic 
program as a single atomic memory transaction with a 
guarantee of forward progress. 

17. The method of claim 10, wherein the atomic program 
execution unit executes the atomic program in response to 
receiving a request from the processing core. 

18. The method of claim 17, further comprising: 
associating a the stored atomic program with a handle 

identifier and wherein the request from the processing 
core comprises the handle identifier. 

19. A non-transitory computer readable storage medium 
comprising a data structure which is operated upon by a 
program executable on a computer system, the program oper 
ating on the data structure to perform a portion of a process to 
fabricate an integrated circuit including circuitry described 
by the data structure, the circuitry described in the data struc 
ture including: 

a processing core in a multi-processing core system, the 
processing core being configured to assemble an atomic 
program and store the atomic program in a cache line, 
wherein the processing core is configured to verify that: 
each instruction in the atomic program accesses only 
data that was stored in the cacheline before execution of 
the atomic program; and 

anatomic program execution unit configured to execute the 
stored atomic program as a single atomic memory trans 
action with a guarantee of forward progress. 

20. The non-transitory computer readable storage medium 
of claim 19, wherein the storage medium stores at least one of 
HDL, Verilog, or GDSII data. 


