
(19) United States
US 2005O235284A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0235284A1
Kadashevich (43) Pub. Date: Oct. 20, 2005

(54) SYSTEMS AND METHODS FOR TRACKING
PROCESSING UNIT USAGE

(75) Inventor: A. Julie Kadashevich, Tyngsboro, MA
(US)

Correspondence Address:
MONICA GREWAL, ESQ.
BOWDITCH & DEWEY, LLP
161 Worcester Road
P.O. Box 932O
Framingham, MA 01701-9320 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY

(21) Appl. No.: 10/824,065

(22) Filed: Apr. 14, 2004

Publication Classification

(51) Int. Cl." ... G06F 7700
(52) U.S. Cl. .. 718/100

(57) ABSTRACT

A method and system for monitoring the CPU time con
Sumed by a Software agent operating in a computer System
is disclosed. A resource tracking process is executed on the
System. When an operating agent is detected, an agent
lifetime timer is initialized. Then, CPU resources for the
agent are identified and Stored. Checks are made at prede
termined intervals to determine if the agent is still alive.
When the agent terminates, a measurement is made of the
CPU time utilized by the agent. The measurement is then
Stored in memory.

7200

DETERMINING IF
OVERAL CPU CONSUMPTION
EXCEEDSATHRESHOLD

LIMIT

COMMENCING MONITORING CPU
USAGE BY INDIVIDUAL AGENTS

204

REPEAT CHECK AFTERA
PREDETERMINED TIME

INTERVAL

Patent Application Publication Oct. 20, 2005 Sheet 1 of 10 US 2005/0235284 A1

MANAGEMENTAPPLICATION 100

CPU EMAIL

MEMORY HTTP
DEVICE 103 TASK 112

WEB 114
CONFERENCNG

MANAGER
PROCESS

104

EXECUTIVE
PROCESS

108 (1)

EXECUTIVE
PROCESS CUSTOMER

(N) 108 DEVELOPED
TASK 116

MANAGEMENT SYSTEM 102

SYSTEM
MANAGER
USER

INTERFACE
118

124
LINK

REMOTE
SITE

REMOTE
SITE

122A 122B

FIG. 1

Patent Application Publication Oct. 20, 2005 Sheet 2 of 10 US 2005/0235284 A1

200 /20

204

REPEAT CHECK AFTERA
PREDETERMINED TIME

INTERVAL

DETERMINING IF
OVERALL CPU CONSUMPTION
EXCEEDSATHRESHOLD

LIMIT

COMMENCING MONITORING CPU
USAGE BY INDIVIDUAL AGENTS

FIG. 2

Patent Application Publication Oct. 20, 2005 Sheet 3 of 10 US 2005/0235284 A1

STARTING RESOURCE 402
TRACKING PROCESS 4O6

DELAYING BY A TIME

<S. INTERVAL AT5
E YES

INITIATINGAGENT LIFETIME Laos TIMER

DETERMINING CPURESOURCE
ALLOCATIONS ASSOCATED 410

WITHAGENT

CREATINGHASH.TABLE 412 416

DELAYING BY A TIME
INTERVAL AT6

AGENT CREATED
ATHREAD?

YES

ADDING THREAD ID TO 418
GROUPLIST

419
CREATING ENTRY FOR
THREAD IN HASH.TABLE

TO FIG. 3B TO FIG. 3B

HAS

FIG. 3A

Patent Application Publication Oct. 20, 2005 Sheet 4 of 10 US 2005/0235284 A1

FROM
FIG. 3A

2 422
IS

FROM THREAD DELAYING BY A TIME
FIG. 3A EXPRED INTERVAL, AT14

ADDING CPU USAGE FOR THREAD TO CPU TIME
FOR OTHER THREADS ASSOCATED WITHAGENT

426
IS

NO AGENT
EXPRED

YES

COMPUTING TOTAL CPU TIME
FORAGENT

STORING CPU TIME FORAGENT
NHASH.TABLE

DEFINING FILTERING CRITERA

TO FIG. 3C

FIG. 3B

428

430

432

Patent Application Publication Oct. 20, 2005 Sheet 5 of 10 US 2005/0235284 A1

FROM
FIG. 3B

434 FILTERINGAGENTSALONG WITH AGENT
INFORMATION

RANKINGAGENTSBY User DEFINED
CRITERIA

DETERMINING CORRECTIVE MEASURESFOR
AGENTS EXCEEDING CRITERIA

REPORTING CORRECTIVE ACTION TO USER

436

438

440

US 2005/0235284 A1 Patent Application Publication Oct. 20, 2005 Sheet 6 of 10

|NOLIVOINñWWOO

Patent Application Publication Oct. 20, 2005 Sheet 7 of 10 US 2005/0235284 A1

Z
O
-

B
O o
C/D cO

1.

2
g N
U CO
CO

8 is Yg
SN
CO

LO
on OO Z2 8 CD

H
nz I CO
52 3 H

o
51 S.
SE & O
He n1

n

C
2

3 as CN
CD O O O
CC CO

US 2005/0235284 A1

O
O

- SETO)\O [\d|OGI GWEHHI
C|| LINES)\/

Patent Application Publication Oct. 20, 2005 Sheet 8 of 10

squæbe bu?uuni buon

US 2005/0235284 A1

?qOJEJ WOJC] WAÐN

Patent Application Publication Oct. 20, 2005 Sheet 9 of 10

Patent Application Publication Oct. 20, 2005 Sheet 10 of 10 US 2005/0235284 A1

NeW DDM PObe

If CPU Utilization is greater than: Generate an event of severity:
than:

95% Fatal

726 90% Failure
80% Waming (High)

60% Warning (Low)

0% Normal

FIG. 6C

US 2005/0235284 A1

SYSTEMS AND METHODS FOR TRACKING
PROCESSING UNIT USAGE

BACKGROUND OF THE INVENTION

0001. Management and workflow collaboration software
Systems are used by organizations to maintain the efficiency
of workforces. Among other things, these Systems, herein
referred to as enterprise Systems, allow employees to com
municate, obtain information, requisition products and Ser
vices, generate documents, and perform online training.
Management Systems may also connect portions of an
organization that are separated geographically. As a result,
management Systems are often spread acroSS multiple Serv
ers coupled to the network. The distributed nature of man
agement Systems along with the requirement that they
perform numerous operations simultaneously makes them
very large and complex.
0002 Adding to the complexity of management systems
is the fact that many of these systems have evolved over
time. This evolution has largely been driven by customer
needs and has resulted in rather basic management Systems
evolving into the large, complex ones predominant today. In
addition, users must be able to write their own applications
to extract maximum utility from management Systems. The
combination of old/new Software-executable instructions
and customer developed Software instructions may produce
operating environments that are difficult to troubleshoot. For
example, an enterprise System may be executing hundreds or
thousands of Software agents as a matter of normal opera
tion. A Software agent as used herein refers to any Self
contained potentially adaptive Software application and as
Such, is an executable Sequence of instructions. Software
agents can be short lived, i.e. having lifetimes of less than a
Second, or can be long-lived having lifetimes measured in
hours or days. Furthermore, Software agents may need to
operate according to a Schedule. If a particular Software
agent is not operating at the appropriate time, it may be due
to either a problem with the Scheduled agent, a problem with
an agent currently running, or a problem with Software
processes that Schedule agents. Identifying the exact cause
of late agents using the prior art is thus problematic. Soft
ware agents may also consume System resources while
operating. Examples of resources consumed by agents are,
but not limited to, system memory, CPU bandwidth, disk
input/output operations, database opens, document creation,
and network traffic.

0.003 Prior art systems and methods for monitoring agent
activity may not easily identify problematic agents because
there is no apriori mechanism for identifying when agents
may become problematic. Furthermore, prior art tools may
not isolate problematic agents.
0004. There exists a need for systems and methods for
identifying agents that may become problematic before they
actually cause a problem. Furthermore, there exists a need
for monitoring System resources consumed by Software
agents. In addition, there is a need for identifying and rank
ordering agents causing problems So that System resources
can be adaptively managed.

SUMMARY OF THE INVENTION

0005 The preferred embodiments of the present inven
tion are directed at measuring and monitoring processing

Oct. 20, 2005

unit resources within computing environments. These envi
ronments include, without limitation, Agent Manager and
hypertext transfer protocols (HTTP). In accordance with an
aspect of the invention, a method for monitoring System
processor time of a Software agent operating in a computer
System is provided. The method comprises identifying the
agent by associating an agent identifier with it. Then, an
operating interval associated with the agent is determined
and monitored using an agent lifetime timer. Next, the
operating interval and agent identifier are Stored in a com
puter-readable memory.

0006. In accordance with another aspect of the invention,
a method for monitoring System processor usage, for
example, as time by an agent, having an agent lifetime,
which is associated with a thread, having a thread lifetime,
is provided. In this method, an agent identifier is associated
with the agent. An agent lifetime timer is initiated for
monitoring the agent lifetime. System processor resource
allocations for the agent are then determined that are used to
define a footprint which can be defined as the maximum
memory allocation for the agent. The footprint for the agent
includes an amount of System processor resources utilized
by the agent thread during its lifetime and an amount of
System processor resources utilized by all the threads during
the agent lifetime. In a preferred embodiment, the method
then includes the Step of associating the footprint with the
agent identifier, Storing the footprint and agent identifier in
a computer-readable memory, comparing the agent's foot
print to footprints associated with other Software agents
operating in the System, ranking the footprint of the agent
against the other Software agents footprints, and displaying
the footprints exceeding a predefined threshold.

0007. In accordance with yet another aspect of the inven
tion, a computer program product having machine-readable
instructions disposed thereon for instructing a processor to
perform a method for monitoring System processor time for
a Software agent operating in a computer System is provided.
The computer program product includes instructions for
initiating an agent lifetime timer for monitoring an operating
interval associated with the agent, instructions for determin
ing System processor resource allocations associated with
the agent, instructions for Storing the operating interval and
resource allocations associated with the agent, and instruc
tions for notifying a System operator about operating interval
and resource allocations.

0008. In accordance with still another aspect of the
invention, an apparatus for tracking System processor usage
time by a Software agent operating in a computer System is
provided. The apparatus includes a processor having execut
able instructions for identifying the agent by associating an
agent identifier there with, executable instructions for initi
ating an agent lifetime timer for monitoring an operating
interval of the agent, executable instructions for determining
the operating interval using the lifetime timer and executable
instructions for Storing the operating interval and the agent
identifier in a computer-readable memory having a hash
table associated therewith.

0009. In accordance with still another aspect of the
invention, a method for tracking System processor time for
a target agent associated with a HyperText Transfer Protocol
(HTTP) process running a plurality of threads in a computer
is provided. In a preferred embodiment, the method includes

US 2005/0235284 A1

the target agent is operating with at least one of the threads.
A computer-readable hash table is created in a memory
asSociated with the computer System. An agent tracking
function is initiated in machine-executable Sequence of
instructions on the system. Next, members of the plurality of
threads are identified by associating a thread identifier with
each member of the plurality of threads. Those of the
plurality of identified threads having the target agent oper
ating there with are identified. Then, the amount of System
processor time utilized by the identified threads is deter
mined and stored in the hash table.

0010. In preferred embodiments, processing unit
resource consumption can be tracked on two levels. First,
the overall CPU consumption is tracked. When the CPU
utilization for the process becomes high, an individual
agent's CPU consumption is tracked. Tracking the overall
usage determines when the usage is high, while the Second
determines which agent(s) are causing the problem.
0.011 The foregoing and other features and advantages of
the System and method for monitoring CPU usage associated
with Software agents will be apparent from the following
more particular description of preferred embodiments of the
System and method as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views.
0012. The drawings are not necessarily to Scale, emphasis
instead being placed upon illustrating the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 illustrates an exemplary management sys
tem consistent with preferred embodiments of the present
invention;
0.014 FIG. 2 illustrates a top level flow chart for moni
toring CPU usage in accordance with a preferred embodi
ment of the present invention;
0015 FIG.3A-3C illustrates flow charts of an exemplary
method for measuring and monitoring processing unit, for
example, central processing unit (CPU) resources associated
with Software agents operating in a management System in
accordance with an embodiment of the invention;
0016 FIG. 4 illustrates an exemplary architecture for a
general-purpose computer capable of implementing aspects
of the invention in accordance with a preferred embodiment
of the present invention;
0017 FIGS. 5A-5C illustrate exemplary data structures
for representing agent data and agent thread data in a
computer-readable memory in accordance with a preferred
embodiment of the present invention; and
0018 FIGS. 6A-6C illustrate exemplary user interfaces
for providing agent data and agent thread data to a user in
accordance with a preferred embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

0.019 Management systems such as, for example, enter
prise Systems handle, without limitation, electronic mail
(email) receipt and distribution, access and management to

Oct. 20, 2005

intranet and Internet web sites, management of internal
databases, multimedia conferencing, and online calendaring
and appointment management. In addition, enterprise Sys
tems handle many other functions necessary to assist large
and Small organizations in operating efficiently. Manage
ment enterprise Systems rely heavily on the use of Software
agents for managing the workflow. Agents can be generated
by the enterprise System itself or by users and can typically
include two types, Scheduled or event driven agents. Sched
uled agents are those having a defined Start time. In addition,
Scheduled agents may have a predetermined Stop time or the
Stop time can be dictated by an event Such as, for example,
but not limited to, receipt of an interrupt or the Start of
another agent. In contrast, event driven agents are initiated
upon the occurrence of a particular event rather than at a
certain time. Examples of event driven agents are, but not
limited to, document creation agents, document closing
agents, database opening agents, user logon processing
agents, email agents activated upon receipt of a message,
and web based agents.
0020 For web based event driven agents, the most com
mon class may be those associated with hypertext transport
protocol (HTTP) processes. An HTTP process has a plurality
of agent threads associated therewith, and in a preferred
embodiment, the default number of multiple threads in an
HTTP process, without limitation, is forty. Each agent thread
has a unique identifier, for example an identification number,
referred to as an HTTP thread ID. An HTTP environment
can be multi-threaded with each HTTP agent thread running
a single agent thus making it possible for a given agent to be
running on multiple HTTP threads simultaneously. For
example, in a preferred embodiment, forty copies of the
Same agent can be executed, or run, at the same time. An
HTTP thread ID number is associated with the instance of an
agent that is executing on the respective thread, thus making
it possible to identify with which copy of an agent a given
Set of activities are associated. For example, identifying
instances of agents using HTTP thread ID's makes it pos
Sible to determine when a Specific instance of an agent
Started and/or ended. In the above example, a reference to
the instance of the agent, Such as an agent ID, consists of the
agent's name along with the HTTP thread ID associated with
the agent. In addition, a database entry or other parameter
may be associated with the agent name and HTTP thread ID
to uniquely identify and to further provide details about the
agent. AS used herein, a thread is a program path of
execution, and multi-threaded means that multiple lines of a
Single program can be executed Simultaneously. When
agents are running on multiple threads, the operating System
may treat each agent thread as a separate and distinct
proceSS.

0021 When numerous agents are running simulta
neously, problems can occur when one or more agents fail
to operate as intended. Problematic agents can be associated
with the management enterprise System itself or with user
generated agents. Agents in the management System com
puting environment may become problematic when a new
Software release is implemented because of, without limi
tation, incompatibilities with System interfaces or uSergen
erated agents and an inability to identify a particular agent
when attempting to diagnose System abnormalities. User
generated agents may be problematic due to incompatibili
ties with operating System components, a developer's failure
to understand the functionality of developed agents, Security

US 2005/0235284 A1

misconfigurations associated with developed agents, faulty
parameters associated with developed agents, etc.

0022 Agent failures can take many forms, however,
certain failures tend to be more prevalent. Examples of
common agent failures are, but are not limited to, misman
agement of System memory by agents, excessive central
processing unit (CPU) usage, spawning of too many Sub
processes or agent threads, running longer than expected,
failing to execute at the proper time, entering an infinite
loop, and mis-applied/misused Security Settings. The pre
ferred embodiments of the present invention address agents
that consume too much CPU time.

0023 FIG. 1 illustrates an exemplary embodiment of a
management System for example an enterprise management
System, in accordance with the invention. The management
application 100 includes management computing System
102 which includes a central processing unit (CPU) 101, a
memory device 103, a manager proceSS 104, a run queue
106, an executive process 108, an email task 110, an HTTP
task 112, a web conferencing task 114, a customer developed
task 116, and a system manager user interface (UI) 118. The
management application 100 also includes network 120,
remote site 122A and 122B, and links 124. The management
computing System 102 may be executing on one or more
Servers within a corporation, university, governmental
agency, or the like. Processes running in management com
puting system 102 consume CPU resources provided by
CPU 101. CPU 101 is comprised of one or more processors
executing machine-readable instructions obtained, at least in
part, from memory device 103. Consumption is based on
usage of CPU clock cycles for executing machine-readable
instructions when performing functions associated with Soft
ware-enabled processes. In addition, processes consume
memory, for example, but not limited to, hold variables,
generated data, and pointers. Properly operating agents
should release memory when they die or end, So that other
agents can make use of the newly freed memory. However,
when agents do not cease operation correctly, they often fail
to release blocked memory, thus adversely impacting System
CSOUCCS.

0024. The manager process 104 oversees management of
Software agent activity within a management application
100. In particular, the manager process 104 operates in
connection with a plurality of executive processes 108 and
a run queue 106. When an agent is scheduled to run, the
manager process 104 places it in run queue 106. When an
executive process 108 is free, the manager process 104
instructs the executive process 108 to begin processing the
scheduled agent. When the executive process 108 begins
operating on an agent, the agent becomes a running agent for
the duration of time it is associated with executive proceSS
108. When an agent has finished executing, the executive
process 108 releases the agent and becomes available for
running a new agent.

0.025 The management computing system 102 may also
include an email task 110. The email task 110 is responsible
for handling all incoming and outgoing email. Agents asso
ciated with email task 110 may be scheduled agents or event
driven agents. Examples of Scheduled agents operating in
conjunction with email task 110 may be an email checking
agent. When launched, a router operating in the Software
delivers mail and Sends an event to an agent manager

Oct. 20, 2005

indicating that new mail has been delivered to a database. If
an active agent resides in that database, it is invoked.
0026. The HTTP task 112 may run on management
computing system 102. The HTTP task 112 is responsible
for processing all HTTP related traffic within the manage
ment application 100. The HTTP task 112 may start all
threads upon its activation, or startup, in response to HTTP
requests received from network 120. HTTP task 112 runs
event driven agents which consist of threads. The HTTP task
112 may further Start a new agent on any running thread. AS
previously discussed herein, an HTTP agent in an HTTP
process can run on more than one thread. In Such an
embodiment, knowing only a problematic agent's name is
not sufficient for identifying it. Information about the thread
running the problematic agent is required to positively
identify the agent.

0027. The Web conferencing task 114 is responsible for
handling all audio, Video and text data associated with
collaborative conferencing. The Web conferencing task 114
may interact with the email task 110 and/or the HTTP task
112 when providing web conferencing capabilities to an
organization. As a result, the web conferencing task 114 may
utilize Scheduled and event driven agents.
0028. The customer developed task 116 may include
Software developed by a user of the management application
100. User developed software may take many forms and
may utilize one or more Scheduled or event driven agents.
An example of user developed task 116 may be an order
processing agent. The order processing agent may have an
event driven portion that executeS when a user opens an
online ordering capability. Once the order is entered, a
Scheduled agent may operate on a predetermined cycle
Seeking management approvals for the order before Sending
it to a vendor for fulfillment.

0029. The system manager UI 118 may include a com
puter display for presenting information to a System admin
istrator. For example, the manager process 104 may detect
an improperly running agent and cause a popup window to
appear on the System manager UI 118. After viewing the
error report, the System administrator can take corrective
action.

0030 The network 120 connects management computing
system 102 to remote sites 122A and 122B. In many large
corporations, there may be a headquarters and a plurality of
field offices. In FIG. 1, management computing system 102
may be located within the headquarters building while
remote sites 122A and 122B are located in a different city,
state or country. Network 120 can be any type of data
network Such as a local area network (LAN), a metropolitan
area network (MAN), or a wide area network (WAN).
Furthermore, network 120 may utilize any network protocol,
or combination of protocols, Such as frame relay, packet
Switched, Internet protocol (IP), Synchronous optical net
work (Sonet), asynchronous transfer mode (ATM), and the
like. Links 124 are used to convey data across network 120
and may be comprised of twisted pair cable, coaxial cable,
optical fiber, free-space optical links, radio-frequency (RF)
links, or the like.

0031 When executive process 108 begins processing an
agent, the agent is referred to as an active, or running, agent.
While active, an agent is deemed to be alive. When the agent

US 2005/0235284 A1

has finished executing, either normally or via manual ter
mination, it is deemed to be dead, or expired. If the agent is
later placed in the holding queue it is referred to as a
Scheduled agent until it is once again processed by an
executive process 108.

0032 FIG. 2 illustrates a top level flow chart 200 for
monitoring CPU usage in accordance with a preferred
embodiment of the present invention. A data collection
probe can check on a predetermined time interval if the
overall CPU consumption exceeds the configuration per Step
202. If CPU consumption does not exceed the threshold,
step 202 will make subsequent determinations until the
threshold is exceeded. In a preferred embodiment, momen
tary Spikes indicative of excessive CPU consumption does
not cause concern. However, if the CPU consumption status
is at a raised level for a certain predetermined time period,
for example, at least 5 minutes, the administrator then begins
collecting more data and monitoring usage by individual
agents per Step 204.

0033. In preferred embodiments, the information about
individual agents is collected in a Sorted linked list for each
thread/process. Information about each agent includes an
agent name/database name and CPU time used by the
corresponding agent. Periodically the lists generated on
different threads/processes are aggregated by an embedded
Software probe manager. The embedded probe manager
caches the collected data for each configuration, filtering or
removing agents that are inappropriate. Information about
CPU usage is also added to an agent log and is made
available to an end user.

0034 FIGS. 3A-3C illustrate an exemplary method for
tracking System processor and in a preferred embodiment
CPU, resources utilized by agents executing within System
102. A has table is created per step 401. A hash table is a
computer-readable data structure residing in memory which
is used for archiving memory usage data associated with
each running agent. Specifically, a hash table provides a way
of mapping an object, or key, to an associated object, or
value. Key refers to the part of a group of data, here
information about agents, by which the data can be Sorted,
indexed, croSS referenced, etc. The key is mapped to an array
position using a hash function, where array refers to a Set of
items randomly accessible using a numeric index. Further
more, the hash function is designed Such that a unique key
value is mapped to a unique array position. While hash
tables can take many forms consistent with embodiments of
the invention, a preferred embodiment of the invention uses
the thread ID as a key into the hash table. Since a thread ID
uniquely identifies a given thread within the System, the key
maps to a unique location within the hash table. A CPU
resource tracking process including machine-executable
instructions is started per Step 402. Then, running agents are
identified per Step 404. If an agent is running, an agent
lifetime timer is initiated per step 408. The lifetime timer
measures the operating interval for an agent. In contrast, if
an agent is not running, the method iterates back to the input
of step 404. After step 408, CPU resource allocations
asSociated with the agent are determined per Step 410.

0035. Threads created by the running agent are detected
per Step 414. Next, a thread ID is added to a group list per
step 418. Then an entry for the thread is created in the hash
table per step 419. After step 419, the method is shown in

Oct. 20, 2005

FIG. 4B where a check is made to determine if the thread
has ceased operation, i.e. is expired, per Step 420. If the
thread is expired, CPU usage data for the thread is deter
mined per step 424. The CPU usage for the thread is added
to CPU usages associated with any other threads for the
particular agent operating in System 102 per Step 425. In
contrast, if the thread is not expired in step 420, the method
returns to the input of step 420.
0036. After step 425, a check is made to determine if the
agent is expired per Step 426. If the agent is expired, a total
CPU time for the agent is computed per step 428. In contrast,
if the agent is not expired, the method iterates back to the
input of step 414 (FIG. 2A) per step 426 and determines if
the agent has created a thread. In an alternative embodiment,
not shown in FIG.2B, a programmable delay interval can be
imposed before determining if the agent has created a thread
in step 414. Furthermore, the amount of CPU usage for the
thread may be incrementally updated and Stored in connec
tion with the path returning to step 414.
0037. After step 428, CPU time for the agent is stored in
the hash table per step 430. Filtering criteria is then defined
per step 432. The method of FIG. 4B continues in FIG. 4C
where agents are filtered to remove unwanted information
per Step 434. After filtering, agents are rank ordered accord
ing to user defined criteria per Step 436. In a preferred
embodiment, the top 100 agents, without limitation, are
ranked according to consumed CPU time; however, other
criteria may be employed without departing from the Spirit
of the invention. Corrective measures are determined for
agents exceeding criteria Specified in Step 436 per Step 438.
Corrective measures, or actions, as used in accordance with
embodiments of the invention, can take many forms Such as,
for example, but without limitation, terminating agents
exceeding the Set criteria, lowering priorities associated with
leSS important agents operating in the System So a desired
agent can continue to consume excessive CPU resources,
and shifting agents from one CPU to another in environ
ments containing parallel processors. In addition, corrective
actions may be implemented automatically by the System
and/or may be user defined. Corrective actions are then
reported to a System administrator using System manager UI
118 per step 440.
0038 FIG. 4 illustrates an exemplary general-purpose
computer architecture useful for practicing embodiments of
the invention. General-purpose computer 500 may be com
prised of a processor 502, main memory 504, read only
memory (ROM) 506, storage device 508, bus 510, display
512, keyboard 514, cursor control 516, and communication
interface 518. Processor 502 may be any type of conven
tional processing device that interprets and executes instruc
tions. The processor may include an operating System, as
well as application and communication Software to imple
ment desired functions. Main memory 504 may be a random
access memory (RAM) or a similar dynamic storage device.
Main memory 504 stores information and instructions in
machine-readable form for execution by processor 502.
Main memory 504 may also be used for storing temporary
variables or other intermediate information during execution
of instructions by processor 502. ROM 506 stores static
information and instructions for processor 502. It will be
appreciated that ROM 506 may be replaced with other types
of Static Storage devices Such as programmable ROM,
erasable programmable ROM, and the like. Data Storage

US 2005/0235284 A1

device 508 may include any type of magnetic or optical
media and its corresponding interfaces and operational hard
ware. Data storage device 508 stores information and
instructions for use by processor 502. Bus 510 includes a set
of hardware lines (conductors, optical fibers, or the like) that
allow for data transfer among the components of computer
500.

0039) Display device 512 may be a cathode ray tube
(CRT), liquid crystal display (LCD), or the like, for display
ing information to a user. Keyboard 514 and cursor control
516 allow the user to interact with computer 500. Cursor
control 516 may be, for example, a mouse. In an alternative
configuration, keyboard 514 and cursor control 516 can be
replaced with a microphone and Voice recognition means to
enable the user to interact with computer 500.
0040 Communication interface 518 enables computer
500 to communicate with other devices/systems via any
communications medium. For example, communication
interface 518 may be a modem, an Ethernet interface to an
IP network, or a printer interface. Alternatively, communi
cation interface 518 can be any other interface that enables
communication between computer 500 and other devices or
Systems.

0041. By way of example, a computer 500 consistent
with the present invention provides a management comput
ing system 102 with the ability to monitor scheduled and
running agents on remote sites 122A and 122B via network
106. Computer 500 performs operations necessary to com
plete desired actions, Such as computing a total CPU time for
an agent and storing it in a hash tube as shown in FIG. 4B,
in response to processor 502 executing Sequences of instruc
tions contained in, for example, memory 504. Such instruc
tions may be read into memory 504 from another computer
readable medium, such as a data storage device 508, or from
another device (not shown) via communication interface
518. Alternatively, hard-wired circuitry may be used in place
of or in combination with Software instructions to implement
the present invention. Thus, the present invention is not
limited to any Specific combination of hardware circuitry
and Software.

0042 FIGS.5A-5C illustrate exemplary computer-read
able data structures, or records, useful for Storing informa
tion associated with monitoring memory and CPU resources
consumed by Software agents and threads associated there
with. In FIG. 6A, Agent data structure 600 is comprised of
an agent ID field 602, a thread presence 604, a start time field
606, an end time field 608, a status field 612, a severity field
614, and a resolution field 616. Agent ID field 602 may
contain information useful for uniquely identifying agents.
In an embodiment of the invention, agents may be identified
using a unique number. Data presented in agent data Struc
ture 600 may be arranged using any of the fields; however,
in most instances agents will be ordered by agent number or
by their adverse impact on management application 100. For
example, agent 010 of FIG. 5A may be the agent consuming
the greatest amount of CPU time and agent 001 may
consume the least amount of CPU time.

0043. Thread presence 604 may be a flag denoting the
existence of threads other than the main thread associated
with an agent. A value for thread presence may reference
another data Structure Such as a thread list data structure for
Storing additional information.

Oct. 20, 2005

0044 Start time field 606 and end time field 608 may
contain the Start time and completion time for a given agent,
respectively. Status field 612 may contain information about
the current Status of an agent. For example, Status field 612
may contain a flag where the value of the flag indicates
whether the agent is currently alive or expired.
0045 Alternatively, status field 612 may contain color
codes Such as red for an agent greatly exceeding an allocated
System resource, Such as a memory budget, yellow for an
agent that is beginning to exceed a memory budget, and
green for agents operating within a memory budget.
0046) Severity field 614 may contain a text field provid
ing possible reasons why an agent is exceeding a memory or
CPU time budget. For example, severity field 614 may
indicate to a System administrator that a particular agent is
currently executing in an infinite loop and that manually
terminating the agent is the only way to release CPU
resources being utilized. Resolution field 616 may contain
instructions for instructing a System operator on how to
terminate a problematic agent.
0047. Additional fields may be added to the data structure
of FIG. 5A without departing from the spirit of the inven
tion. For example, fields for CPU time and memory usage
may be added. Furthermore, data structures associated with
FIG. 5A may be distributed across multiple memory
devices, geographic locations, etc. depending on particular
implementations of enterprise management application 100.

0048 FIG. 5B illustrates an exemplary data structure
useful for Storing information about threads associated with
an agent operating in connection with management appli
cation 100. Thread data structure 621 may be comprised of
an agent identification field 622, a thread ID field 624, and
a peak usage field 626.
0049 Agent identification field 622 may identify an agent
having threads identified in thread ID field 624 associated
therewith. Thread ID field 624 may contain information
uniquely identifying each thread associated with a given
agent. Threads included in thread ID list may make up a
thread list or a thread group list.
0050. Thread data structure 621 is exemplary in nature
and can be modified depending on the needs of the man
agement application 100. Peak usage field 626 may indicate
the amount of memory consumed by particular threads
during their respective lifetimes. FIG. 5C illustrates a CPU
time data Structure 623 useful for Storing operating infor
mation associated with threads. CPU time data structure
contains agent identifier field 622, thread identifier field 624,
and CPU cycles used field 628. Agent identifier field 622
identifies the agent having the threads denoted in the thread
identifier field 624. CPU cycles used field 628 provides the
number of CPU cycles consumed by a given thread. CPU
cycles used field 628 may contain a raw count indicating the
number of CPU cycles consumed by a given thread, or it
may provide a time value or percentage of total CPU
resources consumed by a thread.
0051 FIG. 6A contains an exemplary data display 700B
containing a user interface for accepting user inputs for
display of agent data. Action buttons 716 provide the user
with one-click means for accessing common functionality
Such as canceling a requested action, going back to a
previous Screen or display, continuing in Sequence to a

US 2005/0235284 A1

Subsequent display or disabling an agent probe. Target
selector 718 provides the user with a means for selecting a
target computer which is the device from which memory
usage and/or CPU time data Statistics will be gathered.
Target computers may be denoted by a name, network
address, association with a particular agent of interest, etc.
Process selector 720 provides a user with a means for
selecting a process to be probed. In FIG. 6A the user has
predetermined choices of Agent Manager, HTTP, router or
any other process capable of running an agent application or
other type of machine-executable instructions, for example,
Servlets, WebService, and applications, however, proceSS
selector 720 can also be configured to allow a user to enter
the name of any proceSS using a keyboard, microphone, or
other input means known in the art.
0.052 FIG. 6B illustrates an exemplary data display
700H containing a user interface for Selecting types of agent
data to be displayed. Type window 722C allows a user to
Select criteria for analyzing and displaying agent data, here
by CPU time utilization data. In addition, the user can
determine how agents are ranked when displayed to System
manager UI 78.

0053 FIG. 6C illustrates an exemplary data display 700I
for allowing a user to associate a Severity rating with a
respective percentage of CPU time utilization.

0054) The displays shown in FIGS. 6A-6C are exem
plary in nature and numerous changes can be made to thereto
without departing from the spirit of the invention.
0.055 While exemplary embodiments are provided, other
embodiments are possible in light of the Specification.
Therefore, unless otherwise specified, the illustrated
embodiments can be understood as providing exemplary
features of varying detail of certain embodiments, and
therefore, unless otherwise Specified, features, components,
modules, and/or aspects of the illustrations can be otherwise
combined, Separated, interchanged, and/or rearranged with
out departing from the disclosed Systems and methods.
Additionally, the shapes and Sizes of components are also
exemplary and unless otherwise Specified, can be altered
without affecting the disclosed Systems and methods and
without departing from the Spirit and Scope of the invention.
0056. The foregoing description of exemplary embodi
ments of the present invention provides illustration and
description, but is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Modifications
and variations are possible in light of the above teachings or
may be acquired from practice of the invention. For
example, while the above description focused on monitoring
CPU time and memory utilization associated with operating
agents and their associated threads, the invention can be
modified to also monitor input and output data associated
with agents Such as that associated with disk input/output
data. And, while a Series of StepShave been described with
regard to FIGS. 2, 3A and 3B, and 4A through 4C, the order
of the StepS may be varied in other implementations con
Sistent with the present invention. Moreover, non-dependent
StepS may be implemented in parallel if desired.

0057. No element, step, or instruction used in the descrip
tion of the present application should be construed as critical
or essential to the invention unless explicitly described as
Such. Also, as used herein, the article “a” is intended to

Oct. 20, 2005

include one or more items or elements. Where only one item
is intended, the term “one' or Similar language is used.
0058 Many alternative embodiments of the present
invention are possible in light of the teachings hereinabove.
For example, in a first alternative embodiment, values
displayed in agent ID 706, of display 700A, may be com
prised of links that when clicked on open a new window
containing detailed information about the agent. The
detailed information can contain parameters associated with
the agent, actual Source code associated with the agent,
Security Settings and permissions associated with the agent,
etc. In addition, clicking on the link may further open a
Source code debugger to let the user begin debugging the
Source code associated with a particular problematic agent.
0059. In a second alternative embodiment, the methods
of FIGS. 2A, 3A and 3B, and 4A-4C can be modified so that
only agents developed by a certain programmer are identi
fied and monitored before reporting results back to only that
programmer. Implementing this embodiment of the inven
tion may be useful to programmerS in that they can assess
the impact of their code on the System, thus making before
and after benchmarking possible with respect to newly
developed agents.

0060. The scope of the invention is defined by the claims
and equivalents thereof hereinbelow.
0061 The claims should not be read as limited to the
described order or elements unless Stated to that effect.
Therefore, all embodiments that come within the scope and
Spirit of the following claims and equivalents thereto are
claimed as the invention.

What is claimed:
1. A method for monitoring System processor usage time

by a Software agent operating in a computer System, Said
method comprising the Steps of

identifying Said agent by associating an agent identifier
therewith;

initiating an agent lifetime timer for monitoring an oper
ating interval for Said agent;

determining Said operating interval using Said lifetime
timer; and

Storing Said operating interval and Said agent identifier in
a computer-readable memory.

2. The method of claim 1, wherein said computer-readable
memory includes a hash table.

3. The method of claim 1 wherein determining said
operating interval further comprises identifying a start time
and a completion time for Said agent.

4. The method of claim 3 wherein determining said
operating interval further comprises computing an elapsed
time as the difference between Said Starting time and Said
completion time for Said agent.

5. The method of claim 1 further comprising:

asSociating Said operating interval and Said agent identi
fier with other operating intervals and agent identifiers
asSociated with a plurality of other Software agents
operating in Said System.

US 2005/0235284 A1

6. The method of claim 5 further comprising:
filtering Said agent and Said plurality of other agents

according to predefined filtering criteria to produce a
filtered set.

7. The method of claim 6 further comprising:
rank ordering Said filtered Set.
8. The method of claim 7 further comprising:
making Said filtered Set available to a display device.
9. The method of claim 6 further comprising:
determining a corrective measure for at least one member

of Said filtered set.
10. The method of claim 9 further comprising:
displaying Said corrective measure on a display device.
11. The method of claim 9, wherein said corrective

measure is implemented by Said System.
12. A computer readable medium having Store instruc

tions for causing a processing unit to execute the Steps of the
method of claim 1.

13. A method for monitoring System processor time usage
by a Software agent having a thread associated therewith,
Said thread having a thread lifetime and Said agent having an
agent lifetime, Said method comprising the Steps of:

asSociating an agent identifier with Said agent;
initiating an agent lifetime timer for monitoring Said agent

lifetime;
determining System processor resource allocations asso

ciated with Said agent, Said resource allocations defin
ing a footprint for Said agent comprising:
an amount of System processor resources utilized by

Said thread during Said thread lifetime, and
an amount of System processor resources utilized by

Said agent during Said agent lifetime,
asSociating Said footprint with Said agent identifier;
Storing Said footprint and Said agent identifier in a com

puter-readable memory;
comparing Said footprint of Said agent to a plurality of

footprints associated with a like plurality of other
Software agents,

ranking Said footprint of Said agent against Said plurality
of footprints, and

displaying those of Said agent footprint and Said plurality
of footprints exceeding a predefined threshold.

13. The method of claim 12 further comprising:
establishing a System processor resources configuration

threshold defining a maximum amount of System pro
ceSSor resources to be utilized by each of Said Software
agent and Said plurality of other Software agents.

14. The method of claim 13, further comprising:
running a collection probe to determine if a total amount

of consumed System processor resources exceeds Said
configuration threshold; and

performing Said initiating Step when Said total amount of
consumed System processor resources exceeds Said
configuration threshold.

Oct. 20, 2005

15. A computer program product having machine-read
able instructions disposed

thereon for instructing a processor to perform a method
for monitoring System processor time for a Software
agent operating in a computer System, said computer
program product comprising:

instructions for initiating an agent lifetime timer for
monitoring an operating interval associated with Said
agent,

instructions for determining System processor resource
allocations associated with Said agent,

instructions for Storing Said operating interval and Said
resource allocations associated with Said agent; and

instructions for notifying a System operator about Said
operating interval and Said resource allocations.

16. The method of claim 15 further comprising:

instructions for associating a Software agent identifier
with Said agent, Said identifier for facilitating tracking
Said System processor time associated with Said agent.

17. The method of claim 16 further comprising:

instructions for associating Said Software agent identifier
with Said operating interval and Said resource alloca
tions prior to Storing Said operating interval and Said
resource allocations associated with Said agent.

18. An apparatus for tracking System processor time of a
Software agent operating in a computer System comprising:

means for identifying Said agent by associating an agent
identifier therewith;

means for initiating an agent lifetime timer for monitoring
an operating interval of Said agent;

means for determining Said operating interval using Said
lifetime timer; and

means for Storing Said operating interval and Said agent
identifier in a computer-readable memory having a
hash table associated therewith.

19. A method for tracking System processor time for a
target agent operatively associated with a hypertext transport
protocol proceSS operating on a computer System and run
ning a plurality of threads, Said target agent further operating
with at least one of Said plurality of threads, Said method
comprising:

creating a computer-readable hash table in a memory
operatively associated with Said computer System;

initiating an agent tracking function in machine-execut
able code in Said computer System;

identifying members of Said plurality of threads by asso
ciating a thread identifier with each member of Said
plurality of threads producing a like plurality of iden
tified threads;

identifying those of said plurality of identified threads
having Said target agent operating there with producing
an identified thread Set;

US 2005/0235284 A1

determining an amount of Said System processor time
utilized by said identified thread set; and

Storing Said System processor time for Said identified
thread Set in Said hash table, thereby tracking Said
System processor time for Said target agent.

20. The method of claim 19 further comprising:
computing Statistics for Said identified thread Set.

Oct. 20, 2005

21. The method of claim 19 further comprising:
rank ordering those of Said plurality of identified threads

having Said target agent operating there with.
22. The method of claim 21 further comprising:
providing Said identified Set to a display device.

k k k k k

