PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GOGF 9/44, 17/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/33118

30 July 1998 (30.07.98)

(21) International Application Number: PCT/US98/01756

(22) International Filing Date: 23 January 1998 (23.01.98)

(30) Priority Data:

08/789,943 Us

27 January 1997 (27.01.97)
(71) Applicant: BMR SOFTWARE [US/US]; Suite 404, 11300 N.
Central Expressway, Dallas, TX 75243 (US).

(72) Inventor: BEMER, Robert, W.; 2 Moon Mountain Trail,
Phoenix, AZ 85023 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, DE, DK, ES, F], FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(74) Agents: CARR, Gregory, W. et al,; Winstead Sechrest &
Minick P.C., Suite 5400, 1201 Elm Street, Dallas, TX 75270
(US).

(54) Title: METHOD OF SOLVING MILLENNIUM PROBLEMS OF SOME APPLICATION PROGRAMS

(57) Abstract

A method for increasing the capabilities of an object program of a digital data processing system having a coded character set, with
each character having a given attribute, by providing each of a selected subset, or subsets, of said characters with a second attribute. Which
attribute of a given character of such a subset is its relevant attribute is determined by such a character being the operand of a limited
number of operation codes of the computer system capable of properly acting on the second attribute of the character of such a selected
subset. The data entry routine of such a program is modified to require data represented by the second attributes of the selected subsets
and to convert such data into a character of such a subset. For each operation code capable of properly acting on the second attribute of
a character of a selected subset of said characters, a subroutine is created to check each operand acted upon by the operation code for the
presence of character of a selected subset and to convert such an operand into a format upon which the desired operation can be executed.
Each data output operation of an object program capable of outputting the second attribute of such a character is provided with the means
to output where appropriate a graphic character, or characters, defining such a second attribute.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
TT
UA
uG
us
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

‘WO 98/33118 PCT/US98/01756

METHOD OF SOLVING MILLENNIUM PROBLEMS
OF SOME APPLICATION PROGRAMS
Field of the Invention

This invention relates to application programs of digital data processing systems,
particularly those in which the year portion of a date has been limited to two digits
(Arabic numerals 0-9) that represent decade (D) and year of decade (Y) of a year value,
with digits (M) for the millennium and (C) for the century being implied, or
understood, as being "1" & "9". With the proximity of the next millennium, when M
and C will have the values of "2" & "0", there is a need to modify such programs to
be able to accept four digits to define the year value, or portion, of a date, readily
identifiable as such, to perform required decimal arithmetic operations on the year value
of a date, and to output data specifying years in four digits, or their equivalent, when
required.

This is ideally accomplished without requiring more memory space to store the
representation for MCDY than that previously required to store the representation of
just DY. Also, year increment values need unique identification. This invention does
this by providing an additional, or.. second, attribute to selected subsets of characters of
the coded character set of the program, so that year values and year increment values
can be recognized as such, the second attribute associated with these selected subsets
being determined by their usage. Such a second attribute permits the year value of a
date to be stored in memory in the same space, and at the same address, as required
for the conventional representation of "DY".

In the following text, the term "digit" is reserved to always denote an Arabic
numeral 0-9. The coded characters (usually of 8 bits) called "digit characters" are those
characters of a coded character set containing digit values as defined by their binary
equivalents in the low order 4 bits.

Background of the Invention

Application programs are normally compiled from a fairly understandable source
language program into a computer-specific object program, which object program may
be understood by itself by only the most expert programmers. If the source language
program is lost or misplaced, the object program can be patched only by someone who

knows the principle of its working. But people die and move away. It is unarguable

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

that many of today's most important programs are indecipherable as to principle, or
algorithm.

It is basic to computers of the Von Neumann type, e.g., stored program type,
that data can exist in boundaryless juxtaposition in the memory of such systems with
other data, or even sections of the program. Existing data, new data, and the object
program that operates upon them are an amorphous mix. The program itself may be
recognized only by the sequence of its instructions.

The location of data in memory is known only by the addresses embedded in
the program. With respect to the nature of the data itself, there are few clues. Without
such clues it is impossible to distinguish a field containing the year portion of a date
from any other pair of digit characters, or what instructions manipulate that .field.
Further, the proper execution of a program depends upon the finding of the correct
data, not by name, not by descriptor, not by content, but by its relative position in the
memory of the computer system executing the program.

The so-called millennium problem is the consequence of the history of
development of digital computer systems which began in the 1940's, but which were
not put into extensive use until the last half of the 20th century. Thus, from the
beginning of the computer era to now, the millennium and the century have had
constant digit values of 1 and 9. For convenience and to minimize size of memory
required to execute such a program, the practice was to enter, to store, to perform
arithmetic operations as required, and to output only two digits to represent the
decade D and the year Y for the year value of a date. Reasons justifying this practice
were that the sizes of the memories of early computer systems were relatively small,
and their cost was very high. This practice is now a well-recognized problem,
reportedly being worked on by many thousands of people.

The crux of the millennium problem is not that calendar year values are
expressed in only two digit characters. It is rather that it is very difficult, when faced
with a need to compute with and display them in a clearly recognizable form, such as
in a 4-digit form, to recognize sans ambiguity a calendar year value, or calendar year
increment value, hidden away in all that maze of existing data and instructions that
consist only of O's and I's. Even if calendar year values were stored as 4 digit
characters, how would one know "1990" to be a year value rather than a portion of a

part number, a social security number, a vehicle I.D. code, a bar code identifier, a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

‘WO 98/33118 PCT/US98/01756

number of acres, an insurance policy number, a real estate deed number, a portion of
a binary number (even floating point), etc. Barring source code change, as by the
Picture Clause of COBOL, even entry of new year data as 4 digit characters does
nothing to resolve 3 this dilemma. Absent source code. the nature of data in memory
may only be deduced via some limitations of the operations upon it.

One solution being pursued to solve the millennium problem is to detect the
year value of dates of the source language version of the program, or of the object
program if the source version is not available, and to modify the program so that the
millennium and century digit characters, M and C, representing 1900 or 2000 are
incorporated correctly in both program and its data descriptions. To do this, one has
to search, or trace, through the program to find occurrences of numeric data and
numeric data operations. Doing this by using Picture Clauses in source programs and
then recompiling to a new object program is the optimum solution, albeit uncommon
due to loss of much source code. Alternatively, one could replace all old code
operating on date values with new code of a better method; e.g. one that always
operates internally on dates in the Julian Day form. Unfortunately there does not seem
to be time to implement either of these solutions before the year 2000 AD becomes a
cause of failure.

Summary of the Invention

An enabling component of this invention is "Year Arithmetic", a coined and
limiting term that recognizes that calendar year and year increment values have many
special properties and restrictions that reduce the domain of arithmetic operations upon
them to a feasible and workable size; e.g., the values are primarily positive; lie in a
limited range of number of digits; and are used only for display, comparison, or sorting
(and sorting's companion processes ordering and collating), and/or; operate
arithmetically only upon each other (and only for addition and subtraction, never for
multiplication or division).

This invention solves much if not all of the millennium problem in computer
programs. Its essence is that the special properties of "Year Arithmetic" will aid
recognition (and thereby correct usage) of year values, and that it is possible to provide
certain subsets of the coded character set of an object program with an alternate or
second attribute, or meaning. Thus selected subsets of 8-bit octets (bytes) of the coded

character sets in current usage are" enabled to have dual attributes; a) their original

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

graphic or control attribute in ASCII or EBCDIC (such as a capital "V), and b) a
second or alternate attribute such as digits with added meaning or definition. Such a
second attribute of a character of a selected subset of the coded character set of a
program is made relevant, or active, when used as an operand of certain arithmetic and
data input and output operations as distinguished in actual usage; otherwise its original,
or primary, attribute is relevant, or active.

This distinction is made unambiguously via the operation code of instructions
that apply to, or reference, operands which contain any of the characters of such a
selected subset of characters. E.g., dualities of attributes and usage can be completely
insulated, one from the other, in actual operation. If the operation code signifies an
arithmetic operation, and if the specified operands contain any of the characters of a
selected subset of such characters, those characters are converted (outside the main flow
of instructions) and expanded (prior to actual arithmetic operation) to a form that the
arithmetic registers of the computer system executing the program can handle. Results
of the arithmetic operations are then converted to include a character of the selected
subset before storage or other use.

In particular, a character of a selected subset whose second attribute is relevant,
is hereafter called a "Bemer digit" (or "Bigit" for short) when used for other than
graphic or control purposes. A Bigit can be considered as being composed of a 4-bit
hi zone and a 4-bit lo zone, with the 4 lo zone bits representing, or meaning, for
example, the numbers 0-9, and with the 4 hi zone bits representing, or meaning,
something auxiliary to the meaning of the lo zone bits. In particular, the prefixes, or
hi zone bits, of a Bigit in the high order, or decade, position of a year value may stand
for millennium-century values. Thus one Bigit, a Y-Bigit, can by itself represent 3
digits M, C and D while the digit character of lower order, normally to the right of the
Bigit, represents the year of the decade Y. Thus, with a Y-Bigit occupying the decade
position of an operand defining M, C, and D of a year value, two characters -one a Y-
Bigit and the second a digit character whose original and sole attribute is that of a digit,
can represent a 4-digit year value in an object program while occupying only two bytes
as before.

Moreover, a Bigit in the units position of a number field (an I-Bigit) will

indicate, by its hi zone bits, that the number is a year increment value that will be

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

- WO 98/33118 PCT/US98/01756

added to, or subtracted from, year values. Such year increment values will seldom be
more than two digits in length, and this property is also of use.

The import of this invention is evident by noting that almost all existing object
code programs work on year value fields of only two digit characters, and the insertion
of two more to make 4-digit year values would throw all data referencing and
instruction jumps out of alignment and destroy the working of a program by increasing
to four the number of bytes needed to define 4-digit year values.

This invention provides a method whereby year and year increment values can
be marked as such during their input phase, utilizing the millennium and century digit
characters of 4-digit year values to select the marking of the decade digit character into
a Y-Bigit, or the marking of the units digit character of a number field, known to be
a year increment value, into a I-Bigit. These markings, i.e., different hi zone bits of
a character, because they are not standard for digit characters, identify such entry data
as belonging to that particular class consisting ONLY of year and year increment
values.

Without any other part of this invention, such marking would still be an
effective diagnostic tool to pinpoint other year values in memory, and would be an aid
to other methods of compensating for the imminence of the use of 4-digit year values
with explicitly different millennium and century values. This property of alternate
attributes for selected subsets of characters of a coded character set adheres to such
characters much as a dye would. It is the only instance where internal data of an
application program is self-identifying as to type, or meaning, when taken in
consideration with instructions that wiil apply to them. This property is unique.

Moreover, this "dye-like" property of selected subsets of characters of the coded
character set of a program can be passed on to other data currently stored in the
memory of a computer system without such attributes, when it is found that, in actual
arithmetic operations of an extremely limited subset of such operations, such digit
characters also (by the rules of "year arithmetic") must be year or year increment
values. These data may then also be marked similarly, thus in the process of actual
operations identifying them also as such, just as though they were input via the new
system.

Arithmetic operations by currently available computer systems may not now be

applied to operands that contain Bigits. Arithmetic registers of existing computer

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

‘WO 98/33118 PCT/US98/01756

systems are probably all incapable of processing operands that include a Bigit. The
presence of a Bigit would cause a fault and/or a halt in operations. Indeed this is a
beneficial property, as such faults and/or halts would expose any overlooked
conversions.

Thus replacement arithmetic processes must be built. These have been devised,
they are constructed by a text processing program that automatically examines all object
code of an application program to find candidate instructions, replacing each such
instruction by a jump-return instruction to a replacement subroutine called a "ReSub".
Further, a ReSub can be deleted to restore that part of the object program to its initial
state if, after some elapsed time period, no action involving a Bigit has occurred in it.
Lack of action would mean that the operands involved, although meeting enough
criteria to be suspected as "year arithmetic" operands, were not actually such.

For computer systems where decimal arithmetic is executed upon operands in
the packed decimal and sign form, the hi zone of the Y-Bigit, hereafter a B-zone, is
moved to the sign position of the operand. Similar restrictions and solutions by ReSubs
apply.

All characters of selected characters sets created under this invention have been
carefully devised so that normal sorting, ordering, and collating processes will work
correctly, exactly as if the data had been in full 4-digit character form.

Methods are given to convert Y-Bigits to their full or expanded form for all
methods of output, visual, printed, and intersystem transfer.

An alternate method for displaying Bigits to identify their second attribute
without expansion is to provide auxiliary graphic properties corresponding to the hi
zone bits of a Y-Bigit. A graphic property, €.g., is an underline of the decade digit
where the hi zone bits indicate a millennium-century value of 19, and an overline of
the decade digit when hi zone bits indicate a millennium-century value of 20.

To provide coexistence with programs where year values are given as four digit
characters of the character set of the program, year data of this form can be marked,
or identified, by converting the millennium digit character to a Bigit. These markings,
utilized or ignored, would still be vital to intra- (and inter-) system working.

It is therefore an object of this invention to provide a subset of characters of the
coded character set of such systems with a second attribute, which second attribute

becomes relevant or is used under certain predetermined circumstances.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

‘WO 98/33118 PCT/US98/01756

Another object of this invention is to provide a method, for solving the
millennium problem in application programs of digital computer systems, that can be
implemented quite quickly and easily so that this problem can be solved well before
the year 2000 AD.

Description of the Preferred Embodiment

The two major coded character sets in broad usage by the computer industry are
ASCII (American Standard Code for Information Interchange), a worldwide standard
that is also the internal code of personal computers, and EBCDIC (Extended Binary
Coded Decimal Interchange Code), a code proprietary to the IBM Corporation, which
is the internal code of IBM mainframe computers and of IBM-compatible computers
manufactured by others.

Both sets are constructed of characters defined by 8 bits each, each octet (byte)
being divisible into two zones, the zone including the lower order four bits being the
"lo zone" or "lo zone bits", with the higher order four bits being the "hi zone", or the
"hi zone bits" of the byte. The 8 bits of a byte provide 256 distinct, or separate,
combinations or characters or attributes. The contents of both sets are usually
displayed as a 16 by 16 matrix, with the vertical dimension being the 16 combinations
of the lo zone bits, and the horizontal dimension being the 16 combinations of the hi

zone bits. Such a matrix is set forth in Table 1 below:

b oo0oo000O0OO0O1II1I1T11111
o0 oo00111100001111
00110011001 10011
010101010101 0101
0 00O 0 0
0 001 1 1
0 010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1 000 8 8
1001 9)
1010
1011 ASCII EBCDIC
1100
1101
1110
1111

Table 1. Standard Assignment for ASCII and EBCDIC Digits

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

Both ASCII and EBCDIC include representation for the decimal digits 0 through
9, where, in both sets, the lo zone bits have the binary value of a digit; thus lo zone
bits 1001 for 9, and lo zone bits 0100 for 4. The hi zone bits of a byte for a digit have
different values, being 0011 for ASCII and 1111 for EBCDIC. Thus the selection of
value of the hi zone bits for decimal digits was arbitrary among the 16 possible hi zone
values. In practice, columns 0 and 1 are reserved for characters having control

meanings, leaving 14 columns for characters with graphic symbol meanings.

In an early version of ASCII the byte size was 7, not 8. This allowed most
punctuation, arithmetic operators and two forms, upper and lower case, of the Latin
alphabet. For any computers operating with such a 7-bit byte, only columns 3, 5, and
8 may be reassigned.

In ASCII and EBCDIC each and every character is assigned to one position in
its matrix, and each of the 256 possible characters of a code set has a unique attribute
value, or meaning. This invention departs from this practice, in that a character,
position, or byte, may be assigned a second, or alternative, attribute or meaning, such
as three digits, for example. Thus this invention teaches assigning alternative attributes
or meanings to selected subsets or groups of 10 characters. Characters of each such
group retain their original meanings except when used to represent the year portion of
a date or a year increment. These six groups are found in the fifth through tenth
columns of the matrix of Table 2 on page 14, the hi zone bits of which are 0100, 0101,
0110, 0111, 1000 and 1001 respectively, and the lo zone bits of which are those of the
binary equivalents for each of the digits 0-9.

Elaborating the "Bemer digit" (for economy called a "Bigit", not to be confused
with "Bit", as derived from "Binary digit"), a Bigit is any 7- or more-bit character used
for decimal arithmetic (though other uses arisé), of which the lo zone bits specify 0-9,
and the hi zone has any bit combination other than those of the standard digit
characters of ASCII and EBCDIC.

In ASCII, most but not all of the coded combinations for the hi zones of 0100,
0101, 0110, and 0111 have the assigned primary class attribute of "alphabet"
components, having corresponding graphic symbols for the letters.

Although often seen placed in the higher portion of the chart, other alphabets
such as the Cyrillic alphabet could also be assigned in those same columns in place of

the Roman alphabet.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

The principle of this existing method of font change is that it is done by explicit
and overt nomination, in time, by submitting to some recognizer the escape sequence
registered to Cyrillic alphabet. Thus time is the governing factor. The question would
be "Is it now before or after the time that the escape sequence for Cyrillic put that
alphabet into force?" This is how laser printers change fonts.

The Bigit principle differs. The alternation of attribute meaning is switched
implicitly, not explicitly. That is, there is no overt switching action. Rather the switch
is made instantly, at any time, by virtue of the distinctions in usage made by the
instruction operators and the operand characteristics.

E.g., if addition is applied to an operand which is a group of characters, of
which one might usually be considered a lower case "q", it is recognized that one does
not (except in cipher puzzles) add a letter to get a numeric answer, and therefore the
"q" could well be a Bigit representing the decade of the 18101's.

However, if the rules of present operation state that Bigits are restricted to
representation of multidigit years or year increments, then an operand of more than two
digits will not be permitted this implicit switch, and the customary faults will occur.

And, if that "q" existed in the rightmost position of the operand, it wouldn't
even be the 1810's decade. A fault would occur instead, for the only Bigits permitted
to act as such in the units position are those indicating a year increment, which are
limited to [-Bigits with hi zone of 0100 (whose primary ASCII attribute is being the
"at" symbol and the upper case letters "A" through "I").

For the millennium-solving aspect of this invention there are two classes of
Bigits -- "MCD" Bigits, which must occur only in the tens (decade) position of a year
value (and of which 50 are assigned so far), and "Increment" Bigits, which must occur
only in the units position of a year increment value (of which 10 are assigned).

The hi zone of a Bigit will be hereafter called a "B-zone" when part of a full

byte, and a "B-sign" when put into the sign position of a packed decimal number.

Understanding what follows depends upon the agreed notation:

M = 8-bit character for a millennium digit

C = 8-bit character for a century of millennium digit
D = 8-bit character for a decade of century digit

Y = 8-bit character for a year of decade digit

B = 8-bit Bigit character for either decade or year

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

'WO 98/33118 PCT/US98/01756

il

d 4-bit group for decade of century

y 4-bit group for year of decade

S

4-bit B-sign in the packed decimal sign position
Revised entry control routines provide the indication of millennium and century

(MC) of 2-digit calendar year values by replacing the hi zone of D with:

0101 (years 16DY) 0111 (years 18DY) 1001 (years 20DY)

0110 (years 17DY) 1000 (years 19DY)
making D into a Y-Bigit. This choice permits fields with year values to be ordered
(collated) by direct binary comparison, and altered to four-digit-character form only
when subject to a decimal arithmetic operation, or upon output display or data transfer.
Choices for the 60 Bigits show as blocks in Table 2 following, the Increment Bigits
having the zone 0100, the MCD Bigits having zones 0101 through 1011:

coo0oo000O0OO0O1I1I111111
0c0o00111100001111
0011001100110011
0101010101010101
000O OREIERNEER 0
0001 1A ERANN 1
0010 2EENENE 2
6011 B BN BN N 3
0100 ‘S N N BN 4
0101 SEERNNN 5
0110 cinnnnmn 6
0111 7aEnnnn 7
10060 sanEnnn 8
1001 SoENERENRN 9
1010
1011 ASCII EBCDIC
1100
1101
1110
1111

Table 2. ASCII and EBCDIC Digits and Millennium-Century Bigits

The block characters in Table 2 indicate the domain of Bigits -- the positions
or characters preempted for arithmetic and data output use only, to which this method
applies.

Year increment values are given the extra indication of use as a year element
by a hi zone value of 0100 in the least significant 8-bit character, which converts it also
to a Bigit used in year increments, or an [-Bigit. One of the six hi zone values 0100
to 1001 will all occupy the sign position when an operand is in the B-sign version of

packed decimal form, hereinafter called "modified packed decimal form". Thus the

10

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

above choices were made deliberately so that the adjoinder of all yields a unique set,
members of which are, moreover, all illegal sign values for all systems using IBM-type
packed decimal arithmetic.

Much data is entered from dumb terminals or personal computers, either in
response to queries or from fields of a displayed form. It is common practice to
control the content, type, or set of data allowed to be entered. Such control may be
exercised by microprogram (dumb terminals), by personal computer programs, or by
programs residing in the host computer that will use the data. Entry data may also
come from special readers, but even these may be modified similarly. E.g., a credit
card reader does not read the year as embossed on the plastic, but rather the magnetic
strip, for which recording and reading routines may be modified without difficulty.
Thus intelligent control of data entry is an established fact, in either the input device
itself, or in the computer receiving data from the input device. The screening actions
are specific to each of the input fields.

The pattern of entry control is such that, if the entered data fails to meet defined
criteria, reentry of the data is asked. Examples of such control are:

0 An entry field must be filled with digits only. if any characters other
than digits are entered, they are refused, and the entry offer is made again.

0 A name field may consist of only alphabetic characters and a subset of
special characters. Entering a dollar sign, for example, would cause rejection and
require reentry.

0 An entry field is limited to a known set of values. Entry of a value not
known to the entry device is rejected.

One can add to or alter existing controls for screening input of year elements,
both calendar and increments, to make them in.clude a Bigit. However, Bigits may not
work as is in arithmetic operations, but may be converted to data forms the arithmetic
registers of the computer can handle, via subroutines, microcoding, or
specially-designed chips. So altered, they may be stored in computer memory or
auxiliary storage devices. However, in altered form, they will be used only in decimal
arithmetic or some methods of display.

This invention depends upon:

0 Having all new input of year values arrive in full 4-digit form, such

values being converted to a Y-Bigit in the tens position prior to use by the object

11

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

- WO 98/33118 PCT/US98/01756

program (the primary guarantee for the operation of existing object code without
disruption).

0 Having all new input of year increment values arrive in full form, being
converted to I-Bigit form in the units position to indicate that it is a year increment
value.

0 Modifying the object program so that it can operate with year and year
increment values that include Bigits or B-signs in the modified packed decimal format.

It follows that entry fields for data elements "year" and "year increment” may
have their controls altered. Types of control for implicit calendar year could be:

1) The entry field is always for a 20th century date. The entry field says
s0. or else a 21st century date.

2) The "19" or "20" may be defined automatically by the internal clock, or
picked up automatically from some fixed prestored field.

Types of control for implicit calendar year with a barely modifiable form are:

3) Abbreviate existing labels in that line to gain space.

4) Augment the operator's instructions to say "19xx assumed -- see
supervisor for 20xx dates".

Types of control for explicit calendar year entry, modifying the form by the
enlargement of year entry fields, are:

5) The entry field contains a fixed display of "19" or "20".

6) Replicate the entry field in a second (adjacent) position.

The original entry field has a fixed display of "19", the replica a fixed display of "2011.
The entry person selects one or the other field to enter the rest of the date. Entry in
both is rejected.

7 Add two more positions for ceﬁtury. The entry routine can accept only
"19" or "20" in those positions. This is the preferred method for this invention.

8) Add two more positions for century. The entry routine will accept any
values from "16" through "20" for these positions, and will pass those values through
to the computer intact for programs (new or old) successfully adapted to operating upon

4-digit year forms.

12

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

"WO 98/33118

PCT/US98/01756

Permissible Arithmetic Operations Upon Year Values

In Table 3 are shown all combinations of arithmetic that may be performed
upon calendar year and year increment values, to show how, in every case, already
stored data may be identified as similar values, by virtue of single arithmetic interaction
with another operand already thus identified. Every operand prefixed "MCD" inciudes

a MCD or Y-Bigit carrying the millennium-century indicator.

Case | Operand A OP | Operand B Yielding

1 MCD year - MCD year year increment
2 MCD year - year " "

3 year - MCD year " "

4 year - year " "

5 MCD year +- | MCD year increment | year

6 MCD vyear +- year increment "

7 year +- | MCD year increment "

8 year +- year increment "

9 MCD year increment | + MCD year "

10 .MCD year increment | + year "

11 year increment | + MCD year "

12 year increment | + year "

13 MCD year increment | +- | MCD year increment | year increment
14 MCD year increment | +- year increment " "
15 year increment | +- | MCD year increment " "
16 year increment | +- year increment " "

Table 3. All Possible Combinations of Year Arithmetic

All cases which appear indeterminate, without "MCD", can be made determinant
whenever "MCD" forms a Bigit during input. But assume that Operand B is already
stored and lacks an MCD indicator. Then if Operand A is also already stored and also
lacks an MCD indicator, little salvage is possible; but one must assume that any
calculation to be made between them has already occurred.

However, doing so requires that all arithmetic operations where one of the
operands consists of two bytes, one byte of which is a Y-Bigit, will have to be
modified to produce the proper result operand in the proper format for storage. As set
forth below, the result operand is compressed to two bytes for storage in memory.
Similarly any data operation that outputs two bytes representing two decimal digits will

have to be checked to determine if one of the bytes is a Y-Bigit. If it is, the data

13

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

output will be converted to 4 decimal digits representing MCDY (for a Y-Bigit in the
tens position) or a year increment value (for a I-Bigit in the units position).

With respect to arithmetic operations, those of interest are only decimal
arithmetic operations in which one of the operands consists of two digits, sometimes
referred to as decimal digits. It must be noted that not all types of decimal arithmetic
operations have any likelihood of being used to produce a result operand that is the
year portion of a date. Such decimal arithmetic operations involving two operands, at
least one of which must consist of two decimal digits, are best found by offline
computerized search of 'the object code program to be modified, via a text processing
program. Clues to finding such operations are the operation codes and operand length
indicators of each such computer's instruction repertoire.

With respect to each of these decimal arithmetic operations, a subroutine is
installed which temporarily extracts and holds the successive instructions required to
perform the arithmetic operation and replaces the extracted instructions with a jump-
return (Note: also termed "branch" and "transfer" in many computers) command to a
starting address of the subroutine. Beginning at this address is a new sequence to fetch
the operands defined by their addresses in the original command. Both operands are
checked by a checking sequence to see if either or both includes a Bigit. If none is
found, then a jump to a portion of the sequence which is identical to the original
command is executed. After execution, the jump's return command is executed so that
the object program is back where it would have been without the interrupt. If one or
both operands include a Bigit, an unpacking program is executed to convert each
operand, of which one byte is a Bigit and the other that of the coded character set of
the program for a decimal digit, to a format acceptable for decimal arithmetic
operations. .

With respect to programs using ASCII coded characters, this would be four
bytes -- one each for M, C, D, and Y. The specified arithmetic operation is then
performed on the operands, at least one of which is an unpacked operand of four digit
characters. if the result is four decimal digit characters, the most significant digit of
which has a value of 1 or 2, and the next most significant digit has a value of 9 or 0,
together defining "19" and "20", the four-digit result operand is operated upon by a

packing program that converts the result to a two-byte result, one of which is a Y-Bigit.

14

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

- WO 98/33118 PCT/US98/01756

The packed result is then stored where the original result would have been stored, and
the jump's return is executed.

The subroutine includes a use field which initially has a value denoting "no
use". If the checking sequence detects that one of the two bytes of an operand of the
arithmetic operation is a Bigit, the value of the use field is changed to "use". Once the
use field has been changed to indicate that a Bigit has been detected, the test for a Bigit
in one of the operands is not invoked because it is known that one will be present.
Preparing for Operation

There are, in every make of computer, operation codes for plain decimal
arithmetic. Such codes may be found by a text search of object programs with
products such as "SuperZap", an IBM program, and "TEX", a Bull RN program, e.g.
This search is part of a process which scans and modifies the object program so that
it can operate freely upon both year increments and calendar year values from 1600
through 2099 with NO object program modification other than those replacements
automatically created by this program, called here "YPP", or "Year 2000 Preparation
Program". Its functions are to:

0 Find, by examining the object program with a program written in the text
processing language, all operations that could possibly be operations for year arithmetic,
according to the limiting rules.

0 Create a Replacement Subroutine ("ReSub") for each of those operations,
invoked by jump-return commands in situ.

0 Thus modify the object code.

YPP operates more specifically in the following manner:

1) In offline operation, every instruction word in every object program
module is examined for an operation code for. decimal add or subtract or comparison,
or for decimal packing and unpacking, in the instruction repertoire of that particular
computer.

2) As one is found, other indicators of being an operation upon year values
are checked (e.g. operand lengths of I to 2 digits only, in the correct positions) of the
word; i.e., 2 digits for calendar years, 1-2 digits for year increments). Else the process
continues. (Note: The possibility of 3-digit year increments can be provided for in the
future, but it is a certainty that they do not exist in present programs, else these would

have failed at such a point.)

15

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

‘WO 98/33118 PCT/US98/01756

3) If found with a probable match, the module number or other .D. and the
ordinal number of the instruction word in the module are stored as a table entry for
reference or later restoration.

4) If the opcode is for 4-bit packed decimal arithmetic, special provision
must be made, in contrast to the zoned form.

5) Computer type and the opcodes themselves define the number of
successive instruction words used as needed to specify arithmetic operation (if more
than one).

6) YPP extracts and holds the(se) operation word(s), replacing them in situ
with a jump-return command to the starting address for the ReSub that YPP will create
to act in their stead (because the hardware registers will probably refuse acceptance of
Bigits in operands, although the possible design of new registers to accept Bigits
directly is not ruled out).

7 YPP builds a new program sequence, defined previously as a
"replacement subroutine” or "ReSub", at this starting address to represent that decimal

arithmetic operation, and adds an entry to the ReSub table, which might look like:

RS # | Process Address of | Jump word | Op A | OpB | Test
Module ID | first word is nth word yes use
1
2
8) The replaced instruction word(s) are incorporated somewhere in the

ReSub, both as components of the new instructions, and also in intact form for direct
execution and return if the operation turns out to not concern year values.

9 Two use fields are provided, either in that ReSub itself, or in the table
of entry labels. They initially represent "no use" for each operand. Other decisions in
each ReSub may have their own use fields, to avoid making the same decision again.

10) Where feasible, a similar method may be applied to a search of the
source code, assuming compilers can be modified to make a similar treatment of year

values expressed via Bigits.

16

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

" WO 98/33118 PCT/US98/01756

In Operation
11) The program sequence of the ReSub begins by fetching the operands as

defined by their addresses in the original command.

12) If either use field is marked "no use", that operand is examined for a
Bigit via a subroutine. If one is found, that use field is marked "use", identifying that
ReSub permanently as one involving a year value operation.

13) If no Bigits are found in the actual data, the replaced original
command(s), saved somewhere in the ReSub, are executed. Then the jump's return is
obeyed. The object program is back where it would have been without the jump
interrupt. At user option, step 23) may be invoked here, with caution!

14) If a use field of an operand is marked "use", a conversion program is run
for that operand, expanding calendar year values from 2 to 4 digits, and/or removing
the special identifier from year increments. The test for Bigits, including B-signs, is
not invoked because it is known they will be present.

15) If only one operand has a Bigit (or if, in modified packed decimal form,
only one has a B-sign), the other operand is treated as either a year increment or a year
value, according to the rules given. The appropriate use field is marked "use". When
that other operand is a year value it is restored in memory in its new Y-Bigit or B-sign
form. Alternatively, year increment values must not be altered to I-Bigit form; they
might be used elsewhere as constants.

16) The arithmetic is then performed on the expanded operands.

17) If the result is a year (i.e., 4 digits, beginning "16" to "20"), that result
goes to, and is returned from, a conversion program that changes it to Y-Bigit form.
Then it may be stored. _

18) If the result is a year increment (i.e., obtained only by subtracting one
calendar year value from another), that result goes to, and is returned from, a
conversion program that changes it to 1-Bigit form. Then it may be stored.

19) The result is stored where the original result was to have been stored,
and the jump's return executed to the main program.

20) While building these new program sequences (ReSubs), YPP keeps a
count of them, plus other data found useful to maintenance (in addition to the use

fields).

17

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/33118 PCT/US98/01756

21) This body of new code (the ReSub routines), because it will contain the
replaced instructions themselves, will not be subjected to its own process. As this
statement may not be obvious, consider that such action could be recursive ad

infinitum.

Post Operation

22) Testing of these replacement routines, on dummy or live data or both,
is mandatory.

23) After some arbitrarily chosen time of operation via this method, say 6
months, the use fields in each ReSub may be examined. If both are still marked "no
use", it may be concluded that the original arithmetic does not operate upon year fields,
and the YPP program may be reinvoked to restore the original inline operation, at the
same time deleting or inactivating the associated ReSub and its record in the tables.

24) The remaining locations that jump to any ReSub programs are then
accessible in the object program, and their location known. Now identified, whereas
they were formerly invisible as to purpose in the object code, some patching may be
made as desired.

Limiting the Number of ReSubs

How much the YPP process adds to program size will depend upon how many
such opcodes are found (but see 23 supra), and upon clever usage in parameterizing
generation of the new program sequences, possibly via indirect addressing. Indeed, this
can be very clever, for onty ONE SUCH YPP need be written for each computer type.
Even then the principle or algorithm remains unchanged. Moreover, some intelligent
design may lead to doing it all by tables!

These new ReSubs can be stored in n;emory known to be spare, or else in a
special memory fabricated for the purpose.

Steps 1) and 2) gave general limitations on what operations and what operand
sizes limit qualification for a ReSub. More explicit and definitive rules are now given,

because programs must depend on explicit instructions, not generalities.

18

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/33118 PCT/US98/01756

The following tables (4a, 4b, 4c. and 4d) summarize permissible, impermissible,

and dangerous arithmetic operations between:

1) C -- unmarked constants

2) I -- marked year increments, and

3) YY -- unmarked calendar year values

4) BY -- marked calendar year values

5 YYYY -- unmarked 4-digit calendar year values
6) BYYY -- marked 4-digit calendar year values

The tables were made by taking all possible combinations of these six types,
combinations of being first or second operand, combinations of being input or already
in memory (store), and for each of the four arithmetic operators. They were built
exhaustively first, then reduced by the commutative property of add and multiply, and
reduced further by eliminating duplicate and illegal conditions. The tables may be
reverified by repeating the process of building the exhaustive table and reducing it.
Containing all the rules for building replacement subroutines (ReSubs), they are
grouped by arithmetic operation, and the legal operations shown are the basis and
justification for Table 3, page 18.

Limits to Decimal Arithmetic upon Year Values
In the tables, the case tag signifies:
ii both operands as input;
first operand as input, the second is in memory;

first operand in memory, the second as input;

" ss" both operands as already in memory;
" " " -s" first operand as either input or in memory;
" i-" " s-" second operand as either input or in memory;

-~ both operands as either input or in memory.

Case Notes
la -- C - C = C 1
2a -- C - I = I 12
b -- I - C = I 2
2b -~ | - I = I 2
Ic i- YY - C = YY 6.4
Ic 5~ YY - C = YY 3

19

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

45

WO 98/33118 PCT/US98/01756
Case Notes
1d - BY - C = BY 4

1d -s BY - C = BY

le ii YYYY - C = YYYY 6.4
le is YYYY - C YYYY 6
1f -i BYYY - C BYYY 4
1f -s BYYY - C BYYY

2f - BYYY - I = BYYY

2c i- YY - I BY 6
2c S- YY - I = BY 7
2d - BY - I = BY

2e i- YYYY - I = YYYY 6
2e s- YYYY - I = BYYY 9
3a - C - YY NG 14
3b - I - YY = NG 14
4a - C - BY = NG 14
4b - I - BY = NG 14
5a -- C - YYYY = NG 14
5b - I - YYYY NG 14
6a - C - BYYY = NG 14
6b -- I - BYYY = NG 14
3c - YY - YY = nn 3
3d -i BY - YY = nnnn 6
3d -S BY - YY = nnnn 7
3e ii YYYY - YY = nnnn 6
3e is YYYY - YY = nnnn 6,7
3e S- YYYY - YY = nnnn 9
3f -i BYYY - YY = nnnn 6
3f -S BYYY - YY = nnnn 7
4f -~ BYYY - BY = nnnn

4c i- YY - BY = nnnn 6
4c S- YY - BY = nnnn 7
4d - BY - BY nnnn

4e i- YYYY - BY = nnnn 6
4e S- YYYY - BY = nnnn 9
5c i- YY - YYYY = nnnn 6
5¢ -S YY - YYYY = nnnn 9
5d -i BY - YYYY = nnnn 6
5d -S BY - YYYY = nnnn 9
Se - YYYY - YYYY nnnn 9
5f i- BYYY - YYYY = nnnn 6
5f -$ BYYY - YYYY = nnnn 9
6¢ i- YY - BYYY = nnnn 6
6¢ s- YY - BYYY = nnnn 7
6d -- BY - BYYY nnnn

be i- YYYY - BYYY = nnnn 6
6e s~ YYYY - BYYY nnnn 9
6f -- BYYY - BYYY = nnnn

Table 4a: Subtraction Operations

20

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

45

WO 98/33118 PCT/US98/01756

Case Notes
la - C + C C 1
le - YYYY + C = nnnn 1
Sa - C + YYYY = nnnn 1
b - I + C = I 2
2a - C + I = I 2
b - I + I = I 2
lc - YY + C = YY 3
d i BY + C = BY 4
Id -s BY + C = BY
1f i BYYY + C = BYYY or BY 4,5
If -s | BYYY + C = BYYY or BY 5
2 i- YY + | = BY 6
2 s YY + I = BY 7
2d - BY + | = BY
2¢ i- | YYYY + I = BYYY or BY 6,5
2¢ s | YYYY + I = BYYY 9.8
2f - | BYYY + | = BYYY or BY 5
3a - C + YY = YY 3
3b i I + YY = BY 6
3b - 1 + YY = BY 7
4a i- C + BY = BY 4
4a S- C + BY = BY
4b - I + BY = BY
5b i I + YYYY = BY 6
5b - I + YYYY = BY 9
6a - C + BYYY = BYYY or BY 45
6a s- C + BYYY = BYYY or BY 5
6b - I + BYYY = BYYY or BY 5
3¢ -- YY + YY = NG 10
3d - BY + YY = NG 10
3¢ - | YYYY + YY = NG 10
3f -~ | BYYY + YY = NG 10
4 - YY + BY = NG 10
4d - BY + BY = NG 10
de - | YYYY + BY = NG 10
4 - | BYYY + BY = NG 10
5c - YY + YYYY = NG 10
5 - BY + YYYY = NG 10
5¢ - | YYYY + YYYY = NG 10
5f - | BYYY + YYYY = NG 10
6d - BY + BYYY = NG 10
6e - | YYYY + BYYY = NG 10
66 - | BYYY + BYYY = NG 10

Table 4b: Addition Operations

21

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

WO 98/33118 PCT/US98/01756

Case Notes
la - C * C = C 1
2a - C * I = [2
1b - I * C = I 2
2b - | * I = NG
lc - YY * C = NG T
d - BY * C = NG 1
le - YYYY * C NG 11
If - BYYY * C = NG 11
2c - YY * I NG 11
2d - BY * | = NG 11
2e - YYYY * I NG 11
2f - BYYY * I NG i1
3a - C * YY NG 11
3b -- | * YY NG 11
3c -- YY * YY NG 11
3d - BY * YY NG 11
3e -- YYYY * YY NG 11
3f - BYYY * YY NG 11
4a - C * BY NG 11
4b - I * BY = NG 11
4c - YY * BY NG 11
4d - BY * BY = NG 11
4e - YYYY * BY = NG 11
4f - BYYY * BY NG 11
S5a - C * YYYY = NG i1
5b - I * YYYY = NG 11
5¢c - YY * YYYY = NG 11
5d - BY * YYYY NG 11
Se - BYYY * YYYY NG 11
5f -- BYYY * YYYY NG 11
6a -- C * BYYY NG 11
6b - I * BYYY NG 11
6¢ - YY * BYYY NG 11
6¢c - YY * BYYY NG 11
6d - BY * BYYY = NG 11
6e - BY * BYYY ‘NG 11
6f - BYYY * BYYY = NG 11

Table 4c: Multiplication Operations

SUBSTITUTE SHEET (RULE 26)

22

10

15

20

25

30

35

40

45

- WO 98/33118

PCT/US98/01756

Case Notes
la -- C / C = C 1
1b - I / C = I 2
Ic - YY / C = NG 15
1d - BY / C = NG 15
le - YYYY / C = NG 15
If - BYYY / C = NG 15
2a - C / I = NG 16
2b - I / I = NG 16
2c - YY / I = NG 16
2d - BY / I = NG 16
2e -- YYYY / 1 = NG 16
2f -- BYYY / 1 = NG 16
3a - C / YY = NG 16
3b - I / YY = NG 16
3c - YY / YY = NG 16
3d - BY / YY = NG 16
Je -- YYYY / YY = NG 16
3f -- BYYY / YY = NG 16
4a - C / BY = NG 16
4b -- 1 / BY = NG 16
4c - YY / BY = NG 16
4d - BY / BY = NG 16
4e - YYYY / BY = NG 16
4f -- BYYY / BY = NG 16
Sa - C /! YYYY = NG 16
5b - I !/ YYYY = NG 16
5¢ - YY /I YYYY = NG 16
5d - BY /I YYYY = NG 16
Se - YYYY /I YYYY = NG 16
5f - BYYY /! YYYY = NG 16
6a - C / BYYY = NG 16
6b -- I / BYYY = NG 16
6¢ -- YY / BYYY = NG 16
6d -- BY / BYYY = NG 16
6e -- YYYY / BYYY = NG 16
6f - BYYY / BYYY = NG 16

Table 4d: Division Operations

Notes for Tables of Limits to Decimal Arithmetic

Standard arithmetic, having nothing to do with year values.

Year increment values are subject to arithmetic operations, with obvious
exceptions.

If in existing programs, over- or underflow may occur, often ignored,

and a large source of present difficulties. Failure 1s likely, so it must be

23

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118

10.
11.
12.
13.

14.
15.

16.
17.

PCT/US98/01756

hoped that such operations have already occurred. Convert any value
when it is determined.

Convert "C" at entry to "I" as defined by the other operand. But not in
memory; C may have other uses as a constant.

Can make 2-B-digit or 4-B-digit values at option.

Convert "YY"/"YYYY" at entry to "BY"/"BYYY" if to be stored.
Convert "YY"/"YYYY" in memory to "BY". Defined as a calendar year
by the other operand. May use "19" if YY>50, else "20".

Convert "YYYY" to "BYYY" in memory.

Probably means 4-digit-year working. Convert "YYYY" already in
memory to "BYYY" only, to not destroy data addressing.

Two years are never added together; it is meaningless.

Calendar year values are never multiplied by ANYTHING!

Change sign and/or value of I.

Value of the result is meaningless, but its sign will tell which year is
earlier or later.

Can only subtract years from other years.

Years are never divided by anything, even though "year + ¢" is divided
in Julian day calculations.

Nothing may be divided by any year value or year increment.

In general, subtraction of year values may also have been programmed
while adjoined to month and day values. But the operand lengths

required will not meet the criteria.

Packed Decimal and the Millennium Problem

A very common line of 8-bit byte computer systems, i.e., IBM mainframe

computers, has two forms of decimal numbers -- 1) zoned (EBCDIC form), and 2)

packed decimal (PD). Decimal arithmetic is always done in PD format. In these

systems, PD arithmetic operations work on numbers from 1 to 31 digits in length. The

sign of the number resides in the rightmost quartet; i.e., the less significant part of the

rightmost byte. Thus such numbers are constrained to odd integer lengths; for numbers

of an even number of digits, the leftmost (most significant) quartet is preceded by a

zero fill.

24

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/33118 PCT/US98/01756

The digits taking but 10 of the 16 available combinations. the other 6 are illegal
for decimal operations. The converse is true for the sign position. The high 6
positions are reserved for sign representation -- 4 combinations for plus and 2 for

minus. The other 10 are illegal, shown in Table 5 following.

Digit Quartets Sign Quartets
bits digits bits usual B-signs
0000 0 0000 illegal unused
0001 1 0001 " "
0010 2 0010 " "
0011 3 0011 " "
0100 4 0100 " (year increment)
0101 5 0101 " (16xx)
0110 6 0110 " (17xx)
0111 7 0111 " (18xx)
1000 8 1000 " (19xx)
1001 9 1001 " (20xx)
1010 illegal 1010 plus unused
“1011 " 1011 minus "
1100 " 1011 pius "
1101 " 1011 minus "
1110 " 1011 plus "
1111 " 1011 plus "

Table 5: Packed Decimal Elements

As packing does not check for valid digit and sign codes, values conditioned at
entry may be assigned an appropriate Bemer sign, or B-sign, upon entry, from the
illegal group. When fetching them for the ReSub, the sign may be extracted for its
purpose and replaced by a + sign for actual register arithmetic to occur.

In choosing the specific quartets to represent millennium and century it is
tempting at first to use the two standard minus signs, knowing that a year may never
have a negative value. But a much better choice is to use the same groups as for

Bigits, which handle five centuries, not just two, and a year increment indicator, too.

Comparing Normal and B-form Packed Decimal representations

Normal Packed Decimal uses 3 octets to represent a 4-digit year (rows a,b); 2
octets to represent a 2-digit year (rows c¢,d). B-form Packed Decimal uses 2 octets to

represent a 4-digit year (rows e,f) (Table 6).

25

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

- WO 98/33118 PCT/US98/01756

octet octet octet year case

fill 1 9 9 8 + 1998 a
0000 0001 1001 1001 1000 8558

fill 2 0 0 3 + 2003 b
0000 0010 0000 0000 0011 SSSS

fill 9 8 + 98 c
0000 1001 1000 SSSS

fill 0 3 + 03 d
0000 0000 0011 SSSS

fill 9 8 MC 1998 e indicates 19xx
0000 1001 1000 1000

fill 0 3 MC 2003 f indicates 20xx
0000 1001 1000 1001

Table 6: Normal vs. B-Sign Modified Packed Decimal

"ssss" can be 1010, 1100, 1110, or 1111. Multiple sign forms are tolerable in usual
packed decimal format; nothing else can be done with them. Even hardware
comparison accepts them as a single sign.

All year calculations being done in context, by a method outside normal rules,
only one quartet is used for each millennium-century (MC). Note that if the MC
quartet replaces the fill quartet, and is itself set to 0, decimal arithmetic comparison
works directly.

Here also, the direct hardware compare operation will not work. A subroutine
is required. The question is when to apply it. Common combinations of entry,

validation, and conversion from zoned to Packed Decimal form are shown in Table 7.

Enter | Vali- | to To Vali- to
Case| via dated | PD | host dated PD | Stored | Use | to Pd | Use
2 PC PC - | zone - ost PD use - -
3 PC - - | zoned | host - zoned - host use
4 PC - - | zoned | host host PD use - -
5 PC PC PC PD - - PD use - -
11 DT - - | zoned | host - zoned - host use
12 DT - - | zoned | host host PD use - -
Table 7: Common Conversion Steps PC = Personal Computer
PD = Packed Decimal
DT = Dumb Terminal
26

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

- WO 98/33118 PCT/US98/01756

Existing Data with Year Values

Existence of a Bigit in the tens position of a year value (a MCD Bigit) means
a year value of 16xx to 20xx. No other use will ever be made. Bigits conflict with
neither decimal nor sign values. All new input arrives in that form, ready for:

D arithmetic operation with a year increment value,

2) comparison with another year value.

With this method one can recognize an existing year value in 2-digit form, and
store resulting year values in Bigit form.

The decision, while searching, to make or not make a ReSub is illustrated here
with opcodes and other data from packed decimal arithmetic of IBM equipment. The

typical PD instruction form is:

8 bits Opcode "11110010" for pack
Opcode "11110011" for unpack
Opcode "11111001" for decimal compare
Opcode "11111010" for decimal addition
Opcode "11111011" for decimal subtraction
Opcode 1111111100" for decimal multiplication
Opcode "11111101" for decimal division

4 bits First operand length L1
4 bits Second operand length L2

In IBM's SS format, L1 and L2 represent the number of additional bytes to the
left of the byte addressed, and thus are one less than the length of the operand in bytes.
Pack and unpack operate on the second operand and put the result into the first

operand. Table 8 shows the possible combinations:

27

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/33118 PCT/US98/01756
OpCode for L1 L1 L2 L2 L2

out bytes in bytes content

P pack 1 z 0+ 0+ 0 1 C
A 2 byte 1+ 2+] 2 CcC
C 2 1+ 2+ 1 2 YY
K 3 1+ 2+ 2 3 CCC
4 2+ 3+ 3 4 YYYY

U unpack 1 byte 0+ 1+ 0 1 cs
N 2 2+ 2,3+ 1 2 Occs
P 2 2+ 2,3+ 1 2 Oyys
A 2 2+ 3+ 1 2 cces
C 3 3+ 4+ 2 3 Oyyys

Table 8: Pack & Unpack Operation Limits

Decimal operations on year values are identified by restricted sets of operators

and operand lengths, as shown in Tables 9a and 9b.

A0

AQOQ»UZC

Opcode Op A Op B PACKED UNPACK | Note
11110010 0000 0000 C cl 2
" 0001 0000 0C Cji 24
! 0001 0001 CcC CC| 2
" " " YY YY
" 0010 00001 0CC CC
" " " oYYy YY |4
" 0001 0010 CCC CcCC
" 0010 0010 0CCC CCC | 4
! 0010 0011 YYYY YYYY 2
" 0011 0011 0YYYY YYYY
2,4
4
UNPACK PACKED | Note
11110011 0000 0000 C C 2
! 0001 0000 0C C
! 0010 0001 CC CC|24
! " " YY YY
! " " CCC CCC 2
! 0011 0001 0CC CcC
! " " oYYy YY |24
! " " 0CCC CCC
! 0011 0010 YYYY YYYY | 4
0100 0010 0YYYY YYYY
24
4
28

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

'WO 98/33118 PCT/US98/01756
Note
C 11111001 0000 0000 yy C 2
O " 0001 0001 yy CcC 2
M " 0001 0001 yy YY
p " 0001 0010 yy CCC 5
A " 0001 0011 vy YYYY
R " 0011 0001 Yyyy YY
E " 0011 0011 yyyy YYYY

Table 9a: Possible Opcodes & Lengths for Pack/Unpack/Compare

Notes for Tables 9a and 9b

CcGo»

Illegal combinations of Appendix A are not shown.

2. Low probability of concerning year values.

3. Illegal. Dividend must have more digits that divisor.

4. In case of intentional zero packing in the object code.

5. Very rare.

Opcode Op A OpB Type Type Note

OpA OpB
11111010 0000 0000 C C 2
" 0000 0001 C CcC 2
" " " C YY
" 0000 0010 C CCC 2
" 0001 0000 CC C 2
" " " YY C
" 0001 0001 cC CcC 2
1" t n CC YY
" " : YY CcC
" 0001 0010 cC CCC 2
" 0001 0010 YY CCC 5
" 0010 0000 cCC C 2
" 0010 0001 CCC CcC 2
7" " 7" CCC YY 5
" 0010 0010 CCC CCC 2
29

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

- WO 98/33118 PCT/US98/01756

11111011 0000 0000 C cl 2
" 0000 0001 C ccl| 2
" 0000 0010 C cce| 2
" 0001 0000 cC cl| 2
S " " " YY C
U " 0001 0001 cc ccl|l 2
B " " " YY cC
T " " " cC YY
R " " " YY YY
A " 0001 0010 cc cce| 2
C " " " YY cce| 2
T " 0001 0011 YY YYYY
" 0010 0000 CCC cl| 2
" 0010 0001 cce ccl| 2
" 0010 0010 cce cec| 2
" 0011 0001 YYYY YY
" 0011 0011 YYYY YYYY
M | 11111100 0000 0000 C c| 2
U " 0000 0000 C cl| »
L " 0000 0001 C cc| ,
T " 0000 0001 C cC
[I 0001 0000 cc cl 2
P " 0001 0000 cC c| 2
D | 11111101 0000 0000 C c| 3
[" 0000 0000 C ccl| 3
v " 0001 0001 cC cl| 2
1 " 0001 0001 cC ccl| 3
D " 0010 0000 cce cl 2
E " 0010 0000 cce ccl 2

Table 9b: Possible Opcodes and Lengths for "Year Arithmetic”

Thus only a subset of possible combinations are candidates. In theory, 33 out
of 2 power 16 (65536) combinations = 1 in 1985! (Pack and Unpack usually occur only
upon input/output; frequency is much less than the other operations). Actually
operations on small numbers are more frequent, and the set of operations may not be
full. So perhaps 1 in 500 instructions might be candidates. That is 0.2% of all
instructions.

Assume that each ReSub might consume 12 words in instructions and tables.
So instruction space might be increased 2.4% at first by brute force programming
methods. Later deletion of useless ReSubs could bring this down to an operational
0.5%, or 60K instructions -instructions -- not enough to cause undue delay on schedules
or on operating speed, or the purchase of additional hardware. But even this increase

may be a high estimate. Programming methods and tables can reduce it.

30

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

Other Arithmetic Types

For independent PC usage, independent of mainframe host computer, the crux
is that decimal arithmetic in a PC is done differently from the customary host. Bigits
might not be applicable, or necessary,, there. However, one may assume:

0 Average age of PC programs is 20 to 30 years less than in mainframes.

0 They are unlikely to have source code in obsolete languages. o The

source code is more likely to exist and be maintained.

0 Use of year values may well be in 4-digit form; if not, conversion at

source level is relatively easy.
Qutput Conversion and Display

Data output may be to storage, transferred, visual (printed), and diagnostic.
Questions may be asked as to what happens to Bigit characters upon output. The first
question is whether calendar year values will occupy 2 or 4 positions of output -- a
nontrivial question. For many purposes, such as diagnostics, storage, and some
transfers, the 2-digit form of a 4-digit year is quite adequate. A 4-digit form will be
necessary for data transfer to systems that use nothing but 4-digit calendar years and
unmarked year increments, or else for systems in a transitional hybrid mode where both
2-digit and 4-digit year forms coexist. For display, however, a choice of forms may
be made.

Displaying 2-digit Years with ASCII

Although a 4-digit form is always preferable, note the existing font options for
screen or laser printer display. Such fonts are registered in Geneva, Switzerland, by
ECMA, the European Computer Manufacturers Association, as agent for the
International Standards Organization. A new fpnt may be registered whenever justified
by sufficient need. Laser printers use a font as selected from a set of such fonts; PCs
may be modified, for example, to display Russian Cyrillic instead of Roman ASCII
characters. Hardware and software loading of such fonts is established practice.

The choice of position made to demonstrate and explain Bigits was not
arbitrary. Among other reasons, such as collatability and the relation to sign values in
packed decimal arithmetic, Bigits for 19xx and 20xx, particularly, lie in the upper
portion of ASCII (b8= 1, not 0). Quite a number of alternate fonts contain ASCII in

the lower portion (b8=0) and various other graphics in the upper portion.

31

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

WO 98/33118 PCT/US98/01756

Table 10 shows printed output for untransformed Bigits (no font change) for
O/KIData's IBM-PC font. The two columns chosen for 19xx and 20xx show accented
characters in those positions, as the font shows the primary attributes of those coded

characters. The font ECMA-94 would print blanks there, not accented characters.

ASCII digits l Bigit area

00000O0OO0COTT1ITI1T1T1T1TI11
0000111100001 T1T11
00110011001 10011
010101010101 01 01

0000 O@P‘pCE

0001 1 AQagq il =

0010 2BRDbLTr é &

0011 3CSc¢cs a3d

01060 4 DTdt 4698

0101 5 EUewuad

01 1.0 6 FV{fvald

0111 7GWgweg U

1000 8 HXhxey

1 0 01 91 Yiy¢e€? s

1010

1 011 Bigits for

1100

1101 years 20xx

1110 years 19xx

111 years 18xx

years 17xx (if needed)
year increments years 16xx (if needed)

Table 10 -- OKIData IBM-US Font

Postulate a now graphic font, hereafter "Millennium ASCII", in which the space
of the 9th and 10th columns is populated by:

0 In the columns with hi zone 1000, graphics for the customary 10 digits,
but containing an underline or other specific graphic distinction to imply a prefix "19".

0 In the columns with hi zone 1001, graphics for the customary 10 digits,
but containing an overline or other specific graphic distinction to imply a prefix "20".

Now the output is as shown in Table 11 when the font is changed to

Millennium ASCII. Note optimum working with an English alphabet.

32

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/33118 PCT/US98/01756

ASCII digits Bigit area
0o 000O0O0OCOO0OTTI1TI1 11111
0000111 1000O011T11
00110011001 106011
0101010101011 0101
0000 0@P poO underlined
0 001 l1AQagqll & overlined
0010 2BRbLr 22 graphics
0011 3CSc¢cs 33 make the
0100 4 DT dt 4 4
0101 SEU®eu3 s
0110 6 FVFIfveéee
01 11 7GWgwl17]7] Millennium
1000 8 HX hx 8 8 ASCII set
1 001 91 Yiy 99
1010
1 0 11 Y - Bigits for
1100
1101 years 20xx
1110 years 19xx
1111 years 18xx
years 17xx (if needed)
year increments years 16xx (if needed)

Table 11 Millennium ASCII Font

Fonts for the Millennium ASCII set may be incorporated in hard or soft fonts
for laser printers, hardcopy printers, and video screens. One can imagine future users
and recipients of computer output who are at ease with the two digits -- 1) an overlined
3 followed by 2) a plain 8 -- to mean the year 2038. Even on their paychecks, if
necessary. Or, for untreated 4-digit year forms, an underline of the millennium digit,
which is either a "1" or a "2".

In designing graphics for Bigit characters in Millennium ASCII, styling other
than underline and overline could be made, provided standard digit shapes remain as
a components of each character. Millennium ASCII may be used to display calendar
years in both 2- and 4-digit form, and also for diagnostic purposes. l.e., if the display
is in 4-digit form, and the transformation not made, the mistake is obvious in the

printed result.

33

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

WO 98/33118 PCT/US98/01756

Displayving 2-digit Years with EBCDIC

EBCDIC uses the zone positions chosen above for a substantial part of the

lower case alphabet, as shown in Table 12.

Bigit area EBCDIC digits
0 0000O0OO0COTTTITITI1 11111
00001 1110000T111
00110011001 10011
0101010101010T101
& - 0
0000 / a j 1
0001 b k 2
0010 c |1 3
0011 d m 4
0100 e n 5
0101 f o 6
0110 g p 7
0111 h q 8
1 000 ir 9
1 001
1010 Y - Bigits for
1011
1100 years 20xx
1101 years 19xx
1110 years 18xx
1111 years 17xx (if needed)
year increments years 16xx (if needed)

Table 12 EBCDIC Font

One might opt to live with these being printed in the decade field position. Or
perhaps still operate with underlined and overlined digit graphics, but with hi zones
different from ASCII. This might, however, cause incompatibility for computers
operating with both sets of graphics. In inherent design layout, EBCDIC cannot be as
accommodating and flexible as ASCII for these purposes. IBM users may opt to
always use ASCII for output, especially as that pair of coded sets have a 1-to-1
correspondence embedded in hardware chips.
Displaying 4-digit Years

Formats for displayed output are already known and modifiable, just as input
display screens or questions are.

o For display on a PC screen, the transformation may occur in the PC

programming.

34

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/33118 PCT/US98/01756

0 For printed output (reports, checks, bills, etc.) the transformation must
occur prior to release from the originating computer.

0 Bigits not transformed prior to printing or display, will (in a few cases
for ASCII, most cases for EBCDIC) print or display a blank character, and will (in
most cases for ASCII, and in a few cases for EBCDIC) print or display an entirely
strange character, depending upon the font loaded in the display or print devices.

0 Except that any blank characters above may be made visible with the

Millennium ASCII font.

Diagnosis by Search
At any time, in the process of converting to operate under the methods of this

invention, year and year increment values may also be located in stored data by using
the same text processing search engine used for YPP, thus finding:

o Pairs of adjacent characters where the left character is a Y-Bigit having
a hi zone of 0101 up to 1001 and a lo zone of a binary digit, the right character being
a decimal digit. lLe., 2-digit calendar year values.

o One, two, (or in the future three) adjacent characters where the rightmost
character is an I-Bigit having a hi zone of 0100 and a lo zone of a binary digit 0-9, and
the remainder digits (if any) to the left are decimal digits. I.e., year increment values.

0 Groups of four characters where the leftmost is a Bigit having a hi zone
of 1006, and the other three are decimal digits. l.e., calendar year values of 4 digits.

The starting addresses for such groups may be put into a table referred to by
output programs.

Diagnosis by Malfunction _

Three output transformations that must occur are:

a) Reconstruction to a 4-digit form from the Y-Bigit (the second character

from the right) in calendar year fields, and

b) correction of the hi zone bits of an [-Bigit in the rightmost character of
year increment fields.

c) correction of the hi zone bits of the Bigit in the leftmost character of 4-

digit calendar year fields.

35

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/33118 PCT/US98/01756

Presumably the rework of output displays to show all 4 digits of calendar years
will incorporate these transformations somewhere between storage and display. If not,
such malfunctions may be detected by:

0 Every time a screen is refreshed for a new display, put a solid block
character in the M and C positions of a calendar year, and in the units position of a
year increment. Unless these are overwritten, an error is obvious.

0 Let the characters print as they will in test runs, and examine those that
show up in such fields for appropriateness.

Coexistence of Mixed Year Forms

This invention will be used in an everchanging environment. Some users may
be far along in converting programs to full 4-digit-year usage; some may have
progressed without yet finding and changing all occurrences of 2-digit years; some will
need to exchange year data with others still using plain 2-digit or Bigit forms. But now
all changed values are located, so they may be transformed. Thus some coexistence
method must be given for both 4-digit and 2-digit year forms.

For Tables 13 and 14, "aa" = "00" for ASCII, "11" for EBCDIC. Two methods
are shown.

Method A is to make the MC marker "1000" dual-purpose -- the hi zone both
in the decade position of 2-digit year values and in the millennium position of 4-digit
year values.

Method B is to make the year increment marker "0100" dual-purpose -- the hi
zone in the units position of year increments of 1, 2, or 3 digits -- and as the hi zone
in the decade (or tens) position of the 4-digit year values.

Method A is preferred for output and cpllating sequence reasons. Method B is

shown only as an alternative. Note that both give the same packed decimal forms.

36

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

45

50

WO 98/33118 PCT/US98/01756
hi lo hi lo hi lo hi lo
aall | nnnn 1-digit number
aall nnnn | aall | nnnn 2-digit number
aall nnnn aall nnnn | aall | nnnn 3-digit number
0100 | nnnn 1-Bigit year increment
aall nnnn | 0100 | nnnn 2-Bigit year increment
aall nnnn aal! nnnn | 0100 | nann 3-Bigit year increment
crisis form —> aall | dddd aall YYYY 2-digit year
0101 | dddd aall YYYY 2-Bigit year 16dy
0110 | dddd aall YYYY 2-Bigit year 17dy
0111 | dddd aall YYYY 2-Bigit year 18 dy
1000 | dddd aall YYYY 2-Bigit year 19dy
1001 | dddd aall YYYY 2-Bigit year 20dy
Method A
aall | nnon aall nnnn aall nnnn aall nnnn 4-digit number
1000 | mmmm aall ccce aall dddd aall YYYY 4-Bigit year
Method B
aall nnnn aall nnnn | aall | nnnn aall nnnn 4-digit number
aall mmmm aall ccec | 0100 | dddd aall YYYY 4-Bigit year

Table 13: Summary of 8-bit Byte (zoned) Forms:

hi lo

hi lo

hi

lo

0000 nnnn
nnnn nnnn

crisis form —» 0000 dddd
0000 dddd
0000 dddd
0000 dddd
0000 dddd
0000 dddd

0000 mmmm cccc dddd

nnnn
nnnn
nnnn

YYYY
YYYY
YYYY
YYYY
YYYY
YYYY

YYYY

0100 1-digit year increment
0100 2-digit year increment
0100 3-digit year increment

ssss | 2-digit year

0100 |2-digit year 16dy
0110 |2-digit year 17dy
0111 |2-digit year 18dy
1000 |2-digit year 19dy
1001 |2-digit year 20dy

0100 |4-digit year

Table 14: Summary of Packed Decimal Forms
(programmed, not built-in, conversion)

Also, with the marker for 4-digit year values applied in the hi zone of the

millennium digit (Method A), or in the hi zone of the decade digit (Method B), the

37

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/33118 PCT/US98/01756

normal collating (sorting or ordering) processes still apply without modification, with
obvious exception that they will not work with intermingled forms -- both 2-digit and
4-digit; ordering fields must always be of the same length.

Note that the sign position of the modified packed decimal form, as this is
created by the programmed packing routine, comes from the hi zone of the Y-Bigit in
the tens position, not from the hi zone of the units position as in hardware, except for
the 4-digit year form of Method A, where the hi zone of the millennium position
("1000™) translates to 110100". Choosing the "1000" was made for the advantage of
printing visibly without programmed conversion if the Millennium ASCII font is used;
the "1" of "19" and the "2" of "20" both print underscored, but may be ignored in
context. It also works correctly for ordering.

There is no overlap or conflict between year increments, which will be 1 or 2
bytes of length in packed decimal arithmetic, and a 4-digit year, which will be 3 bytes
in length. The length is the differentiating factor, despite the same "0100".

Note that this invention is superior even to using plain year values because the
type, for both 2-digit and 4-digit years, and for year increments, is identified by the
data itself, not defined by a source program.

The choice of storing and using either 2-digit or 4-digit forms or both is made

in the data entry routines.

Summary Diagrams
The 16x16 matrix customarily used to display both ASCII and EBCDIC is now

the basis for full display of some major attributes of the invention.

38

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

"'WO 98/33118 PCT/US98/01756

—_— et et it et o = O O OO OO OO

standard ASCII digits standard EBCDIC digits
Bigit area

0oo0000O0OO0GCOTTTITITTITI1I1T1
0000111 10000T1T1T1]1
001 1001100110011
010101010101 0T10

000 0000O0COCO 0

0 01 111111 1

010 2222222 2

011 3333333 3

100 4 4 4 4 4 4 4 4

101 5555555 5

110 6 6 66666 6

1 11 77777177 7

000 8§ 8 8 88 88 8

001 9999999 9

010

011 Y - Bigits for

1 00

1 01 years 20xx

110 years 19xx

1 11 years 18xx

years 17xx (if needed)
I-Bigits for years 16xx (if needed)

year increments

Thus the ASCII digit 5 is:
zone 5
0011 0101

The EBCDIC digit 5 is:
zone 5
1111 0101

39

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

45

WO 98/33118

PCT/US98/01756

These examples are given in ASCII. For EBCDIC the zone is 1111.

year increment indicator

[The DY form of the zone 9 zone 7
2-digit year 97 is: 0011 1001 0011 0111
D Y
The MCDY form of the zone | zone 9 zone 9 zone 7
4-digit year 1997 is: 0011 0001 0011 1001 1001 0011 0011 0111
M C Y
[The BCDY form of the zone | zone 9 zone 9 zone 7
4-digit year 1997 is: 1000 0001 0011 1001 0011 1001 0011 0111
B C Y
The BY (Bigit) form of the zone 9 zone 7
4-digit year 1997 is 1001 1001 0011 0111
Y
for 19xx
The BY (Bigit) form of the zone 0 zone 6
4-digit year 2006 is: 1001 0000 0011 0110
: Y
for 20xx
acked decimal form for the full 9 7 +
P-digit year 97 is: 0000 1001 0111 1010
f d y s
Packed decimal form for the fill 1 9 9 7 +
4-digit year 1997 is: 0000 0001 1001 1001 0111 1010
f m c d y b
Packed decimal B-sign form fill 9 7 MC
for the 4-digit year 199 is: f d y b
for 19xx
[The unmarked form of a zone 2 zone 5
year increment of 25 is: 0ot1 0010 0011 0101
The Bigit form of a zone 2 zone 5
year increment of 25 is: 0011 0010 0100 0101

SUBSTITUTE SHEET (RULE 26)

40

WO 98/33118 PCT/US98/01756

What is claimed is:

Claim 1. A method for increasing the capabilities of an object program of a
digital data processing system having a coded character set with each character having

a given attribute; comprising the steps of:

A, providing a selected subset of said coded character set with a second
5 attribute;
B, determining which of the two attributes of a given character of the

selected subset is relevant from the operation code to which an operand including such
a character of a selected subset is subjected; and
C, constructing a subroutine for each such instance of such operation code

10 which utilizes the second attribute of a coded character of said subset.

Claim 2. The method of Claim 1 in which step B of Claim 1 also includes
determining, from the number of characters comprising said operand, which of the two

attributes of a given character of the selected subset is relevant

Claim 3. The method of Claim 2 in which in step B of Claim 1, the operation
code to which an operand including a character of a selected subset is subjected is one

of a set of year arithmetic operations.
Claim 4. The method of Claim 3 in which the coded character set is ASCH.
Claim 5. The method of Claim 3 in which the coded character set is EBCDIC.

Claim 6. The method of Claim 5 in which the set of year arithmetic operations
includes a pack operation code and an unpack operation code, for converting digit
characters of an operand to bytes in a packed decimal format, and converting bytes in

a packed decimal format to digit characters of an operand.

Claim 7. A method for modifying an object program, the original program, of
a digital data processing system having a coded character set with each character of
said coded character set having a single attribute such as a digit, hereafter a digit

41

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

‘WO 98/33118 PCT/US98/01756

character, said original program including dates in which the year value of the date is
defined by two digit characters; comprising the steps of:

A, providing selected subsets of said coded character set with a second
attribute, said coded characters of the selected subsets whose second attribute is
relevant hereafter referred to as Bigits; a Bigit whose second attribute defines a
millennium, M, century, C, and decade, D, of a year value is hereafter a Y-Bigit, and
a Bigit whose second attribute is a year increment value is hereafter an I-Bigit;

B, searching the original program to find year arithmetic operations
involving two operands at least one of which consists of two digit characters;

C, for each such year arithmetic operation, replacing it with a jump-return
instruction to a subroutine (Resub) including means for fetching the two operands of
the instruction from memory, for checking both operands to determine if either or both
includes a Bigit, if not executing the original replaced command and returning to the
modified original program; if either one or both of the operands includes a Bigit,
converting the operand including two characters, the most significant character of which
is a Y-Bigit, to four digit characters representing M, C, D and Y; performing the said
year arithmetic operation on the converted operands to produce a result operand, if the
result operand consists of four characters, converting the four characters of the result
operand to two characters, the more significant one of which is a Y-Bigit; if the result
operand consists of less than four characters, converting the least significant character
to an I-Bigit, and storing the converted result operand in memory locations specified
in the original program;

D, including in the Resub a use field initially set to indicate "no use" which
is changed to indicate "use" when a fetched operand is checked in stop C is found to
contain a Bigit;

E, searching the original program to find all data output operations of only
two digit characters; for each such data output operation creating a Resub, said Resub
determining if either of the characters is a Bigit, if not, executing the original
instruction and returning to the main object program; if one is a Bigit, if the Bigit is
a Y-Bigit converting the characters to four digit characters representing M, C, D and
Y; if the Bigit is an I-Bigit, converting the I-Bigit to a digit character whose lo zone
bits are the same as those of the I-Bigit; executing the output operation and returning

to the main object program;

42

SUBSTITUTE SHEET (RULE 26)

WO 98/33118 PCT/US98/01756

F, modifying the data entry routine of the program to enter four digits to
identify the year portion of a date, M, C, D, Y; and to identify digits defining a year
increment value;

40 G, converting M, C, and D of the year value of a date as entered in step F
to a Y-Bigit, and Y to a digit character; and converting a year increment value as
entered in step F to an I-Bigit in the least significant digit position of the year
increment value with higher order digits of a year increment value to digit characters;
storing the two coded characters representing M, C, D and Y values and the characters

45 representing year increment values produced in step G in memory locations specified
by the original program; and

I, after a reasonable period of time has elapsed, checking the use field of
each Resub to determine the status of its use fields, and if the use field indicates no

use, deleting that Resub and replacing its jump with the original instruction.

Claim 8. The method of Claim 7 in which year arithmetic operations include

decimal addition, decimal subtraction and decimal compare operations.

Claim 9. The method of Claim 8 in which the result of year arithmetic

operations are positive.
Claim 10. The method of Claim 9 in which the coded character set is ASCII.
Claim 11. The method of Claim 9 in which the coded character set is EBCDIC.

Claim 12. The method of Claim 9 in which the year arithmetic operations

includes a pack operation code and an unpack operation code.

Claim 13. The method of Claim 9 in which the data output ReSub on
determining if one of the two digit characters is a Y-Bigit identifies the Y-Bigit by a

special graphic symbol.

43

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

‘WO 98/33118 PCT/US98/01756

Claim 14. A method of solving the millennium problem of an object program,
hereafter the original program, of a digital data processing system in which the year
value of a date is defined by two bytes of a coded character set of bytes defining a
digit, hereafter a digit character, with each character of the coded character set being
divided into a hi zone of bits and a lo zone of bits, comprising the steps of:

A, providing selected subsets of said coded character set with a second
attribute, said coded characters of the selected subsets whose second attribute is
relevant hereafter referred to as Bigits; a Bigit whose second attribute defines a
millennium, M, century, C, and decade, D, of a year value is hereafter a Y-Bigit, and
a Bigit whose second attribute is a year increment value is hereafter an I-Bigit;

B, modifying the data entry routine of the original program to require the
year value of a date to be entered as four digits, said four digits being M, C, D, and
Y; converting M, C, D, and Y each to a digit character of the coded character set; and
converting the digit characters for M, C, and D to a Y-Bigit;

1, converting the Y-Bigit and the digit character for Y to a two-byte
operand in a modified packed decimal format with the lo zone of the lower order byte
of the modified packed decimal operand being the hi zone bits of the Y-Bigit and the
hi zone bits of the lower order byte being the lo zone bit of the digit character for Y;
the lo zone bits of the higher order byte of the operand being the lo-zone bits of the
Y-Bigit and the hi-zone bits being a set of zero fill bits;

2, storing the two bytes produced in Step 1 in the memory location
specified by the original program;

C, searching the original program to find all year arithmetic operations
involving two operands in which at least one of the two operands consists of two digits;

1, for each year arithmetic operation, replacing it with a jump-return
instruction to a subroutine which subroutine is created concurrently with the jump-
return instruction, which subroutine gets the two operands from memory, checks both
operands to determine if either or both operands consists of two bytes in the modified
packed decimal format, if not returning to the original program; if either one or both
of the operands is in the modified packed decimal format, converting the operand in
modified packed decimal format into three bytes in packed decimal format representing
the values M, C, D, and Y; performing the year arithmetic operation on the operands

to yield a result operand; if the result operand consists of four decimal digits in packed

44

SUBSTITUTE SHEET (RULE 26)

35

40

45

50

55

WO 98/33118 PCT/US98/01756

decimal format, modifying the result operand to include two bytes in the modified
packed decimal format, and storing the result operand in memory locations specified
in the object program;

2, including in the subroutine a use field initially set to indicate "no
use" which is changed to indicate "use" when the subroutine is executed; and

3, returning to the program,;

D, searching the original program to find all data output operations of only
two digits;

1, for each such data output operation, replacing it with a jump-return
instruction to a subroutine, said subroutine determining if the two decimal digits are in
the modified packed decimal format, if not executing the original instruction and
returning to the main program; if in the modified packed decimalformat. converting the
two bytes in modified packed decimal format to four digit characters of the coded
character set representing M, C, D, and Y; and performing the data output operation
of the four digits, and returning to the main program; and

2, including in the subroutine a use field initially set to indicate "no
use" which is changed to indicate "use" when the subroutine is executed;

E. After a reasonable period of time has elapsed after this method has been
in use, checking the subroutine associated with each jump-return instruction to
determine the status of its use field, if the use field indicates no use, replacing that
jump-return instruction with the original instruction and deleting its associated

subroutine.

Claim 15. The method of Claim 14 in which year arithmetic operations include

decimal addition, decimal substraction and decimal compare operations.

Claim 16. The method of Claim 15 in which the result of year arithmetic

operations are positive.

Claim 17. The method of Claim 16 in which the coded character set is
EBCDIC.

45

SUBSTITUTE SHEET (RULE 26)

WO 98/33118 PCT/US98/01756

Claim 18. The method of Claim 17 in which the year arithmetic operations

include a pack operation code and an unpack operation code.

Claim 19. The method of Claim 18 in which the data output ReSub, on
determining that one of the two digit characters to be output is a Y-Bigit, identifies the

Y-Bigit attribute by a special graphic symbol.

46

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter mnal Appiication No

PCT/US 98/01756

A. CLASSIFICATION SUBJECT MATTER

OF
IPC 6 GO06F9/44 GO6F17/00

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foliowed by classification symbols)

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Elactronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

1996
Available from the Internet via

bullet.html> 5 April 1998
XP002064192
see the whole document

<URL: http://www.year2000.com/archive/

Category ° | Citation of document, with indication, where appropriate, of the reievant passages Relevant to claim No.
A T. SWOYER: "A STRATEGY FOR HANDLING THE 1-19

YEAR 2000 PROBLEM"

EDPACS - THE EDP AUDIT, CONTROL AND

SECURITY NEWSLETTER,

vol. xxiii, no. 11, May 1996, BOSTON, MA,

us,

pages 1-13, XP000675496

see the whole document
A P. de JAGER: "Biting the Silver Bullet" 1-19

_/__

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the internationat filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken atone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skitled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

7 May 1998

Date of mailing of the international search report

25/05/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 eponl,

Fax: (+31-70) 340-3016

Authorized officer

Abram, R

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intet »nal Application No

PCT/US 98/01756

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document. with indication.where appropriate, of the relevant passages

Relevant to claim No.

P.A

P,A

P,A

C. L. MEADOR: "Solving The Year 2000
Problem"
INFORMATION WEEK,
5 February 1996,
pages 44-51, XP000571029
see the whole document

US 5 668 989 A (D. MAO) 16 September 1997
see the whole document

G. BRIGHAM: "The Year 2000"
COMMUNICATIONS OF THE ACM,

vol. 40, no. 5, May 1997,

pages 113-115, XP000703646

see the whole document

R. A. MARTIN: "Dealing with Dates:
Solutions for the Year 2000"
COMPUTER,

vol. 30, no. 3, March 1997,

pages 44-51, XP000657325

see the whole document

1-19

1-19

1-19

1-19

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte: nal Application No

PCT/US 98/01756

Patent document
cited in search report

Publication
date

Patent tamily
member(s)

Publication
date

US 5668989 A

16-09-1997

WO

9736222 A 02-10-1997

Fom PCT/ISA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

