(54) 发明名称
电梯升降装置

(57) 摘要
本发明提供一种电梯升降装置，它包括电梯井道、用于提升电梯的传动系统和防坠设备，其中，所述防坠设备包括设置于所述电梯井道中的之字形防坠轨道，滑动于所述之字形防坠轨道中的轨道轮和两端分别铰接所述轨道轮和所述电梯的防坠绳，所述之字形防坠轨道的各个变向处铰接有止挡片，所述止挡片的初始状态为贴合所述之字形防坠轨道，所述电梯井道内均布有速度传感器，控制器分别连接所述速度传感器和所述止挡片以以便发现速度异常时控制所述止挡片竖起止挡所述轨道轮。该电梯升降装置具有设计科学、安全性好、防止意外坠落的优点。
1. 一种电梯升降装置，其特征在于：它包括电梯井道、用于提升电梯的传动系统和防坠设备，其中，所述防坠设备包括设置于所述电梯井道中的之字型防坠轨道，其上设有分别连接所述轨道和电梯的防坠绳，所述之字型防坠轨道的各个变向处设有止挡片，所述止挡片的初始状态为贴合所述之字型防坠轨道，所述电梯井道内均匀分布有速度传感器，控制器分别连接所述速度传感器和所述止挡片以便发现速度异常时控制所述止挡片竖起止挡所述轨道轮。

2. 根据权利要求1所述的电梯升降装置，其特征在于：所述之字型防坠轨道的非变向处均布有若干所述止挡片。

3. 根据权利要求1或2所述的电梯升降装置，其特征在于：所述之字型防坠轨道的变向处为弧形结构。

4. 根据权利要求1或2所述的电梯升降装置，其特征在于：所述电梯井道包括对应所述电梯的四侧边设置的竖向轨道，所述电梯的各侧边上和对应的竖向轨道上设置电磁铁，所述控制器连接所述电磁铁以便发现速度异常时启动所述电磁铁。

5. 根据权利要求3所述的电梯升降装置，其特征在于：所述电梯井道包括对应所述电梯的四侧边设置的竖向轨道，所述电梯的各侧边上和对应的竖向轨道上设置电磁铁，所述控制器连接所述电磁铁以便发现速度异常时启动所述电磁铁。
电梯升降装置

技术领域
[0001] 本发明涉及一种电梯设备，具体的说，涉及了一种电梯升降装置。

背景技术
[0002] 目前的电梯升降系统通常为垂直升降，在防坠落方面也通常采用配重，或者接触面的摩擦来实现紧急停车操作，在垂直方向上的急停操作是十分困难的，需要的摩擦力巨大，防坠落效果差。
[0003] 为了解决以上存在的问题，人们一直在寻找一种理想的技术解决方案。

发明内容
[0004] 本发明的目的是针对现有技术的不足，从而提供一种设计科学，安全性能好，防止意外坠落的电梯升降装置。
[0005] 为了实现上述目的，本发明所采用的技术方案是：一种电梯升降装置，包括电梯井道，用于提升电梯的传动系统和防坠设备，其中，所述防坠设备包括设置于所述电梯井道中的字型防坠轨道，滑动于所述字型防坠轨道中的轨道轮和两端分别铰接所述轨道轮和所述电梯的防坠绳，所述字型防坠轨道的各个变向处铰接有止挡片，所述止挡片的位置及初始状态为贴合所述字型防坠轨道，所述电梯井道内均布有速度传感器，控制器分别连接所述速度传感器和所述止挡片以便发现速度异常时控制所述止挡片竖起防止所述轨道轮。
[0006] 基于上述，所述字型防坠轨道的非变向处均布有若干所述止挡片。
[0007] 基于上述，所述字型防坠轨道的变向处为弧形结构。
[0008] 基于上述，所述电梯井道包括对应所述电梯的四侧边设置的竖向轨道，所述电梯的各侧边和对应的竖向轨道上设置电磁铁，所述控制器连接所述电磁铁以便发现速度异常时启动所述电磁铁。
[0009] 本发明相对现有技术具有突出的实质性特点和显著的进步，具体的说，本发明设置字型防坠轨道，该字型防坠轨道不影响电梯井道的正常运行，可以设置在电梯的各个侧面对应的空间中，电梯升降时，电梯带动防坠绳以及轨道轮沿字型轨道行走，一旦发生坠落，一方面，字型轨道的横向拉力可以缓冲下降的速度，延长下降的时间，另一方面，控制器通过速度传感器检测到的时速判断出现异常，控制止挡片竖起，挡住字型轨道上的轨道轮，从而防止了电梯的坠落，即便速度过大，将止挡片击倒，各个变向处的止挡片的层层减速，也能够最大限度的减轻电梯的坠落事故后果。
[0010] 进一步的，为了降低对于止挡片的强度要求，在非变向处也设置止挡片，用尽量多的止挡片为电梯的下坠缓冲，直到停止，起到更好的防坠效果。
[0011] 进一步的，在竖向轨道中对应电梯设置电磁铁，通过电磁铁通电得磁力的特性，为电梯下坠增加阻力，进一步的加强了电梯防坠能力。
[0012] 其具有设计科学，安全性能好，防止意外坠落的优点。
附图说明
[0013] 图1是本发明中电梯升降装置的结构示意图。

具体实施方式
[0015] 下面通过具体实施方式，对本发明的技术方案做进一步的详细描述。
[0016] 如图1所示，一种电梯升降装置，包括电梯井道1，用于提升电梯的传动系统和防坠设备，其中，所述防坠设备包括设置于所述电梯井道1中的之字型防坠轨道2、滑动于所述之字形防坠轨道2中的轨道轮3和两端分别铰接所述轨道轮3和所述电梯7的防坠绳4，所述之字形防坠轨道2的各个变向处铰接有止挡片5，所述止挡片5的初始状态为贴合所述之字形防坠轨道2，所述电梯井道1内均布有速度传感器6，控制器分别连接所述速度传感器6和所述止挡片5以便发现速度异常时控制所述止挡片5竖起止挡所述轨道轮3。所述之字形防坠轨道2的变向处为弧形结构。
[0017] 之字形防坠轨道2不影响电梯井道1的正常运行，可以设置在电梯7的各个侧面对应的空间中，电梯7升降时，电梯7带动防坠绳4以及轨道轮3沿之字形轨道行走，一旦发生坠落，一方面，之字形防坠轨道2的横向分力可以缓冲下降的速度，延长下降的时长，另一方面，控制器通过速度传感器6检测的时速判断出现异常，控制止挡片5竖起，挡住之字形防坠轨道2上的轨道轮3，从而防止了电梯7的坠落，但即便速度过大，将止挡片5击倒，各个变向处的止挡片5的层层减速，也能够最大程度的减轻电梯7的坠落事故后果，本实施例中，对于止挡片5的强度要求较高。
[0018] 在其他实施例中，与以上实施例的区别在于；所述之字形防坠轨道的非变向处均布有若干所述止挡片。为了降低对于止挡片的强度要求，在非变向处也设置止挡片，用尽量多的止挡片为电梯的下坠缓冲，直到停止，起到更好的防坠效果。
[0019] 为了更好的提升防坠能力，所述电梯井道1包括对应所述电梯的四侧边设置的竖向轨道，所述电梯的各侧边上和对应的竖向轨道上设置电磁铁8，所述控制器连接所述电磁铁8以便发现速度异常时启动所述电磁铁8。通过电磁铁8通电得磁力的特性，为电梯下坠增加阻力，进一步的加强了电梯防坠能力。
[0020] 最后应当说明的是；以上实施例仅用以说明本发明的技术方案而非对其限制；尽管参照较佳实施例对本发明进行了详细的说明，所属领域的普通技术人员应当理解；依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换；而不脱离本发明技术方案的精神，其均应涵盖在本发明请求保护的技术方案范围当中。
图1