DISTRIBUTOR OF MIXES CONSISTING OF AGGLOMERATED CERAMIC OR STONE MATERIAL FOR FILLING A MOLD

A mix distributor (10) for filling a tray-like mold (100) is provided with a fixed housing (20), having a distribution surface (24) supporting a mold (100), and a movable housing (30), displaceable, along the surface (24), above the mold (100) and provided with a hopper (40; 140) containing the mix having at its bottom end a port (50; 150) for discharging the mix (110). The distributor (10) comprises an extractor belt (60; 160) which is integral with and positioned underneath the hopper (40; 140), forming the bottom thereof, and is able to receive and convey the discharged mix (110) to the free end thereof (60A) such that the mix falls by effect of gravity and is uniformly distributed in the mold (100).
DISTRIBUTOR OF MIXES CONSISTING OF AGGLOMERATED
CERAMIC OR STONE MATERIAL FOR FILLING A MOLD

DESCRIPTION

The present invention relates to a mix distributor for filling a mold having a substantially constant thickness with a mix of agglomerated ceramic or stone material.

The mix is formed by a mixture of granular material consisting of either natural or artificial hard stone or baked clay, which has a given grain size and the quantities of which are metered in a controlled manner, and by either an organic binder, chosen from among synthetic resins, or an inorganic binder, for example of the cement-based type.

These mix distributors are used for the manufacture of articles, particularly in the form of slabs, in plants consisting of a mix preparation station which is fed with the components forming the mix and in which mixing of the granular stone or ceramic material and the chosen binder is performed. The mix is transferred to a distributor which has the function of pouring and distributing the mix inside the molds which are filled uniformly. The mix normally has the consistency of a wet sand, which tends to pack together in lumps, particularly when the binder consists of a viscous or sticky resin. The mold containing the mix is transferred to a station where the mix is compacted, for example by means of a simultaneous pressing and vibrating action in a vacuum environment (as described in the patent IT-A-1,056,388). Subsequently, the mix is transferred to a catalysis station when the binder is resinous or to a hardening station when the binder is of the inorganic type. Finally, the hardened slab is extracted from the mold and transferred to the subsequent processing steps such as sizing and smoothing/polishing.

In the patent US-A-5,338,179 filed by the present Applicant an example of a distributor according to the known art, particularly suitable for sticky resin-based mixes, is described which comprises a fixed housing supporting the mold which must be uniformly filled with the mix of agglomerate material delivered by the said distributor.

The fixed housing has, mounted thereon, a movable housing equipped with a motor means so as to be displaceable above the mold such that the mix can be poured and distributed over the entire surface of the mold. The movable housing is
provided with a hopper movable in the vertical direction and containing the mix of stone material and having at the bottom end a port for discharging the mix. The hopper is also equipped internally with a rotating shaft having blades which push and accompany the mix towards the discharge port so as to facilitate distribution of the mix inside the mold.

The mix distributed inside the mold forms a layer, the thickness of which is equal to the distance between the port for discharging the material from the hopper and the bottom of the mold. The distributor in question is therefore of the volumetric type since, by suitably adjusting the vertical position of the hopper, the thickness of the layer of mix and therefore of the resultant slab is varied.

In particular, a liquid or powder dye may be added onto the upper surface of the mix, before reaches the distributor, by means of a dye dispenser such as described in Italian patent No. 1,273,903 filed in the name of the present Applicant.

The aim is that of obtaining an end product with colored effects similar to those of natural stone and in particular of creating veined effects or tones which imitate as far as possible those which are typical of natural stone.

The dye is distributed over the surface of the mix in a discontinuous and irregular manner and in a predefined and metered quantity. The dye is basically "sprinkled" over the surface of the mix and then partially mixed with the remainder of the mix, without, however, altering the substantially localized distribution of dye with respect to the surface of the mix layer, which is a necessary condition for creating a final product with veined effects.

The mix distributor described with reference to the known art, although it is able to produce finished slabs with particular colored and veined effects, nevertheless poses technology-related problems.

In fact, whereas the mix distributor is displaced in order to pour the mix uniformly into the mold, the shaft equipped with blades stirs the mix so that, even if at the beginning the dye has the desired irregular and localized distribution necessary for creating the veined effects in the final slab, as distribution proceeds, the mix contained inside the hopper is mixed up by the shaft with blades and in this way homogenization of the mix occurs. The result is that the slab does not have the same appearance and therefore visual effect over the whole of its surface, but in the part of the slab in which the mix was last distributed the aesthetic properties vary and differ from the desired aesthetic effect.
Another problem arises in the case where slabs with a different size and in particular with different thicknesses must be produced; in this latter case it is required to adjust the vertical position of the hopper, this operation requiring time, as well as involving complications of a structural nature associated with the design of devices able to move the hopper vertically and devices able to control precisely its position. The object of the present invention is therefore that of solving in an industrially advantageous manner the problems mentioned above with reference to the known art and particularly of providing a distributor with a simple construction which leads to the production of slabs, the aesthetic properties of which are optimum and uniform over their whole surface.

Moreover, the distributor must be able to be easily adjusted upon variation of the characteristics - such as the shape and thickness - of the layer of mix to be poured inside the mold and to allow an easy metering of the quantity of mix to be introduced into the hopper in order to form a slab with the required thickness and dimensions.

Last but not least, the distributor must function in such a way as to ensure that the mix is able to flow out easily and with a uniform thickness, even in the case of mixes having different physical properties, such as grain size, viscosity, etc.

The object is achieved with a distributor of the above discussed type, namely a mix distributor for filling a tray-like mold having a substantially constant thickness with a mix of agglomerated ceramic or stone material, comprising a fixed housing having a distribution surface supporting said mold which must be uniformly filled with the mix of agglomerate material and a movable housing displaceable, parallel to said distribution surface, above said mold and provided with hopper means for containing the mix of stone material, provided at the bottom end with a port for discharging the mix, and motor means for displacing said movable housing along said distribution surface so as to distribute the mix over the whole surface of said mold, the distributor being characterized in that it comprises conveyor means integral with the movable housing, positioned underneath said hopper means and forming the bottom thereof, said means being able to receive and convey the discharged mix to the end thereof so that the mix falls by effect of gravity and is uniformly distributed in said mold.

Preferably, said port for discharging the mix is defined between said conveyor means and the bottom end of said hopper means.
In the case of manufacture of slabs with a veined effect, where a liquid or powder dye is distributed in a discontinuous manner, in zones or patches, onto the surface of the mix upstream of said hopper means, since the mix supplied by the hopper means is deposited on the conveyor means without being mixed, the deposited mix remains unaltered during the whole of the mold filling operation. The result is that the slabs have the same aesthetic properties over the whole of their surface.

Essentially the irregular and localized deposition of the dye in the mix does not vary during the various mix distribution stages, thereby enabling the formation of slabs with a veined effect which remains unchanged over the whole of their surface.

Moreover, the hopper means are equipped with intercepting means positioned in front of the mix discharge port and able to regulate the degree of opening of said port. Alternatively or additionally the conveyor means are provided with variable-speed motor means and/or motor means of the variable-speed type are used to displace said movable housing.

In this way, by simply varying respectively the degree of opening of the mix discharge port and/or the speed of advance of the conveyor means and/or the speed of displacement of the container means it is possible to vary the quantity of mix to be poured into the mold and therefore the thickness of the mix layer.

The distributor also comprises load sensors able to weigh the hopper means together with the mix contained therein so as to determine with extreme ease the quantity of mix which is strictly necessary for filling the mold and in particular to control on continuous basis the throughput of the material poured from the distributor into the mold during its displacement.

These and further advantageous features of the present invention will emerge more clearly from the following detailed description provided by way of a non-limiting example with reference to the accompanying drawing in which:

- Fig. 1 is a schematic longitudinal view of a first embodiment of a distributor according to the present invention;
- Fig. 2 is a front view of the embodiment shown in Fig. 1;
- Fig. 3 is a top plan view of the embodiment shown in Fig. 1 where, for the sake of simplicity, some of the parts shown in the preceding figures have been omitted;
- Fig. 4 is a schematic longitudinal ad partial view of a second embodiment of a distributor according to the present invention;
- Fig. 5 is a front view of the embodiment shown in Fig. 4;
- Fig. 6 shows a variant of the part enclosed in the circle indicated by a dot-dash line in Fig. 4.

In Figures 1 to 3, 10 denotes overall a mix distributor for filling a tray-like mold, 100 which is usually made of rubber and has a substantially constant thickness, with a mix 110 of agglomerate stone or ceramic material.

The distributor 10 comprises a fixed housing 20 including a support surface 24 preferably consisting of a conveyor belt for allowing movement of the mold 100 positioned on top of it. A frame or border 102 for temporarily containing the mix is inserted inside the mold 100 before commencing filling. The frame 102 is connected to actuating cylinders 26 which are mounted on supports 22. The containing frame 102 has a height greater than that of the adjacent perimetal edge of the mold 100 so as to prevent the fresh and therefore soft mix from flowing over the said edge when it is poured into the mold with a thickness greater than the final thickness. Preferably, as shown in Figs. 1 and 2, the frame 102 has walls inclined towards the inside of the mold so as to prevent spillage of the mix when the frame 102 is removed.

A movable housing 30 is arranged above the distribution surface 24, being displaceable parallel to said surface 24, above the mold 100, by means of sliding guides (not shown). The movable housing 30 is also provided with a variable-speed motor 34 which allows its speed of displacement to be varied.

The movable housing 30 supports, above it, a hopper 40 for containing the mix of agglomerate material, formed by four side walls 42 lined with an anti-adhesive material and having an upper mouth 40B through which the fresh mix is fed.

An extractor belt 60, able to receive the mix from the hopper 40 and forming the bottom thereof, is positioned underneath the hopper 40 and integral with the movable housing 30. The conveyor belt 60 is provided with a controlled-speed and adjustable motor 62, so that it is possible to vary the speed of discharge of the mix and therefore the throughput of the mix which is poured into the mold 100. The belt 60 is preferably also provided with a scraper or brush device (shown schematically in Fig. 1 and indicated by the reference number 44) which keeps it
constantly clean.

The front wall 42A of the hopper 40 has at its bottom end a discharge port or opening 50, the height of which may be regulated by using intercepting means consisting of a gate-type closure 52 which is movable vertically as shown in Fig. 1 by the arrow C. It is thus possible to regulate the quantity of mix which the extractor belt 60 is able to convey away through the discharge port 50.

The movable housing 30 is mounted on supports 64 provided with load sensors 66 so as to monitor the weight of the mix 110 deposited on the extractor belt 60 and therefore to control the throughput of the mix poured into the mold 100, with the possibility of adjusting it by varying the speed of the belt 60 and/or the speed of displacement of the movable housing 30.

The mix 110 emerges from the hopper 40 through the port 50 and is conveyed at a controlled speed to the free end 60A of the extractor belt 60, where the mix falls by means of gravity and is uniformly distributed inside the mold 100. A guide chute 68 is provided at the free end 60A of the conveyor belt 60, said chute - as shown in Fig. 2 - extending transversely over practically the whole width of the mold 100 so as to favor the distribution of the mix therein.

The operating principle of the distributor is now described. In its starting position the hopper 40 is filled with a quantity of mix slightly greater than that which is required to form a slab. Owing to the load sensors 66 and since the weight when empty (tare) of the movable housing 30 is known, the hopper 40 can be loaded with the desired quantity of mix (for example the quantity required for forming a slab).

The movable housing 30, together with the hopper 40 and therefore also the extractor belt 60, is initially positioned at one end of the fixed housing 20 so that the mix 110 is poured starting from one end of the mold 100.

In order to commence filling of the mold 100, the motor 62 is energized in order to advance the extractor belt 60, then also the motor 34 is energized in order to displace the movable housing 30. The advancing movement - indicated by arrow A - of the extractor belt 60 and therefore the mix deposited thereon occurs in the same direction as the displacement of the movable housing 30 - indicated by the arrow B, see Fig. 1.

The mix flows out of the discharge port 50 and at the end 60A of the extractor belt 60A falls inside the mold 100, being guided by the chute 68. The
displacement of the movable housing 30 continues so as to pour the mix 110 inside the whole mold 100.

It should be noted that the mix may be poured into the mold 100 either during the outward travel movement only or may be poured, if necessary, both during the outward and the return travel movement, thereby allowing a reinforcing element of the end product, such as for example a meshwork, to be inserted between the two layers of mix.

It should be noted that the thickness of the mix poured into the mold 100 depends on the rate of discharge of the mix from the extractor belt 60 (which is controlled continuously by the computer which manages the load sensors) and may be modified very easily in three different ways:

1. by adjusting the height of the port 50 for discharging the mix from the hopper 40 by means of the gate 52, which is movable in a vertical direction;
2. by adjusting the speed of displacement of the movable housing 30;
3. by adjusting the speed of advancing movement of the extractor belt 60.

By reducing the height of the port 50 for discharging the mix from the hopper 40 or by increasing the speed of displacement of the movable housing 30 or by slowing down the speed of advancing movement of the extractor belt 60, the thickness of the layer of mix 110 poured into the mold 100 decreases. Conversely, by increasing the height of the port 50 for discharging the mix from the hopper or by slowing down the speed of displacement of the movable housing 30 or by increasing the speed of advancing movement of the extractor belt 60, the thickness of the layer of mix 110 poured into the mold 100 increases.

In view of the ease of performing filling of the hopper 40 with the desired quantity of mix, for example that required for forming a slab, due to the use of the load sensors 66, and in view of the precision and immediacy of the adjustments necessary for pouring into the mold 100 a layer of mix 110 of a predefined thickness in one or more passes, without the mix being remixed as it passes from the hopper 40 to the mold 100, a slab with optimum aesthetic properties which are constant over the whole of its surface is always obtained. Equally evident is the simplicity in construction of the device and the extreme ease with which it may be cleaned in order to allow use of a different colored mix.

The second embodiment of the present invention - which is shown in Figs.
4 to 6 - was conceived in order to improve the qualitative yield of the distributor, in particular as regards the regularity and uniformity of the thickness and of the density of mix flowing out from the discharge port of the hopper. The following description refers only to the following differences the second embodiment has compared to the first one:

a) a hopper for containing the mix 110, which consists of a fixed external structure (not shown) and an internal structure 140 which, by means of handles (also not shown), may be extracted from the structure and replaced with a structure having a different size depending on the size of the slab of agglomerated ceramic or stone material to be produced in the mold 100;

b) the top of the extractor belt 160, on which the mix flowing out from the internal structure 140 of the hopper is deposited and which forms the bottom of the latter, is inclined slightly forwards, namely towards the discharge port 150 formed at the bottom end of the front wall 142 of said internal structure. The mentioned inclination derives from the fact that the driving roller 164 of the extractor belt 160 needs to have a given diameter to ensure a sufficiently strong pull while the idle roller (not visible in the drawing) has a much smaller diameter to ensure an optimum fall down of the mix 110. In this embodiment also, advancing of the extractor belt 160 by the motor 162 occurs in the direction of the arrow A, which is the same as the direction B of the movable housing 130;

c) the said front wall 142 of the internal structure 140, which has at its bottom end the discharge port 150, has a profile such as to present a converging/diverging cross section to the flow of the mix 110 which moves towards the port 150. The geometry of this profile may be varied, and consequently optimized, depending on the physical characteristics (grain size, viscosity, etc.) of the mix but, in any case, ensures that said flow of mix 110 passes from an average vertical direction to an average direction substantially parallel to the top part of the extractor belt 160. Figs. 4 and 6 show, exclusively by way of example, two of the possible profiles 142A and 142B respectively of said front wall 142 of the internal structure 140. Thanks to such profile, there is no accumulations of undischarged mix on the port 150, thus the thickness and the density of mix 110 flowing out from the said port are uniform. As a consequence the mix 110 is no longer poured in form of "spots" but as a continuous layer in the mold 100;
d) preferably – as shown in Fig. 5 - in front of the discharge port 150 there is a comb or rake-like device 170 provided with a connecting rod and crank mechanism 174 which imparts to said device an alternating movement in a vertical plane parallel to the cross section of the discharge port 150, as indicated by the arrow D in Fig. 5. In this way the teeth 172 of the device 170 break up any lumps which form in the mix 110 before the latter falls into the mold 100, so that the layer of mix inside the mold is even more uniform;

e) a scraper device 180 - see Fig. 4 - is also preferably present at a given radial distance from the already mentioned idle roller of the extractor belt 160, said scraper device being characterized by a blade which, at the end of filling of the mold 100, scrapes off any residual amount of mix 110 supplied by the present distributor remaining attached to the extractor belt 160;

f) on the opposite side of the internal structure 140 of the hopper, there preferably is also a cylindrical brush 185 having a horizontal axis - see Fig. 4 again - which is actuated by an associated motor (not shown) and which completes the work of the scraper device 180 for a carefully cleaning of the extractor belt 160.

Finally it is clear that the scope of protection of the following claims also includes any further modifications or changes which are functionally or conceptually equivalent to that claimed below.

* * *

9
CLAIMS

1. Mix distributor (10) for filling a tray-like mold (100) having a substantially constant thickness with a mix (110) of agglomerated ceramic or stone material, comprising a fixed housing (20) having a distribution surface (24) supporting said mold (100) which must be uniformly filled with the mix (110) of agglomerate material and a movable housing (30) displaceable, parallel to said surface (24), above said mold (100) and provided with hopper means (40; 140) for containing the mix (110), provided at the bottom end with a port (50; 150) for discharging the mix (110), and motor means (34) for moving said movable housing (30) along said surface (24) so as to distribute the mix (110) over the whole surface of said mold (100), the distributor (10) being characterized in that it comprises conveyor means (60; 160) integral with said movable housing (30), positioned underneath said hopper means (40; 140) and forming the bottom thereof, said conveyor means (60; 160) being able to receive and convey the mix (110) discharged to the end thereof (60A; 160A) so that the mix falls by effect of gravity and is uniformly distributed in said mold (100).

2. Mix distributor according to Claim 1, characterized in that said port (50; 150) for discharging the mix is defined between said conveyor means (60; 160) and the bottom end of said hopper means (40; 140).

3. Mix distributor according to Claim 1, characterized in that the wall (142) of the hopper means (140), which ends with said discharge port (150), has a profile such as to present a converging/diverging section (142A, 142B) to the flow of mix (11) which moves towards the said discharge port (150).

4. Mix distributor according to Claim 3, characterized in that the geometry of the profile of said wall (142) ensures that, inside the hopper means (140), the flow of mix (110) passes from an average vertical direction to an average direction substantially parallel to the underlying part of the conveyor means (160).

5. Mix distributor according to Claim 1, characterized in that means (170) able to break up any lumps which form in the mix (110) before the latter falls onto the tray-like mold (100) are present in front of said discharge port (150).

6. Mix distributor according to Claim 5, characterized in that the said lump-breaking means (170) comprise a comb or rake-like device actuated by means (174) able to impart to the teeth (172) of the comb or rake-like device an alternating movement on a vertical plane parallel to the cross section of said
discharge port (150).

7. Mix distributor according to Claim 1, characterized in that scraper means (180) are associated with said conveyor means (160) in order to remove from said conveyor means (160) any residual material remaining attached after filling of the mold (100).

8. Mix distributor according to Claim 7, characterized in that said cleaning means consist of a motor-driven cylindrical brush (185) having a horizontal-axis.

9. Mix distributor according to Claim 1, characterized in that said hopper means (40; 140) are provided with intercepting means (52) positioned in front of said mix discharge port (50; 150) and able to regulate the degree of opening of said port (50; 150) so as to vary the throughput of mix (110) to be poured into said mold (100) and therefore the thickness of the mix layer (110).

10. Mix distributor according to Claim 8, characterized in that said intercepting means consist of a gate (62) which is adjustable vertical so as to vary the useful height of the port (50) for discharging the mix (110).

11. Mix distributor according to any one of the preceding claims, characterized in that said conveyor means (60; 160) are provided with variable-speed actuating means (62; 162) so as to vary the throughput of mix (110) to be poured into said mold (100) and therefore the thickness of the mix layer (110).

12. Mix distributor according to any one of the preceding claims, characterized in that said motor means (34) able to displace said movable housing (30) are of the variable-speed type so as to vary the throughput of mix (110) to be poured into said mold (100) and therefore the thickness of the mix layer.

13. Mix distributor according to any one of the preceding claims, characterized in that it comprises weighing means (66) able to weigh said hopper means (40; 140) together with the mix (110) contained therein.

14. Mix distributor according to Claim 12, characterized in that said weighing means comprise at least one load sensor (66).

15. Mix distributor according to any one of the preceding claims, characterized in that it comprises a guide chute (68) positioned at the end of said conveyor means (60), where the mix (110) falls by effect of gravity, so as to receive the mix and distribute it in a regular manner in said mold (100).

16. Mix distributor according to any one of the preceding claims, characterized in that said conveyor means comprise an extractor belt (60; 160).
17. Mix distributor according to Claim 1, characterized in that the top of said extractor belt (160), on which the mix (110) flowing out of the hopper means (140) is deposited, is inclined towards said discharge port (150).

18. Mix distributor according to any one of the preceding claims, characterized in that said tray-like mold (100) is made of rubber.

19. Mix distributor according to Claim 18, characterized in that it comprises a frame or border (102) for containing the mix (110), which is inserted into the tray-like mold (100) made of rubber.

20. Mix distributor according to Claim 1, characterized in that cleaning means (44; 185) are associated with said conveyor means (60; 160) which are able to clean the surface of the latter on which the mix discharged from the discharge port (50; 150) is conveyed.

21. Mix distributor according to Claim 20, characterized in that said cleaning means (44) consist of a cleaning scraper or brush.

22. Mix distributor according to Claim 1, characterized in that said distribution surface (24) for supporting said mold (100) is a conveyor belt.

* * *
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B28B13/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B28B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 864 846 A (TURF IT WERKE G A HASEKE & CO) 6 May 1941 (1941-05-06) page 5, column 1, line 15 - line 46; claims 1,13,16,20; figures 9,10</td>
<td>1, 2, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Y</td>
<td>FR 2 052 704 A (MONTCHARMONT SIMONE) 9 April 1971 (1971-04-09) the whole document</td>
<td>1-3, 9, 10, 15, 16</td>
</tr>
<tr>
<td>A</td>
<td>FR 1 591 141 A (ÉTABLISSEMENTS A. SERVA) 27 April 1970 (1970-04-27) the whole document</td>
<td>1, 2, 9, 10, 13, 14, 16, 17</td>
</tr>
<tr>
<td>X</td>
<td>DD 294 453 A (BAUAKADEMIE DDR) 2 October 1991 (1991-10-02) the whole document</td>
<td>-/--</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

* Other categories of cited documents:
* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "Y" document cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
* "S" document member of the same patent family

Date of the actual completion of the international search: 10 March 2004
Date of mailing of the international search report: 23/03/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer
Orij, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 321 028 A (VAN DE CAVEYE YVES H) 23 March 1982 (1982-03-23)</td>
<td>1,2,7,9, 10,16, 20,21</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>22</td>
</tr>
<tr>
<td>Y</td>
<td>PATENT ABSTRACTS OF JAPAN</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td>vol. 2000, no. 23, 10 February 2001 (2001-02-10) -& JP 2001 162612 A (KUBOTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORP), 19 June 2001 (2001-06-19) abstract</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DATABASE WPI Section Ch, Week 200415</td>
<td>18,22</td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB; Class A93, AN 2002-700078 XP002273065</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-& ES 2 172 418 B (PREFABRICADOS VALERIO SA), 16 December 2003 (2003-12-16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>FR 864846</td>
<td>06-05-1941</td>
<td>NONE</td>
</tr>
<tr>
<td>FR 2052704</td>
<td>09-04-1971</td>
<td>FR 2052704 A5</td>
</tr>
<tr>
<td>FR 1591141</td>
<td>27-04-1970</td>
<td>NONE</td>
</tr>
<tr>
<td>DD 294453</td>
<td>02-10-1991</td>
<td>DD 294453 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2485983 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8103561 A1</td>
</tr>
<tr>
<td>JP 2001162612</td>
<td>19-06-2001</td>
<td>NONE</td>
</tr>
<tr>
<td>ES 2172418</td>
<td>16-09-2002</td>
<td>ES 2172418 A1</td>
</tr>
</tbody>
</table>