
(19) United States
US 20060O85781A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0085781 A1
Rapp et al. (43) Pub. Date: Apr. 20, 2006

(54) LIBRARY FOR COMPUTER-BASED TOOL
AND RELATED SYSTEMAND METHOD

(75) Inventors: John Rapp, Manassas, VA (US); Scott
Hellenbach, Amissville, VA (US); T. J.
Kurian, Manassas, VA (US); D. James
Schooley, Manassas, VA (US)

Correspondence Address:
GRAYBEAL UACKSON HALEY LLP
Suite 350
155-108th Avenue N.E.
Bellevue, WA 98004-5973 (US)

(73)

(21)

(22)

Assignee: Lockheed Martin Corporation

Appl. No.: 11/243,506

Filed: Oct. 3, 2005

Related U.S. Application Data

(60) Provisional application No. 60/615,192, filed on Oct.
1, 2004. Provisional application No. 60/615,157, filed
on Oct. 1, 2004. Provisional application No. 60/615,
170, filed on Oct. 1, 2004. Provisional application No.

Configuration
Template1161

- - - - - - - - - - -
Configuration

description 1341

60/615,158, filed on Oct. 1, 2004. Provisional appli
cation No. 60/615,193, filed on Oct. 1, 2004. Provi
sional application No. 60/615,050, filed on Oct. 1,
2004.

Publication Classification

Int. C.
G06F 7/50 (2006.01)
HO3K 9/00 (2006.01)
U.S. Cl. .. 716/17

(51)

(52)

(57)
A library includes one or more circuit templates and an
interface template. The one or more circuit templates each
define a respective circuit operable to execute a respective
algorithm or portion thereof. And the interface template
defines a hardware layer operable to interface one of the
circuits to pins of a programmable logic circuit when the
layer and the one circuit are instantiated on the program
mable logic circuit. Such a library may shorten the time and
reduce the effort that an engineer expends designing a circuit
for instantiation on a PLIC or ASIC by allowing the engineer
to build the circuit from templates of previously designed
and debugged circuits.

ABSTRACT

Top-Level PLIC Template 1011 Top-Level Template

FSL Definition 1041 Shell Definition 1061
Description 1261

te Adapter-Layer Framework-Services-Layer

| FSL Template
Description 1381 Description 130,

Template 108 Template 110 CS Template Description Communication-Shell
1321. Template 112.

- - - - - - - - - - - - - - - - - - ----- -------------- 113,
AL Template FSL Template t (d. (.)

Continue On
CS Template Communication-Shell

Description 132

Accelerator :
Description 140 DeScription 132n

Platform 1 - - - - - - - - - - - - -

Hardwired-Pipeline Hardwired-Pipeline - Template 1141 Template 1142

120 - - - - - - - - - - - - - - - - - - - ; Hardwired-Pipeline. | Hardwired-Pipeline.
Template Description 1381 Template Description 138. :

Template 112,211,
- - - -n an as a - - - - -

Platform
DeSCription 136

- - - - - - - - - - - -
CSTemplate Communication-Shell

Template 112
113

124

Hardwired Pipeline

Hardwired-Pipeline
Template 114

Template Description 138

99 JO10?UU00 Sng

US 2006/0085781 A1

r–

-?7G ÁJOu3|N

Patent Application Publication Apr. 20, 2006 Sheet 2 of 18

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 3 of 18

US 2006/0085781 A1

8955
Patent Application Publication Apr. 20, 2006 Sheet 4 of 18

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 5 of 18

–––––––> '– –-]

0Z|

US 2006/0085781 A1

–J – – – – – – – – – – – –J

[?aevitae ama | |TFT (T?
*- - - - - - - - - - - - - ~~J

Patent Application Publication Apr. 20, 2006 Sheet 6 of 18

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 7 of 18

TU?J? e?ejduj? ?

??e|dula 1 SO - - - - - - - -–)

DIF?TUZOJ

US 2006/0085781 A1

??T

Patent Application Publication Apr. 20, 2006 Sheet 8 of 18

Patent Application Publication Apr. 20, 2006 Sheet 9 of 18 US 2006/0085781 A1

O

92

OO
N
s

od

so

ced

so

co CN
N. N
v- v

O
N
v

S

co

r
N

cN r

so
CO

9
3

Patent Application Publication Apr. 20, 2006 Sheet 10 of 18

Algorithm portion

sin(x) (portion 190 of equation(2))

Z3 (portion 186 of equation(2))

Cos(z) (portion 184 of equation(2))

O (multiplication portions 182
And 186 of equation (2)

+ (portion 176 of equation(2))

V (portion 170 of equation(2)

194 196

192

TABLE

Templates

1141,

1142, , , ,

1144,

1145,

1146,

1147,

FIG. 9

Latency:
Input precision:

Output precision:
Latency:

Input precision:
Output precision:

Latency:
Input precision:

Output precision
Latency:

input precision:
Output precision

Latency:
Input precision.

Output precision:
Latency:

Input precision:
Output precision:

198

US 2006/0085781 A1

10 clock cycles
32-bit integer
32-bit floating point
10 clock cycles
32-bit integer
32-bit integer
10 clock cycles
32-bit integer
32-bit floating point
10 clock cycles

32-bit floating point
32-bit floating point
5 clock cycles
32-bit floating point
32-bit floating point
10 clock cycles
32-bit floating point
32-bit floating point

Patent Application Publication Apr. 20, 2006 Sheet 11 of 18 US 2006/0085781 A1

s N
r
s

e ci CN
O wo

cN

S
s

&

3.

Patent Application Publication Apr. 20, 2006 Sheet 12 of 18 US 2006/0085781 A1

N
N.
la

Od
e
s

-

O)
.

CD
CMO
-sa
b

S
E
s
L

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 13 of 18

177 809
se
N
c)

809
2.^ 00Z

(z)SOO 909
2^ (x)UIS

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 14 of 18

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 15 of 18

1992

Patent Application Publication Apr. 20, 2006 Sheet 16 of 18 US 2006/0085781 A1

É

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 17 of 18

4099

9099

V089

0099

US 2006/0085781 A1 Patent Application Publication Apr. 20, 2006 Sheet 18 of 18

019

- 118 Nº)|S

US 2006/0085781 A1

LIBRARY FOR COMPUTER-BASED TOOLAND
RELATED SYSTEMAND METHOD

CLAIM OF PRIORITY

0001. This application claims priority to U.S. Provisional
Application Ser. Nos. 60/615,192, 60/615,157, 60/615,170,
60/615,158, 60/615,193, and 60/615,050, filed on Oct. 1,
2004, which are incorporated by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

0002 This application is related to U.S. patent applica
tion Ser. Nos. (Attorney Docket Nos. 1934-21-3,
1934-23-3, 1934-24-3, 1934-25-3, 1934-26-3, 1934-31-3,
and 1934-36-3), which have a common filing date and
assignee and which are incorporated by reference.

BACKGROUND

0003 Electronics engineers often instantiate circuits,
Such as logic circuits, on programmable logic integrated
circuits (PLICs) such as field-programmable gate arrays
(FPGAs), and on application-specific integrated circuits
(ASICs). Because an engineer typically configures with
firmware the circuit components and interconnections inside
of a PLIC, he can modify a circuit instantiated on the PLIC
merely by modifying and reloading the firmware. An
example of a computer architecture that exploits the ability
to configure and reconfigure circuitry within a PLIC with
firmware is described in U.S. Patent Publication No. 2004/
0.133763, which is incorporated herein by reference.
0004 But unfortunately, it is often difficult and time
consuming to design a circuit for instantiation on a PLIC,
and an increase in the level of design difficulty and the time
required to complete the design often accompany the routing
resources, component density, and component variety on a
PLIC.

0005 Comparatively, when a software programmer
writes Source code for a software application, he can often
save time by incorporating into the application previously
written and debugged software objects from a software
object library. Suppose the programmer wishes to write a
software application that solves for y in the following
equation:

Further suppose that a software-object library includes a first
Software object for squaring a value (here X), a second
software object for cubing a value (here Z), and a third
software object for summing two values (here x and Z). By
incorporating pointers to these three objects in the Source
code, a compiler effectively merges these objects into the
Software application while compiling the Source code.
Therefore, the object library allows the programmer to write
the software application in a shorter time and with less effort
because the programmer does not have to “reinvent the
wheel” by writing and debugging pieces of Source code that
respectively square X, cube Z, and sum x and z. Further
more, if the programmer needs to modify the software
application, he can do so without modifying and re-debug
ging the first, second, and third software objects.
0006. In contrast, there are typically no time- or effort
saving equivalents of Software objects available to a hard

Apr. 20, 2006

ware engineer who wishes to design a circuit for instantia
tion on a PLIC, consequently, when a hardware engineer
designs a circuit for instantiation on a PLIC, he typically
must write the Source code (e.g., Verilog Hardware Descrip
tion Language (VHDL)) “from scratch.” Suppose that an
engineer wishes to design a logic circuit that solves for y
equation (1). Because there are typically no hardware
equivalents of the first, second, and third software objects
described in the preceding paragraph, the engineer may
write source code that describes first and second portions of
a circuit for Solving equation (1). The first circuit portion
squares X, cubes Z, and sums x and z and the second circuit
portion interfaces the first circuit portion to the external pins
of the PLIC. The engineer then compiles the source code
with PLIC design tool (typically provided by the PLIC
manufacturer), which synthesizes and routes the circuit and
then generates the configuration firmware that, when loaded
into the PLIC, instantiates the circuit. Next, the engineer
loads the firmware into the PLIC and debugs the instantiated
circuit. Unfortunately, the synthesizing and routing steps are
often not trivial, and may take a number of hours or even
days depending upon the size and complexity of the circuit.
And even if the engineer makes only a minor modification
to a small portion of the circuit, he typically must repeat the
synthesizing, routing, and debugging steps for the entire
circuit.

0007 Another factor that may add to the time and effort
that an engineer expends while designing a circuit for
instantiation on a PLIC is that a PLIC design tool typically
recognizes only hardware-specific source code. Suppose that
a mathematician, who writes an equation using mathemati
cal symbols (e.g., “+*-*s,”“X,”“8,”“o,”“x,”“z,” and
“V.), wishes to instantiate on a PLIC a circuit that solves for
a variable in a complex equation that includes, e.g., partial
derivatives and integrations. Because a PLIC design tool
typically recognizes few, if any, mathematical symbols, the
mathematician often must explain the equation and the
desired operating parameters (e.g., latency and precision) of
the circuit to a hardware engineer, who then translates the
equation and operating parameters into source code that the
design tool recognizes. These explanation and translation
steps are often time consuming and difficult for the engineer,
particularly where the equation is mathematically complex
or the circuit has stringent operating parameters (e.g., high
speed, high precision).
0008. Therefore, a need has arisen for a new methodol
ogy and for a new tool for designing a circuit for instantia
tion on a PLIC.

SUMMARY

0009. According to an embodiment of the invention, a
library includes one or more circuit templates and an inter
face template. The one or more circuit templates each define
a respective circuit operable to execute a respective algo
rithm or portion thereof. And the interface template defines
a hardware layer operable to interface one of the circuits to
pins of a programmable logic circuit when the layer and the
one circuit are instantiated on the programmable logic
circuit.

0010. Such a library may shorten the time and reduce the
effort that an engineer expends designing a circuit for
instantiation on a PLIC or ASIC by allowing the engineer to
build the circuit from templates of previously designed and
debugged circuits.

US 2006/0085781 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a block diagram of a peer-vector com
puting machine having a pipelined accelerator that one can
design with a design tool according to an embodiment of the
invention.

0012 FIG. 2 is a block diagram of a pipeline unit that
includes a PLIC and that can be included in the pipelined
accelerator of FIG. 1 according to an embodiment of the
invention.

0013 FIG. 3 is a diagram of the circuit layers that
compose the hardware interface layer within the PLIC of
FIG. 2 according to an embodiment of the invention.
0014 FIG. 4 is a block diagram of the circuitry that
composes the interface adapter and framework services
layers of FIG. 3 according to an embodiment of the inven
tion.

0.015 FIG. 5 is a diagram of a hardware-description file
for a circuit that one can instantiate on a PLIC according to
an embodiment of the invention.

0016 FIG. 6 is a block diagram of a PLIC circuit
template library according to an embodiment of the inven
tion.

0017 FIG. 7 is a block diagram of circuit-design system
that includes a computer-based tool for designing a circuit
using templates from the library of FIG. 6 according to an
embodiment of the invention.

0018 FIG. 8 illustrates the parsing of a mathematical
expression according to an embodiment of the invention.
0019 FIG. 9 illustrates a table of hardwired-pipeline
library templates corresponding to the hardwired-pipelines
available for executing respective portions of the parsed
mathematical expression of FIG. 8 according to an embodi
ment of the invention.

0020 FIG. 10 is a block diagram of a circuit that the tool
of FIG. 7 generates from circuit templates downloaded from
the library of FIG. 6 according to an embodiment of the
invention.

0021 FIG. 11 is a block diagram of a circuit that the tool
of FIG. 7 generates from circuit templates downloaded from
the library of FIG. 6 according to another embodiment of
the invention.

0022 FIG. 12 is a block diagram of a circuit that the tool
of FIG. 7 generates from circuit templates downloaded from
the library of FIG. 6 according to yet another embodiment
of the invention.

0023 FIG. 13 is a block diagram of a circuit that the tool
of FIG. 7 generates for implementing a function as a series
expansion according to an embodiment of the invention.

0024 FIG. 14 is a block diagram of a circuit that the tool
of FIG. 7 generates for implementing the function of FIG.
13 as a series expansion according to another embodiment of
the invention.

0.025 FIG. 15 is a block diagram of a power-of-x term
generator that the tool of FIG. 7 generates as a replacement
for the power-of-X multipliers of FIGS. 13 and 14 according
to an embodiment of the invention.

Apr. 20, 2006

0026 FIG. 16 is a block diagram of a circuit that the tool
of FIG. 7 generates for implementing another function as a
series expansion according to an embodiment of the inven
tion.

0027 FIG. 17 is a block diagram of a sign determiner
from FIG. 16 according to an embodiment of the invention.

DETAILED DESCRIPTION

Introduction

0028. A computer-based circuit design tool according to
an embodiment of the invention is discussed below in
conjunction with FIGS. 7-10.
0029) But first is presented in conjunction with FIGS. 1-6
an overview of concepts that are related to the design tool
according to an embodiment of the invention. An under
standing of these concepts should facilitate the readers
understanding of the design tool.
Overview Of Concepts Related To Design Tool
0030 FIG. 1 is a schematic block diagram of a comput
ing machine 10, which has a peer-vector architecture accord
ing to an embodiment of the invention. In addition to a host
processor 12, the peer-vector machine 10 includes a pipe
lined accelerator 14, which is operable to process at least a
portion of the data processed by the machine 10. Therefore,
the host-processor 12 and the accelerator 14 are "peers' that
can transfer data messages back and forth. Because the
accelerator 14 includes hardwired logic circuits instantiated
on one or more PLICs, it executes few, if any, program
instructions, and thus typically performs mathematically
intensive operations on data significantly faster than a bank
of computer processors can for a given clock frequency.
Consequently, by combing the decision-making ability of
the processor 12 and the number-crunching ability of the
accelerator 14, the machine 10 has the same abilities as, but
can often process data faster than, a conventional processor
based computing machine. Furthermore, as discussed below
and in U.S. Patent Publication No. 2004/0136241, which is
incorporated by reference, providing the accelerator 14 with
a communication interface that is compatible with the inter
face of the host processor 12 facilitates the design and
modification of the machine 10, particularly where the
communication interface is an industry standard. And where
the accelerator 14 includes multiple pipeline units (FIG. 2),
providing each of these units with this compatible commu
nication interface facilitates the design and modification of
the accelerator, particularly where the communication inter
face is an industry standard. Moreover, the machine 10 may
also provide other advantages as described in the following
other patent publications, which are incorporated by refer
ence: 2004/0133763; 2004/0181621; 2004/0170070; and,
2004/O 130927.

0.031) Still referring to FIG. 1, in addition to the host
processor 12 and the pipelined accelerator 14, the peer
vector computing machine 10 includes a processor memory
16, an interface memory 18, a bus 20, a firmware memory
22, an optional raw-data input port 24, an optional pro
cessed-data output port 26, and an optional router 31.
0032. The host processor 12 includes a processing unit 32
and a message handler 34, and the processor memory 16
includes a processing-unit memory 36 and a handler

US 2006/0085781 A1

memory 38, which respectively serve as both program and
working memories for the processor unit and the message
handler. The processor memory 36 also includes an accel
erator-configuration registry 40 and a message-configuration
registry 42, which store respective configuration data that
allow the host processor 12 to configure the functioning of
the accelerator 14 and the structure of the messages that the
message handler 34 sends and receives.
0033. The pipelined accelerator 14 includes at least one
PLIC (FIG. 2) on which are disposed hardwired pipeline
44-44, which process respective data while executing few,
if any, program instructions. The firmware memory 22 stores
the configuration firmware for the PLIC(s) of the accelerator
14. If the accelerator 14 is disposed on multiple PLICs, these
PLICs and their respective firmware memories may be
disposed on multiple circuit boards that are often called
daughter cards or pipeline units (FIG. 2). The accelerator 14
and pipeline units are discussed further in previously incor
porated U.S. Patent Publication Nos. 2004/0136241, 2004/
0181621, and 2004/0130927. The pipeline units are also
discussed below in conjunction with FIGS. 2-4.
0034 Generally, in one mode of operation of the peer
vector computing machine 10, the pipelined accelerator 14
receives data from one or more Software applications run
ning on the host processor 12, processes this data in a
pipelined fashion with one or more logic circuits that
execute one or more mathematical algorithms, and then
returns the resulting data to the application(s). As stated
above, because the logic circuits execute few if any software
instructions, they often process data one or more orders of
magnitude faster than the host processor 12. Furthermore,
because the logic circuits are instantiated on one or more
PLICs, one can modify these circuits merely by modifying
the firmware stored in the memory 52; that is, one need not
modify the hardware components of the accelerator 14 or the
interconnections between these components. The operation
of the peer-vector machine 10 is further discussed in previ
ously incorporated U.S. Patent Publication No. 2004/
0.133763, the functional topology and operation of the host
processor 12 is further discussed in previously incorporated
U.S. Patent Publication No. 2004/0181621, and the topology
and operation of the accelerator 14 is further discussed in
previously incorporated U.S. Patent Publication No. 2004/
O136241.

0035 FIG. 2 is a diagram of a pipeline unit 50 of the
pipelined accelerator 14 of FIG. 1 according to an embodi
ment of the invention.

0036) The unit 50 includes a circuit board 52 on which
are disposed the firmware memory 22, a plafform-identifi
cation memory 54, a bus connector 56, a data memory 58,
and a PLIC 60.

0037 As discussed above in conjunction with FIG. 1, the
firmware memory 22 stores the configuration firmware that
the PLIC 60 downloads to instantiate one or more logic
circuits.

0038. The platform memory 54 stores a value that iden
tifies the one or more platforms with which the pipeline unit
50 is compatible. Generally, a platform specifies a unique set
of physical attributes that a pipeline unit may possess.
Examples of these attributes include the number of external
pins (not shown) on the PLIC 60, the width of the bus

Apr. 20, 2006

connector 56, the size of the PLIC, and the size of the data
memory. Consequently, a pipeline unit 50 is compatible with
a platform if the unit possesses all of the attributes that the
platform specifies. So a pipeline unit 50 having a bus
connector 56 with thirty-two bits is incompatible with a
platform that specifies a bus connector with sixty-four bits.
Some platforms may be compatible with the peer vector
machine 10 (FIG. 1), and others may be incompatible.
Therefore, the platform identifier stored in the memory 54
may allow the host processor 12 (FIG. 1) to determine
whether the pipeline unit 50 is compatible with the platforms
supported by the machine 10. And where the pipeline unit 50
is so compatible, the platform identifier may also allow the
host processor 12 to determine how to configure the PLIC 60
or other portions of the pipeline unit.

0039 The bus connector 56 is a physical connector that
interfaces the PLIC 60, and perhaps other components of the
pipeline unit 50, with the pipeline bus 20 of FIG. 1.
0040. The data memory 58 acts as a buffer for storing
data that the pipeline unit 50 receives from the host proces
sor 12 (FIG. 1) and for providing this data to the PLIC 60.
The data memory 58 may also act as a buffer for storing data
that the PLIC 60 generates for sending to the host processor
12, or as a working memory for the hardwired pipelines 44.

0041. Instantiated on the PLIC 60 are logic circuits that
compose the hardwired pipeline(s) 44 and a hardware inter
face layer 62, which interfaces the hardwired pipelines to the
external pins (not shown) of the PLIC 60, and which thus
interfaces the pipelines to the pipeline bus 20 (via the
connector 56), the firmware and plafform-identification
memories 22 and 54, and the data memory 58. Because the
topology of interface layer 62 is primarily dependent upon
the attributes specified by the platform(s) with which the
pipeline unit 50 is compatible, one can often modify the
pipeline(s) 44 without modifying the interface layer. For
example, if a platform with which the pipeline unit 50 is
compatible specifies a thirty-two-bit bus, then the interface
layer 62 provides a thirty-two-bit bus connection to the bus
connector 60 regardless of the topology or other attributes of
the pipeline(s) 44. Consequently, as discussed below in
conjunction with FIGS. 7-10, an embodiment of the com
puter-based design tool allows one to design and debug the
pipeline(s) 44 independently of the interface layer 62, and
Vice versa.

0042 Still referring to FIG. 2, alternate embodiments of
the pipeline unit 50 are contemplated. For example, the
memory 54 may be omitted, and the platform identifier may
stored in the firmware memory 22, or by a jumper-config
urable or hardwired circuit (not shown).
0043 A pipeline unit similar to the unit 50 is discussed in
previously incorporated U.S. Patent Publication No. 2004/
O136241.

0044 FIG. 3 is a diagram of the hardware layers that
compose the hardware interface layer 62 within the PLIC 60
of FIG. 2 according to an embodiment of the invention. The
hardware interface layer 62 includes three layers of circuitry
that is instantiated on the PLIC 60: an interface-adapter layer
70, a framework-services layer 72, and a communication
layer 74, which is hereinafter called a communication shell.
The interface-adapter layer 70 includes circuitry, e.g., buff
ers and latches, that interfaces the framework-services layer

US 2006/0085781 A1

72 to the external pins (not shown) of the PLIC 60. The
framework-services layer 72 provides a set of services to the
hardwired pipeline(s) 44 via the communication shell 74.
For example, the layer 72 may synchronize data transfer
between the pipeline(s) 44, the pipeline bus 20 (FIG. 1), and
the data memory 58 (FIG. 2), and may control the
sequence(s) in which the pipeline(s) operate. The commu
nication shell 74 includes circuitry, e.g., latches, that inter
face the framework-services layer 72 to the pipeline(s) 44.

0045 Still referring to FIG. 3, alternate embodiments of
the hardware-interface layer 62 are contemplated. For
example, although the framework-services layer 72 is shown
as isolating the interface-adapter layer 70 from the commu
nication shell 74, the interface-adapter layer may, at least at
Some circuit nodes, be directly coupled to the communica
tion shell. Furthermore, although the communication shell
74 is shown as isolating the interface-adapter layer 70 and
the framework-services layer 72 from the hardwired pipe
line(s) 44, the interface-adapter layer or the framework
services layer may, at least at Some circuit nodes, be directly
coupled to the pipeline(s).

0046 FIG. 4 is a schematic block diagram of the cir
cuitry that composes the interface-adapter layer 70 and the
framework-services layer 72 of FIG. 3 according to an
embodiment of the invention.

0047 A communication interface 80 and an optional
industry-standard bus interface 82 compose the interface
adapter layer 70, and a controller 84, exception manager 86,
and configuration manager 88 compose the framework
services layer 72.

0.048. The communication interface 80 transfers data
between a peer, such as the host processor 12 (FIG. 1) or
another pipeline unit 50 (FIG. 2), and the firmware memory
22, the platform-identifier memory 54, the data memory 58,
and the following components instantiated within the PLIC
60: the hardwired pipelines 44 (via the communication shell
74), the controller 86, the exception manager 88, and the
configuration manager 90. If present, the optional industry
standard bus interface 82 couples the communication inter
face 80 to the bus connector 56. Alternatively, the interfaces
80 and 82 may be combined such that the functionality of the
interface 82 is included within the communication interface
80.

0049. The controller 84 synchronizes the hardwired pipe
lines 44-44, and monitors and controls the sequence in
which they perform the respective data operations in
response to communications, i.e., "events.” from other
peers. For example, a peer Such as the host processor 12 may
send an event to the pipeline unit 50 via the pipeline bus 20
to indicate that the peer has finished sending a block of data
to the pipeline unit and to cause the hardwired pipelines
44-44, to begin processing this data. An event that includes
data is typically called a message, and an event that does not
include data is typically called a “door bell.”
0050. The exception manager 86 monitors the status of
the hardwired pipelines 44-44, the communication inter
face 80, the communication shell 74, the controller 84, and
the bus interface 82 (if present), and reports exceptions to
the host processor 12 (FIG. 1). For example, if a buffer (not
shown) in the communication interface 80 overflows, then
the exception manager 86 reports this to the host processor

Apr. 20, 2006

12. The exception manager may also correct, or attempt to
correct, the problem giving rise to the exception. For
example, for an overflowing buffer, the exception manager
86 may increase the size of the buffer, either directly or via
the configuration manager 88 as discussed below.

0051. The configuration manager 88 sets the “soft' con
figuration of the hardwired pipelines 44-44, the commu
nication interface 80, the communication shell 74, the con
troller 84, the exception manager 86, and the interface 82 (if
present) in response to soft-configuration data from the host
processor 12 (FIG. 1). As discussed in previously incorpo
rated U.S. Patent Publication No. 2004/0133763, the “hard'
configuration of a component within the PLIC 60 denotes
the actual instantiation, on the transistor and circuit-block
level, of the component, and the Soft configuration denotes
the physical parameters (e.g., data width, table size) of the
instantiated component. That is, Soft-configuration data is
similar to the data that one can load into a register of a
processor (not shown in FIG. 4) to set the operating mode
(e.g., burst-memory mode) of the processor. For example,
the host processor 12 may send to the PLIC 60 soft
configuration data that causes the configuration manager 88
to set the number and respective priority levels of queues
(not shown) within the communication interface 80. The
exception manager 86 may also send Soft-configuration data
that causes the configuration manager 88 to, e.g., increase
the size of an overflowing buffer in the communication
interface 80.

0052 The communication interface 80, optional indus
try-standard bus interface 82, controller 84, exception man
ager 86, and configuration manager 88 are further discussed
in previously incorporated U.S. Patent Publication No.
2004/O136241.

0053 Referring again to FIG. 2, although the pipeline
unit 50 is disclosed as including only one PLIC 60, the
pipeline unit may include multiple PLICs. For example, as
discussed in previously incorporated U.S. Patent Publication
No. 2004/0136241, the pipeline unit 50 may include two
interconnected PLICs, where the circuitry that composes the
interface-adapter layer 70 and framework-services layer 72
is instantiated on one of the PLICs, and the circuitry that
composes the communication shell 74 and the hardwired
pipelines 44 is instantiated on the other PLIC.
0054 FIG. 5 is a diagram of a hardware-description file
100 from which a conventional PLIC synthesizer and router
tool (not shown) can generate the configuration firmware for
the PLIC 60 of FIGS. 2-4 according to an embodiment of
the invention. Typically, the hardware-description file 100
includes templates that are written in a conventional hard
ware description language (HDL) such as VerilogR HDL.
The top-down structure of the file 100 resembles the top
down structure of Software source code that incorporates
software objects. Such a top-down structure for software
Source code provides at least two advantages. First, it allows
a programmer to avoid writing and debugging Source code
for a function when a software object that performs the
function has already been written and debugged. Second, it
allows the programmer to change or add a function by
modifying an existing object or writing a new object with
little or no rewriting and debugging of the Source code that
incorporates the object. As discussed below, the top-down
structure of the file 100 provides similar advantages. For

US 2006/0085781 A1

example, it allows one to incorporate in the file 100 existing
templates that define an already-debugged hardware-inter
face layer 62 (FIGS. 2-3). Furthermore, it allows one to
change an existing hardwired pipeline 44 or to add to a
circuit a new hardwired pipeline 44 with little or no rewrit
ing and debugging of the templates that define the layer 62.
0055. The hardware-description file 100 includes a top
level template 101, which includes respective top-level
definitions 102, 104, and 106 of the interface-adapter layer
70, the framework-services layer 72, and the communication
shell 74 (collectively the hardware-interface layer 62) of the
PLIC 60 (FIGS. 2-4). The template 101 also defines the
connections between the external pins (not shown) of the
PLIC 60 and the interface-adapter 70 (and in some cases the
framework-services layer 72), and also defines the connec
tions between the framework-services layer (and in some
cases the interface-adapter layer) and the communication
shell 74.

0056. The top-level definition 102 of the interface
adapter layer 70 (FIGS. 3-4) incorporates an interface
adapter-layer template 108, which further defines the por
tions of the interface-adapter layer defined by the top-level
definition 102. For example, suppose that the top-level
definition 102 defines a data-input buffer (not shown) in
terms of its input and output nodes. That is, Suppose the
top-level definition 102 defines the data-input buffer as a
functional block having defined input and output nodes. The
template 108 defines the circuitry that composes this func
tional buffer block, and defines the connections between this
circuitry and the buffer input nodes and output nodes recited
in the top-level definition 102. Furthermore, the template
108 may incorporate one or more lower-level templates 109
that further define the data buffer or other components of the
interface-adapter layer 70 recited in the template 108. More
over, these one or more lower-level templates 109 may each
incorporate one or more even lower-level templates (not
shown), and so on, until all portions of the interface-adapter
layer 70 are defined in terms of circuit components (e.g.,
flip-flops, logic gates) that the PLIC synthesizing and rout
ing tool (not shown) recognizes.
0057 Similarly, the top-level definition 104 of the frame
work-services layer 72 (FIGS. 3-4) incorporates a frame
work-services-layer template 110, which further defines the
portions of the framework-services layer defined by the
definition 104. For example, suppose the top-level definition
104 defines a counter (not shown) in terms of its input and
output nodes. The template 110 defines the circuitry that
composes this counter, and defines the connections between
this circuitry and the counter input and output nodes recited
by the top-level definition 104. Furthermore, the template
110 may incorporate a hierarchy of one or more lower-level
templates 111 and even lower-level templates (not shown),
and so on, such that all portions of the framework-services
layer 72 are, at some level of the hierarchy, defined in terms
of circuit components (e.g., flip-flops, logic gates) that the
PLIC synthesizing and routing tool recognizes. For example,
Suppose the template 110 defines the counter as including a
count-up/down-selector circuit having input and output
nodes. The template 110 may incorporate a lower-level
template 111 that defines the circuitry within the selector
circuit and defines the connections between this circuitry
and the selector circuits input and output nodes defined by
the template 110.

Apr. 20, 2006

0.058 Likewise, the top-level definition 106 of the com
munication shell 74 (FIGS. 3-4) incorporates a communi
cation-shell template 112, which further defines the portions
of the communication shell defined by the definition 106 and
which also includes a top-level definition 113 of the hard
wired pipeline(s) 44 disposed within the communication
shell. For example, the definition 113 defines the connec
tions between the communication shell 74 and the hardwired
pipeline(s) 44.

0059) The top-level definition 113 of the hardwired pipe
line(s) 44 (FIGS. 3-4) incorporates one or more hardwired
pipeline templates 114, which further define the portions of
the hardwired pipeline(s) 44 defined by the definition 113.
The template or templates 114 may each incorporate a
hierarchy of one or more lower-level templates 115 and even
lower-level templates (not shown) such that all portions of
the respective pipeline(s) 44 are, at some level of the
hierarchy, defined in terms of circuit components (e.g.,
flip-flops, logic gates) that the PLIC synthesizing and rout
ing tool recognizes.

0060 Moreover, the communication-shell template 112
may incorporate a hierarchy of one or more lower-level
templates 116 and even lower-level templates (not shown)
such that all portions of the communication shell 74 other
than the hardwired pipeline(s) 44 are, at some level of the
hierarchy, defined in terms of circuit components (e.g.,
flip-flops, logic gates) that the PLIC synthesizing and rout
ing tool recognizes.

0061 Still referring to FIG. 5, a configuration template
118 provides definitions for one or more parameters having
values that one can set to configure the circuitry that the
templates 101, 108, 110, 112, 114 and lower-level templates
109, 111, 115, and 116 define. For example, suppose that the
bus interface 82 of the interface-adapter layer 70 (FIG. 4) is
configurable to have either a thirty-two-bit or a sixty-four-bit
interface with the bus connector 56. The configuration
template 118 defines a template BUS-WIDTH, the value of
which determines the width of the interface between the
interface 82 and the connector 56. For example, BUS
WIDTH=0 configures the interface 82 to have a thirty-two
bit interface, and BUS-WIDTH=1 configures the interface
82 to have a sixty-four-bit interface. Examples of other
parameters that may be configurable include the depth of a
first-in-first-out (FIFO) data buffer (not shown) disposed
within the framework-services layer 72 (FIGS. 2-4), the
lengths of messages received and transmitted by the inter
face-adapter layer 70, and the precision and data structure
(e.g., integer, floating-point) of the hardwired pipeline(s) 44.

0062 One or more of the templates 101, 108, 110, 112,
114 and the lower-level templates (not shown) incorporate
the parameters defined in the configuration template 118.
The PLIC synthesizer and router tool (not shown) configures
the interface-adapter layer 70, the framework-services layer
72, the communication shell 74, and the hardwired pipe
line(s) 44 (FIGS. 3-4) according to the values in the
template 118 during the synthesis of this circuitry. Conse
quently, to reconfigure the circuit parameters represented by
the parameters in the configuration template 118, one need
only modify the values of these parameters in the template
118, and then rerun the synthesizer and router tool on the file
100. Alternatively, if one or more of the parameters in the
configuration template 118 can be sent to the PLIC as

US 2006/0085781 A1

soft-configuration data after instantiation of the circuit, then
one can modify the corresponding circuit parameters by
merely modifying the Soft-configuration data. Therefore,
according to this alternative, may avoid rerunning the Syn
thesizer arid router tool on the file 100. Moreover, templates
(e.g., 101, 108, 109, 110, 111, 112, 114, 115, and 116) that
do not incorporate settable parameters such as those pro
vided by the configuration template 118 are sometimes
called modules or entities, and are typically lower-level
templates that include Boolean expressions that a synthe
sizer and router tool (not shown) converts into circuitry for
implementing the expressions.
0063 Alternate embodiments of the hardware-descrip
tion file 100 are contemplated. For example, although
described as defining circuitry for instantiation on a PLIC,
the file 100 may define circuitry for instantiation on an
ASIC.

0064 FIG. 6 is a block diagram of a library 120 that
stores PLIC circuit templates, such as the templates 101,
108, 110, 112, and 114 (and any existing lower-level tem
plates) of FIG. 5, according to an embodiment of the
invention.

0065. The library 120 has m+1 sections: m sections
122-122, for the respective m platforms that the library
Supports, and a section 124 for the hardwired-pipelines 44
(FIGS. 2-4) that the library supports.
0.066 For example purposes, the library section 122 is
discussed in detail, it being understood that the other library
sections 122-122 are similar.
0067. The library section 122 includes a top-level tem
plate 101, which is similar in structure to the template 101
of FIG. 5, and which thus includes top-level definitions
102, 104, and 106 of versions of the interface-adapter
layer 70, the framework-services layer 72, and the commu
nication shell 74 that are compatible with the platform m=1.
0068. In this embodiment, we assume that there is only
one version of the interface-adapter layer 70 and one version
of the framework-services layer 72 available for each plat
form m, and, therefore, that the library section 122 includes
only one interface-adapter-layer template 108 and only one
framework-services-layer template 110. But in an embodi
ment that includes multiple versions of the interface-adapter
layer 70 and multiple versions of the framework-services
layer 72 for each platform m, the library section 122 would
include multiple interface-adapter- and framework-services
layer templates 108 and 110.

0069. The library section 122 also includes in commu
nication-shell templates 112, -112, which respectively
correspond to the hardwired-pipeline templates 144-144, in
the library section 124. As stated above in conjunction with
FIG. 3, the communication shell 74 interfaces a hardwired
pipeline or hardwired-pipelines 44 to the framework-ser
vices layer 72. Because each hardwired pipeline 44 is
different and typically has different interface specifications,
the communication shell 74 is typically adapted for each
hardwired pipeline. Consequently, in this embodiment, one
provides design adjustments to create a unique version of the
communication shell 74 for each hardwired pipeline 44. The
designer provides these design adjustments by writing a
unique communication-shell template 112 for each hard
wired pipeline. Of course the group of communication-shell

Apr. 20, 2006

templates 112-112, corresponds only to the version of
the framework-services layer 72 that is defined by the
template 110; consequently, if there are multiple versions of
the framework-services layer 72 that are compatible with the
platform m=1, then the library section 122 includes a
respective group of n communication-shell templates 112 for
each version of the framework-services layer.
0070. In addition, the library section 122 includes a
configuration template 118, which defines configuration
constants having designer-selectable values as discussed
above in conjunction with the configuration template 118 of
F.G. S.

0071. Furthermore, each template within the library sec
tion 122 includes, or is associated with, a respective
description 126-134,. The descriptions 126-132.
describe the operational and other parameters of the circuitry
that the respective templates 101, 108, 110, and 112,
112 define. Similarly, the description 134, describes the
settable parameters in the configuration template 118, the
values that these parameters can have, and the meanings of
these values. The design tool discussed below in conjunction
with FIGS. 7-11 uses the descriptions 126-134 to design
and simulate a circuit that includes a combination of the
hardwired pipelines 44-44, which are respectively defined
by the templates 114-114. Examples of parameters that the
descriptions 126-132 may describe include the width of
the data bus and the depths of buffers that the circuit defined
by the corresponding template includes, the latency of the
circuit, and the precision of the values received and gener
ated by the circuit. Furthermore, an example of a settable
parameter and the associated selectable values that the
description 134 may describe is BUS-WIDTH, which rep
resents the width of the interface between the communica
tion interface 80 and the bus connector 56 (FIG. 4), and
BUS WIDTH=0 sets the bus width to thirty-two bits and
BUS WIDTH=1 sets the width to sixty-four bits.
0072 Each of the descriptions 126-134 may be embed
ded within the respective template 101, 108, 110, 112
112, and 118, to which it corresponds. For example, the
description 128 may be embedded within the template 108
as extensible markup language (XML) tags or comments
that are readable by both a human and the tool discussed
below in conjunction with FIGS. 7-11.
0073 Alternatively, each description 126-134 may be
disposed in a separate file that is linked to the template to
which the description corresponds, and this file may be
written in a language other than XML. For example, the
description 126 may be disposed in a file that is linked to
the top-level template 101.
0074 The section 122 of the library 120 also includes a
description 136, which describes the parameters of the
platform m=1. The design tool discussed below in conjunc
tion with FIGS. 7-11 may use the description 136 to
determine which platforms the library 120 supports.
Examples of parameters that the description 136 may
describe include 1) for each interface, the message specifi
cation, which lists the transmitted variables and the con
straints for those variables, and 2) a behavior specification
and any behavior constraints. Messages that the host pro
cessor 12 (FIG. 1) sends to the pipeline units 50 (FIG. 2)
and that the pipeline units send among themselves are
further discussed in previously incorporated U.S. Patent

US 2006/0085781 A1

Publication No. 2004/0181621. Examples of other param
eters that the description 136 may describe include the size
and resources (e.g., the number of multipliers and the
amount of available memory) of the PLIC 60 (FIGS. 2-4).
Furthermore, the platform description 136 may be written
in XML or in another language.

0075) Still referring to FIG. 6, the section 124 of the
library 120 includes n hardwired-pipeline templates 114
114, which each define a respective hardwired pipeline
44-44, (FIGS. 2-4). As discussed above in conjunction with
FIG. 5, because the templates 114-114, are platform inde
pendent (the corresponding communication-shell templates
112-112, define the specified interface to the interface
adapter and framework-services layers 70 and 72 of FIGS.
3-4), the library 120 stores only one template 114 for each
hardwired pipeline 44 (FIGS. 2-4). That is, each hardwired
pipeline 44 does not require a separate template 114 for each
platform that the library 120 supports. As discussed above,
an advantage of this top-down design is that one need only
create a single template 114 to define a hardwired pipeline
44, not m templates.

0.076 Furthermore, each hardwired-pipeline template
114 includes, or is associated with, a respective description
138-138, which describes the parameters of the hardwired
pipeline 44 that the template defines. Like the descriptions
126-134 discussed above, the design tool discussed below
in conjunction with FIGS. 7-11 uses the descriptions 138 to
design and simulate a circuit that includes a combination of
the hardwired pipelines 44-44, which are respectively
defined by the templates 114-114. Examples of parameters
that the descriptions 138-138 may describe include the
type (e.g., floating point or integer) and precision of the data
that the corresponding hardwired pipeline 44 can receive
and generate, and the latency of the pipeline. Also like the
descriptions 126-134, each of the descriptions 138-138,
may be embedded within the respective template 114-114,
to which the description corresponds as, e.g., XML tags, or
may be disposed in a separate file that is linked to the
template to which the description corresponds.

0.077 Referring again to the library section 122, this
section also includes a description 140 of the one or more
available pipeline accelerators 14 (FIG. 1) that support the
platform m=1. More specifically, the description 140
describes the resources that each of the pipeline accelerators
14 includes. For example, the description 140 may indicate
that one available accelerator 14 includes only one pipeline
unit 50 (FIG. 2), while another available accelerator
includes five pipeline units. The description 140 may be
written in XML or in another language.

0078 Still referring to FIG. 6, alternate embodiments of
the library 120 are contemplated. For example, instead of
each template within each library section 122-122, being
associated with a respective description 126-134, each
library section 122-122 may include a single description
that describes all of the templates within that library section.
For example, this single description may be embedded
within or linked to the top-level template 101 or the con
figuration template 118. Furthermore, although each library
section 122-122 is described as including a respective
communication-shell template 112 for each hardwired-pipe
line template 114 in the library section 124, each section 122
may include fewer communication-shell templates, at least

Apr. 20, 2006

Some of which are compatible with, and thus correspond to,
more than one pipeline template 114. In an extreme, each
library section 122-122 may include only a single com
munication-shell template 112, which is compatible with all
of the hardwired-pipeline templates 114 in the library sec
tion 124. In addition, the library section 124 may include
respective versions of each pipeline template 114 for each
communication-shell template 112 in the library sections
122-122.
0079 FIG. 7 is a block diagram of a circuit-design
system 150, which includes a computer-based software tool
152 for designing a circuit using templates from the library
120 of FIG. 6 according to an embodiment of the invention.
By using library templates, the tool 152 allows one to design
a circuit that includes a combination of one or more previ
ously designed and debugged hardware-interface layerS 62
(FIG. 2) and hardwired pipelines 44 (FIGS. 2-4). Because
another has already tested and debugged the one or more
layers 62 and pipelines 44, the tool 152 may significantly
decrease the time required for one to design Such a combi
nation circuit as compared to a conventional design progres
Sion. Furthermore, where one wants to design a circuit for
executing an algorithm, the tool 152 allows him to define the
circuit with an expression of conventional mathematical
symbols, where the expression defines the algorithm; con
sequently, one having little or no experience in circuit design
can use the tool to design a circuit for executing an algo
rithm.

0080. The system 150 includes a processor (not shown)
for executing the software code that composes the tool 152.
Consequently, in response to the code, the processor per
forms the functions that are attributed to the tool 152 in the
discussion below. But for clarity of explanation, the tool
152, not the processor, is described as performing the
actions.

0081. In addition to the processor, the system 150
includes an input device 154, a display device 155, and the
library 120 of FIG. 6. The input device 154, which may
include a keyboard and a mouse, allows one to provide to the
tool 152 information that describes an algorithm and that
describes a circuit for executing the algorithm. Such infor
mation may include an expression of mathematical symbols,
circuit parameters (e.g., buffer width, latency), operation
exceptions (e.g., a divide by Zero), and the platform on
which one wishes to instantiate the circuit. And as described
below, the device 155 displays the input information and
other information, and the library 120 includes the templates
that the tool 152 uses to build the circuit and to generate a
file that defines the circuit.

0082 The tool 152 includes a symbolic-math front end
156, an interpreter 158, a generator 160 for generating a file
162 that defines a circuit, and a simulator 164.

0083) The front end 156 receives from the input device
154 the mathematical expression that defines the algorithm
that the circuit is to execute and other design information,
and converts this information into a form that is readable by
the interpreter 158. To allow one to define a circuit in terms
of the mathematical expression that defines the algorithm
that the circuit is to execute, in one embodiment the front
end 156 includes a web browser that accepts XML with a
schema for Math Markup Language (MathML). MathML is
Software standard that allows one to enter expressions using

US 2006/0085781 A1

conventional mathematical symbols. The schema of
MathML is a conventional plug in that imparts to a web
browser this same ability, i.e., the ability to enter expressions
using mathematical symbols. Alternatively, the front end
156 may utilize another technique for allowing one to define
a circuit using a mathematical expression. Examples of Such
another technique include the technique used by the con
ventional software mathematical-expression solver Math
CAD. Furthermore, as discussed below, one may enter the
identity of a platform or pipeline accelerator 14 (FIG. 1) on
which he wants the circuit instantiated, and may enter test
data with which the simulator 164 will simulate the opera
tion of the circuit. Moreover, one may enter valid-range
constraints for any variables within the entered mathemati
cal expression and constraints on execution of the expres
Sion, and may specify the action(s) to be taken if the
constraints are violated. For example, because -1 is sin(x)s 1
for all values of X, for an expression that includes sin(x), one
may enter this constraint, and specify that any data generated
from a value of sin(x) outside of this range is to be
disregarded. Or, because division by Zero of any X yields
infinity, one may specify that data generated in response to
a division by Zero is to be disregarded. The front end 156
then converts all of the entered information into a format,
such as HDL, that is compatible with the interpreter 158.
Moreover, as discussed above, the front end 156 may cause
the device 155 to display the input information and other
related information. For example, the front end 156 may
cause the device 155 to display the mathematical expression
that the designer enters to define the algorithm to be
executed by the circuit.
0084. The interpreter 158 parses the information from the
front end 156 and determines: 1) whether the library 120
includes templates 114 (FIG. 6) defining hardwired pipe
lines 44 (FIGS. 2-4) that, when combined, can execute the
algorithm entered by the designer, and 2), if the answer to (1)
is “yes,” which, if any, available pipeline accelerators 14
(FIG. 1) described by the description 140 in the library 120
has sufficient resources to instantiate a circuit that can
execute the algorithm. For example, Suppose the algorithm
includes the mathematical operation vv. If the library 120
does not include a template 114 (FIG. 6) defining a hard
wired pipeline 44 (FIGS. 2-4) that calculates the square root
of a value, then the interpreter 158 determines that the tool
152 cannot generate a file 162 that defines a circuit for
executing the algorithm. Furthermore, Suppose that the
circuit for executing the algorithm requires the resources of
at least five PLICs 60 (FIGS. 2-4). If the description 140
indicates that the available accelerators 14 each have only
three pipeline units 50 (FIG. 2), and thus each have only
three PLICs 60, then the interpreter 158 determines that even
though the tool 152 may be able to generate a file 162 that
defines a circuit for executing the algorithm, one cannot
implement this circuit on an available accelerator. The
interpreter 158 makes a similar determination if the designer
indicates that he wants the algorithm executed by a circuit
having a sixty-four-bit bus width, but the available platforms
support only a thirty-two-bit bus width. In situations where
the interpreter 158 determines that the tool 152 cannot
generate a circuit for executing the desired algorithm or that
one cannot implement the circuit on an existing platform
and/or accelerator 14, the interpreter 158 causes the device
155 to display an appropriate error message (e.g., “no library
template for instantiating “vv,”“insufficient PLIC resources,

Apr. 20, 2006

“bus-width not supported'). Furthermore, where the
designer identifies a platform or accelerator 14 on which he
desires to instantiate the resulting circuit, the interpreter 158
determines whether the circuit can be instantiated on the
identified platform or accelerator. But if the circuit cannot be
so instantiated, the interpreter 158 may determine that the
circuit can be instantiated on another platform or accelerator,
and thus may so inform the designer with an appropriate
message via the display device 155. This allows the designer
the choice of instantiating the circuit on another platform or
accelerator 14.

0085. If the interpreter 158 determines that the library
120 includes a sufficient number of hardwired-pipeline
templates 114 (FIG. 6) to define a circuit that can execute
the desired algorithm, and also determines that the circuit
can be instantiated on an available platform and accelerator
14 (FIG. 1), then the interpreter provides to the file genera
tor 160 the identities of the hardwired-pipeline templates
114 that correspond to portions of the algorithm.

0086) The file generator 160 combines the hardwired
pipelines 44 (FIGS. 2-4) defined by the identified hard
wired-pipeline templates 114 such that the combination
forms a circuit that can execute the algorithm.
0087. The generator 160 then generates the file 162,
which defines the circuit for executing the algorithm in
terms of the hardwired pipelines 44 (FIGS. 2-4) and the
hardware-interface layers 62 (FIG. 2) that compose the
circuit, the PLIC(s) 60 (FIGS. 2-3) on which the pipelines
are disposed, and the interconnections between the pipelines
(if multiple pipelines on a PLIC) and/or between the PLICs
(if the pipelines are disposed on more than one PLIC).
0088 Next, the host processor 12 (FIG. 1) can use the file
162 to instantiate on the pipeline accelerator 14 (FIG. 1) the
defined circuit as discussed in previously incorporated U.S.
patent app. Ser. No. (Attorney Docket No. 1934-25-3).
Alternatively, also as discussed in U.S. patent app. Ser. No.
(Attorney Docket No. 1934-25-3), the host processor 12
may instantiate Some or all portions of the defined circuit in
Software executed by the processing unit 32. Or, one can
instantiate the circuit defined by the file 162 in another
a.

0089. The simulator 164 receives the file 162 from the
generator 160 and receives from the front end 154 designer
entered test data, Such as a test vector, designer-entered
constraint data, and a designer-entered exception-handling
protocol, and then simulates operation of the circuit defined
by the file 162. The simulator 164 also gathers parameter
information (e.g., precision, latency) from the description
files 138 (FIG. 6) that correspond to the hardwired-pipeline
templates 114 that define the pipelines 44 that compose the
circuit. The simulator 164 may retrieve this parameter
information directly from the library 120, or the generator
160 may include this parameter information in the file 162.
0090 FIG. 8 illustrates the parsing of a symbolic math
ematical expression by the interpreter 158 according to an
embodiment of the invention. In other words, the syntax of
the design language is the same as that used by mathema
ticians for writing algebraic equations. The explanations that
follow show how a symbolic mathematical expression is a
sufficient syntax for defining the hardwired pipelines 44
from a simple set of circuit primitives.

US 2006/0085781 A1

0091 FIG. 9 illustrates a table of hardwired-pipeline
templates 114, which correspond to the hardwired pipelines
44 (FIGS. 2-4) that the interpreter 158 (FIG. 7) identifies for
executing portions of the parsed algorithm (FIG. 8) accord
ing to an embodiment of the invention.
0092 Referring to FIGS. 5-9, the operation of the tool
152 is discussed according to an embodiment of the inven
tion.

0093 Suppose that one wishes to design a circuit that
Solves for a valuey, which equals a mathematical expression
according to the following equation:

Also suppose that x, y, and Z are thirty-two-bit floating-point
values.

0094. Using the input device 154, the designer enters
equation (2) into the front end 156 of the tool 152 by
entering the following sequence of mathematical symbols:
“V”, “x”, “”, “cos(z)”, “+”, “z, *.*, and “sin(x). The
designer also enters information specifying the input and
output message specifications, for example indicating that X,
y, and Zare thirty-two-bit floating-point values. The designer
may also enter information indicating desired operating
parameters, such as the desired latency, in clock cycles, from
inputs X and Z to output y, and the desired types and
precision of any intermediate values, such as cos(Z) and
sin(x), generated during the calculation of y. Furthermore,
the designer may enter information that identifies a desired
platform or pipeline accelerator 14 (FIG. 1) on which he
wants the circuit instantiated. Moreover, the designer may
specify the accuracy of any mathematical approximations
that the tool 152 may make. For example, if the tool 152
approximates cos(Z) using a Taylor series expansion, then by
specifying the accuracy of this approximation, the designer
effectively specifies the number of terms needed in the
expansion. Alternatively, the designer may directly specify
the number of terms in the expansion. The implementation
of a function as a Taylor series expansion is further
described below in conjunction with FIGS. 13-17.
0.095 The front end 156 converts these mathematical
symbols and the other information into a format compatible
with the interpreter 158 if this information is not already in
a compatible format.
0096) Next, the interpreter 158 determines whether any
of the hardwired-pipeline templates 114 in the library 120
defines a hardwired pipeline 44 that can solve for y in
equation (2) within the specified behavior and operating
parameters and that can be instantiated within the desired
platform and on the desired pipeline accelerator 14 (FIG. 1).
0097. If the library 120 does include such a template 114,
then the interpreter 158 informs the designer, via the display
device 155, that a conventional FPGA synthesizing and
routing tool can generate firmware for instantiating this
hardwired pipeline 44 from the identified template 114, the
corresponding communication-shell template 112, and the
corresponding top-level template 101.

0098) If, however, the library 120 includes no template
114 that defines a hardwired pipeline 44 that can solve for y
in equation (2), then the interpreter 158 parses the equation
(2) into portions, and determines whether the library
includes templates 114 that define hardwired pipelines 44 for

Apr. 20, 2006

executing these portions within the specified behavior, oper
ating parameters, and platform and on the specified pipeline
accelerator 14 (FIG. 1).
0099] To identify a circuit that can solve for y in equation
(2) but that includes the fewest number of hardwired pipe
lines 44, the interpreter 158 parses the equation (2) accord
ing to a top-down parsing sequence as discussed below.
Typically, this top-down parsing sequence corresponds to
the known algebraic laws for the order of operations.
0.100 First, the interpreter 158 parses the equation (2)
into the following two portions: “V”, which is portion 170 in
FIG. 8, and "x" cos(z)+z sin(x)", which is portion 172.
0101) If the interpreter 158 determines that the library
120 includes at least two hardwired-pipeline templates 114
that define hardwired pipelines 44 for respectively executing
the portions 170 and 172 of equation (2), then the interpreter
passes the identity of these templates to the file generator
160.

0102) In this example, however, the interpreter 158 deter
mines that although the library 120 includes a hardwired
pipeline template 114 that defines a pipeline 44 for executing
the square-root operation 170 of equation (2), the library
includes no hardwired-pipeline template that defines a pipe
line for executing the portion 172.
0103) Next, the interpreter 158 parses the portion 172 of
equation (2). Specifically, the interpreter 158 parses the
portion 172 into the following three respective portions 174,
176, and 178: “x cos(z)”, “+”, and “z sin(x).
0104. If the interpreter 158 determines that the library
120 includes at least three hardwired-pipeline templates 114
that define hardwired pipelines 44 for respectively executing
the portions 174, 176, and 178 of equation (2), then the
interpreter passes the identity of these templates to the file
generator 160.

0105. In this example, however, the interpreter 158 deter
mines that although the library 120 includes a hardwired
pipeline template 114 that defines a hardwired pipeline 44
for executing the Summing operation 176 of equation (2), the
library includes no templates 114 that define hardwired
pipelines for executing the portions 174 or 178.

0106) Next, the interpreter 158 parses the portions 174
and 178 of equation (2). Specifically, the interpreter 158
parses the portion 174 into three portions 180 (“x'), 182
(“ ”), and 184 (“cos(Z)'), and parses the portion 178 into
three portions 186 (“z), 188 (“ ”), and 190 (“sin(x)').
0.107) If the interpreter 158 determines that the library
120 does not include hardwired-pipeline templates 114 that
define hardwired pipelines 44 for respectively executing
each of the portions 180, 182, 184, 186, 188, and 190, then
the interpreter displays via the device 155 an error message
indicating that the library does not support a circuit that can
solve for y in equation (2). In one embodiment of the
invention, however, the library 120 includes hardwired
pipeline templates 114 that provide the primitive operations
for multiplication and for raising variables to a power (e.g.,
cubing a value by using two multipliers in sequence) for
single- or double-precision floating-point data types, and for
data-type conversion. Also in this embodiment, the tool 152
recognizes common factors, for example that X is a factor of

US 2006/0085781 A1

x if sin(x) was needed instead of the sin(x), and generates
circuitry to provide these common factors from chained
multipliers.

0108. In this example, however, the interpreter 158 deter
mines that the library 120 includes hardwired-pipeline tem
plates 114 that define hardwired pipelines 44 for respectively
executing each portion 180, 182, 184, 186, 188, and 190 of
equation (2).

0109) Then, the interpreter 158 provides to the file gen
erator 160 the identities of all the hardwired-pipeline tem
plates 114 that define the hardwired-pipelines 44 for execut
ing the following eight portions of equation (1): 170 (“V”),
176 (“+”),180 (“x), 182 (“.”), 184 (“cos(z)), 186 (“z),
186 (“z), 188 (“ ”), and 190 (“sin(x)).
0110 Referring to FIGS. 6-10, the file generator 160
generates a table 192 (FIG. 9) of the hardwired-pipeline
templates 114 identified by the interpreter 158, and displays
this table via the device 155. In a first column 194, the table
192 lists the portions 170 (“V), 176 (“+”),180 (“x), 182
(“ ”), 184 (“cos(z)), 186 (“z), 188 (“ ”), and 190
('sin(x)) of equation (2). In a second column 196, the table
192 lists the hardwired-pipeline template or templates 114
that define a hardwired pipeline 44 for executing the respec
tive portion of equation (2). And in a third column 198, the
table 192 lists parameters, such as the latency (in units of
cycles of the signal that clocks the defined pipeline 44) and
the input and output precision, of the hardwired pipeline(s)
44 defined by the templates 114 in the second column 196.
As shown in the table 192, in this example the seven
hardwired-pipeline templates 144-114, in column 196
define hardwired pipelines 44-44, for respectively execut
ing the corresponding portions of equation (2) in column
194. There are only seven pipeline templates 114-114, for
the eight portions of equation (2) because the template 114s
defines a multiplier pipeline 445 that can execute both “”
portions 182 and 188. Furthermore, although we have
labeled the pipeline templates as 114-1147, it is not required
that these templates be sequentially ordered within the
library 120. Moreover, the library 120, and thus the table
192, may include multiple templates 114 that define respec
tive pipelines for executing each of the eight portions 170,
176, 180, 182, 184, 186, 188, and 190 of equation (2).

0111) Next, using the table 192, the file generator 160
selects the pipelines 44 from which to build a circuit that
solves for y in equation (2). The generator 160 selects these
pipelines 44 based on the behavior(s), operating param
eter(s), plafform(s), and pipeline accelerator(s) 14 (FIG. 1)
that the designer specified. For example, if the designer
specified that x, y, and Z are thirty-two-bit floating-point
quantities, then the generator 160 selects pipelines 44 that
operate on thirty-two-bit floating-point numbers. If the
available pipelines 44 for a particular portion of the equation
(2) do not meet all of the designer's specifications, then the
generator 160 may use a default set of rules to select the best
pipeline. For example, the rules may indicate that if there is
no available pipeline 44 that meets the specified latency and
precision requirements, then, with the designer's authoriza
tion, the generator 160 defaults to the pipeline having the
specified precision and the latency closest to the specified
latency. Otherwise a new pipeline 44 with the specified
latency is placed in the library, or the designer can select
another pipeline from the table 192. As an example of

Apr. 20, 2006

satisfying the latency requirements, two versions of an X
circuit may be represented by respective hardwired-pipeline
templates 114 in the library 120: a pipelined version using
two fully registered multipliers in a cascade, or an in-place
version using a single, fully registered multiplier, a one-bit
counter, and a multiplexer. The pipelined version consumes
roughly twice the circuit resources but accepts one input
value every clock cycle. In contrast, the in-place version
consumes fewer circuit resources but accepts a new input
value only every other clock cycle.
0.112. Then, the file generator 160 interconnects the
selected hardwired pipelines 44 to form a circuit 200 (FIG.
10) that can solve for y in equation (2). The generator 160
also generates a schematic diagram of the circuit 200 for
display via the device 155.
0113) To form the circuit 200, the file generator 160 first
determines how the selected hardwired pipelines 44-44,
can “fit’ into the resources of a specified accelerator 14
(FIG. 1) (or a default accelerator if the designer does not
specify one). For example, the file generator 160 calculates
the number of PLICs 60 (FIG. 3) needed to contain the eight
instances of the pipelines 44-44, (this includes two
instances of the pipeline 445)
0114. In this example, the generator 160 determines that
each PLIC 60 (FIG. 3) can hold only a respective one of the
pipelines 44-447; consequently, the generator 160 deter
mines that eight pipeline units 50-50s are needed to instan
tiate the circuit 200.

0115) Next, based on the platform that the designer
specifies, the generator 160"inserts' into each of the PLICs
60-60s of the pipeline units 50-50s a respective hardware
interface layer 62-62s. Assuming that the designer specifies
platform m=1, the generator 160 generates the layers 62
62s from the following templates in section 122 of the
library 120: the interface-adapter-layer template 108, the
framework-services-layer template 110, and the communi
cation-shell templates 112-1127, which respectively cor
respond to the pipeline templates 114-1147, and thus to the
pipelines 44-447. More specifically, the generator 160 gen
erates the hardware-interface layer 62 from the interface
adapter-layer template 108, the framework-services-layer
template 110, and the communication-shell template 112.
Similarly, the generator 160 generates the hardware-inter
face layer 62 from the templates 108, 110, and 112, the
hardware-interface layer 62 from the templates 108, 110,
and 112s, and so on. Furthermore, because the PLICs 60s
and 60 both will include the multiplier pipeline 44s, the
generator 160 generates both of the hardware-interface
layers 62s and 62 from the interface-adapter and frame
work-services templates 108 and 110 and from the com
munication-shell template 1121s; consequently, the hard
ware-interface layers 62s and 62 are identical but are
instantiated on respective PLICs 60s and 60. Moreover, the
generator 160 generates the hardware-interface layer 62,
from the templates 108, 110, and 112, and the hardware
interface layer 62s from the templates 108, 110, and 1127.
0.116) Then, the generator 160"inserts' into each hard
ware-interface layer 62-62s a respective hardwired pipeline
44-44, (the generator 160 inserts the pipeline 44s into both
of the hardware-interface layers 62s and 62, the pipeline
44, into the hardware-interface layer 627, and the pipeline
44, into the hardware-interface layer 62s). More specifically,

US 2006/0085781 A1

the generator 160 inserts the pipelines 44-44, into the
hardware-interface layers 62-62s by respectively inserting
the hardwired-pipeline templates 114-114, into the com
munication-shell templates 112-1127.
0117 Next, the generator 160 interconnects the pipeline
units 50-50s to form the circuit 200, which generates the
value y from equation (2) at its output (i.e., the output of the
pipeline unit 50s).

0118 Referring to FIG. 10, the circuit 200 includes an
input stage 206, first and second intermediate stages 208 and
210, and an output stage 212, and operates as follows. The
input stage 206 includes the hardwired pipelines 44-44 and
operates as follows. The pipeline 44 receives a stream of
values X via an input portion of the hardware-interface layer
62 and generates, in a pipelined fashion, a corresponding
stream of values sin(x) via an output portion of the layer 62.
Likewise, the pipeline 40 receives a stream of values Z via
an input portion of the hardware-interface layer 62 and
generates, in a pipelined fashion, a corresponding stream of
values Z via an output portion of the layer 62, the pipeline
44 receives the stream of values X via an input portion of the
hardware-interface layer 62 and generates, in a pipelined
fashion, a corresponding stream of values x' via an output
portion of the layer 62, and the pipeline 44 receives the
stream of values Z via an input portion of the hardware
interface layer 62 and generates, in a pipelined fashion, a
corresponding stream of values cos(Z) via an output portion
of the layer 62.
0119) The first intermediate stage 208 of the circuit 200
includes two instantiations of the pipelines 44s and operates
as follows. The pipeline 44s in the PLIC 60s receives the
streams of values sin(x) and z from the input stage 206 via
an input portion of the hardware-interface layer 62s and
generates, in a pipelined fashion, a corresponding stream of
values z sin(x) via an output portion of the layer 62s.
Similarly, the pipeline 44s in the PLIC 60 receives the
streams of values x and cos(z) from the input stage 206 via
an input portion of the hardware-interface layer 62 and
generates, in a pipelined fashion, a corresponding stream of
values x' cos(z) via an output portion of the layer 62.
0120) The second intermediate stage 210 of the circuit
200 includes the hardwired pipeline 44, which receives the
streams of values z sin(x) and x' cos(z) from the first
intermediate stage 208 via an input portion of the hardware
interface layer 627, and generates, in a pipelined fashion, a
corresponding stream of values z sin(x)+x' cos(z) via an
output portion of the layer 627.

0121 And the output stage 212 of the circuit 200 includes
the hardwired pipeline 447, which receives the stream of
values z sin(x)+x' cos(z) from the second intermediate
stage 210 via an input portion of the hardware-interface
layer 62s, and generates, in a pipelined fashion, a corre
sponding stream of values y-Vz sin(x)+x'cos(z) via an
output portion of the layer 62s.
0122) Referring to FIGS. 7, 9, and 10, the designer may
choose to alter the circuit 200 via the input device 154.
0123 For example, the designer may swap out one or
more of the pipelines 44-44, with one or more other
pipelines from the table 192. Suppose the square-root pipe
line 447 has a high precision but a relatively long latency per

Apr. 20, 2006

the default rules that the generator 160 follows as discussed
above. If the table 192 includes another square-root pipeline
having a shorter latency, then the designer may replace the
pipeline 44, with the other square-root pipeline, for example
by using the input device 154 to “drag' the other pipeline
from the table into the schematic representation of the PLIC
608.

0.124. In addition, the designer may swap out one or more
of the hardwired pipelines 44-44, with a symbolically
defined polynomial series (i.e., a Taylor Series equivalent)
that approximates one of the pipelined operations. Suppose
the available square-root pipeline 447 has insufficient math
ematical accuracy per the designers specification and the
default rules that the generator 160 follows as discussed
above. If the designer then specifies a new square-root
function as a series Summation of related monomials, then
the front end 156, interpreter 158, and file generator 160
concatenate a series of parameterized monomial circuit
templates into a circuit that solves for square roots. In this
way the designer replaces the default pipeline 44, with the
higher-precision Square-root circuit using symbolic design.
This example illustrates the symbolic use of polynomials to
define new mathematical functions as established by Tay
lor's Theorem. A more detailed example is discussed below
in conjunction with FIGS. 13-17.
0.125 The designer may also change the topology of the
circuit 200. Suppose that according to the default rules
discussed above, the generator 160 places each instantiation
of the hardwired pipelines 44-44, into a separate PLIC 60.
But also suppose that each PLIC 60 has sufficient resources
to hold multiple pipelines 44. Consequently, to reduce the
number of pipeline units 50 that the circuit 200 occupies, the
designer may, using the input device 154, move some of the
pipelines 44 into the same PLIC. For example, the designer
may move both instantiations of the multiplier pipeline 44s
out of the PLICs 60s and 60 and into the PLIC 60, with the
adder pipeline 44, thus reducing by two the number of
PLICs that the circuit 200 occupies. The designer then
manually interconnects the two instantiations of the pipeline
44s to the pipeline 44 within the PLIC 607, or may instruct
the generator 160 to perform this interconnection. Although
the library 120 may not include a communication-shell
template 112 that defines a communication shell 74 for this
combination of multiple pipelines 44s and 44, the designer
or another may write such a template and debug the com
munication shell that the template defines without having to
rewrite the interface-adapter-layer and framework-services
templates 108 and 110 and, therefore, without having to
re-debug the layers that these templates define. This rear
ranging of pipelines 44 within the PLICs 60 is also called
“refactoring the circuit 200.

0.126 Moreover, the designer may decide to breakdown
one or more of the pipelines 44-447 into multiple, less
complex pipelines 44. For example, to equalize the latencies
in the stage 206 of the circuit 200, the designer may decide
to breakdown the x' pipeline 44 into two xpipelines (not
shown) and a multiplier pipeline 44s. Or, the designer may
decide to replace the sin(x) pipeline 44 with a combination
of pipelines (not shown) that represents sin(x) in a series
expansion form (e.g. Taylor series, MacLaurin series).

0127. Referring to FIGS. 7 and 10, after the designer has
made any desired changes to the circuit 200, the generator

US 2006/0085781 A1

160 generates the file 162, which describes the circuit in
terms of the pipeline units 50, the PLICs 60, the library
templates that compose the circuit, and the interconnections
between the pipeline units. Specifically, assuming that the
designer has not modified the circuit 200 from the layout
shown in FIG. 10, the file 162 indicates that the circuit is
designed for instantiation on eight pipeline units 50-50s of
a pipeline accelerator 14 (FIG. 1) that is compatible with
platform m=1. The file 162 also identifies the eight PLICs
60-60s on the eight pipeline units 50-50s, and for each
PLIC, identifies the templates in the library 120 that define
the circuitry to be instantiated on the PLIC. For example,
referring to FIGS. 6 and 10, the file 162 indicates that the
combination of the following templates in the library 120
defines the circuitry to be instantiated on the PLIC 60: 101,
108, 110, 112, 114, and 116. Furthermore, the file 162
includes the values of all constants defined in the configu
ration template 118. The file 162 may also include one or
more of the descriptions 128-134 and 138 corresponding to
these templates, or portions of these descriptions. Moreover,
the file 162 defines the interconnections between the PLICs
60-60s and the message specifications for these intercon
nections The file 162 also defines any designer-specified
range constraints for generated values, exceptions, and
exception-handline routines. The generator 160 may write
the file 162 in XML or in another language with XML tags
so that both humans and other tools/machines can read the
file. Alternatively, the generator 160 may write the file 162
in a language other than XML and without XML tags.

0128 Referring to FIGS. 6, 7, 9, and 10, the designer
may instruct the simulator 164, via the input device 154, to
simulate the circuit 200 using a conventional simulation
algorithm. The simulator 164 uses the information in the file
162 and the test vectors provided by the designer to simulate
the operation of the circuit 200. The simulator 164 first
determines the operating parameters of the hardware-inter
face layers 62-62s and of the hardwired pipelines 44
4,from the file 162, or by extracting this information
directly from the description files 128, 130, 132-1327,
and 138-138, in the library 120. As discussed above, these
parameters include, e.g., circuit latencies, and the precision
(e.g., thirty-two-bit integer, sixty-four-bit floating point) of
the values that the pipelines 44-447 receive and generate.
For example, from the description files 128, 130, 1321,
and 138, the simulator 164 determines the latency of the
PLIC 60 from the time a value x enters the hardware
interface layer 62 until the time that the layer 62 provides
sin(x) on an external pin (not shown) of the PLIC 60. The
latency information in these description files may be esti
mated information, or may be actual information derived
from an analysis of an instantiation of the pipeline 44 and
the hardware-interface layer 62 on the PLIC 60. The
simulator 164 then estimates the latencies and other oper
ating parameters of the PLICs 602-60s, and simulates the
operation of the circuit 200 to generate an output test stream
of valuesy in response to input test streams of values X and
Z.

0129 FIG. 11 is a schematic diagram of the circuit 200
of FIG. 10 disposed on a single pipeline unit 50 and in a
single PLIC 60 according to an embodiment of the inven
tion.

Apr. 20, 2006

0130 Referring to FIGS. 6, 7, 9, and 11, the operation of
the tool 152 is discussed according to another embodiment
of the invention.

0.131. Following the same steps described above in con
junction with the formation of the circuit 200 of FIG. 10, the
generator 160 determines that all of the hardwired pipelines
44-447 (the multiplier pipeline 44s is instantiated twice) can
fit within a single PLIC 60 with the same topology shown in
FIG 10.

0.132. Although the library 120 includes no communica
tion-shell templates 112 for this combination of the hard
wired pipelines 44-447, for simulation purposes the tool
152 derives the operational parameters and message speci
fications of the hardware-interface layer 62 from the descrip
tion files 128, 130, 132-132, and 1327. Because the
PLIC 60 incorporates the interface-adapter layer 70 and
framework-services layer 72 defined by the templates 108
and 110, the tool 152 estimates the input and output
operational parameters, e.g., input and output latencies, and
the message specifications of the layers 70 and 72 directly
from the description files 128 and 130. Then, referring to
FIGS. 10-11, because the values x and Z are input in parallel
to the pipelines 44-44, the tool 152 derives the input
operating parameters of the communication shell 74 of FIG.
11 from the description files 132-132, which describe the
communications shells for the pipelines 44-44. For
example, if the operational parameters of these communi
cation shells are similar, then the tool 152 may merely
estimate that the input-side operational parameters for the
shell 74 are the same as the parameters from one of the
description files 132-132. Alternatively, the tool 152
may estimate that an intermediate data-type translation is
needed for the input-side operational parameters of the
communication shell 74, or that an averaging operation is
needed for the input-side operational parameters of the
communication shell, if the respective input-side parameters
in the description files 132-132, do not match. Similarly,
because the values y are output from the pipeline 447, the
tool 152 derives the output operating parameters for the
communication shell 74 from the description file 1327,
which describes the communication shell for the pipeline
447. For example, the tool 152 may estimate that the
output-side operational parameters for the shell 74 are the
same as the output-side parameters from the description file
1327.
0.133 Next, the generator 160 generates the file 162,
which defines the circuit 200 of FIG. 11, and the simulator
164 simulates the circuit using the operational parameters
calculated for the hardware-interface layer 62 by the gen
erator 160.

0.134 FIG. 12 is a block diagram of a circuit 220, for
which the tool 152 of FIG. 7 generates a file 162 according
to an embodiment of the invention where the circuit solves
for a variable in an equation that includes constant coeffi
cients. The circuit 220 is similar to the circuit 200 except that
the hardwired pipelines. 44, and 44, respectively generate
ax and bz instead of x and z, where a and b are constant
coefficients.

0.135) In this embodiment, the designer wants to design a
circuit to solve for y in the following equation:

US 2006/0085781 A1

The only differences between equation (3) and equation (2)
is the presence of the constant coefficients a and b.
0.136) Referring to FIG. 10, one way for the tool 152 to
generate such a circuit is to modify the circuit 200 is to parse
equation (3) into portions including "ax” and “b-z", and to
add two corresponding PLICs (not shown) on which are
instantiated the multiplication pipeline 44s: one Such mul
tiplier PLIC between the PLICs 60 and 60s and receiving as
inputs z and b, and the other such multiplier PLIC between
the PLICs 60, and 60 and receiving as inputs x and a.
0137 Although such a modified circuit 200 is contem
plated to accommodate the constant coefficients a and b, this
circuit would require two additional pipeline units 50.
0138 Referring to FIGS. 7, 10, and 12, in this embodi
ment, however, the tool 152 generates the circuit 220 by
replacing the pipelines 44 and 44 in the circuit 200 with
pipelines 44s and 449, which respectively perform the opera
tions bzandax". Of course this assumes that the section 124
of the library 120 (FIG. 6) includes corresponding hard
wired-pipeline templates 114s and 1149.
0139 Referring to FIGS. 7 and 12, to set the values of
the coefficients a and b, the designer may enter the values as
part of equation (3), or may enter the values separately.
Assume that the designer wants a=2.0 and b=3.5. According
to the former entry method, he enters equation (3) as: “y=
V2x'cos(z)+3.5z sin(x)'. And according to the latter entry
method, he enters equation (3) as y-Vax'cos(z)+bz sin(x),
and then enters “a=2.0, b=3.5.”
0140. The generator 160 then generates the file 162 to
include the entered values for the coefficients a and b. These
values may contained within one or more XML tags or be
present in some other form.
0141. In another variation, the values of a and b may be
provided to the configuration managers 88 (FIG. 3) of the
PLICs 60 and 60 as soft-configuration data. More specifi
cally, a configuration manager (not shown and different from
the configuration managers 88), which is described in pre
viously incorporated U.S. patent app. Ser. No. (Attorney
Docket No. 1934-25-3, 1934-26-3, and 1934-36-3) and
which is executed by the host processor 12 (FIG. 1),
initializes the values of a and b by sending configuration
messages for a and b to the pipeline units 50 and 50. The
accelerator-configuration registry 40 (FIG. 1) may store a
and b as XML files to initialize the configuration messages
created and sent by the configuration manager executed by
the host processor 12.
0142. Still referring to FIGS. 7 and 12, the tool 152 can
use similar techniques to set the values of constant coeffi
cients for other types of circuit portions such as filters, Fast
Fourier Transformers (FFTs), and Inverse Fast Fourier
Transformers (IFFTs).
0143 Referring to FIGS. 7-12, other embodiments of the
tool 152 and its operation are contemplated.
0144) For example, one or more of the functions of the
tool 152 may be performed by a functional block (e.g., front
end 156, interpreter 158) other than the block to which the
function is attributed in the above discussion.

0145) Furthermore, the tool 152 may be described using
more or fewer functional blocks. In addition, although the

Apr. 20, 2006

tool 152 is described as either fitting the eight instantiations
of the hardwired pipelines 44-44, in eight PLICs 60-60s
(FIGS. 10 and 12) or in a single PLIC 60 (FIG. 11), the tool
152 may fit these pipelines in more than one but fewer than
eight PLICs, depending on the resources available on each
PLIC.

0146 Moreover, although described as allowing a
designer to define a circuit using conventional mathematical
symbols, alternate embodiments of the front end 156 of the
tool 152 may lack this ability, or may allow one to define a
circuit using other formats or languages such as C++ or
VHDL.

0.147. Furthermore, although the tool 152 is described as
allowing one to design a circuit for instantiation on a PLIC,
the tool 152 may also allow one to design a circuit for
instantiation on an ASIC.

0.148. In addition, although the tool 152 is described as
generating a file 162 that defines an algorithm-implementing
circuit, such as the circuit 200 (FIG. 11), for instantiation on
a specific pipeline accelerator 14 (FIG. 14) or on a pipeline
accelerator that is compatible with a specific platform, the
tool may generate, in addition to or instead of the file 162,
a file (not shown) that more generally defines the algorithm.
Such a file may include algorithm-definition data that is
sometimes called “meta-data, and may allow the host
processor 12 (FIG. 1) to implement the algorithm in any
manner (e.g., hardwired pipeline(s), Software, a combination
of both pipeline(s) and software) supported by the peer
vector machine 10 (FIG. 1). Typically, meta-data describes
Something, such as an algorithm or another file, but is not
executable. For example, the information in the description
files 126-134 (FIG. 6) may include meta-data. But a pro
cessor, such as the host processor 12, may be able to
generate executable code from meta-data. Consequently, a
meta-data file that defines an algorithm may allow the host
processor 12 to configure the peer vector machine 10 for
implementing the algorithm even where the machine does
not support the implementation(s) specified by the file 162.
Such configuring of the peer vector machine 10 is described
in U.S. patent application Ser. No. (Attorney Docket Nos.
1934-25-3, 1934-26-3, and 1934-36-3), which were previ
ously incorporated by reference.
0.149 Moreover, the tool 152 may generate, and the
library 120 (FIG. 6) may store, one or more meta-data files
(not shown) for describing the messages that carry data
to/from the PLICs 60 (or software equivalents) of a circuit,
such as the circuit 200 (FIG. 10). For example, if the data
generated by the PLICs 60 is floating-point data, then a
meta-data file specifies this. The file 162 (FIG. 7) incorpo
rates or points to these meta-data files so that the host
processor 12 (FIG. 1) can instantiate the message objects
that generate Such messages as discussed in previously
incorporated U.S. patent app. Ser. Nos. (Attorney Docket
Nos. 1934-25-3, 1934-26-3, and 1934-36-3).
0150. Furthermore, the tool 152 may generate, and the
library 120 (FIG. 6) may store, one or more meta-data files
(not shown) for describing the exceptions that the PLICs 60
(or software equivalents) of a circuit, such as the circuit 200
(FIG. 10), generate. For example, if a PLIC 60 implements
a divide-by-Zero exception, then a meta-data file specifies
this. The file 162 (FIG. 7) incorporates or points to these
meta-data files so that the host processor 12 (FIG. 1) can

US 2006/0085781 A1

instantiate corresponding exception handlers as discussed in
previously incorporated U.S. patent app. Ser. Nos. (Attorney
Docket Nos. 1934-25-3, 1934-26-3, and 1934-36-3).
0151. In addition, the tool 152 may generate, and the
library 120 (FIG. 6) may store, one or more meta-data files
(not shown) for describing the PLICs 60 (or software
equivalents) of a circuit, such as the circuit 200 (FIG. 10).
For example, such a meta-data file may describe the math
ematical operation performed by, and the input and output
specifications of circuitry to be instantiated on a corre
sponding PLIC (or a software equivalent of the circuitry).
The file 162 (FIG. 7) incorporates or points to these meta
data files so that the host processor 12 (FIG. 1) can 1)
determine which firmware files (or software equivalents)
stored in the library 120 or in another library will respec
tively cause the PLICs (or the host processor 12) to instan
tiate the desired circuitry, or 2) generate one or more of these
firmware files (or software equivalents) that are not other
wise available, as described in previously incorporated U.S.
patent app. Ser. Nos. (Attorney Docket Nos. 1934-25-3,
1934-26-3, and 1934-36-3).
0152 Moreover, the library 120 (FIG. 6) may store one
or more of the files 162 (FIG. 7) that the tool 152 generates,
So that a designer can incorporate previously designed
circuits, such as the circuit 200 (FIG. 10), into a new larger
and more complex circuit. The tool 152 may then generate
a new file 162 that defines this new circuit.

0153) Referring to FIGS. 13-17, according to another
embodiment of the invention, the tool 152 (FIG. 7) allows
one to design a circuit for implementing virtually any
complex function f(x) by expanding the function into an
equivalent infinite series. Many functions, such as f(x)=
cos(x) and f(x)=e^, can be expanded into an infinite series,
such as the Taylor series or the following MacLaurin series,
which is a special case (a=0) of the Taylor series:

1919, ... "Oly (3)
1. 2. n

Consequently, a combination of Summing and multiplying
hardwired pipelines 44 interconnected to generate ax+bx +
cx+...+VX" can implement any function f(x) that one can
expand into a MacLaurin series, where the only differences
in this combination of pipelines from function to function
are the values of the constant coefficients a, b, c, v.
Therefore, if the tool 152 is programmed with, or otherwise
has access to, the coefficients for a number of functions f(x),
then the tool can implement any of these functions as a series
expansion. Furthermore, because the accuracy of the imple
mentation of a function f(x) is proportional to the number of
expansion terms calculated and Summed together, the tool
152 may set the number of expansion terms that the inter
connected pipelines 44 generate based on the level of
accuracy for f(x) that the circuit designer (not shown) enters
into the tool. Alternatively, a designer may directly enter a
function f(x) into the front end 156 (FIG. 7) of the tool 152
in series-expansion form.

0154 FIG. 13 is a block diagram of a circuit 240 that the
tool 152 (FIG. 7) defines for implementing f(x)=cos(x) as a
MacLaurin series according to an embodiment of the inven

Apr. 20, 2006

tion. For clarity, FIG. 13 shows only the adders, multipliers,
and delay blocks that compose the circuit 240, it being
understood that the tool 152 may define the circuit for
instantiation on one or more PLICs 60 using one or more
hardwired pipelines 44 and one or more hardware-interface
layers 62 (e.g., FIGS. 10 and 12) per one of the techniques
described above in conjunction with FIGS. 7-12. Further
more, the circuit 240 may be part of a larger circuit (not
shown) for implementing an algorithm having cos(x) as one
of its portions.
0155) F(x)=cos(x) is represented by the following
MacLaurin series:

l? - ?-l' . . . (4)

The circuit 240 includes a term-generating section 242 and
a term-summing section 244. For clarity, only the parts of
these sections that respectively generate and sum the first
four power-of-X terms of the cos(x) series expansion are
shown, it being understood that any remaining portions of
these sections for respectively generating and summing the
fifth and higher power-of-x terms are similar.
0156 The term-generating section 242 includes a chain
of multipliers 246-246 (only multipliers 246-246s are
shown) and delay blocks 248,-248 (only delay blocks
248-248s are shown) that generate the power-of-x terms of
the cos(x) series expansion. The delay blocks 248 insure that
the multipliers 246 only multiply powers of x from the same
sample time.

0157 The term-summing section 244 includes two sum
ming paths: a path 250 for positive numbers, and a path 252
for negative numbers. The path 250 includes a chain of
adders 254-254 (only adders 254-254 are shown) and
delay blocks 256-256 (only blocks 256 and 256, are
shown). Similarly, the path 252 includes a chain of adders
258-258, (only adder 258, is shown) and delay blocks
260-260, (only blocks 260, and 260, are shown). A final
adder 262 sums the cumulative positive and negative sums
from the paths 250 and 252 to provide the value for cos(x).
Although the adder 262 is shown as summing the first five
terms of the expansion (1 and the first four power-of-x
terms), it is understood that the final adder 262 may be
disposed further down the paths 250 and 252 if the circuit
240 generates additional terms of the cos(x) expansion.
Where numbers being Summed are floating-point numbers,
exceptions, such as a mantissa-register underflow, may
occur when a positive number is summed with a negative
number that is almost equal to the positive number. But by
providing separate summing paths 250 and 252 for positive
and negative numbers, respectively, the circuit 240 limits the
number of possible locations where such exceptions can
occur to a single adder 262. Consequently, providing the
separate paths 250 and 252 may significantly reduce the
frequency of such floating-point exceptions, and thus may
reduce the time that the peer-vector machine 10 (FIG. 1)
consumes handling such exceptions and the size and com
plexity of the exception manager 86 (FIG. 4).
0158) Still referring to FIG. 13, the operation of the
circuit 240 is discussed according to an embodiment of the

US 2006/0085781 A1

invention. For purposes of explanation, it is assumed that
each of the multipliers 246, adders 254 and 258, has a
latency (i.e., delay) D of one clock cycle. For example, prior
to a first clock edge, a value X is present at the inputs of the
multiplier 246, and after the first clock edge, the value x2
is present at the output of the multiplier 246. It is under
stood, however, that the multipliers 246 and adders 254 and
258 may have different latencies and latencies other than
one, and that the delays provided by the blocks 248,256, and
260 may be adjusted accordingly.

0159. At a start time, a value x is present at the input of
the multiplier 246, where the subscript “1” denotes the time
or position of X relative to the other values of X.
0160 In response to a first clock edge, a value x is
present at the input of the multiplier 246, and x is present
at the output of this multiplier. For brevity, this example
follows only the propagation of X, it being understood that
the propagation of X and subsequent values of X is similar
but delayed relative to the propagation of X. Furthermore,
for clarity, x is hereinafter referred to “x” in this example.
0161). In response to a second clock edge, -X/2 is
present at the output of the multiplier 246, x' is present at
the output of the multiplier 246, and x is available at the
output of the block 248.
0162. In response to a third clock edge, “1” is present at
the output of the block 2561, x/4! is present at the output of
the multiplier 246 x' is present at the output of the
multiplier 246s, and x is available at the output of the block
248.
0163) In response to a fourth clock edge, -X/6! is present
at the output of the multiplier 246 x is present at the output
of the multiplier 2467, x is available at the output of the
block 248, and "1+x/4!” is available at the output of the
summer 254.
0164. In response to a fifth clock edge, x/8! is present at
the output of the multiplier 246s, “1+x/4” is available at
the output of the block 256, and *-x/2-x/6!” is available
at the output of the adder 258.
0165. In response to a sixth clock edge, “1+x/4+x/8!”

is available at the output of the adder 254, and "-x/2-
x/6!” is available at the output of the block 260.
0166 And in response to a seventh clock edge, “cos(x)=
1-x/21+x/4!-x/6!+x/8!” (cos(x) approximated to the
first four power-of-X terms of the MacLaurin series expan
sion) is available at the output of the adder 262. Therefore,
in this example the latency of the circuit 240 (i.e., the
number of clock cycles from when X is available at the
inputs of the multiplier 246 to when cos(x) is available at
the output of the adder 262) is seven clock cycles. Further
more, if the adder 262 Summing a positive number and a
negative floating-point number generates an exception, the
exception manager 86 (FIG. 4) or the host processor 12
(FIG. 1) may handle this exception using a conventional
floating-point-exception routine.

0167 Alternatively, if the circuit 240 calculates one or
more higher power-of-X terms, then the adder 262 is located
after (to the right in FIG. 13) the adder that sums the highest
generated term to a preceding term, and the operation
continues as above.

Apr. 20, 2006

0168 Still referring to FIG. 13, alternate embodiments of
the circuit 240 are contemplated. For example, the circuit
240 may include multipliers and adders to generate and Sum
the odd power-of-x terms (e.g., X, X3, X5) with the coeffi
cients of these terms set to zero. Such an alternate circuit 240
is more flexible because it allows one to implement function
expansions that include odd powers of X, but in this case
would have a greater latency than seven clock cycles.
0169 FIG. 14 is a block diagram of a circuit 270 that the
tool 152 (FIG. 7) defines for implementing f(x)=cos(x) as a
MacLaurin series according to another embodiment of the
invention. The circuit 270 has a topology that reduces the
number of delay blocks and the latency as compared to the
circuit 240 of FIG. 13. Furthermore, like FIG. 13, FIG. 14
shows only the adders, multipliers, and delay blocks that
compose the circuit 270, it being understood that the tool
152 may define the circuit for instantiation on one or more
PLICs 60 using one or more hardwired pipelines 44 and one
or more hardware-interface layers 62 (e.g., FIGS. 10 and
12) per one of the techniques described above in conjunction
with FIGS. 7-12. Furthermore, like the circuit 240, the
circuit 270 may be part of a larger circuit (not shown) for
implementing an algorithm having cos(x) as one of its
portions.
0170 The circuit 270 includes a term-generating section
272 and a term-summing section 274. For clarity, only the
parts of these sections that respectively generate and Sum the
first four power-of-X terms of the cos(X) series expansion are
shown, it being understood that any remaining portions of
these sections for respectively generating and Summing the
fifth and higher power-of-X terms are similar.
0171 The term-generating section 272 includes a hierar
chy of multipliers 276-276 (only multipliers 276-276, are
shown) and delay blocks 278-278 (only delay blocks
278-278, are shown) that generate the power-of-x terms of
the cos(x) series expansion. The delay blocks 278 insure that
the multipliers 276 only multiply powers of x from the same
sample time.
0.172. The term-summing section 274 includes two sum
ming paths: a path 280 for positive numbers, and a path 282
for negative numbers. The path 280 includes a chain of
adders 284-284, (only adders 284-284 are shown) and
delay blocks 286-286 (only block 286 is shown). Simi
larly, the path 282 includes a chain of adders 288-288, (only
adder 288 is shown) and delay blocks 290-290 (only
block 290 is shown). A final adder 292 Sums the cumulative
positive and negative sums from the paths 280 and 282 to
provide the value for cos(x). Although the adder 292 is
shown as Summing the first five terms of the expansion (1
and the first four power-of-X terms), it is understood that the
final adder 292 may be disposed further down the paths 280
and 282 if the circuit 270 generates additional terms of the
cos(x) expansion.
0173 Still referring to FIG. 14, the operation of the
circuit 240 is discussed according to an embodiment of the
invention. For purposes of explanation, it is assumed that
each of the multipliers 276, adders 284 and 288, has a
latency (i.e., delay) D of one clock cycle. It is understood,
however, that the multipliers 276 and adders 284 and 288
may have different latencies and latencies other than one,
and that the delays provided by the blocks 278 and 288 may
be adjusted accordingly.

US 2006/0085781 A1

0174 At a start time, a value x is present at the input of
the multiplier 276.
0175. In response to a first clock edge, x' is present at the
output of the multiplier 276.
0176). In response to a second clock edge, x' is present at
the output of the multiplier 276, and x is available at the
output of the block 278.
0177. In response to a third clock edge, “1” is present at
the output of the block 286, x/4! is present at the output of
the multiplier 276 x is present at the output of the
multiplier 276, -X/2! is available at the output of the
multiplier 276, and x is available at the output of the
multiplier 276,
0178. In response to a fourth clock edge, -X/6 is present
at the output of the multiplier 2767, x/8! is present at the
output of the multiplier 276, -X/2! is available at the
output of the block 290, and “1+x/4” is available at the
output of the summer 284.
0179. In response to a fifth clock edge, g1+x/4+x/8!”
is available at the output of the adder 284, and '-x/2-
x/6!” is available at the output of the adder 288.
0180 And in response to a sixth clock edge, “cos(x)=1-
x/2+x/4-x/6!+x/8!” (cos(x) approximated to the first
four power-of-X terms of the MacLaurin series expansion) is
available at the output of the adder 292. Therefore, in this
example the latency of the circuit 270 is six clock cycles,
which is one fewer clock cycle than the latency of the circuit
240 of FIG. 13. But as the number of the power-of-X terms
increases beyond four, the gap between the latencies of the
circuits 270 and 240 increases such that the circuit 270
provides an even greater improvement in the latency.
0181 Alternatively, if the circuit 270 calculates one or
more higher power-of-X terms, then the adder 292 is located
after (to the right in FIG. 14) the adder that sums the highest
generated term to a preceding term, and the operation
continues as above.

0182 Still referring to FIG. 14, alternate embodiments of
the circuit 270 are contemplated. For example, the circuit
270 may include multipliers and adders to generate and Sum
the odd power-of-x terms (e.g., X, X3, X5) with the coeffi
cients of these terms set to zero. Such an alternate circuit 270
may be more flexible because it allows one to implement
function expansions that include odd powers of X without
increasing the circuit's latency for a given highest power of
X. That is, where the highest power of X generated by the
circuit 270 is x, adding multipliers and adders to generate
x, x, and x" would not increase the latency of the circuit
270 beyond six clock cycles. This is because the circuit 270
would generate the power-of-X terms in parallel, not serially
like the circuit 240 of FIG. 13.

0183 FIG. 15 is a block diagram of a power-of-x term
generator 300 that the tool 152 (FIG. 7) defines to replace
the power-of-X-term odd multipliers 246, 246s, 2467, ... of
the term-generating section 242 of FIG. 13 and the power
of-x-term multipliers 276, 276, 276, 276, ... of FIG. 14
according to an embodiment of the invention. Generally, the
generator 300 includes fewer multipliers (here one) than the
term-generating sections 242 and 272 (which each include
eight multipliers), but may have a higher latency for a given
number of generated power-of-X terms. Furthermore, like

Apr. 20, 2006

FIGS. 13-14, FIG. 15 shows only the multipliers and other
components that compose the term generator 300, it being
understood that the tool 152 may define a circuit that
includes the term generator for instantiation on one or more
PLICs 60 using one or more hardwired pipelines 44 and one
or more hardware-interface layers 62 (e.g., FIGS. 10 and
12) per one of the techniques described above in conjunction
with FIGS. 7-12.

0.184 The term generator 300 includes a register 302 for
storing x, a multiplier 304, a multiplexer 306, and term
storage registers 308,-308, (only registers 308,-308, are
shown). For clarity, only the parts of the generator 302 that
generates the first four power-of-X terms of the cos(X) series
expansion are shown, it being understood that any remaining
portions of the generator for generating the fifth and higher
power-of-X terms are similar.
0185. Still referring to FIG. 15, the operation of the
circuit 300 is discussed according to an embodiment of the
invention. For purposes of explanation, it is assumed that
each of the register 302, multiplier 304, and registers 308 has
a respective latency (i.e., delay) of one clock cycle, and that
the multiplexer 306 is not clocked, i.e., is asynchronous. It
is understood, however, that the register 302, multiplier 304,
and registers 308 may have different latencies and latencies
other than one, that the multiplexer 306 may be clocked and
have a latency of one or more clock cycles, and that the
term-summing sections 244 and 274 of FIGS. 13 and 14,
respectively, may be adjusted accordingly.
0186. At a start time, a value x is present at the input of
the register 302.
0187. In response to a first clock edge, the current value
of X is loaded into, and thus is present at the output of the
register 302, and is present at the output of the multiplexer
306, which couples its input 312 to its output. The register
302 is then disabled. Alternatively, the register 302 is not
disabled but the value of X at the input of this register does
not change.
0188 In response to a second clock edge, x' is present at
the output of the multiplier 304, and the multiplexerchanges
state and couples its input 314 to its output Such that X2 is
also present at the output of the multiplexer 306.
0189 In response to a third clock edge, x' is loaded into,
and thus is available at the output of the register 310, and
x is available at the output of the multiplier 304 and at the
output of the multiplexer 306.
0190. In response to a fourth clock edge, x' is available
at the output of the multiplier 304 and at the output of the
multiplexer 306.
0191). In response to a fifth clock edge, x' is loaded into,
and thus is available at the output of the register 310, and
x is available at the output of the multiplier 304 and at the
output of the multiplexer 306.

0192) In response to a sixth clock edge, x' is available at
the output of the multiplier 304 and at the output of the
multiplexer 306.

0193 In response to a seventh clock edge, x' is loaded
into, and thus is available at the output of, the register 310,
and x' is available at the output of the multiplier 304 and at
the output of the multiplexer 306.

US 2006/0085781 A1

0194 In response to an eighth clock edge, x' is available
at the output of the multiplier 304 and at the output of the
multiplexer 306.

0195 And in response to a ninth clock edge, x' is loaded
into, and thus is available at the output of, the register 310,
the next value of X is loaded into the register 302. But if the
generator 300 generates powers of X higher than x, the
generator continues operating in the described manner
before loading the next value of X into the register 302.

0196. After the generator 300 generates all of the speci
fied powers of the current value of X, the register 302,
multiplier 304, multiplexer 306, and registers 310 repeat the
above procedure for each Subsequent value of X.

0197) Alternative embodiments of the generator 300 are
contemplated. For example, to generate the odd powers of X
for a function other than cos(X), one can merely add addi
tional registers 310 to store these values, because the mul
tiplier 304 inherently generates these odd powers. Alterna
tively, the generator 300 may be modified to load x into the
register 302 so that the multiplier 304 thereafter generates
only even powers of x. Moreover, one or more of the
registers 308 may be eliminated, and the multiplexer 306
may feed the respective powers of X directly to the term
multipliers, e.g., the term multipliers 246, 246, 246, 246s.
. . . of FIG. 13 and the term multipliers 276s, 276, 2767,
276, ... of FIG. 14.
0198 FIG. 16 is a block diagram of a circuit 320 that the
tool 152 (FIG. 7) defines for implementing f(x)=e as a
MacLaurin series according to an embodiment of the inven
tion. The circuit 320 is similar to the circuit 240 of FIG. 13,
but because the odd power-of-X terms for the e' expansion
may be positive or negative, the circuit 320 also includes
sign determiners (described below and in conjunction with
FIG. 17) that respectively provide these odd-power-of-X
terms to the proper path (positive or negative) of the
term-summing section. For clarity, FIG. 16 shows only the
adders, multipliers, delay blocks, and sign determiners that
compose the circuit 320, it being understood that the tool
152 may define the circuit for instantiation on one or more
PLICs 60 using one or more hardwired pipelines 44 and one
or more hardware-interface layers 62 (e.g., FIGS. 10 and
12) per one of the techniques described above in conjunction
with FIGS. 7-12. Furthermore, the circuit 320 may be part
of a larger circuit (not shown) for implementing an algo
rithm having e' as one of its portions.

0199 F(x)=e^ is represented by the following MacLaurin
series:

* ... li. (5)

The circuit 320 includes a term-generating section 322 and
a term-summing section 324, which includes positive- and
negative-value summing paths 326 and 328. For clarity, only
the parts of these sections that respectively generate and Sum
the first five power-of-X terms of the e' series expansion are
shown, it being understood that any remaining portions of
these sections for respectively generating and Summing the
sixth and higher power-of-X terms are similar.

Apr. 20, 2006

0200. The term-generating section 322 includes a chain
of multipliers 330-330 (only multipliers 330,-330s are
shown) and delay blocks 332-332 (only delay blocks
332-332, are shown) that generate the power-of-x terms of
the ex series expansion. The section 322 also includes, for
each odd-power-of-X term (e.g., x, x, x), a respective
sign determiner 334-334 (only determiners 334-334 are
shown) that directs positive values of the odd-power-of-X
term to the positive Summing path 326 of the term-Summing
section 324, and that directs negative values of the odd
power-of-X term to the negative Summing path 328.
0201 The positive-value path 326 of the term-summing
section 324 includes a chain of adders 336-336 (only
adders 336-336s are shown) and delay blocks 338-338
(only blocks 338-338, are shown). Similarly, the negative
value path 328 includes a chain of adders 340-340, (only
adders 340-340 are shown) and delay blocks 342-342
(only blocks 342-342 are shown). A final adder 344 sums
the cumulative positive and negative Sums from the paths
326 and 328 to provide the value for e^. Although the final
adder 344 is shown as summing the first six terms of the e
expansion (“1” and the first five power-of-X terms), it is
understood that the final adder may be disposed further
down the paths 326 and 328 if the circuit 320 generates
additional terms of the expansion.
0202) Still referring to FIG. 16, the operation of the
circuit 320 is discussed according to an embodiment of the
invention. For purposes of explanation, it is assumed that
each of the multipliers 330, sign determiners 334, and adders
336 and 340 has a latency (i.e., delay) D of one clock cycle.
It is understood, however, that the multipliers 330, sign
determiners 334, and adders 334 and 336 may have different
latencies and latencies other than one, and that the delays
provided by the blocks 332, 338, and 342 may be adjusted
accordingly.
0203 At a start time, a value x is present at both inputs
of the multiplier 330, at the input of the delay block 332,
and at the input of the sign determiner 334.
0204). In response to a first clock edge, x' is available at
the output of the multiplier 330, x is available at the output
of the delay block 332, and “1” is available at the output of
the delay block 338. Furthermore, if X is positive, X and
logic “0” are respectively available at the (+) and (-) outputs
of the sign determiner 334; conversely, if X is negative,
logic “0” and X are respectively available at the (+) and (-)
outputs of the determiner 334.
0205. In response to a second clock edge, x/2 is avail
able at the output of the multiplier 330, x is present at the
output of the multiplier 330, and x is available at the output
of the delay block 332. Furthermore, if X is positive, "1+x'
is available at the output of the adder 336; conversely, if X
is negative, "1+0=1 is present at the output of the adder
336.
0206. In response to a third clock edge, x/3! is available
at the output of the multiplier 330, x' is available at the
output of the multiplier 330s, X is available at the output of
the delay block 332, and “1+x+x/2!” (x positive) or
“1+x/2!” (x negative) is available at the output of the adder
336.
0207. In response to a fourth clock edge, x/4! is present
at the output of the multiplier 330, x is present at the output

US 2006/0085781 A1

of the multiplier 3307, X is available at the output of the
block 332, and “1+x+x/2” (x positive) or “1+x/2” (x
negative) is available at the output of the delay block 338.
Furthermore, if x/3, and thus X, is positive, x/3! and logic
“0” are respectively present at the (+) and (-) outputs of the
sign determiner 334; conversely, if x/3!, and thus X, is
negative, logic “0” and x/3 are respectively present at the
(+) and (-) outputs of the determiner 334. Moreover, if x is
negative, then X is available at the output of the delay block
342; conversely, if X is positive, then logic “0” is available
at the output of the delay block 342.
0208. In response to a fifth clock edge, x/5! is available
at the output of the multiplier 330s, “1+x+x/21+x/3!” (x
positive) or "1+x/2" is available at the output of the adder
336, x/4! is available at the output of the delay block 338.
and “0” (x positive) or *-x-x/3!” (x negative) is available
at the output of the adder 340.
0209. In response to a sixth clock edge, if x/5!, and thus
X, is positive, x/5! and logic “0” are respectively available
at the (+) and (-) outputs of the sign determiner 334;
conversely, if x/5!, and thus X, is negative, logic “0” and
x/5 are respectively available at the (+) and (-) outputs of
the determiner 334. Furthermore, “1+x+x/2+x/3+x/4!”
(x positive) or “1+x/+ +x/4!” (x negative) is avail
able at the output of the multiplier 336 and “O'” (x positive)
or *-x-x/3!” (x negative) is available at the output of the
delay block 342.
0210) In response to a seventh clock edge, "1+x+x/2+
x/3+x/4+x/5!” (x positive) or “1+x/2+x/4!” (x nega
tive) is available at the output of the adder 336s, and “O'” (x
positive) or “x-x/31-x/4!” (x negative) is available at the
output of the adder 3402.
0211 And in response to an eighth clock edge, “e'='1+
x+x/21+x/3+x/4!+x/5!” (x positive) or “e=1-x+x/2-
x/5!” (x negative) is available at the output of the adder 344.
0212. Therefore, in this example, the latency of the
circuit 320 is eight. Furthermore, if the adder 344, while
Summing a positive number and a negative floating-point
number, generates an exception, the exception manager 86
(FIG. 4) or the host processor 12 (FIG. 1) may handle this
exception using a conventional floating-point-exception rou
tine.

0213 Alternatively, if the circuit 320 calculates one or
more power-of-X terms higher than the fifth power, then the
adder 344 is located after (to the right in FIG. 16) the adder
336 or 340 that sums the highest generated term to a
preceding term, and the operation continues as above.
0214 Still referring to FIG. 16, alternate embodiments of
the circuit 320 are contemplated. For example, one may
replace the term-generating section 322 with a section
similar to the term-generating section 272 of FIG. 14, or
may replace the chain of multipliers 330 with a power-of-X
generator similar to the generator 300 of FIG. 15.
0215 FIG. 17 is a block diagram of the sign determiner
334, of FIG. 16 according to an embodiment of the inven
tion, it being understood that the sign determiners 3342.
334 are similar.
0216) The sign determiner 334, includes an input node
350, a (-) output node 352, a (+) output node 354, a register
356 that stores a logic “0”, and demultiplexers 358 and 360.

Apr. 20, 2006

0217. The demultiplexer 358 includes a control node 362
coupled to receive a sign bit of the value at the input node
350, a (-) input node 364 coupled to the input node 350, a
(+) input node 366 coupled to the register 356, and an output
node 368 coupled to the (-) output node 352.
0218. Similarly, the demultiplexer 360 includes a control
node 370 coupled to receive the sign bit of the value at the
input node 350, a (-) input node 372 coupled to the register
356, a (+) input node 374 coupled to the input node 350, and
an output node 376 coupled to the (+) output node 354.
0219. Still referring to FIG. 17, two operating modes of
the sign determiner 334, are described according to an
embodiment of the invention.

0220. In one operating mode, the sign determiner 334
receives at its input node 350 a positive (+) value V, which,
therefore, includes a positive sign bit. This sign bit is
typically the most-significant bit of V, although the sign bit
may be any other bit of V. In response to the positive sign bit,
the demultiplexer 360 couples V (including the sign bit) from
its (+) input node 374 to its output node 376, and thus to the
(+) output node 354 of the sign determiner 334. Further
more, the demultiplexer 358 couples the logic “0” stored in
the register 356 from the (+) input node 366 to the output
node 368, and thus to the (-) output node 352 of the sign
determiner 3341.

0221) In the other operating mode, the sign determiner
334, receives at its input node 350 a negative (-) value V,
which, therefore, includes a negative sign bit. In response to
the negative sign bit, the demultiplexer 358 couples V
(including the sign bit) from its (-) input node 364 to its
output node 368, and thus to the (-) output node 352 of the
sign determiner 3341. Furthermore, the demultiplexer 360
couples the logic “0” stored in the register 356 from the (-)
input node 372 to the output node 376, and thus to the (+)
output node 354 of the sign determiner 334.
0222 Still referring to FIG. 17, alternative embodiments
of the sign determiner 334 are contemplated. For example,
one may replace the logic “0” register with a component,
Such as pull-down resistor, coupled to a logic “0” Voltage
level. Such as ground.
0223 Referring to FIGS. 1-17, alternate embodiments of
the peer vector machine 10 are contemplated. For example,
some or all of the components of the peer vector machine 10,
such as the host processor 12 (FIG. 1) and the pipeline units
50 (FIG. 3) of the pipeline accelerator 14 (FIG. 1), may be
disposed on a single integrated circuit.
0224. The preceding discussion is presented to enable a
person skilled in the art to make and use the invention.
Various modifications to the embodiments will be readily
apparent to those skilled in the art, and the generic principles
herein may be applied to other embodiments and applica
tions without departing from the spirit and scope of the
present invention. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

What is claimed is:
1. A library, comprising:
one or more circuit templates that each define a respective

circuit operable to execute a respective algorithm; and

US 2006/0085781 A1

an interface template that defines a hardware layer oper
able to interface one of the circuits to pins of a
programmable logic circuit when the layer and the one
circuit are instantiated on the programmable logic
circuit.

2. The library of claim 1 wherein each circuit template
includes extensible markup language that describes the
respective algorithm.

3. The library of claim 1 wherein the interface template
includes extensible markup language that describes the
hardware layer.

19
Apr. 20, 2006

4. The library of claim 1 wherein the programmable logic
circuit comprises a field-programmable gate array.

5. The library of claim 1, further comprising a file that
describes a platform with which the programmable logic
circuit is compatible.

6. The library of claim 1 wherein the library comprises
multiple circuit templates that define circuits that can be
interconnected to for form a resulting circuit that can be
instantiated one a programmable logic circuit to execute an
algorithm.

