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A library includes one or more circuit templates and an 
interface template. The one or more circuit templates each 
define a respective circuit operable to execute a respective 
algorithm or portion thereof. And the interface template 
defines a hardware layer operable to interface one of the 
circuits to pins of a programmable logic circuit when the 
layer and the one circuit are instantiated on the program 
mable logic circuit. Such a library may shorten the time and 
reduce the effort that an engineer expends designing a circuit 
for instantiation on a PLIC or ASIC by allowing the engineer 
to build the circuit from templates of previously designed 
and debugged circuits. 
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LIBRARY FOR COMPUTER-BASED TOOLAND 
RELATED SYSTEMAND METHOD 

CLAIM OF PRIORITY 

0001. This application claims priority to U.S. Provisional 
Application Ser. Nos. 60/615,192, 60/615,157, 60/615,170, 
60/615,158, 60/615,193, and 60/615,050, filed on Oct. 1, 
2004, which are incorporated by reference. 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0002 This application is related to U.S. patent applica 
tion Ser. Nos. (Attorney Docket Nos. 1934-21-3, 
1934-23-3, 1934-24-3, 1934-25-3, 1934-26-3, 1934-31-3, 
and 1934-36-3), which have a common filing date and 
assignee and which are incorporated by reference. 

BACKGROUND 

0003 Electronics engineers often instantiate circuits, 
Such as logic circuits, on programmable logic integrated 
circuits (PLICs) such as field-programmable gate arrays 
(FPGAs), and on application-specific integrated circuits 
(ASICs). Because an engineer typically configures with 
firmware the circuit components and interconnections inside 
of a PLIC, he can modify a circuit instantiated on the PLIC 
merely by modifying and reloading the firmware. An 
example of a computer architecture that exploits the ability 
to configure and reconfigure circuitry within a PLIC with 
firmware is described in U.S. Patent Publication No. 2004/ 
0.133763, which is incorporated herein by reference. 
0004 But unfortunately, it is often difficult and time 
consuming to design a circuit for instantiation on a PLIC, 
and an increase in the level of design difficulty and the time 
required to complete the design often accompany the routing 
resources, component density, and component variety on a 
PLIC. 

0005 Comparatively, when a software programmer 
writes Source code for a software application, he can often 
save time by incorporating into the application previously 
written and debugged software objects from a software 
object library. Suppose the programmer wishes to write a 
software application that solves for y in the following 
equation: 

Further suppose that a software-object library includes a first 
Software object for squaring a value (here X), a second 
software object for cubing a value (here Z), and a third 
software object for summing two values (here x and Z). By 
incorporating pointers to these three objects in the Source 
code, a compiler effectively merges these objects into the 
Software application while compiling the Source code. 
Therefore, the object library allows the programmer to write 
the software application in a shorter time and with less effort 
because the programmer does not have to “reinvent the 
wheel” by writing and debugging pieces of Source code that 
respectively square X, cube Z, and sum x and z. Further 
more, if the programmer needs to modify the software 
application, he can do so without modifying and re-debug 
ging the first, second, and third software objects. 
0006. In contrast, there are typically no time- or effort 
saving equivalents of Software objects available to a hard 
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ware engineer who wishes to design a circuit for instantia 
tion on a PLIC, consequently, when a hardware engineer 
designs a circuit for instantiation on a PLIC, he typically 
must write the Source code (e.g., Verilog Hardware Descrip 
tion Language (VHDL)) “from scratch.” Suppose that an 
engineer wishes to design a logic circuit that solves for y 
equation (1). Because there are typically no hardware 
equivalents of the first, second, and third software objects 
described in the preceding paragraph, the engineer may 
write source code that describes first and second portions of 
a circuit for Solving equation (1). The first circuit portion 
squares X, cubes Z, and sums x and z and the second circuit 
portion interfaces the first circuit portion to the external pins 
of the PLIC. The engineer then compiles the source code 
with PLIC design tool (typically provided by the PLIC 
manufacturer), which synthesizes and routes the circuit and 
then generates the configuration firmware that, when loaded 
into the PLIC, instantiates the circuit. Next, the engineer 
loads the firmware into the PLIC and debugs the instantiated 
circuit. Unfortunately, the synthesizing and routing steps are 
often not trivial, and may take a number of hours or even 
days depending upon the size and complexity of the circuit. 
And even if the engineer makes only a minor modification 
to a small portion of the circuit, he typically must repeat the 
synthesizing, routing, and debugging steps for the entire 
circuit. 

0007 Another factor that may add to the time and effort 
that an engineer expends while designing a circuit for 
instantiation on a PLIC is that a PLIC design tool typically 
recognizes only hardware-specific source code. Suppose that 
a mathematician, who writes an equation using mathemati 
cal symbols (e.g., “+*-*s,”“X,”“8,”“o,”“x,”“z,” and 
“V.), wishes to instantiate on a PLIC a circuit that solves for 
a variable in a complex equation that includes, e.g., partial 
derivatives and integrations. Because a PLIC design tool 
typically recognizes few, if any, mathematical symbols, the 
mathematician often must explain the equation and the 
desired operating parameters (e.g., latency and precision) of 
the circuit to a hardware engineer, who then translates the 
equation and operating parameters into source code that the 
design tool recognizes. These explanation and translation 
steps are often time consuming and difficult for the engineer, 
particularly where the equation is mathematically complex 
or the circuit has stringent operating parameters (e.g., high 
speed, high precision). 
0008. Therefore, a need has arisen for a new methodol 
ogy and for a new tool for designing a circuit for instantia 
tion on a PLIC. 

SUMMARY 

0009. According to an embodiment of the invention, a 
library includes one or more circuit templates and an inter 
face template. The one or more circuit templates each define 
a respective circuit operable to execute a respective algo 
rithm or portion thereof. And the interface template defines 
a hardware layer operable to interface one of the circuits to 
pins of a programmable logic circuit when the layer and the 
one circuit are instantiated on the programmable logic 
circuit. 

0010. Such a library may shorten the time and reduce the 
effort that an engineer expends designing a circuit for 
instantiation on a PLIC or ASIC by allowing the engineer to 
build the circuit from templates of previously designed and 
debugged circuits. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

0011 FIG. 1 is a block diagram of a peer-vector com 
puting machine having a pipelined accelerator that one can 
design with a design tool according to an embodiment of the 
invention. 

0012 FIG. 2 is a block diagram of a pipeline unit that 
includes a PLIC and that can be included in the pipelined 
accelerator of FIG. 1 according to an embodiment of the 
invention. 

0013 FIG. 3 is a diagram of the circuit layers that 
compose the hardware interface layer within the PLIC of 
FIG. 2 according to an embodiment of the invention. 
0014 FIG. 4 is a block diagram of the circuitry that 
composes the interface adapter and framework services 
layers of FIG. 3 according to an embodiment of the inven 
tion. 

0.015 FIG. 5 is a diagram of a hardware-description file 
for a circuit that one can instantiate on a PLIC according to 
an embodiment of the invention. 

0016 FIG. 6 is a block diagram of a PLIC circuit 
template library according to an embodiment of the inven 
tion. 

0017 FIG. 7 is a block diagram of circuit-design system 
that includes a computer-based tool for designing a circuit 
using templates from the library of FIG. 6 according to an 
embodiment of the invention. 

0018 FIG. 8 illustrates the parsing of a mathematical 
expression according to an embodiment of the invention. 
0019 FIG. 9 illustrates a table of hardwired-pipeline 
library templates corresponding to the hardwired-pipelines 
available for executing respective portions of the parsed 
mathematical expression of FIG. 8 according to an embodi 
ment of the invention. 

0020 FIG. 10 is a block diagram of a circuit that the tool 
of FIG. 7 generates from circuit templates downloaded from 
the library of FIG. 6 according to an embodiment of the 
invention. 

0021 FIG. 11 is a block diagram of a circuit that the tool 
of FIG. 7 generates from circuit templates downloaded from 
the library of FIG. 6 according to another embodiment of 
the invention. 

0022 FIG. 12 is a block diagram of a circuit that the tool 
of FIG. 7 generates from circuit templates downloaded from 
the library of FIG. 6 according to yet another embodiment 
of the invention. 

0023 FIG. 13 is a block diagram of a circuit that the tool 
of FIG. 7 generates for implementing a function as a series 
expansion according to an embodiment of the invention. 

0024 FIG. 14 is a block diagram of a circuit that the tool 
of FIG. 7 generates for implementing the function of FIG. 
13 as a series expansion according to another embodiment of 
the invention. 

0.025 FIG. 15 is a block diagram of a power-of-x term 
generator that the tool of FIG. 7 generates as a replacement 
for the power-of-X multipliers of FIGS. 13 and 14 according 
to an embodiment of the invention. 

Apr. 20, 2006 

0026 FIG. 16 is a block diagram of a circuit that the tool 
of FIG. 7 generates for implementing another function as a 
series expansion according to an embodiment of the inven 
tion. 

0027 FIG. 17 is a block diagram of a sign determiner 
from FIG. 16 according to an embodiment of the invention. 

DETAILED DESCRIPTION 

Introduction 

0028. A computer-based circuit design tool according to 
an embodiment of the invention is discussed below in 
conjunction with FIGS. 7-10. 
0029) But first is presented in conjunction with FIGS. 1-6 
an overview of concepts that are related to the design tool 
according to an embodiment of the invention. An under 
standing of these concepts should facilitate the readers 
understanding of the design tool. 
Overview Of Concepts Related To Design Tool 
0030 FIG. 1 is a schematic block diagram of a comput 
ing machine 10, which has a peer-vector architecture accord 
ing to an embodiment of the invention. In addition to a host 
processor 12, the peer-vector machine 10 includes a pipe 
lined accelerator 14, which is operable to process at least a 
portion of the data processed by the machine 10. Therefore, 
the host-processor 12 and the accelerator 14 are "peers' that 
can transfer data messages back and forth. Because the 
accelerator 14 includes hardwired logic circuits instantiated 
on one or more PLICs, it executes few, if any, program 
instructions, and thus typically performs mathematically 
intensive operations on data significantly faster than a bank 
of computer processors can for a given clock frequency. 
Consequently, by combing the decision-making ability of 
the processor 12 and the number-crunching ability of the 
accelerator 14, the machine 10 has the same abilities as, but 
can often process data faster than, a conventional processor 
based computing machine. Furthermore, as discussed below 
and in U.S. Patent Publication No. 2004/0136241, which is 
incorporated by reference, providing the accelerator 14 with 
a communication interface that is compatible with the inter 
face of the host processor 12 facilitates the design and 
modification of the machine 10, particularly where the 
communication interface is an industry standard. And where 
the accelerator 14 includes multiple pipeline units (FIG. 2), 
providing each of these units with this compatible commu 
nication interface facilitates the design and modification of 
the accelerator, particularly where the communication inter 
face is an industry standard. Moreover, the machine 10 may 
also provide other advantages as described in the following 
other patent publications, which are incorporated by refer 
ence: 2004/0133763; 2004/0181621; 2004/0170070; and, 
2004/O 130927. 

0.031) Still referring to FIG. 1, in addition to the host 
processor 12 and the pipelined accelerator 14, the peer 
vector computing machine 10 includes a processor memory 
16, an interface memory 18, a bus 20, a firmware memory 
22, an optional raw-data input port 24, an optional pro 
cessed-data output port 26, and an optional router 31. 
0032. The host processor 12 includes a processing unit 32 
and a message handler 34, and the processor memory 16 
includes a processing-unit memory 36 and a handler 
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memory 38, which respectively serve as both program and 
working memories for the processor unit and the message 
handler. The processor memory 36 also includes an accel 
erator-configuration registry 40 and a message-configuration 
registry 42, which store respective configuration data that 
allow the host processor 12 to configure the functioning of 
the accelerator 14 and the structure of the messages that the 
message handler 34 sends and receives. 
0033. The pipelined accelerator 14 includes at least one 
PLIC (FIG. 2) on which are disposed hardwired pipeline 
44-44, which process respective data while executing few, 
if any, program instructions. The firmware memory 22 stores 
the configuration firmware for the PLIC(s) of the accelerator 
14. If the accelerator 14 is disposed on multiple PLICs, these 
PLICs and their respective firmware memories may be 
disposed on multiple circuit boards that are often called 
daughter cards or pipeline units (FIG. 2). The accelerator 14 
and pipeline units are discussed further in previously incor 
porated U.S. Patent Publication Nos. 2004/0136241, 2004/ 
0181621, and 2004/0130927. The pipeline units are also 
discussed below in conjunction with FIGS. 2-4. 
0034 Generally, in one mode of operation of the peer 
vector computing machine 10, the pipelined accelerator 14 
receives data from one or more Software applications run 
ning on the host processor 12, processes this data in a 
pipelined fashion with one or more logic circuits that 
execute one or more mathematical algorithms, and then 
returns the resulting data to the application(s). As stated 
above, because the logic circuits execute few if any software 
instructions, they often process data one or more orders of 
magnitude faster than the host processor 12. Furthermore, 
because the logic circuits are instantiated on one or more 
PLICs, one can modify these circuits merely by modifying 
the firmware stored in the memory 52; that is, one need not 
modify the hardware components of the accelerator 14 or the 
interconnections between these components. The operation 
of the peer-vector machine 10 is further discussed in previ 
ously incorporated U.S. Patent Publication No. 2004/ 
0.133763, the functional topology and operation of the host 
processor 12 is further discussed in previously incorporated 
U.S. Patent Publication No. 2004/0181621, and the topology 
and operation of the accelerator 14 is further discussed in 
previously incorporated U.S. Patent Publication No. 2004/ 
O136241. 

0035 FIG. 2 is a diagram of a pipeline unit 50 of the 
pipelined accelerator 14 of FIG. 1 according to an embodi 
ment of the invention. 

0036) The unit 50 includes a circuit board 52 on which 
are disposed the firmware memory 22, a plafform-identifi 
cation memory 54, a bus connector 56, a data memory 58, 
and a PLIC 60. 

0037 As discussed above in conjunction with FIG. 1, the 
firmware memory 22 stores the configuration firmware that 
the PLIC 60 downloads to instantiate one or more logic 
circuits. 

0038. The platform memory 54 stores a value that iden 
tifies the one or more platforms with which the pipeline unit 
50 is compatible. Generally, a platform specifies a unique set 
of physical attributes that a pipeline unit may possess. 
Examples of these attributes include the number of external 
pins (not shown) on the PLIC 60, the width of the bus 
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connector 56, the size of the PLIC, and the size of the data 
memory. Consequently, a pipeline unit 50 is compatible with 
a platform if the unit possesses all of the attributes that the 
platform specifies. So a pipeline unit 50 having a bus 
connector 56 with thirty-two bits is incompatible with a 
platform that specifies a bus connector with sixty-four bits. 
Some platforms may be compatible with the peer vector 
machine 10 (FIG. 1), and others may be incompatible. 
Therefore, the platform identifier stored in the memory 54 
may allow the host processor 12 (FIG. 1) to determine 
whether the pipeline unit 50 is compatible with the platforms 
supported by the machine 10. And where the pipeline unit 50 
is so compatible, the platform identifier may also allow the 
host processor 12 to determine how to configure the PLIC 60 
or other portions of the pipeline unit. 

0039 The bus connector 56 is a physical connector that 
interfaces the PLIC 60, and perhaps other components of the 
pipeline unit 50, with the pipeline bus 20 of FIG. 1. 
0040. The data memory 58 acts as a buffer for storing 
data that the pipeline unit 50 receives from the host proces 
sor 12 (FIG. 1) and for providing this data to the PLIC 60. 
The data memory 58 may also act as a buffer for storing data 
that the PLIC 60 generates for sending to the host processor 
12, or as a working memory for the hardwired pipelines 44. 

0041. Instantiated on the PLIC 60 are logic circuits that 
compose the hardwired pipeline(s) 44 and a hardware inter 
face layer 62, which interfaces the hardwired pipelines to the 
external pins (not shown) of the PLIC 60, and which thus 
interfaces the pipelines to the pipeline bus 20 (via the 
connector 56), the firmware and plafform-identification 
memories 22 and 54, and the data memory 58. Because the 
topology of interface layer 62 is primarily dependent upon 
the attributes specified by the platform(s) with which the 
pipeline unit 50 is compatible, one can often modify the 
pipeline(s) 44 without modifying the interface layer. For 
example, if a platform with which the pipeline unit 50 is 
compatible specifies a thirty-two-bit bus, then the interface 
layer 62 provides a thirty-two-bit bus connection to the bus 
connector 60 regardless of the topology or other attributes of 
the pipeline(s) 44. Consequently, as discussed below in 
conjunction with FIGS. 7-10, an embodiment of the com 
puter-based design tool allows one to design and debug the 
pipeline(s) 44 independently of the interface layer 62, and 
Vice versa. 

0042 Still referring to FIG. 2, alternate embodiments of 
the pipeline unit 50 are contemplated. For example, the 
memory 54 may be omitted, and the platform identifier may 
stored in the firmware memory 22, or by a jumper-config 
urable or hardwired circuit (not shown). 
0043 A pipeline unit similar to the unit 50 is discussed in 
previously incorporated U.S. Patent Publication No. 2004/ 
O136241. 

0044 FIG. 3 is a diagram of the hardware layers that 
compose the hardware interface layer 62 within the PLIC 60 
of FIG. 2 according to an embodiment of the invention. The 
hardware interface layer 62 includes three layers of circuitry 
that is instantiated on the PLIC 60: an interface-adapter layer 
70, a framework-services layer 72, and a communication 
layer 74, which is hereinafter called a communication shell. 
The interface-adapter layer 70 includes circuitry, e.g., buff 
ers and latches, that interfaces the framework-services layer 
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72 to the external pins (not shown) of the PLIC 60. The 
framework-services layer 72 provides a set of services to the 
hardwired pipeline(s) 44 via the communication shell 74. 
For example, the layer 72 may synchronize data transfer 
between the pipeline(s) 44, the pipeline bus 20 (FIG. 1), and 
the data memory 58 (FIG. 2), and may control the 
sequence(s) in which the pipeline(s) operate. The commu 
nication shell 74 includes circuitry, e.g., latches, that inter 
face the framework-services layer 72 to the pipeline(s) 44. 

0045 Still referring to FIG. 3, alternate embodiments of 
the hardware-interface layer 62 are contemplated. For 
example, although the framework-services layer 72 is shown 
as isolating the interface-adapter layer 70 from the commu 
nication shell 74, the interface-adapter layer may, at least at 
Some circuit nodes, be directly coupled to the communica 
tion shell. Furthermore, although the communication shell 
74 is shown as isolating the interface-adapter layer 70 and 
the framework-services layer 72 from the hardwired pipe 
line(s) 44, the interface-adapter layer or the framework 
services layer may, at least at Some circuit nodes, be directly 
coupled to the pipeline(s). 

0046 FIG. 4 is a schematic block diagram of the cir 
cuitry that composes the interface-adapter layer 70 and the 
framework-services layer 72 of FIG. 3 according to an 
embodiment of the invention. 

0047 A communication interface 80 and an optional 
industry-standard bus interface 82 compose the interface 
adapter layer 70, and a controller 84, exception manager 86, 
and configuration manager 88 compose the framework 
services layer 72. 

0.048. The communication interface 80 transfers data 
between a peer, such as the host processor 12 (FIG. 1) or 
another pipeline unit 50 (FIG. 2), and the firmware memory 
22, the platform-identifier memory 54, the data memory 58, 
and the following components instantiated within the PLIC 
60: the hardwired pipelines 44 (via the communication shell 
74), the controller 86, the exception manager 88, and the 
configuration manager 90. If present, the optional industry 
standard bus interface 82 couples the communication inter 
face 80 to the bus connector 56. Alternatively, the interfaces 
80 and 82 may be combined such that the functionality of the 
interface 82 is included within the communication interface 
80. 

0049. The controller 84 synchronizes the hardwired pipe 
lines 44-44, and monitors and controls the sequence in 
which they perform the respective data operations in 
response to communications, i.e., "events.” from other 
peers. For example, a peer Such as the host processor 12 may 
send an event to the pipeline unit 50 via the pipeline bus 20 
to indicate that the peer has finished sending a block of data 
to the pipeline unit and to cause the hardwired pipelines 
44-44, to begin processing this data. An event that includes 
data is typically called a message, and an event that does not 
include data is typically called a “door bell.” 
0050. The exception manager 86 monitors the status of 
the hardwired pipelines 44-44, the communication inter 
face 80, the communication shell 74, the controller 84, and 
the bus interface 82 (if present), and reports exceptions to 
the host processor 12 (FIG. 1). For example, if a buffer (not 
shown) in the communication interface 80 overflows, then 
the exception manager 86 reports this to the host processor 
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12. The exception manager may also correct, or attempt to 
correct, the problem giving rise to the exception. For 
example, for an overflowing buffer, the exception manager 
86 may increase the size of the buffer, either directly or via 
the configuration manager 88 as discussed below. 

0051. The configuration manager 88 sets the “soft' con 
figuration of the hardwired pipelines 44-44, the commu 
nication interface 80, the communication shell 74, the con 
troller 84, the exception manager 86, and the interface 82 (if 
present) in response to soft-configuration data from the host 
processor 12 (FIG. 1). As discussed in previously incorpo 
rated U.S. Patent Publication No. 2004/0133763, the “hard' 
configuration of a component within the PLIC 60 denotes 
the actual instantiation, on the transistor and circuit-block 
level, of the component, and the Soft configuration denotes 
the physical parameters (e.g., data width, table size) of the 
instantiated component. That is, Soft-configuration data is 
similar to the data that one can load into a register of a 
processor (not shown in FIG. 4) to set the operating mode 
(e.g., burst-memory mode) of the processor. For example, 
the host processor 12 may send to the PLIC 60 soft 
configuration data that causes the configuration manager 88 
to set the number and respective priority levels of queues 
(not shown) within the communication interface 80. The 
exception manager 86 may also send Soft-configuration data 
that causes the configuration manager 88 to, e.g., increase 
the size of an overflowing buffer in the communication 
interface 80. 

0052 The communication interface 80, optional indus 
try-standard bus interface 82, controller 84, exception man 
ager 86, and configuration manager 88 are further discussed 
in previously incorporated U.S. Patent Publication No. 
2004/O136241. 

0053 Referring again to FIG. 2, although the pipeline 
unit 50 is disclosed as including only one PLIC 60, the 
pipeline unit may include multiple PLICs. For example, as 
discussed in previously incorporated U.S. Patent Publication 
No. 2004/0136241, the pipeline unit 50 may include two 
interconnected PLICs, where the circuitry that composes the 
interface-adapter layer 70 and framework-services layer 72 
is instantiated on one of the PLICs, and the circuitry that 
composes the communication shell 74 and the hardwired 
pipelines 44 is instantiated on the other PLIC. 
0054 FIG. 5 is a diagram of a hardware-description file 
100 from which a conventional PLIC synthesizer and router 
tool (not shown) can generate the configuration firmware for 
the PLIC 60 of FIGS. 2-4 according to an embodiment of 
the invention. Typically, the hardware-description file 100 
includes templates that are written in a conventional hard 
ware description language (HDL) such as VerilogR HDL. 
The top-down structure of the file 100 resembles the top 
down structure of Software source code that incorporates 
software objects. Such a top-down structure for software 
Source code provides at least two advantages. First, it allows 
a programmer to avoid writing and debugging Source code 
for a function when a software object that performs the 
function has already been written and debugged. Second, it 
allows the programmer to change or add a function by 
modifying an existing object or writing a new object with 
little or no rewriting and debugging of the Source code that 
incorporates the object. As discussed below, the top-down 
structure of the file 100 provides similar advantages. For 
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example, it allows one to incorporate in the file 100 existing 
templates that define an already-debugged hardware-inter 
face layer 62 (FIGS. 2-3). Furthermore, it allows one to 
change an existing hardwired pipeline 44 or to add to a 
circuit a new hardwired pipeline 44 with little or no rewrit 
ing and debugging of the templates that define the layer 62. 
0055. The hardware-description file 100 includes a top 
level template 101, which includes respective top-level 
definitions 102, 104, and 106 of the interface-adapter layer 
70, the framework-services layer 72, and the communication 
shell 74 (collectively the hardware-interface layer 62) of the 
PLIC 60 (FIGS. 2-4). The template 101 also defines the 
connections between the external pins (not shown) of the 
PLIC 60 and the interface-adapter 70 (and in some cases the 
framework-services layer 72), and also defines the connec 
tions between the framework-services layer (and in some 
cases the interface-adapter layer) and the communication 
shell 74. 

0056. The top-level definition 102 of the interface 
adapter layer 70 (FIGS. 3-4) incorporates an interface 
adapter-layer template 108, which further defines the por 
tions of the interface-adapter layer defined by the top-level 
definition 102. For example, suppose that the top-level 
definition 102 defines a data-input buffer (not shown) in 
terms of its input and output nodes. That is, Suppose the 
top-level definition 102 defines the data-input buffer as a 
functional block having defined input and output nodes. The 
template 108 defines the circuitry that composes this func 
tional buffer block, and defines the connections between this 
circuitry and the buffer input nodes and output nodes recited 
in the top-level definition 102. Furthermore, the template 
108 may incorporate one or more lower-level templates 109 
that further define the data buffer or other components of the 
interface-adapter layer 70 recited in the template 108. More 
over, these one or more lower-level templates 109 may each 
incorporate one or more even lower-level templates (not 
shown), and so on, until all portions of the interface-adapter 
layer 70 are defined in terms of circuit components (e.g., 
flip-flops, logic gates) that the PLIC synthesizing and rout 
ing tool (not shown) recognizes. 
0057 Similarly, the top-level definition 104 of the frame 
work-services layer 72 (FIGS. 3-4) incorporates a frame 
work-services-layer template 110, which further defines the 
portions of the framework-services layer defined by the 
definition 104. For example, suppose the top-level definition 
104 defines a counter (not shown) in terms of its input and 
output nodes. The template 110 defines the circuitry that 
composes this counter, and defines the connections between 
this circuitry and the counter input and output nodes recited 
by the top-level definition 104. Furthermore, the template 
110 may incorporate a hierarchy of one or more lower-level 
templates 111 and even lower-level templates (not shown), 
and so on, such that all portions of the framework-services 
layer 72 are, at some level of the hierarchy, defined in terms 
of circuit components (e.g., flip-flops, logic gates) that the 
PLIC synthesizing and routing tool recognizes. For example, 
Suppose the template 110 defines the counter as including a 
count-up/down-selector circuit having input and output 
nodes. The template 110 may incorporate a lower-level 
template 111 that defines the circuitry within the selector 
circuit and defines the connections between this circuitry 
and the selector circuits input and output nodes defined by 
the template 110. 
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0.058 Likewise, the top-level definition 106 of the com 
munication shell 74 (FIGS. 3-4) incorporates a communi 
cation-shell template 112, which further defines the portions 
of the communication shell defined by the definition 106 and 
which also includes a top-level definition 113 of the hard 
wired pipeline(s) 44 disposed within the communication 
shell. For example, the definition 113 defines the connec 
tions between the communication shell 74 and the hardwired 
pipeline(s) 44. 

0059) The top-level definition 113 of the hardwired pipe 
line(s) 44 (FIGS. 3-4) incorporates one or more hardwired 
pipeline templates 114, which further define the portions of 
the hardwired pipeline(s) 44 defined by the definition 113. 
The template or templates 114 may each incorporate a 
hierarchy of one or more lower-level templates 115 and even 
lower-level templates (not shown) such that all portions of 
the respective pipeline(s) 44 are, at some level of the 
hierarchy, defined in terms of circuit components (e.g., 
flip-flops, logic gates) that the PLIC synthesizing and rout 
ing tool recognizes. 

0060 Moreover, the communication-shell template 112 
may incorporate a hierarchy of one or more lower-level 
templates 116 and even lower-level templates (not shown) 
such that all portions of the communication shell 74 other 
than the hardwired pipeline(s) 44 are, at some level of the 
hierarchy, defined in terms of circuit components (e.g., 
flip-flops, logic gates) that the PLIC synthesizing and rout 
ing tool recognizes. 

0061 Still referring to FIG. 5, a configuration template 
118 provides definitions for one or more parameters having 
values that one can set to configure the circuitry that the 
templates 101, 108, 110, 112, 114 and lower-level templates 
109, 111, 115, and 116 define. For example, suppose that the 
bus interface 82 of the interface-adapter layer 70 (FIG. 4) is 
configurable to have either a thirty-two-bit or a sixty-four-bit 
interface with the bus connector 56. The configuration 
template 118 defines a template BUS-WIDTH, the value of 
which determines the width of the interface between the 
interface 82 and the connector 56. For example, BUS 
WIDTH=0 configures the interface 82 to have a thirty-two 
bit interface, and BUS-WIDTH=1 configures the interface 
82 to have a sixty-four-bit interface. Examples of other 
parameters that may be configurable include the depth of a 
first-in-first-out (FIFO) data buffer (not shown) disposed 
within the framework-services layer 72 (FIGS. 2-4), the 
lengths of messages received and transmitted by the inter 
face-adapter layer 70, and the precision and data structure 
(e.g., integer, floating-point) of the hardwired pipeline(s) 44. 

0062 One or more of the templates 101, 108, 110, 112, 
114 and the lower-level templates (not shown) incorporate 
the parameters defined in the configuration template 118. 
The PLIC synthesizer and router tool (not shown) configures 
the interface-adapter layer 70, the framework-services layer 
72, the communication shell 74, and the hardwired pipe 
line(s) 44 (FIGS. 3-4) according to the values in the 
template 118 during the synthesis of this circuitry. Conse 
quently, to reconfigure the circuit parameters represented by 
the parameters in the configuration template 118, one need 
only modify the values of these parameters in the template 
118, and then rerun the synthesizer and router tool on the file 
100. Alternatively, if one or more of the parameters in the 
configuration template 118 can be sent to the PLIC as 
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soft-configuration data after instantiation of the circuit, then 
one can modify the corresponding circuit parameters by 
merely modifying the Soft-configuration data. Therefore, 
according to this alternative, may avoid rerunning the Syn 
thesizer arid router tool on the file 100. Moreover, templates 
(e.g., 101, 108, 109, 110, 111, 112, 114, 115, and 116) that 
do not incorporate settable parameters such as those pro 
vided by the configuration template 118 are sometimes 
called modules or entities, and are typically lower-level 
templates that include Boolean expressions that a synthe 
sizer and router tool (not shown) converts into circuitry for 
implementing the expressions. 
0063 Alternate embodiments of the hardware-descrip 
tion file 100 are contemplated. For example, although 
described as defining circuitry for instantiation on a PLIC, 
the file 100 may define circuitry for instantiation on an 
ASIC. 

0064 FIG. 6 is a block diagram of a library 120 that 
stores PLIC circuit templates, such as the templates 101, 
108, 110, 112, and 114 (and any existing lower-level tem 
plates) of FIG. 5, according to an embodiment of the 
invention. 

0065. The library 120 has m+1 sections: m sections 
122-122, for the respective m platforms that the library 
Supports, and a section 124 for the hardwired-pipelines 44 
(FIGS. 2-4) that the library supports. 
0.066 For example purposes, the library section 122 is 
discussed in detail, it being understood that the other library 
sections 122-122 are similar. 
0067. The library section 122 includes a top-level tem 
plate 101, which is similar in structure to the template 101 
of FIG. 5, and which thus includes top-level definitions 
102, 104, and 106 of versions of the interface-adapter 
layer 70, the framework-services layer 72, and the commu 
nication shell 74 that are compatible with the platform m=1. 
0068. In this embodiment, we assume that there is only 
one version of the interface-adapter layer 70 and one version 
of the framework-services layer 72 available for each plat 
form m, and, therefore, that the library section 122 includes 
only one interface-adapter-layer template 108 and only one 
framework-services-layer template 110. But in an embodi 
ment that includes multiple versions of the interface-adapter 
layer 70 and multiple versions of the framework-services 
layer 72 for each platform m, the library section 122 would 
include multiple interface-adapter- and framework-services 
layer templates 108 and 110. 

0069. The library section 122 also includes in commu 
nication-shell templates 112, -112, which respectively 
correspond to the hardwired-pipeline templates 144-144, in 
the library section 124. As stated above in conjunction with 
FIG. 3, the communication shell 74 interfaces a hardwired 
pipeline or hardwired-pipelines 44 to the framework-ser 
vices layer 72. Because each hardwired pipeline 44 is 
different and typically has different interface specifications, 
the communication shell 74 is typically adapted for each 
hardwired pipeline. Consequently, in this embodiment, one 
provides design adjustments to create a unique version of the 
communication shell 74 for each hardwired pipeline 44. The 
designer provides these design adjustments by writing a 
unique communication-shell template 112 for each hard 
wired pipeline. Of course the group of communication-shell 
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templates 112-112, corresponds only to the version of 
the framework-services layer 72 that is defined by the 
template 110; consequently, if there are multiple versions of 
the framework-services layer 72 that are compatible with the 
platform m=1, then the library section 122 includes a 
respective group of n communication-shell templates 112 for 
each version of the framework-services layer. 
0070. In addition, the library section 122 includes a 
configuration template 118, which defines configuration 
constants having designer-selectable values as discussed 
above in conjunction with the configuration template 118 of 
F.G. S. 

0071. Furthermore, each template within the library sec 
tion 122 includes, or is associated with, a respective 
description 126-134,. The descriptions 126-132. 
describe the operational and other parameters of the circuitry 
that the respective templates 101, 108, 110, and 112, 
112 define. Similarly, the description 134, describes the 
settable parameters in the configuration template 118, the 
values that these parameters can have, and the meanings of 
these values. The design tool discussed below in conjunction 
with FIGS. 7-11 uses the descriptions 126-134 to design 
and simulate a circuit that includes a combination of the 
hardwired pipelines 44-44, which are respectively defined 
by the templates 114-114. Examples of parameters that the 
descriptions 126-132 may describe include the width of 
the data bus and the depths of buffers that the circuit defined 
by the corresponding template includes, the latency of the 
circuit, and the precision of the values received and gener 
ated by the circuit. Furthermore, an example of a settable 
parameter and the associated selectable values that the 
description 134 may describe is BUS-WIDTH, which rep 
resents the width of the interface between the communica 
tion interface 80 and the bus connector 56 (FIG. 4), and 
BUS WIDTH=0 sets the bus width to thirty-two bits and 
BUS WIDTH=1 sets the width to sixty-four bits. 
0072 Each of the descriptions 126-134 may be embed 
ded within the respective template 101, 108, 110, 112 
112, and 118, to which it corresponds. For example, the 
description 128 may be embedded within the template 108 
as extensible markup language (XML) tags or comments 
that are readable by both a human and the tool discussed 
below in conjunction with FIGS. 7-11. 
0073 Alternatively, each description 126-134 may be 
disposed in a separate file that is linked to the template to 
which the description corresponds, and this file may be 
written in a language other than XML. For example, the 
description 126 may be disposed in a file that is linked to 
the top-level template 101. 
0074 The section 122 of the library 120 also includes a 
description 136, which describes the parameters of the 
platform m=1. The design tool discussed below in conjunc 
tion with FIGS. 7-11 may use the description 136 to 
determine which platforms the library 120 supports. 
Examples of parameters that the description 136 may 
describe include 1) for each interface, the message specifi 
cation, which lists the transmitted variables and the con 
straints for those variables, and 2) a behavior specification 
and any behavior constraints. Messages that the host pro 
cessor 12 (FIG. 1) sends to the pipeline units 50 (FIG. 2) 
and that the pipeline units send among themselves are 
further discussed in previously incorporated U.S. Patent 
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Publication No. 2004/0181621. Examples of other param 
eters that the description 136 may describe include the size 
and resources (e.g., the number of multipliers and the 
amount of available memory) of the PLIC 60 (FIGS. 2-4). 
Furthermore, the platform description 136 may be written 
in XML or in another language. 

0075) Still referring to FIG. 6, the section 124 of the 
library 120 includes n hardwired-pipeline templates 114 
114, which each define a respective hardwired pipeline 
44-44, (FIGS. 2-4). As discussed above in conjunction with 
FIG. 5, because the templates 114-114, are platform inde 
pendent (the corresponding communication-shell templates 
112-112, define the specified interface to the interface 
adapter and framework-services layers 70 and 72 of FIGS. 
3-4), the library 120 stores only one template 114 for each 
hardwired pipeline 44 (FIGS. 2-4). That is, each hardwired 
pipeline 44 does not require a separate template 114 for each 
platform that the library 120 supports. As discussed above, 
an advantage of this top-down design is that one need only 
create a single template 114 to define a hardwired pipeline 
44, not m templates. 

0.076 Furthermore, each hardwired-pipeline template 
114 includes, or is associated with, a respective description 
138-138, which describes the parameters of the hardwired 
pipeline 44 that the template defines. Like the descriptions 
126-134 discussed above, the design tool discussed below 
in conjunction with FIGS. 7-11 uses the descriptions 138 to 
design and simulate a circuit that includes a combination of 
the hardwired pipelines 44-44, which are respectively 
defined by the templates 114-114. Examples of parameters 
that the descriptions 138-138 may describe include the 
type (e.g., floating point or integer) and precision of the data 
that the corresponding hardwired pipeline 44 can receive 
and generate, and the latency of the pipeline. Also like the 
descriptions 126-134, each of the descriptions 138-138, 
may be embedded within the respective template 114-114, 
to which the description corresponds as, e.g., XML tags, or 
may be disposed in a separate file that is linked to the 
template to which the description corresponds. 

0.077 Referring again to the library section 122, this 
section also includes a description 140 of the one or more 
available pipeline accelerators 14 (FIG. 1) that support the 
platform m=1. More specifically, the description 140 
describes the resources that each of the pipeline accelerators 
14 includes. For example, the description 140 may indicate 
that one available accelerator 14 includes only one pipeline 
unit 50 (FIG. 2), while another available accelerator 
includes five pipeline units. The description 140 may be 
written in XML or in another language. 

0078 Still referring to FIG. 6, alternate embodiments of 
the library 120 are contemplated. For example, instead of 
each template within each library section 122-122, being 
associated with a respective description 126-134, each 
library section 122-122 may include a single description 
that describes all of the templates within that library section. 
For example, this single description may be embedded 
within or linked to the top-level template 101 or the con 
figuration template 118. Furthermore, although each library 
section 122-122 is described as including a respective 
communication-shell template 112 for each hardwired-pipe 
line template 114 in the library section 124, each section 122 
may include fewer communication-shell templates, at least 
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Some of which are compatible with, and thus correspond to, 
more than one pipeline template 114. In an extreme, each 
library section 122-122 may include only a single com 
munication-shell template 112, which is compatible with all 
of the hardwired-pipeline templates 114 in the library sec 
tion 124. In addition, the library section 124 may include 
respective versions of each pipeline template 114 for each 
communication-shell template 112 in the library sections 
122-122. 
0079 FIG. 7 is a block diagram of a circuit-design 
system 150, which includes a computer-based software tool 
152 for designing a circuit using templates from the library 
120 of FIG. 6 according to an embodiment of the invention. 
By using library templates, the tool 152 allows one to design 
a circuit that includes a combination of one or more previ 
ously designed and debugged hardware-interface layerS 62 
(FIG. 2) and hardwired pipelines 44 (FIGS. 2-4). Because 
another has already tested and debugged the one or more 
layers 62 and pipelines 44, the tool 152 may significantly 
decrease the time required for one to design Such a combi 
nation circuit as compared to a conventional design progres 
Sion. Furthermore, where one wants to design a circuit for 
executing an algorithm, the tool 152 allows him to define the 
circuit with an expression of conventional mathematical 
symbols, where the expression defines the algorithm; con 
sequently, one having little or no experience in circuit design 
can use the tool to design a circuit for executing an algo 
rithm. 

0080. The system 150 includes a processor (not shown) 
for executing the software code that composes the tool 152. 
Consequently, in response to the code, the processor per 
forms the functions that are attributed to the tool 152 in the 
discussion below. But for clarity of explanation, the tool 
152, not the processor, is described as performing the 
actions. 

0081. In addition to the processor, the system 150 
includes an input device 154, a display device 155, and the 
library 120 of FIG. 6. The input device 154, which may 
include a keyboard and a mouse, allows one to provide to the 
tool 152 information that describes an algorithm and that 
describes a circuit for executing the algorithm. Such infor 
mation may include an expression of mathematical symbols, 
circuit parameters (e.g., buffer width, latency), operation 
exceptions (e.g., a divide by Zero), and the platform on 
which one wishes to instantiate the circuit. And as described 
below, the device 155 displays the input information and 
other information, and the library 120 includes the templates 
that the tool 152 uses to build the circuit and to generate a 
file that defines the circuit. 

0082 The tool 152 includes a symbolic-math front end 
156, an interpreter 158, a generator 160 for generating a file 
162 that defines a circuit, and a simulator 164. 

0083) The front end 156 receives from the input device 
154 the mathematical expression that defines the algorithm 
that the circuit is to execute and other design information, 
and converts this information into a form that is readable by 
the interpreter 158. To allow one to define a circuit in terms 
of the mathematical expression that defines the algorithm 
that the circuit is to execute, in one embodiment the front 
end 156 includes a web browser that accepts XML with a 
schema for Math Markup Language (MathML). MathML is 
Software standard that allows one to enter expressions using 
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conventional mathematical symbols. The schema of 
MathML is a conventional plug in that imparts to a web 
browser this same ability, i.e., the ability to enter expressions 
using mathematical symbols. Alternatively, the front end 
156 may utilize another technique for allowing one to define 
a circuit using a mathematical expression. Examples of Such 
another technique include the technique used by the con 
ventional software mathematical-expression solver Math 
CAD. Furthermore, as discussed below, one may enter the 
identity of a platform or pipeline accelerator 14 (FIG. 1) on 
which he wants the circuit instantiated, and may enter test 
data with which the simulator 164 will simulate the opera 
tion of the circuit. Moreover, one may enter valid-range 
constraints for any variables within the entered mathemati 
cal expression and constraints on execution of the expres 
Sion, and may specify the action(s) to be taken if the 
constraints are violated. For example, because -1 is sin(x)s 1 
for all values of X, for an expression that includes sin(x), one 
may enter this constraint, and specify that any data generated 
from a value of sin(x) outside of this range is to be 
disregarded. Or, because division by Zero of any X yields 
infinity, one may specify that data generated in response to 
a division by Zero is to be disregarded. The front end 156 
then converts all of the entered information into a format, 
such as HDL, that is compatible with the interpreter 158. 
Moreover, as discussed above, the front end 156 may cause 
the device 155 to display the input information and other 
related information. For example, the front end 156 may 
cause the device 155 to display the mathematical expression 
that the designer enters to define the algorithm to be 
executed by the circuit. 
0084. The interpreter 158 parses the information from the 
front end 156 and determines: 1) whether the library 120 
includes templates 114 (FIG. 6) defining hardwired pipe 
lines 44 (FIGS. 2-4) that, when combined, can execute the 
algorithm entered by the designer, and 2), if the answer to (1) 
is “yes,” which, if any, available pipeline accelerators 14 
(FIG. 1) described by the description 140 in the library 120 
has sufficient resources to instantiate a circuit that can 
execute the algorithm. For example, Suppose the algorithm 
includes the mathematical operation vv. If the library 120 
does not include a template 114 (FIG. 6) defining a hard 
wired pipeline 44 (FIGS. 2-4) that calculates the square root 
of a value, then the interpreter 158 determines that the tool 
152 cannot generate a file 162 that defines a circuit for 
executing the algorithm. Furthermore, Suppose that the 
circuit for executing the algorithm requires the resources of 
at least five PLICs 60 (FIGS. 2-4). If the description 140 
indicates that the available accelerators 14 each have only 
three pipeline units 50 (FIG. 2), and thus each have only 
three PLICs 60, then the interpreter 158 determines that even 
though the tool 152 may be able to generate a file 162 that 
defines a circuit for executing the algorithm, one cannot 
implement this circuit on an available accelerator. The 
interpreter 158 makes a similar determination if the designer 
indicates that he wants the algorithm executed by a circuit 
having a sixty-four-bit bus width, but the available platforms 
support only a thirty-two-bit bus width. In situations where 
the interpreter 158 determines that the tool 152 cannot 
generate a circuit for executing the desired algorithm or that 
one cannot implement the circuit on an existing platform 
and/or accelerator 14, the interpreter 158 causes the device 
155 to display an appropriate error message (e.g., “no library 
template for instantiating “vv,”“insufficient PLIC resources, 
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“bus-width not supported'). Furthermore, where the 
designer identifies a platform or accelerator 14 on which he 
desires to instantiate the resulting circuit, the interpreter 158 
determines whether the circuit can be instantiated on the 
identified platform or accelerator. But if the circuit cannot be 
so instantiated, the interpreter 158 may determine that the 
circuit can be instantiated on another platform or accelerator, 
and thus may so inform the designer with an appropriate 
message via the display device 155. This allows the designer 
the choice of instantiating the circuit on another platform or 
accelerator 14. 

0085. If the interpreter 158 determines that the library 
120 includes a sufficient number of hardwired-pipeline 
templates 114 (FIG. 6) to define a circuit that can execute 
the desired algorithm, and also determines that the circuit 
can be instantiated on an available platform and accelerator 
14 (FIG. 1), then the interpreter provides to the file genera 
tor 160 the identities of the hardwired-pipeline templates 
114 that correspond to portions of the algorithm. 

0086) The file generator 160 combines the hardwired 
pipelines 44 (FIGS. 2-4) defined by the identified hard 
wired-pipeline templates 114 such that the combination 
forms a circuit that can execute the algorithm. 
0087. The generator 160 then generates the file 162, 
which defines the circuit for executing the algorithm in 
terms of the hardwired pipelines 44 (FIGS. 2-4) and the 
hardware-interface layers 62 (FIG. 2) that compose the 
circuit, the PLIC(s) 60 (FIGS. 2-3) on which the pipelines 
are disposed, and the interconnections between the pipelines 
(if multiple pipelines on a PLIC) and/or between the PLICs 
(if the pipelines are disposed on more than one PLIC). 
0088 Next, the host processor 12 (FIG. 1) can use the file 
162 to instantiate on the pipeline accelerator 14 (FIG. 1) the 
defined circuit as discussed in previously incorporated U.S. 
patent app. Ser. No. (Attorney Docket No. 1934-25-3). 
Alternatively, also as discussed in U.S. patent app. Ser. No. 
(Attorney Docket No. 1934-25-3), the host processor 12 
may instantiate Some or all portions of the defined circuit in 
Software executed by the processing unit 32. Or, one can 
instantiate the circuit defined by the file 162 in another 
a. 

0089. The simulator 164 receives the file 162 from the 
generator 160 and receives from the front end 154 designer 
entered test data, Such as a test vector, designer-entered 
constraint data, and a designer-entered exception-handling 
protocol, and then simulates operation of the circuit defined 
by the file 162. The simulator 164 also gathers parameter 
information (e.g., precision, latency) from the description 
files 138 (FIG. 6) that correspond to the hardwired-pipeline 
templates 114 that define the pipelines 44 that compose the 
circuit. The simulator 164 may retrieve this parameter 
information directly from the library 120, or the generator 
160 may include this parameter information in the file 162. 
0090 FIG. 8 illustrates the parsing of a symbolic math 
ematical expression by the interpreter 158 according to an 
embodiment of the invention. In other words, the syntax of 
the design language is the same as that used by mathema 
ticians for writing algebraic equations. The explanations that 
follow show how a symbolic mathematical expression is a 
sufficient syntax for defining the hardwired pipelines 44 
from a simple set of circuit primitives. 
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0091 FIG. 9 illustrates a table of hardwired-pipeline 
templates 114, which correspond to the hardwired pipelines 
44 (FIGS. 2-4) that the interpreter 158 (FIG. 7) identifies for 
executing portions of the parsed algorithm (FIG. 8) accord 
ing to an embodiment of the invention. 
0092 Referring to FIGS. 5-9, the operation of the tool 
152 is discussed according to an embodiment of the inven 
tion. 

0093 Suppose that one wishes to design a circuit that 
Solves for a valuey, which equals a mathematical expression 
according to the following equation: 

Also suppose that x, y, and Z are thirty-two-bit floating-point 
values. 

0094. Using the input device 154, the designer enters 
equation (2) into the front end 156 of the tool 152 by 
entering the following sequence of mathematical symbols: 
“V”, “x”, “”, “cos(z)”, “+”, “z, *.*, and “sin(x). The 
designer also enters information specifying the input and 
output message specifications, for example indicating that X, 
y, and Zare thirty-two-bit floating-point values. The designer 
may also enter information indicating desired operating 
parameters, such as the desired latency, in clock cycles, from 
inputs X and Z to output y, and the desired types and 
precision of any intermediate values, such as cos(Z) and 
sin(x), generated during the calculation of y. Furthermore, 
the designer may enter information that identifies a desired 
platform or pipeline accelerator 14 (FIG. 1) on which he 
wants the circuit instantiated. Moreover, the designer may 
specify the accuracy of any mathematical approximations 
that the tool 152 may make. For example, if the tool 152 
approximates cos(Z) using a Taylor series expansion, then by 
specifying the accuracy of this approximation, the designer 
effectively specifies the number of terms needed in the 
expansion. Alternatively, the designer may directly specify 
the number of terms in the expansion. The implementation 
of a function as a Taylor series expansion is further 
described below in conjunction with FIGS. 13-17. 
0.095 The front end 156 converts these mathematical 
symbols and the other information into a format compatible 
with the interpreter 158 if this information is not already in 
a compatible format. 
0096) Next, the interpreter 158 determines whether any 
of the hardwired-pipeline templates 114 in the library 120 
defines a hardwired pipeline 44 that can solve for y in 
equation (2) within the specified behavior and operating 
parameters and that can be instantiated within the desired 
platform and on the desired pipeline accelerator 14 (FIG. 1). 
0097. If the library 120 does include such a template 114, 
then the interpreter 158 informs the designer, via the display 
device 155, that a conventional FPGA synthesizing and 
routing tool can generate firmware for instantiating this 
hardwired pipeline 44 from the identified template 114, the 
corresponding communication-shell template 112, and the 
corresponding top-level template 101. 

0098) If, however, the library 120 includes no template 
114 that defines a hardwired pipeline 44 that can solve for y 
in equation (2), then the interpreter 158 parses the equation 
(2) into portions, and determines whether the library 
includes templates 114 that define hardwired pipelines 44 for 
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executing these portions within the specified behavior, oper 
ating parameters, and platform and on the specified pipeline 
accelerator 14 (FIG. 1). 
0099] To identify a circuit that can solve for y in equation 
(2) but that includes the fewest number of hardwired pipe 
lines 44, the interpreter 158 parses the equation (2) accord 
ing to a top-down parsing sequence as discussed below. 
Typically, this top-down parsing sequence corresponds to 
the known algebraic laws for the order of operations. 
0.100 First, the interpreter 158 parses the equation (2) 
into the following two portions: “V”, which is portion 170 in 
FIG. 8, and "x" cos(z)+z sin(x)", which is portion 172. 
0101) If the interpreter 158 determines that the library 
120 includes at least two hardwired-pipeline templates 114 
that define hardwired pipelines 44 for respectively executing 
the portions 170 and 172 of equation (2), then the interpreter 
passes the identity of these templates to the file generator 
160. 

0102) In this example, however, the interpreter 158 deter 
mines that although the library 120 includes a hardwired 
pipeline template 114 that defines a pipeline 44 for executing 
the square-root operation 170 of equation (2), the library 
includes no hardwired-pipeline template that defines a pipe 
line for executing the portion 172. 
0103) Next, the interpreter 158 parses the portion 172 of 
equation (2). Specifically, the interpreter 158 parses the 
portion 172 into the following three respective portions 174, 
176, and 178: “x cos(z)”, “+”, and “z sin(x). 
0104. If the interpreter 158 determines that the library 
120 includes at least three hardwired-pipeline templates 114 
that define hardwired pipelines 44 for respectively executing 
the portions 174, 176, and 178 of equation (2), then the 
interpreter passes the identity of these templates to the file 
generator 160. 

0105. In this example, however, the interpreter 158 deter 
mines that although the library 120 includes a hardwired 
pipeline template 114 that defines a hardwired pipeline 44 
for executing the Summing operation 176 of equation (2), the 
library includes no templates 114 that define hardwired 
pipelines for executing the portions 174 or 178. 

0106) Next, the interpreter 158 parses the portions 174 
and 178 of equation (2). Specifically, the interpreter 158 
parses the portion 174 into three portions 180 (“x'), 182 
(“ ”), and 184 (“cos(Z)'), and parses the portion 178 into 
three portions 186 (“z), 188 (“ ”), and 190 (“sin(x)'). 
0.107) If the interpreter 158 determines that the library 
120 does not include hardwired-pipeline templates 114 that 
define hardwired pipelines 44 for respectively executing 
each of the portions 180, 182, 184, 186, 188, and 190, then 
the interpreter displays via the device 155 an error message 
indicating that the library does not support a circuit that can 
solve for y in equation (2). In one embodiment of the 
invention, however, the library 120 includes hardwired 
pipeline templates 114 that provide the primitive operations 
for multiplication and for raising variables to a power (e.g., 
cubing a value by using two multipliers in sequence) for 
single- or double-precision floating-point data types, and for 
data-type conversion. Also in this embodiment, the tool 152 
recognizes common factors, for example that X is a factor of 



US 2006/0085781 A1 

x if sin(x) was needed instead of the sin(x), and generates 
circuitry to provide these common factors from chained 
multipliers. 

0108. In this example, however, the interpreter 158 deter 
mines that the library 120 includes hardwired-pipeline tem 
plates 114 that define hardwired pipelines 44 for respectively 
executing each portion 180, 182, 184, 186, 188, and 190 of 
equation (2). 

0109) Then, the interpreter 158 provides to the file gen 
erator 160 the identities of all the hardwired-pipeline tem 
plates 114 that define the hardwired-pipelines 44 for execut 
ing the following eight portions of equation (1): 170 (“V”), 
176 (“+”),180 (“x), 182 (“.”), 184 (“cos(z)), 186 (“z), 
186 (“z), 188 (“ ”), and 190 (“sin(x)). 
0110 Referring to FIGS. 6-10, the file generator 160 
generates a table 192 (FIG. 9) of the hardwired-pipeline 
templates 114 identified by the interpreter 158, and displays 
this table via the device 155. In a first column 194, the table 
192 lists the portions 170 (“V), 176 (“+”),180 (“x), 182 
(“ ”), 184 (“cos(z)), 186 (“z), 188 (“ ”), and 190 
('sin(x)) of equation (2). In a second column 196, the table 
192 lists the hardwired-pipeline template or templates 114 
that define a hardwired pipeline 44 for executing the respec 
tive portion of equation (2). And in a third column 198, the 
table 192 lists parameters, such as the latency (in units of 
cycles of the signal that clocks the defined pipeline 44) and 
the input and output precision, of the hardwired pipeline(s) 
44 defined by the templates 114 in the second column 196. 
As shown in the table 192, in this example the seven 
hardwired-pipeline templates 144-114, in column 196 
define hardwired pipelines 44-44, for respectively execut 
ing the corresponding portions of equation (2) in column 
194. There are only seven pipeline templates 114-114, for 
the eight portions of equation (2) because the template 114s 
defines a multiplier pipeline 445 that can execute both “” 
portions 182 and 188. Furthermore, although we have 
labeled the pipeline templates as 114-1147, it is not required 
that these templates be sequentially ordered within the 
library 120. Moreover, the library 120, and thus the table 
192, may include multiple templates 114 that define respec 
tive pipelines for executing each of the eight portions 170, 
176, 180, 182, 184, 186, 188, and 190 of equation (2). 

0111) Next, using the table 192, the file generator 160 
selects the pipelines 44 from which to build a circuit that 
solves for y in equation (2). The generator 160 selects these 
pipelines 44 based on the behavior(s), operating param 
eter(s), plafform(s), and pipeline accelerator(s) 14 (FIG. 1) 
that the designer specified. For example, if the designer 
specified that x, y, and Z are thirty-two-bit floating-point 
quantities, then the generator 160 selects pipelines 44 that 
operate on thirty-two-bit floating-point numbers. If the 
available pipelines 44 for a particular portion of the equation 
(2) do not meet all of the designer's specifications, then the 
generator 160 may use a default set of rules to select the best 
pipeline. For example, the rules may indicate that if there is 
no available pipeline 44 that meets the specified latency and 
precision requirements, then, with the designer's authoriza 
tion, the generator 160 defaults to the pipeline having the 
specified precision and the latency closest to the specified 
latency. Otherwise a new pipeline 44 with the specified 
latency is placed in the library, or the designer can select 
another pipeline from the table 192. As an example of 
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satisfying the latency requirements, two versions of an X 
circuit may be represented by respective hardwired-pipeline 
templates 114 in the library 120: a pipelined version using 
two fully registered multipliers in a cascade, or an in-place 
version using a single, fully registered multiplier, a one-bit 
counter, and a multiplexer. The pipelined version consumes 
roughly twice the circuit resources but accepts one input 
value every clock cycle. In contrast, the in-place version 
consumes fewer circuit resources but accepts a new input 
value only every other clock cycle. 
0.112. Then, the file generator 160 interconnects the 
selected hardwired pipelines 44 to form a circuit 200 (FIG. 
10) that can solve for y in equation (2). The generator 160 
also generates a schematic diagram of the circuit 200 for 
display via the device 155. 
0113) To form the circuit 200, the file generator 160 first 
determines how the selected hardwired pipelines 44-44, 
can “fit’ into the resources of a specified accelerator 14 
(FIG. 1) (or a default accelerator if the designer does not 
specify one). For example, the file generator 160 calculates 
the number of PLICs 60 (FIG. 3) needed to contain the eight 
instances of the pipelines 44-44, (this includes two 
instances of the pipeline 445) 
0114. In this example, the generator 160 determines that 
each PLIC 60 (FIG. 3) can hold only a respective one of the 
pipelines 44-447; consequently, the generator 160 deter 
mines that eight pipeline units 50-50s are needed to instan 
tiate the circuit 200. 

0115) Next, based on the platform that the designer 
specifies, the generator 160"inserts' into each of the PLICs 
60-60s of the pipeline units 50-50s a respective hardware 
interface layer 62-62s. Assuming that the designer specifies 
platform m=1, the generator 160 generates the layers 62 
62s from the following templates in section 122 of the 
library 120: the interface-adapter-layer template 108, the 
framework-services-layer template 110, and the communi 
cation-shell templates 112-1127, which respectively cor 
respond to the pipeline templates 114-1147, and thus to the 
pipelines 44-447. More specifically, the generator 160 gen 
erates the hardware-interface layer 62 from the interface 
adapter-layer template 108, the framework-services-layer 
template 110, and the communication-shell template 112. 
Similarly, the generator 160 generates the hardware-inter 
face layer 62 from the templates 108, 110, and 112, the 
hardware-interface layer 62 from the templates 108, 110, 
and 112s, and so on. Furthermore, because the PLICs 60s 
and 60 both will include the multiplier pipeline 44s, the 
generator 160 generates both of the hardware-interface 
layers 62s and 62 from the interface-adapter and frame 
work-services templates 108 and 110 and from the com 
munication-shell template 1121s; consequently, the hard 
ware-interface layers 62s and 62 are identical but are 
instantiated on respective PLICs 60s and 60. Moreover, the 
generator 160 generates the hardware-interface layer 62, 
from the templates 108, 110, and 112, and the hardware 
interface layer 62s from the templates 108, 110, and 1127. 
0.116) Then, the generator 160"inserts' into each hard 
ware-interface layer 62-62s a respective hardwired pipeline 
44-44, (the generator 160 inserts the pipeline 44s into both 
of the hardware-interface layers 62s and 62, the pipeline 
44, into the hardware-interface layer 627, and the pipeline 
44, into the hardware-interface layer 62s). More specifically, 
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the generator 160 inserts the pipelines 44-44, into the 
hardware-interface layers 62-62s by respectively inserting 
the hardwired-pipeline templates 114-114, into the com 
munication-shell templates 112-1127. 
0117 Next, the generator 160 interconnects the pipeline 
units 50-50s to form the circuit 200, which generates the 
value y from equation (2) at its output (i.e., the output of the 
pipeline unit 50s). 

0118 Referring to FIG. 10, the circuit 200 includes an 
input stage 206, first and second intermediate stages 208 and 
210, and an output stage 212, and operates as follows. The 
input stage 206 includes the hardwired pipelines 44-44 and 
operates as follows. The pipeline 44 receives a stream of 
values X via an input portion of the hardware-interface layer 
62 and generates, in a pipelined fashion, a corresponding 
stream of values sin(x) via an output portion of the layer 62. 
Likewise, the pipeline 40 receives a stream of values Z via 
an input portion of the hardware-interface layer 62 and 
generates, in a pipelined fashion, a corresponding stream of 
values Z via an output portion of the layer 62, the pipeline 
44 receives the stream of values X via an input portion of the 
hardware-interface layer 62 and generates, in a pipelined 
fashion, a corresponding stream of values x' via an output 
portion of the layer 62, and the pipeline 44 receives the 
stream of values Z via an input portion of the hardware 
interface layer 62 and generates, in a pipelined fashion, a 
corresponding stream of values cos(Z) via an output portion 
of the layer 62. 
0119) The first intermediate stage 208 of the circuit 200 
includes two instantiations of the pipelines 44s and operates 
as follows. The pipeline 44s in the PLIC 60s receives the 
streams of values sin(x) and z from the input stage 206 via 
an input portion of the hardware-interface layer 62s and 
generates, in a pipelined fashion, a corresponding stream of 
values z sin(x) via an output portion of the layer 62s. 
Similarly, the pipeline 44s in the PLIC 60 receives the 
streams of values x and cos(z) from the input stage 206 via 
an input portion of the hardware-interface layer 62 and 
generates, in a pipelined fashion, a corresponding stream of 
values x' cos(z) via an output portion of the layer 62. 
0120) The second intermediate stage 210 of the circuit 
200 includes the hardwired pipeline 44, which receives the 
streams of values z sin(x) and x' cos(z) from the first 
intermediate stage 208 via an input portion of the hardware 
interface layer 627, and generates, in a pipelined fashion, a 
corresponding stream of values z sin(x)+x' cos(z) via an 
output portion of the layer 627. 

0121 And the output stage 212 of the circuit 200 includes 
the hardwired pipeline 447, which receives the stream of 
values z sin(x)+x' cos(z) from the second intermediate 
stage 210 via an input portion of the hardware-interface 
layer 62s, and generates, in a pipelined fashion, a corre 
sponding stream of values y-Vz sin(x)+x'cos(z) via an 
output portion of the layer 62s. 
0122) Referring to FIGS. 7, 9, and 10, the designer may 
choose to alter the circuit 200 via the input device 154. 
0123 For example, the designer may swap out one or 
more of the pipelines 44-44, with one or more other 
pipelines from the table 192. Suppose the square-root pipe 
line 447 has a high precision but a relatively long latency per 
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the default rules that the generator 160 follows as discussed 
above. If the table 192 includes another square-root pipeline 
having a shorter latency, then the designer may replace the 
pipeline 44, with the other square-root pipeline, for example 
by using the input device 154 to “drag' the other pipeline 
from the table into the schematic representation of the PLIC 
608. 

0.124. In addition, the designer may swap out one or more 
of the hardwired pipelines 44-44, with a symbolically 
defined polynomial series (i.e., a Taylor Series equivalent) 
that approximates one of the pipelined operations. Suppose 
the available square-root pipeline 447 has insufficient math 
ematical accuracy per the designers specification and the 
default rules that the generator 160 follows as discussed 
above. If the designer then specifies a new square-root 
function as a series Summation of related monomials, then 
the front end 156, interpreter 158, and file generator 160 
concatenate a series of parameterized monomial circuit 
templates into a circuit that solves for square roots. In this 
way the designer replaces the default pipeline 44, with the 
higher-precision Square-root circuit using symbolic design. 
This example illustrates the symbolic use of polynomials to 
define new mathematical functions as established by Tay 
lor's Theorem. A more detailed example is discussed below 
in conjunction with FIGS. 13-17. 
0.125 The designer may also change the topology of the 
circuit 200. Suppose that according to the default rules 
discussed above, the generator 160 places each instantiation 
of the hardwired pipelines 44-44, into a separate PLIC 60. 
But also suppose that each PLIC 60 has sufficient resources 
to hold multiple pipelines 44. Consequently, to reduce the 
number of pipeline units 50 that the circuit 200 occupies, the 
designer may, using the input device 154, move some of the 
pipelines 44 into the same PLIC. For example, the designer 
may move both instantiations of the multiplier pipeline 44s 
out of the PLICs 60s and 60 and into the PLIC 60, with the 
adder pipeline 44, thus reducing by two the number of 
PLICs that the circuit 200 occupies. The designer then 
manually interconnects the two instantiations of the pipeline 
44s to the pipeline 44 within the PLIC 607, or may instruct 
the generator 160 to perform this interconnection. Although 
the library 120 may not include a communication-shell 
template 112 that defines a communication shell 74 for this 
combination of multiple pipelines 44s and 44, the designer 
or another may write such a template and debug the com 
munication shell that the template defines without having to 
rewrite the interface-adapter-layer and framework-services 
templates 108 and 110 and, therefore, without having to 
re-debug the layers that these templates define. This rear 
ranging of pipelines 44 within the PLICs 60 is also called 
“refactoring the circuit 200. 

0.126 Moreover, the designer may decide to breakdown 
one or more of the pipelines 44-447 into multiple, less 
complex pipelines 44. For example, to equalize the latencies 
in the stage 206 of the circuit 200, the designer may decide 
to breakdown the x' pipeline 44 into two xpipelines (not 
shown) and a multiplier pipeline 44s. Or, the designer may 
decide to replace the sin(x) pipeline 44 with a combination 
of pipelines (not shown) that represents sin(x) in a series 
expansion form (e.g. Taylor series, MacLaurin series). 

0127. Referring to FIGS. 7 and 10, after the designer has 
made any desired changes to the circuit 200, the generator 
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160 generates the file 162, which describes the circuit in 
terms of the pipeline units 50, the PLICs 60, the library 
templates that compose the circuit, and the interconnections 
between the pipeline units. Specifically, assuming that the 
designer has not modified the circuit 200 from the layout 
shown in FIG. 10, the file 162 indicates that the circuit is 
designed for instantiation on eight pipeline units 50-50s of 
a pipeline accelerator 14 (FIG. 1) that is compatible with 
platform m=1. The file 162 also identifies the eight PLICs 
60-60s on the eight pipeline units 50-50s, and for each 
PLIC, identifies the templates in the library 120 that define 
the circuitry to be instantiated on the PLIC. For example, 
referring to FIGS. 6 and 10, the file 162 indicates that the 
combination of the following templates in the library 120 
defines the circuitry to be instantiated on the PLIC 60: 101, 
108, 110, 112, 114, and 116. Furthermore, the file 162 
includes the values of all constants defined in the configu 
ration template 118. The file 162 may also include one or 
more of the descriptions 128-134 and 138 corresponding to 
these templates, or portions of these descriptions. Moreover, 
the file 162 defines the interconnections between the PLICs 
60-60s and the message specifications for these intercon 
nections The file 162 also defines any designer-specified 
range constraints for generated values, exceptions, and 
exception-handline routines. The generator 160 may write 
the file 162 in XML or in another language with XML tags 
so that both humans and other tools/machines can read the 
file. Alternatively, the generator 160 may write the file 162 
in a language other than XML and without XML tags. 

0128 Referring to FIGS. 6, 7, 9, and 10, the designer 
may instruct the simulator 164, via the input device 154, to 
simulate the circuit 200 using a conventional simulation 
algorithm. The simulator 164 uses the information in the file 
162 and the test vectors provided by the designer to simulate 
the operation of the circuit 200. The simulator 164 first 
determines the operating parameters of the hardware-inter 
face layers 62-62s and of the hardwired pipelines 44 
4,from the file 162, or by extracting this information 
directly from the description files 128, 130, 132-1327, 
and 138-138, in the library 120. As discussed above, these 
parameters include, e.g., circuit latencies, and the precision 
(e.g., thirty-two-bit integer, sixty-four-bit floating point) of 
the values that the pipelines 44-447 receive and generate. 
For example, from the description files 128, 130, 1321, 
and 138, the simulator 164 determines the latency of the 
PLIC 60 from the time a value x enters the hardware 
interface layer 62 until the time that the layer 62 provides 
sin(x) on an external pin (not shown) of the PLIC 60. The 
latency information in these description files may be esti 
mated information, or may be actual information derived 
from an analysis of an instantiation of the pipeline 44 and 
the hardware-interface layer 62 on the PLIC 60. The 
simulator 164 then estimates the latencies and other oper 
ating parameters of the PLICs 602-60s, and simulates the 
operation of the circuit 200 to generate an output test stream 
of valuesy in response to input test streams of values X and 
Z. 

0129 FIG. 11 is a schematic diagram of the circuit 200 
of FIG. 10 disposed on a single pipeline unit 50 and in a 
single PLIC 60 according to an embodiment of the inven 
tion. 
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0130 Referring to FIGS. 6, 7, 9, and 11, the operation of 
the tool 152 is discussed according to another embodiment 
of the invention. 

0.131. Following the same steps described above in con 
junction with the formation of the circuit 200 of FIG. 10, the 
generator 160 determines that all of the hardwired pipelines 
44-447 (the multiplier pipeline 44s is instantiated twice) can 
fit within a single PLIC 60 with the same topology shown in 
FIG 10. 

0.132. Although the library 120 includes no communica 
tion-shell templates 112 for this combination of the hard 
wired pipelines 44-447, for simulation purposes the tool 
152 derives the operational parameters and message speci 
fications of the hardware-interface layer 62 from the descrip 
tion files 128, 130, 132-132, and 1327. Because the 
PLIC 60 incorporates the interface-adapter layer 70 and 
framework-services layer 72 defined by the templates 108 
and 110, the tool 152 estimates the input and output 
operational parameters, e.g., input and output latencies, and 
the message specifications of the layers 70 and 72 directly 
from the description files 128 and 130. Then, referring to 
FIGS. 10-11, because the values x and Z are input in parallel 
to the pipelines 44-44, the tool 152 derives the input 
operating parameters of the communication shell 74 of FIG. 
11 from the description files 132-132, which describe the 
communications shells for the pipelines 44-44. For 
example, if the operational parameters of these communi 
cation shells are similar, then the tool 152 may merely 
estimate that the input-side operational parameters for the 
shell 74 are the same as the parameters from one of the 
description files 132-132. Alternatively, the tool 152 
may estimate that an intermediate data-type translation is 
needed for the input-side operational parameters of the 
communication shell 74, or that an averaging operation is 
needed for the input-side operational parameters of the 
communication shell, if the respective input-side parameters 
in the description files 132-132, do not match. Similarly, 
because the values y are output from the pipeline 447, the 
tool 152 derives the output operating parameters for the 
communication shell 74 from the description file 1327, 
which describes the communication shell for the pipeline 
447. For example, the tool 152 may estimate that the 
output-side operational parameters for the shell 74 are the 
same as the output-side parameters from the description file 
1327. 
0.133 Next, the generator 160 generates the file 162, 
which defines the circuit 200 of FIG. 11, and the simulator 
164 simulates the circuit using the operational parameters 
calculated for the hardware-interface layer 62 by the gen 
erator 160. 

0.134 FIG. 12 is a block diagram of a circuit 220, for 
which the tool 152 of FIG. 7 generates a file 162 according 
to an embodiment of the invention where the circuit solves 
for a variable in an equation that includes constant coeffi 
cients. The circuit 220 is similar to the circuit 200 except that 
the hardwired pipelines. 44, and 44, respectively generate 
ax and bz instead of x and z, where a and b are constant 
coefficients. 

0.135) In this embodiment, the designer wants to design a 
circuit to solve for y in the following equation: 
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The only differences between equation (3) and equation (2) 
is the presence of the constant coefficients a and b. 
0.136) Referring to FIG. 10, one way for the tool 152 to 
generate such a circuit is to modify the circuit 200 is to parse 
equation (3) into portions including "ax” and “b-z", and to 
add two corresponding PLICs (not shown) on which are 
instantiated the multiplication pipeline 44s: one Such mul 
tiplier PLIC between the PLICs 60 and 60s and receiving as 
inputs z and b, and the other such multiplier PLIC between 
the PLICs 60, and 60 and receiving as inputs x and a. 
0137 Although such a modified circuit 200 is contem 
plated to accommodate the constant coefficients a and b, this 
circuit would require two additional pipeline units 50. 
0138 Referring to FIGS. 7, 10, and 12, in this embodi 
ment, however, the tool 152 generates the circuit 220 by 
replacing the pipelines 44 and 44 in the circuit 200 with 
pipelines 44s and 449, which respectively perform the opera 
tions bzandax". Of course this assumes that the section 124 
of the library 120 (FIG. 6) includes corresponding hard 
wired-pipeline templates 114s and 1149. 
0139 Referring to FIGS. 7 and 12, to set the values of 
the coefficients a and b, the designer may enter the values as 
part of equation (3), or may enter the values separately. 
Assume that the designer wants a=2.0 and b=3.5. According 
to the former entry method, he enters equation (3) as: “y= 
V2x'cos(z)+3.5z sin(x)'. And according to the latter entry 
method, he enters equation (3) as y-Vax'cos(z)+bz sin(x), 
and then enters “a=2.0, b=3.5.” 
0140. The generator 160 then generates the file 162 to 
include the entered values for the coefficients a and b. These 
values may contained within one or more XML tags or be 
present in some other form. 
0141. In another variation, the values of a and b may be 
provided to the configuration managers 88 (FIG. 3) of the 
PLICs 60 and 60 as soft-configuration data. More specifi 
cally, a configuration manager (not shown and different from 
the configuration managers 88), which is described in pre 
viously incorporated U.S. patent app. Ser. No. (Attorney 
Docket No. 1934-25-3, 1934-26-3, and 1934-36-3) and 
which is executed by the host processor 12 (FIG. 1), 
initializes the values of a and b by sending configuration 
messages for a and b to the pipeline units 50 and 50. The 
accelerator-configuration registry 40 (FIG. 1) may store a 
and b as XML files to initialize the configuration messages 
created and sent by the configuration manager executed by 
the host processor 12. 
0142. Still referring to FIGS. 7 and 12, the tool 152 can 
use similar techniques to set the values of constant coeffi 
cients for other types of circuit portions such as filters, Fast 
Fourier Transformers (FFTs), and Inverse Fast Fourier 
Transformers (IFFTs). 
0143 Referring to FIGS. 7-12, other embodiments of the 
tool 152 and its operation are contemplated. 
0144) For example, one or more of the functions of the 
tool 152 may be performed by a functional block (e.g., front 
end 156, interpreter 158) other than the block to which the 
function is attributed in the above discussion. 

0145) Furthermore, the tool 152 may be described using 
more or fewer functional blocks. In addition, although the 
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tool 152 is described as either fitting the eight instantiations 
of the hardwired pipelines 44-44, in eight PLICs 60-60s 
(FIGS. 10 and 12) or in a single PLIC 60 (FIG. 11), the tool 
152 may fit these pipelines in more than one but fewer than 
eight PLICs, depending on the resources available on each 
PLIC. 

0146 Moreover, although described as allowing a 
designer to define a circuit using conventional mathematical 
symbols, alternate embodiments of the front end 156 of the 
tool 152 may lack this ability, or may allow one to define a 
circuit using other formats or languages such as C++ or 
VHDL. 

0.147. Furthermore, although the tool 152 is described as 
allowing one to design a circuit for instantiation on a PLIC, 
the tool 152 may also allow one to design a circuit for 
instantiation on an ASIC. 

0.148. In addition, although the tool 152 is described as 
generating a file 162 that defines an algorithm-implementing 
circuit, such as the circuit 200 (FIG. 11), for instantiation on 
a specific pipeline accelerator 14 (FIG. 14) or on a pipeline 
accelerator that is compatible with a specific platform, the 
tool may generate, in addition to or instead of the file 162, 
a file (not shown) that more generally defines the algorithm. 
Such a file may include algorithm-definition data that is 
sometimes called “meta-data, and may allow the host 
processor 12 (FIG. 1) to implement the algorithm in any 
manner (e.g., hardwired pipeline(s), Software, a combination 
of both pipeline(s) and software) supported by the peer 
vector machine 10 (FIG. 1). Typically, meta-data describes 
Something, such as an algorithm or another file, but is not 
executable. For example, the information in the description 
files 126-134 (FIG. 6) may include meta-data. But a pro 
cessor, such as the host processor 12, may be able to 
generate executable code from meta-data. Consequently, a 
meta-data file that defines an algorithm may allow the host 
processor 12 to configure the peer vector machine 10 for 
implementing the algorithm even where the machine does 
not support the implementation(s) specified by the file 162. 
Such configuring of the peer vector machine 10 is described 
in U.S. patent application Ser. No. (Attorney Docket Nos. 
1934-25-3, 1934-26-3, and 1934-36-3), which were previ 
ously incorporated by reference. 
0.149 Moreover, the tool 152 may generate, and the 
library 120 (FIG. 6) may store, one or more meta-data files 
(not shown) for describing the messages that carry data 
to/from the PLICs 60 (or software equivalents) of a circuit, 
such as the circuit 200 (FIG. 10). For example, if the data 
generated by the PLICs 60 is floating-point data, then a 
meta-data file specifies this. The file 162 (FIG. 7) incorpo 
rates or points to these meta-data files so that the host 
processor 12 (FIG. 1) can instantiate the message objects 
that generate Such messages as discussed in previously 
incorporated U.S. patent app. Ser. Nos. (Attorney Docket 
Nos. 1934-25-3, 1934-26-3, and 1934-36-3). 
0150. Furthermore, the tool 152 may generate, and the 
library 120 (FIG. 6) may store, one or more meta-data files 
(not shown) for describing the exceptions that the PLICs 60 
(or software equivalents) of a circuit, such as the circuit 200 
(FIG. 10), generate. For example, if a PLIC 60 implements 
a divide-by-Zero exception, then a meta-data file specifies 
this. The file 162 (FIG. 7) incorporates or points to these 
meta-data files so that the host processor 12 (FIG. 1) can 
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instantiate corresponding exception handlers as discussed in 
previously incorporated U.S. patent app. Ser. Nos. (Attorney 
Docket Nos. 1934-25-3, 1934-26-3, and 1934-36-3). 
0151. In addition, the tool 152 may generate, and the 
library 120 (FIG. 6) may store, one or more meta-data files 
(not shown) for describing the PLICs 60 (or software 
equivalents) of a circuit, such as the circuit 200 (FIG. 10). 
For example, such a meta-data file may describe the math 
ematical operation performed by, and the input and output 
specifications of circuitry to be instantiated on a corre 
sponding PLIC (or a software equivalent of the circuitry). 
The file 162 (FIG. 7) incorporates or points to these meta 
data files so that the host processor 12 (FIG. 1) can 1) 
determine which firmware files (or software equivalents) 
stored in the library 120 or in another library will respec 
tively cause the PLICs (or the host processor 12) to instan 
tiate the desired circuitry, or 2) generate one or more of these 
firmware files (or software equivalents) that are not other 
wise available, as described in previously incorporated U.S. 
patent app. Ser. Nos. (Attorney Docket Nos. 1934-25-3, 
1934-26-3, and 1934-36-3). 
0152 Moreover, the library 120 (FIG. 6) may store one 
or more of the files 162 (FIG. 7) that the tool 152 generates, 
So that a designer can incorporate previously designed 
circuits, such as the circuit 200 (FIG. 10), into a new larger 
and more complex circuit. The tool 152 may then generate 
a new file 162 that defines this new circuit. 

0153) Referring to FIGS. 13-17, according to another 
embodiment of the invention, the tool 152 (FIG. 7) allows 
one to design a circuit for implementing virtually any 
complex function f(x) by expanding the function into an 
equivalent infinite series. Many functions, such as f(x)= 
cos(x) and f(x)=e^, can be expanded into an infinite series, 
such as the Taylor series or the following MacLaurin series, 
which is a special case (a=0) of the Taylor series: 

1919, ... "Oly (3) 
1. 2. n 

Consequently, a combination of Summing and multiplying 
hardwired pipelines 44 interconnected to generate ax+bx + 
cx+...+VX" can implement any function f(x) that one can 
expand into a MacLaurin series, where the only differences 
in this combination of pipelines from function to function 
are the values of the constant coefficients a, b, c, . . . . v. 
Therefore, if the tool 152 is programmed with, or otherwise 
has access to, the coefficients for a number of functions f(x), 
then the tool can implement any of these functions as a series 
expansion. Furthermore, because the accuracy of the imple 
mentation of a function f(x) is proportional to the number of 
expansion terms calculated and Summed together, the tool 
152 may set the number of expansion terms that the inter 
connected pipelines 44 generate based on the level of 
accuracy for f(x) that the circuit designer (not shown) enters 
into the tool. Alternatively, a designer may directly enter a 
function f(x) into the front end 156 (FIG. 7) of the tool 152 
in series-expansion form. 

0154 FIG. 13 is a block diagram of a circuit 240 that the 
tool 152 (FIG. 7) defines for implementing f(x)=cos(x) as a 
MacLaurin series according to an embodiment of the inven 
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tion. For clarity, FIG. 13 shows only the adders, multipliers, 
and delay blocks that compose the circuit 240, it being 
understood that the tool 152 may define the circuit for 
instantiation on one or more PLICs 60 using one or more 
hardwired pipelines 44 and one or more hardware-interface 
layers 62 (e.g., FIGS. 10 and 12) per one of the techniques 
described above in conjunction with FIGS. 7-12. Further 
more, the circuit 240 may be part of a larger circuit (not 
shown) for implementing an algorithm having cos(x) as one 
of its portions. 
0155) F(x)=cos(x) is represented by the following 
MacLaurin series: 

l? - ?-l' . . . (4) 

The circuit 240 includes a term-generating section 242 and 
a term-summing section 244. For clarity, only the parts of 
these sections that respectively generate and sum the first 
four power-of-X terms of the cos(x) series expansion are 
shown, it being understood that any remaining portions of 
these sections for respectively generating and summing the 
fifth and higher power-of-x terms are similar. 
0156 The term-generating section 242 includes a chain 
of multipliers 246-246 (only multipliers 246-246s are 
shown) and delay blocks 248,-248 (only delay blocks 
248-248s are shown) that generate the power-of-x terms of 
the cos(x) series expansion. The delay blocks 248 insure that 
the multipliers 246 only multiply powers of x from the same 
sample time. 

0157 The term-summing section 244 includes two sum 
ming paths: a path 250 for positive numbers, and a path 252 
for negative numbers. The path 250 includes a chain of 
adders 254-254 (only adders 254-254 are shown) and 
delay blocks 256-256 (only blocks 256 and 256, are 
shown). Similarly, the path 252 includes a chain of adders 
258-258, (only adder 258, is shown) and delay blocks 
260-260, (only blocks 260, and 260, are shown). A final 
adder 262 sums the cumulative positive and negative sums 
from the paths 250 and 252 to provide the value for cos(x). 
Although the adder 262 is shown as summing the first five 
terms of the expansion (1 and the first four power-of-x 
terms), it is understood that the final adder 262 may be 
disposed further down the paths 250 and 252 if the circuit 
240 generates additional terms of the cos(x) expansion. 
Where numbers being Summed are floating-point numbers, 
exceptions, such as a mantissa-register underflow, may 
occur when a positive number is summed with a negative 
number that is almost equal to the positive number. But by 
providing separate summing paths 250 and 252 for positive 
and negative numbers, respectively, the circuit 240 limits the 
number of possible locations where such exceptions can 
occur to a single adder 262. Consequently, providing the 
separate paths 250 and 252 may significantly reduce the 
frequency of such floating-point exceptions, and thus may 
reduce the time that the peer-vector machine 10 (FIG. 1) 
consumes handling such exceptions and the size and com 
plexity of the exception manager 86 (FIG. 4). 
0158) Still referring to FIG. 13, the operation of the 
circuit 240 is discussed according to an embodiment of the 
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invention. For purposes of explanation, it is assumed that 
each of the multipliers 246, adders 254 and 258, has a 
latency (i.e., delay) D of one clock cycle. For example, prior 
to a first clock edge, a value X is present at the inputs of the 
multiplier 246, and after the first clock edge, the value x2 
is present at the output of the multiplier 246. It is under 
stood, however, that the multipliers 246 and adders 254 and 
258 may have different latencies and latencies other than 
one, and that the delays provided by the blocks 248,256, and 
260 may be adjusted accordingly. 

0159. At a start time, a value x is present at the input of 
the multiplier 246, where the subscript “1” denotes the time 
or position of X relative to the other values of X. 
0160 In response to a first clock edge, a value x is 
present at the input of the multiplier 246, and x is present 
at the output of this multiplier. For brevity, this example 
follows only the propagation of X, it being understood that 
the propagation of X and subsequent values of X is similar 
but delayed relative to the propagation of X. Furthermore, 
for clarity, x is hereinafter referred to “x” in this example. 
0161). In response to a second clock edge, -X/2 is 
present at the output of the multiplier 246, x' is present at 
the output of the multiplier 246, and x is available at the 
output of the block 248. 
0162. In response to a third clock edge, “1” is present at 
the output of the block 2561, x/4! is present at the output of 
the multiplier 246 x' is present at the output of the 
multiplier 246s, and x is available at the output of the block 
248. 
0163) In response to a fourth clock edge, -X/6! is present 
at the output of the multiplier 246 x is present at the output 
of the multiplier 2467, x is available at the output of the 
block 248, and "1+x/4!” is available at the output of the 
summer 254. 
0164. In response to a fifth clock edge, x/8! is present at 
the output of the multiplier 246s, “1+x/4” is available at 
the output of the block 256, and *-x/2-x/6!” is available 
at the output of the adder 258. 
0165. In response to a sixth clock edge, “1+x/4+x/8!” 

is available at the output of the adder 254, and "-x/2- 
x/6!” is available at the output of the block 260. 
0166 And in response to a seventh clock edge, “cos(x)= 
1-x/21+x/4!-x/6!+x/8!” (cos(x) approximated to the 
first four power-of-X terms of the MacLaurin series expan 
sion) is available at the output of the adder 262. Therefore, 
in this example the latency of the circuit 240 (i.e., the 
number of clock cycles from when X is available at the 
inputs of the multiplier 246 to when cos(x) is available at 
the output of the adder 262) is seven clock cycles. Further 
more, if the adder 262 Summing a positive number and a 
negative floating-point number generates an exception, the 
exception manager 86 (FIG. 4) or the host processor 12 
(FIG. 1) may handle this exception using a conventional 
floating-point-exception routine. 

0167 Alternatively, if the circuit 240 calculates one or 
more higher power-of-X terms, then the adder 262 is located 
after (to the right in FIG. 13) the adder that sums the highest 
generated term to a preceding term, and the operation 
continues as above. 
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0168 Still referring to FIG. 13, alternate embodiments of 
the circuit 240 are contemplated. For example, the circuit 
240 may include multipliers and adders to generate and Sum 
the odd power-of-x terms (e.g., X, X3, X5) with the coeffi 
cients of these terms set to zero. Such an alternate circuit 240 
is more flexible because it allows one to implement function 
expansions that include odd powers of X, but in this case 
would have a greater latency than seven clock cycles. 
0169 FIG. 14 is a block diagram of a circuit 270 that the 
tool 152 (FIG. 7) defines for implementing f(x)=cos(x) as a 
MacLaurin series according to another embodiment of the 
invention. The circuit 270 has a topology that reduces the 
number of delay blocks and the latency as compared to the 
circuit 240 of FIG. 13. Furthermore, like FIG. 13, FIG. 14 
shows only the adders, multipliers, and delay blocks that 
compose the circuit 270, it being understood that the tool 
152 may define the circuit for instantiation on one or more 
PLICs 60 using one or more hardwired pipelines 44 and one 
or more hardware-interface layers 62 (e.g., FIGS. 10 and 
12) per one of the techniques described above in conjunction 
with FIGS. 7-12. Furthermore, like the circuit 240, the 
circuit 270 may be part of a larger circuit (not shown) for 
implementing an algorithm having cos(x) as one of its 
portions. 
0170 The circuit 270 includes a term-generating section 
272 and a term-summing section 274. For clarity, only the 
parts of these sections that respectively generate and Sum the 
first four power-of-X terms of the cos(X) series expansion are 
shown, it being understood that any remaining portions of 
these sections for respectively generating and Summing the 
fifth and higher power-of-X terms are similar. 
0171 The term-generating section 272 includes a hierar 
chy of multipliers 276-276 (only multipliers 276-276, are 
shown) and delay blocks 278-278 (only delay blocks 
278-278, are shown) that generate the power-of-x terms of 
the cos(x) series expansion. The delay blocks 278 insure that 
the multipliers 276 only multiply powers of x from the same 
sample time. 
0.172. The term-summing section 274 includes two sum 
ming paths: a path 280 for positive numbers, and a path 282 
for negative numbers. The path 280 includes a chain of 
adders 284-284, (only adders 284-284 are shown) and 
delay blocks 286-286 (only block 286 is shown). Simi 
larly, the path 282 includes a chain of adders 288-288, (only 
adder 288 is shown) and delay blocks 290-290 (only 
block 290 is shown). A final adder 292 Sums the cumulative 
positive and negative sums from the paths 280 and 282 to 
provide the value for cos(x). Although the adder 292 is 
shown as Summing the first five terms of the expansion (1 
and the first four power-of-X terms), it is understood that the 
final adder 292 may be disposed further down the paths 280 
and 282 if the circuit 270 generates additional terms of the 
cos(x) expansion. 
0173 Still referring to FIG. 14, the operation of the 
circuit 240 is discussed according to an embodiment of the 
invention. For purposes of explanation, it is assumed that 
each of the multipliers 276, adders 284 and 288, has a 
latency (i.e., delay) D of one clock cycle. It is understood, 
however, that the multipliers 276 and adders 284 and 288 
may have different latencies and latencies other than one, 
and that the delays provided by the blocks 278 and 288 may 
be adjusted accordingly. 
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0174 At a start time, a value x is present at the input of 
the multiplier 276. 
0175. In response to a first clock edge, x' is present at the 
output of the multiplier 276. 
0176). In response to a second clock edge, x' is present at 
the output of the multiplier 276, and x is available at the 
output of the block 278. 
0177. In response to a third clock edge, “1” is present at 
the output of the block 286, x/4! is present at the output of 
the multiplier 276 x is present at the output of the 
multiplier 276, -X/2! is available at the output of the 
multiplier 276, and x is available at the output of the 
multiplier 276, 
0178. In response to a fourth clock edge, -X/6 is present 
at the output of the multiplier 2767, x/8! is present at the 
output of the multiplier 276, -X/2! is available at the 
output of the block 290, and “1+x/4” is available at the 
output of the summer 284. 
0179. In response to a fifth clock edge, g1+x/4+x/8!” 
is available at the output of the adder 284, and '-x/2- 
x/6!” is available at the output of the adder 288. 
0180 And in response to a sixth clock edge, “cos(x)=1- 
x/2+x/4-x/6!+x/8!” (cos(x) approximated to the first 
four power-of-X terms of the MacLaurin series expansion) is 
available at the output of the adder 292. Therefore, in this 
example the latency of the circuit 270 is six clock cycles, 
which is one fewer clock cycle than the latency of the circuit 
240 of FIG. 13. But as the number of the power-of-X terms 
increases beyond four, the gap between the latencies of the 
circuits 270 and 240 increases such that the circuit 270 
provides an even greater improvement in the latency. 
0181 Alternatively, if the circuit 270 calculates one or 
more higher power-of-X terms, then the adder 292 is located 
after (to the right in FIG. 14) the adder that sums the highest 
generated term to a preceding term, and the operation 
continues as above. 

0182 Still referring to FIG. 14, alternate embodiments of 
the circuit 270 are contemplated. For example, the circuit 
270 may include multipliers and adders to generate and Sum 
the odd power-of-x terms (e.g., X, X3, X5) with the coeffi 
cients of these terms set to zero. Such an alternate circuit 270 
may be more flexible because it allows one to implement 
function expansions that include odd powers of X without 
increasing the circuit's latency for a given highest power of 
X. That is, where the highest power of X generated by the 
circuit 270 is x, adding multipliers and adders to generate 
x, x, and x" would not increase the latency of the circuit 
270 beyond six clock cycles. This is because the circuit 270 
would generate the power-of-X terms in parallel, not serially 
like the circuit 240 of FIG. 13. 

0183 FIG. 15 is a block diagram of a power-of-x term 
generator 300 that the tool 152 (FIG. 7) defines to replace 
the power-of-X-term odd multipliers 246, 246s, 2467, ... of 
the term-generating section 242 of FIG. 13 and the power 
of-x-term multipliers 276, 276, 276, 276, ... of FIG. 14 
according to an embodiment of the invention. Generally, the 
generator 300 includes fewer multipliers (here one) than the 
term-generating sections 242 and 272 (which each include 
eight multipliers), but may have a higher latency for a given 
number of generated power-of-X terms. Furthermore, like 
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FIGS. 13-14, FIG. 15 shows only the multipliers and other 
components that compose the term generator 300, it being 
understood that the tool 152 may define a circuit that 
includes the term generator for instantiation on one or more 
PLICs 60 using one or more hardwired pipelines 44 and one 
or more hardware-interface layers 62 (e.g., FIGS. 10 and 
12) per one of the techniques described above in conjunction 
with FIGS. 7-12. 

0.184 The term generator 300 includes a register 302 for 
storing x, a multiplier 304, a multiplexer 306, and term 
storage registers 308,-308, (only registers 308,-308, are 
shown). For clarity, only the parts of the generator 302 that 
generates the first four power-of-X terms of the cos(X) series 
expansion are shown, it being understood that any remaining 
portions of the generator for generating the fifth and higher 
power-of-X terms are similar. 
0185. Still referring to FIG. 15, the operation of the 
circuit 300 is discussed according to an embodiment of the 
invention. For purposes of explanation, it is assumed that 
each of the register 302, multiplier 304, and registers 308 has 
a respective latency (i.e., delay) of one clock cycle, and that 
the multiplexer 306 is not clocked, i.e., is asynchronous. It 
is understood, however, that the register 302, multiplier 304, 
and registers 308 may have different latencies and latencies 
other than one, that the multiplexer 306 may be clocked and 
have a latency of one or more clock cycles, and that the 
term-summing sections 244 and 274 of FIGS. 13 and 14, 
respectively, may be adjusted accordingly. 
0186. At a start time, a value x is present at the input of 
the register 302. 
0187. In response to a first clock edge, the current value 
of X is loaded into, and thus is present at the output of the 
register 302, and is present at the output of the multiplexer 
306, which couples its input 312 to its output. The register 
302 is then disabled. Alternatively, the register 302 is not 
disabled but the value of X at the input of this register does 
not change. 
0188 In response to a second clock edge, x' is present at 
the output of the multiplier 304, and the multiplexerchanges 
state and couples its input 314 to its output Such that X2 is 
also present at the output of the multiplexer 306. 
0189 In response to a third clock edge, x' is loaded into, 
and thus is available at the output of the register 310, and 
x is available at the output of the multiplier 304 and at the 
output of the multiplexer 306. 
0190. In response to a fourth clock edge, x' is available 
at the output of the multiplier 304 and at the output of the 
multiplexer 306. 
0191). In response to a fifth clock edge, x' is loaded into, 
and thus is available at the output of the register 310, and 
x is available at the output of the multiplier 304 and at the 
output of the multiplexer 306. 

0192) In response to a sixth clock edge, x' is available at 
the output of the multiplier 304 and at the output of the 
multiplexer 306. 

0193 In response to a seventh clock edge, x' is loaded 
into, and thus is available at the output of, the register 310, 
and x' is available at the output of the multiplier 304 and at 
the output of the multiplexer 306. 
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0194 In response to an eighth clock edge, x' is available 
at the output of the multiplier 304 and at the output of the 
multiplexer 306. 

0195 And in response to a ninth clock edge, x' is loaded 
into, and thus is available at the output of, the register 310, 
the next value of X is loaded into the register 302. But if the 
generator 300 generates powers of X higher than x, the 
generator continues operating in the described manner 
before loading the next value of X into the register 302. 

0196. After the generator 300 generates all of the speci 
fied powers of the current value of X, the register 302, 
multiplier 304, multiplexer 306, and registers 310 repeat the 
above procedure for each Subsequent value of X. 

0197) Alternative embodiments of the generator 300 are 
contemplated. For example, to generate the odd powers of X 
for a function other than cos(X), one can merely add addi 
tional registers 310 to store these values, because the mul 
tiplier 304 inherently generates these odd powers. Alterna 
tively, the generator 300 may be modified to load x into the 
register 302 so that the multiplier 304 thereafter generates 
only even powers of x. Moreover, one or more of the 
registers 308 may be eliminated, and the multiplexer 306 
may feed the respective powers of X directly to the term 
multipliers, e.g., the term multipliers 246, 246, 246, 246s. 
. . . of FIG. 13 and the term multipliers 276s, 276, 2767, 
276, ... of FIG. 14. 
0198 FIG. 16 is a block diagram of a circuit 320 that the 
tool 152 (FIG. 7) defines for implementing f(x)=e as a 
MacLaurin series according to an embodiment of the inven 
tion. The circuit 320 is similar to the circuit 240 of FIG. 13, 
but because the odd power-of-X terms for the e' expansion 
may be positive or negative, the circuit 320 also includes 
sign determiners (described below and in conjunction with 
FIG. 17) that respectively provide these odd-power-of-X 
terms to the proper path (positive or negative) of the 
term-summing section. For clarity, FIG. 16 shows only the 
adders, multipliers, delay blocks, and sign determiners that 
compose the circuit 320, it being understood that the tool 
152 may define the circuit for instantiation on one or more 
PLICs 60 using one or more hardwired pipelines 44 and one 
or more hardware-interface layers 62 (e.g., FIGS. 10 and 
12) per one of the techniques described above in conjunction 
with FIGS. 7-12. Furthermore, the circuit 320 may be part 
of a larger circuit (not shown) for implementing an algo 
rithm having e' as one of its portions. 

0199 F(x)=e^ is represented by the following MacLaurin 
series: 

* ... li. (5) 

The circuit 320 includes a term-generating section 322 and 
a term-summing section 324, which includes positive- and 
negative-value summing paths 326 and 328. For clarity, only 
the parts of these sections that respectively generate and Sum 
the first five power-of-X terms of the e' series expansion are 
shown, it being understood that any remaining portions of 
these sections for respectively generating and Summing the 
sixth and higher power-of-X terms are similar. 
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0200. The term-generating section 322 includes a chain 
of multipliers 330-330 (only multipliers 330,-330s are 
shown) and delay blocks 332-332 (only delay blocks 
332-332, are shown) that generate the power-of-x terms of 
the ex series expansion. The section 322 also includes, for 
each odd-power-of-X term (e.g., x, x, x . . . . ), a respective 
sign determiner 334-334 (only determiners 334-334 are 
shown) that directs positive values of the odd-power-of-X 
term to the positive Summing path 326 of the term-Summing 
section 324, and that directs negative values of the odd 
power-of-X term to the negative Summing path 328. 
0201 The positive-value path 326 of the term-summing 
section 324 includes a chain of adders 336-336 (only 
adders 336-336s are shown) and delay blocks 338-338 
(only blocks 338-338, are shown). Similarly, the negative 
value path 328 includes a chain of adders 340-340, (only 
adders 340-340 are shown) and delay blocks 342-342 
(only blocks 342-342 are shown). A final adder 344 sums 
the cumulative positive and negative Sums from the paths 
326 and 328 to provide the value for e^. Although the final 
adder 344 is shown as summing the first six terms of the e 
expansion (“1” and the first five power-of-X terms), it is 
understood that the final adder may be disposed further 
down the paths 326 and 328 if the circuit 320 generates 
additional terms of the expansion. 
0202) Still referring to FIG. 16, the operation of the 
circuit 320 is discussed according to an embodiment of the 
invention. For purposes of explanation, it is assumed that 
each of the multipliers 330, sign determiners 334, and adders 
336 and 340 has a latency (i.e., delay) D of one clock cycle. 
It is understood, however, that the multipliers 330, sign 
determiners 334, and adders 334 and 336 may have different 
latencies and latencies other than one, and that the delays 
provided by the blocks 332, 338, and 342 may be adjusted 
accordingly. 
0203 At a start time, a value x is present at both inputs 
of the multiplier 330, at the input of the delay block 332, 
and at the input of the sign determiner 334. 
0204). In response to a first clock edge, x' is available at 
the output of the multiplier 330, x is available at the output 
of the delay block 332, and “1” is available at the output of 
the delay block 338. Furthermore, if X is positive, X and 
logic “0” are respectively available at the (+) and (-) outputs 
of the sign determiner 334; conversely, if X is negative, 
logic “0” and X are respectively available at the (+) and (-) 
outputs of the determiner 334. 
0205. In response to a second clock edge, x/2 is avail 
able at the output of the multiplier 330, x is present at the 
output of the multiplier 330, and x is available at the output 
of the delay block 332. Furthermore, if X is positive, "1+x' 
is available at the output of the adder 336; conversely, if X 
is negative, "1+0=1 is present at the output of the adder 
336. 
0206. In response to a third clock edge, x/3! is available 
at the output of the multiplier 330, x' is available at the 
output of the multiplier 330s, X is available at the output of 
the delay block 332, and “1+x+x/2!” (x positive) or 
“1+x/2!” (x negative) is available at the output of the adder 
336. 
0207. In response to a fourth clock edge, x/4! is present 
at the output of the multiplier 330, x is present at the output 
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of the multiplier 3307, X is available at the output of the 
block 332, and “1+x+x/2” (x positive) or “1+x/2” (x 
negative) is available at the output of the delay block 338. 
Furthermore, if x/3, and thus X, is positive, x/3! and logic 
“0” are respectively present at the (+) and (-) outputs of the 
sign determiner 334; conversely, if x/3!, and thus X, is 
negative, logic “0” and x/3 are respectively present at the 
(+) and (-) outputs of the determiner 334. Moreover, if x is 
negative, then X is available at the output of the delay block 
342; conversely, if X is positive, then logic “0” is available 
at the output of the delay block 342. 
0208. In response to a fifth clock edge, x/5! is available 
at the output of the multiplier 330s, “1+x+x/21+x/3!” (x 
positive) or "1+x/2" is available at the output of the adder 
336, x/4! is available at the output of the delay block 338. 
and “0” (x positive) or *-x-x/3!” (x negative) is available 
at the output of the adder 340. 
0209. In response to a sixth clock edge, if x/5!, and thus 
X, is positive, x/5! and logic “0” are respectively available 
at the (+) and (-) outputs of the sign determiner 334; 
conversely, if x/5!, and thus X, is negative, logic “0” and 
x/5 are respectively available at the (+) and (-) outputs of 
the determiner 334. Furthermore, “1+x+x/2+x/3+x/4!” 
(x positive) or “1+x/+ +x/4!” (x negative) is avail 
able at the output of the multiplier 336 and “O'” (x positive) 
or *-x-x/3!” (x negative) is available at the output of the 
delay block 342. 
0210) In response to a seventh clock edge, "1+x+x/2+ 
x/3+x/4+x/5!” (x positive) or “1+x/2+x/4!” (x nega 
tive) is available at the output of the adder 336s, and “O'” (x 
positive) or “x-x/31-x/4!” (x negative) is available at the 
output of the adder 3402. 
0211 And in response to an eighth clock edge, “e'='1+ 
x+x/21+x/3+x/4!+x/5!” (x positive) or “e=1-x+x/2- 
x/5!” (x negative) is available at the output of the adder 344. 
0212. Therefore, in this example, the latency of the 
circuit 320 is eight. Furthermore, if the adder 344, while 
Summing a positive number and a negative floating-point 
number, generates an exception, the exception manager 86 
(FIG. 4) or the host processor 12 (FIG. 1) may handle this 
exception using a conventional floating-point-exception rou 
tine. 

0213 Alternatively, if the circuit 320 calculates one or 
more power-of-X terms higher than the fifth power, then the 
adder 344 is located after (to the right in FIG. 16) the adder 
336 or 340 that sums the highest generated term to a 
preceding term, and the operation continues as above. 
0214 Still referring to FIG. 16, alternate embodiments of 
the circuit 320 are contemplated. For example, one may 
replace the term-generating section 322 with a section 
similar to the term-generating section 272 of FIG. 14, or 
may replace the chain of multipliers 330 with a power-of-X 
generator similar to the generator 300 of FIG. 15. 
0215 FIG. 17 is a block diagram of the sign determiner 
334, of FIG. 16 according to an embodiment of the inven 
tion, it being understood that the sign determiners 3342. 
334 are similar. 
0216) The sign determiner 334, includes an input node 
350, a (-) output node 352, a (+) output node 354, a register 
356 that stores a logic “0”, and demultiplexers 358 and 360. 
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0217. The demultiplexer 358 includes a control node 362 
coupled to receive a sign bit of the value at the input node 
350, a (-) input node 364 coupled to the input node 350, a 
(+) input node 366 coupled to the register 356, and an output 
node 368 coupled to the (-) output node 352. 
0218. Similarly, the demultiplexer 360 includes a control 
node 370 coupled to receive the sign bit of the value at the 
input node 350, a (-) input node 372 coupled to the register 
356, a (+) input node 374 coupled to the input node 350, and 
an output node 376 coupled to the (+) output node 354. 
0219. Still referring to FIG. 17, two operating modes of 
the sign determiner 334, are described according to an 
embodiment of the invention. 

0220. In one operating mode, the sign determiner 334 
receives at its input node 350 a positive (+) value V, which, 
therefore, includes a positive sign bit. This sign bit is 
typically the most-significant bit of V, although the sign bit 
may be any other bit of V. In response to the positive sign bit, 
the demultiplexer 360 couples V (including the sign bit) from 
its (+) input node 374 to its output node 376, and thus to the 
(+) output node 354 of the sign determiner 334. Further 
more, the demultiplexer 358 couples the logic “0” stored in 
the register 356 from the (+) input node 366 to the output 
node 368, and thus to the (-) output node 352 of the sign 
determiner 3341. 

0221) In the other operating mode, the sign determiner 
334, receives at its input node 350 a negative (-) value V, 
which, therefore, includes a negative sign bit. In response to 
the negative sign bit, the demultiplexer 358 couples V 
(including the sign bit) from its (-) input node 364 to its 
output node 368, and thus to the (-) output node 352 of the 
sign determiner 3341. Furthermore, the demultiplexer 360 
couples the logic “0” stored in the register 356 from the (-) 
input node 372 to the output node 376, and thus to the (+) 
output node 354 of the sign determiner 334. 
0222 Still referring to FIG. 17, alternative embodiments 
of the sign determiner 334 are contemplated. For example, 
one may replace the logic “0” register with a component, 
Such as pull-down resistor, coupled to a logic “0” Voltage 
level. Such as ground. 
0223 Referring to FIGS. 1-17, alternate embodiments of 
the peer vector machine 10 are contemplated. For example, 
some or all of the components of the peer vector machine 10, 
such as the host processor 12 (FIG. 1) and the pipeline units 
50 (FIG. 3) of the pipeline accelerator 14 (FIG. 1), may be 
disposed on a single integrated circuit. 
0224. The preceding discussion is presented to enable a 
person skilled in the art to make and use the invention. 
Various modifications to the embodiments will be readily 
apparent to those skilled in the art, and the generic principles 
herein may be applied to other embodiments and applica 
tions without departing from the spirit and scope of the 
present invention. Thus, the present invention is not 
intended to be limited to the embodiments shown, but is to 
be accorded the widest scope consistent with the principles 
and features disclosed herein. 

What is claimed is: 
1. A library, comprising: 
one or more circuit templates that each define a respective 

circuit operable to execute a respective algorithm; and 
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an interface template that defines a hardware layer oper 
able to interface one of the circuits to pins of a 
programmable logic circuit when the layer and the one 
circuit are instantiated on the programmable logic 
circuit. 

2. The library of claim 1 wherein each circuit template 
includes extensible markup language that describes the 
respective algorithm. 

3. The library of claim 1 wherein the interface template 
includes extensible markup language that describes the 
hardware layer. 
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4. The library of claim 1 wherein the programmable logic 
circuit comprises a field-programmable gate array. 

5. The library of claim 1, further comprising a file that 
describes a platform with which the programmable logic 
circuit is compatible. 

6. The library of claim 1 wherein the library comprises 
multiple circuit templates that define circuits that can be 
interconnected to for form a resulting circuit that can be 
instantiated one a programmable logic circuit to execute an 
algorithm. 


