(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
01 February 2018 (01.02.2018)

(10) International Publication Number

WO 2018/022255 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 21/53 (2013.01)

(21) International Application Number:

PCT/US2017/040492

(22) International Filing Date:
30 June 2017 (30.06.2017)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
62/368,223 US
15/245,037 Us

(71) Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

29 July 2016 (29.07.2016)
23 August 2016 (23.08.2016)

(72) Inventor: DE, Subrato Kumar; 5775 Morehouse Drive,
San Diego, California 92121 (US).

(74) Agent: WIGMORE, Steven P. et al.; Smith Tempel Bla-
ha LLC, Two Ravinia Drive, Suite 700, Atlanta, Georgia
30346 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: KERNEL-BASED DETECTION OF TARGET APPLICATION FUNCTIONALITY USING VIRTUAL ADDRESS MAP-

PING

100

<

MEMORY 104
VIRTUAL APPLICATION BINARY APPLICATION SOURCE
MACHINE 118 CODE 108 CODE 110
A
Y
CPU 102
A
Y
HIGH-LEVEL OPERATING SYSTEM (HLOS) 106
VIRTUAL ADDRESS-
REGISTERED APPLICATIONS 112 | TO-FUNCTION
MAPPING TABLE 120
TRUSTED ZONE 114
MALICIOUS CODE DETECTION IDENTIFIER-TO- F’G 1
ALGORITHM(S) 116 VIRTUAL- ADDRESS .
MAPPING TABLE 122

wo 20187022255 A1 |00 AT OO

(57) Abstract: Systems, methods, and computer programs are disclosed for detecting high-level functionality of an application exe-
cuting on a computing device. One method comprises storing, in a secure memory on a computing device, a virtual address mapping
table for an application. The virtual address mapping table comprises a plurality of virtual addresses in the application binary code
mapped to corresponding target application functionalities. The application is registered with a high-level operating system (HLOS).
During execution of the application binary code, the HLOS detects when one or more of the virtual addresses corresponding to the
target application functionalities are executed based on the virtual address mapping table.

[Continued on next page]

WO 2018/022255 A1 {00V A0 N OO o

EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

WO 2018/022255 PCT/US2017/040492

KERNEL-BASED DETECTION OF TARGET
APPLICATION FUNCTIONALITY USING
VIRTUAL ADDRESS MAPPING

PRIORITY CLAIM AND CROSS-REFERENCE TO RELATED APPLICATION
[0001] This patent application claims priority under 35 U.S.C. §119(e) to U.S.
Provisional Application Serial No. 62/368,223, filed July 29, 2016, entitled, “KERNEL-
BASED DETECTION OF TARGET APPLICATION FUNCTIONALITY USING
VIRTUAL ADDRESS MAPPING,” the entire contents of which are hereby

incorporated by reference.

DESCRIPTION OF THE RELATED ART
[0002] There are various high level applications running on a hardware platform that
does not show any noticeable activity at the system or platform layer and hence
provides no opportunities to detect useful functional and behavioral information of the
application execution.
[0003] A common example being high level Web browser application on being
compromised with security exploits (e.g., Cross Site Scripting) during it’s execution on
the device that do not leave any indicative trace at the system and the platform level.
There is no way to determine that such an activity is happening on the high level
application by probing either the system libraries, the platform, the SOC hardware, or
watching the device level activities.
[0004] Hence to have better platform level control on various third party applications
running on the device and to detect some of the functional and behavioral activities of
these executing high level applications, there is a need to develop a mechanism that
enables expressing and communicating the high level application functionalities and
behavior into a form that the platform’s HLOS or kernel can understand. This will allow
the platform to have better understanding on the executing application’s behavior and
allow the platform to take decisions and actions to handle various different situations of
the executing applications.
[0005] As an example a platform level decision to prevent a Web Security exploit on a

third party web browser application can be taken using the information. Other areas of
-1-

WO 2018/022255 PCT/US2017/040492

example uses are the platform taking decisions like increasing/decreasing the
frequencies of various SOC components (DDR, Bus, CPU, Caches) or engage high or
low power modes once a specific functional or behavioral nature of the application is
detected using the mechanisms in this disclosure at the HLOS or kernel layer. In general
with this disclosure the platform gets the opportunity to do various controls on the
various third party applications executing on the device by detecting and recognizing
the functionality being executed by the application. This allows SOC and platform
vendors to provide a better solution from the platform level for various third party

applications on which the platform otherwise have no control over.

SUMMARY OF THE DISCLOSURE

[0006] Systems, methods, and computer programs are disclosed for detecting high-level
functionality of an application executing on a computing device. One method
comprises storing, in a secure memory on a computing device, a virtual address
mapping table for an application. The virtual address mapping table comprises a
plurality of virtual addresses in the application binary code mapped to corresponding
target application functionalities. The application is registered with a high-level
operating system (HLOS). During execution of the application binary code, the HLOS
detects when one or more of the virtual addresses corresponding to the target
application functionalities are executed based on the virtual address mapping table.

[0007] Another embodiment is a system comprising a processing device and a high-
level operating system (HLOS). The processing device is configured to execute
application binary code. The HLOS comprises a virtual address mapping table
comprising a plurality of virtual addresses in the application binary mapped to
corresponding target application functionalities. The HLOS I configured to detect when
one or more of the virtual addresses corresponding to the target application

functionalities are executed.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] In the Figures, like reference numerals refer to like parts throughout the

various views unless otherwise indicated. For reference numerals with letter character

-

WO 2018/022255 PCT/US2017/040492

designations such as “102A” or “102B”, the letter character designations may
differentiate two like parts or elements present in the same Figure. Letter character
designations for reference numerals may be omitted when it is intended that a reference
numeral to encompass all parts having the same reference numeral in all Figures.

[0009] FIG. 1 is a block diagram of an embodiment of a system for detecting target
application functionality using virtual address mapping in a secure memory.

[0010] FIG. 2 illustrates an exemplary mapping of target application functionality to
the corresponding application binary code.

[0011] FIG. 3 illustrates an exemplary embodiment of a virtual address-to-function
mapping table (VAFMT).

[0012] FIG. 4 is a flowchart illustrating an embodiment of a method for detecting
malicious code activity in the system of FIG. 1.

[0013] FIG. 5 illustrates another embodiment of a VAFMT used for dynamically
identifying boundaries of a virtual machine code space.

[0014] FIG. 6 illustrates an embodiment of an identifier-to-virtual mapping table
(IVAMT) used in combination with a VAFMT.

[0015] FIG. 7 shows a portion of a VM code space used in connection with a garbage
collection process.

[0016] FIG. 8 shows exemplary points of interest for a garbage collection function in
the virtual machine of FIG. 1 and the virtual addresses for the functional points of
interest in the VAFMT that are used to detect the execution of the garbage collection
activity during the execution of the application binary containing the virtual machine.
FIG. 9 illustrates an exemplary mapping of virtual addresses for external/internal
boundaries for a virtual machine heap.

[0017] FIG. 10 is a flowchart illustrating an embodiment of a method for detecting
malicious code activity in the system of FIG. 1 in a virtual machine embodiment.

[0018] FIG. 11 illustrates an embodiment of a VAFMT comprising virtual addresses
for specific buffer allocator functions that are used to determine the virtual addresses of
dynamically allocated buffers containing objects of specific data structure types and

values of members/fields of the objects allocated in the buffer.

WO 2018/022255 PCT/US2017/040492

[0019] FIG. 12 is a combined block/flow diagram illustrating an embodiment of
system for automatically updating the VAFMT in response to receiving an updated
version of the application binary code.

[0020] FIG. 13 illustrates the VAFMT of FIG. 12 with updated virtual addresses and
metadata.

[0021] FIG. 14 illustrates an exemplary matching of functional points of interest in
the VAFMT of FIG. 12 to a pseudo binary code template.

[0022] FIG. 15 illustrates an exemplary matching of the pseudo binary code template
of FIG. 14 to a matched region in the updated version of the application binary code.
[0023] FIG. 16 is a flowchart illustrating an embodiment of a method for updating the

VAFMT in response to receiving an updated version of the application binary code.

DETAILED DESCRIPTION
[0024] The word “exemplary” is used herein to mean “serving as an example, instance,
or illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects.
[0025] In this description, the term “application” may also include files having
executable content, such as: object code, scripts, byte code, markup language files, and
patches. In addition, an “application” referred to herein, may also include files that are
not executable in nature, such as documents that may need to be opened or other data
files that need to be accessed.
[0026] The term “content” may also include files having executable content, such as:
object code, scripts, byte code, markup language files, and patches. In addition,
"content" referred to herein, may also include files that are not executable in nature,
such as documents that may need to be opened or other data files that need to be
accessed.

o

[0027] As used in this description, the terms “component,” “database,” “module,”
“system,” and the like are intended to refer to a computer-related entity, either
hardware, firmware, a combination of hardware and software, software, or software in
execution. For example, a component may be, but is not limited to being, a process

running on a processor, a processor, an object, an executable, a thread of execution, a

4-

WO 2018/022255 PCT/US2017/040492

program, and/or a computer. By way of illustration, both an application running on a
computing device and the computing device may be a component. One or more
components may reside within a process and/or thread of execution, and a component
may be localized on one computer and/or distributed between two or more computers.
In addition, these components may execute from various computer readable media
having various data structures stored thereon. The components may communicate by
way of local and/or remote processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interacting with another component
in a local system, distributed system, and/or across a network such as the Internet with
other systems by way of the signal).
[0028] FIG. 1 illustrates an embodiment of a system 100 for detecting desired or
target high-level functionalities of an application binary from a kernel or operating
system (O/S) layer. As illustrated in the embodiment of FIG. 1, the system 100
comprises a processing device (e.g., a central processing unit (CPU) 102), a memory
104, and a high-level operating system (HLOS) 106. The memory 104 stores one or
more applications that may be executed by the CPU 102. The memory 104 may store
the application binary code 108 corresponding to reference application source code 110
associated with the application(s) installed on a computing device. In this regard, the
system 100 may be implemented in any desirable computing device or system,
including, for example, a personal computer, a laptop computer, a workstation, a server,
or a portable computing device (PCD), such as a cellular telephone, a smart phone, a
portable digital assistant (PDA), a portable game console, a navigation device, a tablet
computer, a wearable device (e.g., smart watch), or other battery-powered portable
device.
[0029] In an embodiment, the kemmel or O/S layer comprises a high-level operating
system (HLOS) 106. As illustrated in FIG. 1, the HLOS 106 comprises a list of
registered applications 112, a secure memory (e.g., a trusted zone 114), and specially
configured virtual address mapping table(s) for the application binary code 108 of each
registered application. The list of registered applications 112 identifies applications
installed on the system 100 that have been registered with the HLOS 106 for secure

control and/or support. For example, the application binary code 108 of an application

-5-

WO 2018/022255 PCT/US2017/040492

(e.g., a web application, a browser application, efc.) may be registered with the HLOS
106 and identified in the list 112. As known in the art, the trusted zone 114 comprises a
secure memory or arca configured to guarantee that code and/or data loaded into
memory and/or executed is protected with respect to security, confidentiality, integrity,
etc. The application binary code 108 for the registered application(s) may have one or
more virtual address mapping table(s), which are used by the HLOS 106 and/or the
algorithms in the trusted zone 114 to identify desired or target high-level application
functionalities by tracking the execution of predetermined virtual address points.

[0030] It should be appreciated that the system 100 may be applied to various
application domains in which tracking and detecting high-level application
functionalities at the kernel layer is advantageous. For example, in one exemplary
embodiment, the kernel may control decisions, such as, increasing and/or decreasing the
frequency of various system on chip (SoC) components (e.g., a central processing unit
(CPU), cache(s), double data rate (DDR) memory, one or more buses, efc.) or set high
and/or low power modes and enable/disable specific hardware features in response to
the detection of specific functional or behavioral nature of executing applications. In
this manner, the HLOS 106 and the kemel has the opportunity to implement various
controls on the various third party applications executing on the device by detecting and
recognizing the functionality being executed by the application. It should be
appreciated that this may allow the SoC and platform vendors to provide improved
solutions from the platform/HLOS/kernel level for various third party applications on
which the platform otherwise may have no control.

[0031] In an exemplary application domain, the system 100 may provide real-time
security protection against malicious attacks or other exploits of web applications, web
browsers, JavaScript code, efc. As known in the art, JavaScript is the programming
language used in many websites and web applications, JavaScript-based attacks are one
of the top threats for cyber security. As more and more web activity shifts from desktop
computers to mobile, JavaScript attacks are becoming a major threat on portable
computing devices.

[0032] Most malicious JavaScript attacks utilize the characteristics of the JavaScript

language and the constraints of web standards and specifications for the exploits.

-6-

WO 2018/022255 PCT/US2017/040492

Common examples of web-based exploits through malicious JavaScript include the
following: cross-site scripting (i.e., XSS/CSS), cross-site request forgery (i.e.,
CSRF/XSRF), drive-by downloads, user intent hijacking, clickjacking, distributed
Denial of Service (DDoS), JavaScript steganography, and various forms of obfuscated
JavaScript. Because high-level web behavior and functionality knowledge 1s needed in
the attempt to detect malicious behaviors, current web and JavaScript security solutions
are typically built within the browser software architecture.

[0033] In-built web security mechanisms within the HLOS, kemel and the device
platform, however, are limited because web/JavaScript-based exploits may have no
visible indication on the platform activity (e.g., system calls, device usage, efc.). Many
web/JavaScript-based attacks are outward-facing and only compromise the user’s online
assets, activity, identity, efc. In other words, the visible activity patterns may only be
detected within the web browser/application software and hence most security
mechanisms against web exploits are almost always built within the web browser
application.

[0034] In this regard, exemplary embodiments of the application binary code 108 in
system 100 may comprise web applications, browser applications, or other applications
in which the HLOS 106 detects high-level application functionalities by tracking
predetermined virtual address points. As further illustrated in FIG. 1, the system 100
may further comprise one or more malicious code detection algorithms 116 residing in
the trusted zone 114. The malicious code detection algorithms 116 may receive data
related to execution of the virtual address points and their associated functional
meanings as identified in the virtual address mapping tables. Based on this data, the
algorithm(s) 116 may detect, for example, malicious code and behavior, malicious
JavaScript code and execution, efc. and initiate appropriate methods for resolving the
security threat or otherwise thwarting the malicious attack. In an embodiment, when a
security threat is detected, the system 100 may automatically resolve the threat or
prompt a user for appropriate action(s).

[0035] As illustrated in the embodiment of FIG. 1, the virtual address mapping tables
used by the HLOS 106 may comprise a virtual address-to-function mapping table 120
and an identifier-to-virtual address mapping table 122. It should be appreciated that the

_7-

WO 2018/022255 PCT/US2017/040492

HLOS 106 and the mapping tables 120 and 122 comprise an integrated platform
mechanism by which the system 100 may determine desired or target high-level
functional information from the executing application binary code 108. The high-level
functional information may be used by algorithm(s) and/or model(s) (e.g., malicious
code detection algorithm(s) 116) implemented in the trusted zone 114 to detect
malicious behavior.

[0036] As described below in more detail, the system 100 may support two different
execution models for executing the application binary code 108. A first execution
model involves native binary execution (e.g., from C/C++ code). A second execution
model involves managed runtime execution (e.g., execution by a virtual machine 118).
In an embodiment, the virtual machine 118 may execute dynamic just-in-time (JIT) or
interpreted code from JavaScript sources. In managed runtime execution embodiment,
the virtual machine 118 may comprise part of the binary code 108 in which the virtual
machine 118 runs within the binary code 108. Tt should be appreciated, however, that in
other embodiments there may be separate VM and binary workloads.

[0037] An exemplary embodiment of the native binary execution model is illustrated
in FIGS. 2 — 4. For native binary execution, each application in the list of registered
applications 112 has a corresponding VAFMT 120, which is maintained by the HLOS
106. The VAFMT 120 may reside in the trusted zone 114. The VAFMT 120 comprises
different virtual addresses of interest mapped with their associated high-level
functionality. In an embodiment, each associated high-level functionality may be
denoted as a macro name that the algorithm(s) 116 understand. It should be
appreciated, however, that other mechanisms for representing the associated high-level
functionality may be implemented, including, for example, pointers to functions or
function names in the algorithms 116 such that the activity detected at a particular
virtual address directly corresponds to a functionality that needs to be triggered in the
algorithm(s) 116. The virtual addresses of the specific application functions (and
specific points within functions) in a binary image may be referred to as “points of
interest”. In an embodiment, virtual address points of interest may comprise points
within, at the start, or at the end of, or multiple specific points in between, for example,

sensitive sources/sinks routines, dangerous web application program interfaces (APIs),

8-

WO 2018/022255 PCT/US2017/040492

specific web functionality, start/end of buffers, or any other objects that an attacker may
exploit or other suitable information for the analysis and detection of known
web/JavaScript attacks. In other embodiments, the virtual address points of interest
may comprise points in the implementation of a JavaScript interpreter, just-in-time (JIT)
compiler, or a runtime environment (e.g., allocation/deallocation functions for a virtual
machine heap that stores JavaScript source code, bytecode/JITcode, efc.

[0038] FIGS. 2 and 3 illustrate an exemplary embodiment of a VAFMT 120. FIG. 2
illustrates a logical mapping 200 of certain desired or target functionality points within
the application source code 110 to the corresponding virtual address points within the
application binary code 108. In FIGS. 2 & 3, the virtual addresses are shown but the
binary object code is not shown. In this embodiment, the application source code 110
comprises C++ code for a “documentWrite” function. The point 201 in the source code
is mapped to a virtual address 202 in the binary code . The point 203 in the source code
1s mapped to the virtual address 204 in the binary code. The point 205 of the source
code is mapped to the virtual address 206 in the binary code. FIG. 3 illustrates a logical
mapping 300 of the virtual addresses in the binary code 202, 204, and 206 that are under
the column 302 in the VAFMT 120 to the respective functional meanings that the code
at those virtual addresses represent. As illustrated in FIG. 3, the VAFMT 120 may
comprise a plurality of virtual addresses (column 302) with a corresponding description
of the functional point of interest (column 304). The virtual address (0x3273fa%94)
represented by 202 for the binary code point is mapped to a functional point
corresponding to the EVAL FUNCTION. The virtual address (0x3473fac8)
represented by 204 for the binary code point corresponding to the functional point of
interest that denotes DOCUMENT WRITE FUNCTION START. The virtual address
(0x3473fad4) represented by 206 in the binary code is mapped to a for the functional
point that has a macro meaning DOCUMENT WRITE 1.

[0039] FIG. 11 illustrates an embodiment of a VAFMT 120 comprising a custom
virtual address table that has virtual addresses for specific buffer allocator functions that
may be used to determine virtual addresses of the start and the end of the dynamically
allocated buffers comprising objects of specific data structure types (e.g., class,

structure, union). The values of the members/fields of the objects allocated in the buffer

0.

WO 2018/022255 PCT/US2017/040492

may be determined using the offset and the length fields, which may also be maintained
in the table for a particular field /member that is a point of interest. The virtual
addresses of the buffer allocation functions may be used to detect the size and the
addresses of the allocated buffer by, for example, tracking the execution of the system
memory allocator functions from the region covered by the virtual addresses of the
allocator functions. Once the buffer start and end virtual addresses are known, the
offset and the length fields may be used to determine the value of a particular
member/field of the objects for the particular data structure type.

[0040] As illustrated by the dashed lines in FIG. 1, the application source code 110
need not be stored in the system 100. Rather, it may be located off-line or off-device
and available as reference or open source code. The reference source code for a
particular version can be used as reference and guidance to determine the virtual
addresses of interest in the actual commercial binary of the browser or the web
applications. An equivalent binary may be compiled from the open source project’s
matching code revision/version. The compiled binary may be used as a reference to
detect the desired or target virtual addresses and functions/points of the application
binary that is based on that version/revision. Similar compiler and linker options may
be used. Furthermore, breakpoints at various points in the application code can be used
for the determination of the virtual addresses and their functional mapping points.
Binary code recognition and similarity extraction methods may be utilized to identify
the functionalities in the given application binary by using the reference binary from the
known compiled functions for the open source project. For binaries with slightly
modified versions (or binaries originating from a source base with some source code
differences from the known reference open source projects), test codes may be written
that invoke the important web functions and APIs. The virtual address access
sequences from various test cases may be used to converge to a set of target virtual
address points. It should be appreciated that other mechanisms may be used to extract
functionality from the application binary code.

[0041] FIG. 4 is a flowchart illustrating an embodiment of a method 400 for detecting
malicious code activity in a native binary execution model. At block 402, a VAFMT

120 1s generated for an application. As described above, the VAFMT 120 comprises a

-10-

WO 2018/022255 PCT/US2017/040492

plurality of virtual addresses of interest mapped to corresponding high-level application
functionality. At block 404, the application may be installed on a computing device,
such as, for example, a portable computing device. At block 406, the application may
be registered for security support provided by the HLOS 106 (e.g., registered
applications 112). At block 408, the application may be launched and, in response, the
CPU 102 may execute the application binary code 108. When a registered application
112 runs, the HLOS 106 may intercept the application’s running processes (block 410).
At block 412, the HLOS 106 may use the corresponding VAFMT 120 to detect and
record the functional points of interest as they are executed. At block 414, the recorded
points may be provided to the malicious code detection algorithm(s) 116 to detect and
resolve malicious attacks. The malicious code detection algorithm(s) 116 may comprise
signature-based algorithm(s), pattern matching algorithms, or employ machine leaming,
or other techniques. In this manner, the malicious code detection algorithm(s) 116 may
use the VAFMT 120 to provide the meaning of the virtual addresses it receives as input.
[0042] Because the VAFMT 120 is under the control of the HLOS 106, any
transformation/randomization of the virtual addresses of the application binary code 108
performed by the HLOS 106 (e.g., address space layout randomization (ASLR)) may be
applied to the virtual addresses in VAFMT 120 to keep them in synchronization with
the effective virtual address of the executing application. In an embodiment, the
information gathered from the JavaScript code and the application execution with the
VAFMT 120 may provide the high-level web/JavaScript functionality information,
which can be fed to the malicious code detection algorithms 116. Upon detecting any
malicious behavior (block 416), the HLOS 106 may pause the
application/renderer/JavaScript process and open a dialog box for the user, warning
about the potential danger, and asking the user for instructions for proceeding. If the
user still wants to proceed, the browser process may be resumed by the HLOS 106. If
the user does not want to proceed, the HLOS 106 may ask the user to close the tab or
navigate to some other website, or the HLOS 106 may end the process for that
execution instance (browser tab).

[0043] The VAFMT 120 may be updated via, for example, over-the-air (OTA)

updates when the application binary code 110 version changes. These updates ensure

-11-

WO 2018/022255 PCT/US2017/040492

the HLOS 106 is ready with updated binaries for any registered applications 112. The
updated binaries may yield new virtual addresses for the same points of interest.

[0044] It should be appreciated that the HLOS 106 and the mapping tables 120 and
122 may also be configured to support a managed runtime execution model involving,
for example, a virtual machine 118 (FIG. 1). In this regard, the integrated platform
mechanism(s) described above enable the system 100 to determine desired or target
high-level functional information from the executing application binary code 108. An
exemplary embodiment of the managed runtime execution model is illustrated in FIGS.
5—-10.

[0045] In embodiments involving managed runtime or virtual machine execution,
JavaScript sources and/or bytecode/just-in-time (JIT) binary for the JavaScript sources
may be read from different parts of a virtual machine (VM) heap with the aid of another
table (e.g., the identifier-to-address mapping table (IVAMT) 122). The IVAMT 122
comprises virtual memory addresses for important boundaries of the VM heap. It may
further comprise other types of entries where virtual addresses for various functional
points of the virtual machine 118 or the application binary 108 could be maintained. It
should be appreciated that the IVAMT 122 may be generally used for virtual addresses
for specific functional points that may be updated and/or determined dynamically
during application execution. In this regard, the IVAMT 122 may map a functional
point to the virtual address. The VAFMT 120, on the other hand, may map a statically
defined virtual address to a functional meaning. Therefore, the VAFMT 120 may not
change during application execution but may be updated by, for example, other-the-air
(OTA) updates to a computing device. It should be further appreciated that other
miscellaneous tables may be associated with the VAFMT 120 and the IVAMT 122.
The miscellaneous tables may comprise various macro or parameter names mapped to
their parameter values or settings that are not virtual addresses.

[0046] In the embodiment of FIG. 9, virtual memory addresses 901 are identified for
various external and/or internal boundaries of an exemplary VM heap structure 900. As
illustrated in FIG. 9, the VM heap structure 900 may comprise a plurality of data fields
identifying various internal and/or external boundaries, including, for example, a from

field 912, a to field 914, a code field 902, a map field 904, a large object field 906, an

-12-

WO 2018/022255 PCT/US2017/040492

old data field 908, and old pointer fields 910. The VM heap is a VM managed memory
region that is allocated in the native system heap. As known in the art, in the VM Heap,
the VM performs abstraction of, for example, memory management, allocating and
deallocating the code (e.g., JavaScript source), the bytecode, intermediate code, JITed
binary, the objects created during execution, and all other associated housekeeping
information and internal data structures used for the execution of the program (e.g.,
JavaScript program). As further illustrated in FIG. 9, the VM heap region may
comprise various sub-regions (e.g., 910, 908, 906, 904, 902, 912, and 914) depending
on the type of things the VM stores. Sub-regions 912 and 914 may be used to contain
the objects created for the first time and any garbage collection activity swaps the live
objects from sub-regions 912 to 914 and vice versa. In an embodiment, sub-region 902
may be used to save JavaScript source, bytecodes, intermediate codes, and JITed
binary/assembly codes. Sub-region 904 may be used to keep certain internal data
structures associated with the objects created by the VM during execution of a program
(e.g., JavaScript program). Sub-region 906 may be used to keep any kind of item (code,
object) that is bigger than a predetermined size (e.g., 1 MB). Sub-regions 908 and 910
may keep objects and data that have survived multiple cycles of garbage collection with
sub-region 908 focusing objects with constant values and sub-region 910 focusing on
objects that points to other objects.

[0047] In operation, the HLOS 106 may identify and dynamically update the virtual
memory addresses 901 in the IVAMT 122 as memory allocations change for the VM
heap. It should be appreciated that a JavaScript virtual machine 118 keeps the sources
in the heap until the function is active. The managed runtime or virtual machine
execution model may involve identifying JavaScript sources and/or bytecode/JIT code
from the VM heap. The VM heap objects holding JavaScript sources may be tracked
for any new writes, and new JavaScript sources received by the virtual machine 118
may be identified. The identified JavaScript sources may be provided to the
algorithm(s) 116 in the trusted zone 114, which extracts various features from the
JavaScript code and uses them for detecting any malicious behavior. Examples of
features extracted from the JavaScript code include the following or other features:

document object model (DOM) modification and sensitive functions; a number of

-13-

WO 2018/022255 PCT/US2017/040492

evaluations; a number of strings; a script length; string modification function(s); “built-
ins” for de-obfuscation, efc.). The trusted zone 115 may feed the extracted features to
the malicious code detection algorithms 116 to determine any malicious activity.

[0048] In certain embodiments, when only JIT binary/bytecodes are available, the
features may be extracted from them and then sent to the malicious code detection
algorithms 116. For example, the HLOS 106 may maintain a library of bytecode/JIT
code sequences representing high-level JavaScript artifacts. Any matches of the
bytecode/JIT code stream from the JavaScript functions in the VM code space with
these artifacts may be recorded and passed to the malicious code detection algorithms
116 for the determination of malicious characteristics.

[0049] FIGS. 5 & 6 illustrate an exemplary embodiment of the IVAMT 122 and the
VAFMT 120 used during managed runtime or virtual machine execution. FIG. 5
illustrates a logical mapping 500 of target functionality related to allocation of a VM
code space to corresponding application binary code 108. In this embodiment, the
application source code 110 comprises code for a “AllocateVMCodeSpace” function.
As illustrated in FIG. 5, a first point in the source code 110 may be mapped to a virtual
addresses 502 in the binary code 108. A second point in the source code 110 may be
mapped to a virtual address 504 in the binary code 108. In an example implementation,
the function AllocateVMCodeSpace may be called when the VM during execution gets
a new JavaScript source code that it needs to execute and it is determined that there is
not much space in the current VM heap code space (902). This function may take the
size of the new JavaScript code and determine the amount by which the VM heap code
space needs to be increased in size so that the VM can save the JavaScript source, the
associated bytecode or intermediate code and/or the JITed binary. Based on the
determined size, the AllocateVMCodeSpace function may increase the allocated space
of the VM heap code space in the native platform’s heap using the system allocator
functions, such a, mmap(), malloc(), calloc(), or realloc(). The mmap() function is a
POSIX compliant Unix system call that maps a sequence of bytes starting at an offset
from the other object specified by the file descriptor into memory, preferably at address
start. The mmap() function returns the actual place where the object is mapped.

Malloc(), realloc(), calloc() and free() comprise a group of functions in the C standard

-14-

WO 2018/022255 PCT/US2017/040492

library for performing manual memory management for dynamic memory allocation in
the C/C++ programming language. The virtual addresses 502 and 504 for the points of
interest in the binary code 108 may be directly placed in the column 302 in the VAFMT
120. The functional meanings of the different points of interests represented by the
virtual addresses may be listed as macro names in the column 304 of VAFMT 120. The
detection algorithm(s) 116 (FIG. 1) may have a clear understanding of the functionality
represented by the macros in column 304 of VAFMT 120. The macro name (in column
304) for a particular row in VAFMT 120 may distinctly identify the functionality that is
being executed when the processor (e.g., CPU 102) executes the application’s binary
instruction at that virtual address point (in column 302). In this manner, by knowing the
execution statistics, counts and profile of the virtual addresses for the points of interests,
the detection algorithm(s) 116 fully understand the functionality being executed by the
high level application binary. It should be appreciated that the mapping may be directly
between the virtual address 302 and the functional meaning that is represented by the
macro (304) and understood by the detection algorithm(s) 116 that performs the
processing or detection, thereby eliminating a need to know the actual binary instruction
at that virtual address point of interest.

[0050] The points of interest represented with virtual addresses and the macro meanings
may determined offline and then populated in the VAFMT 120 for a particular
application binary. Many types of applications may have available matching reference
source code. For example, matching reference source code may be available for
commonly available applications developed from popular open source projects (e.g.,,
blink/Chromium based browsers, Webkit based browsers, various virtual machines in
Android platforms, such as, Dalvik, ART, RenderScript). For applications with
available matching reference source code, various offline mechanisms may be used to
determine the virtual address for the points of interest in the commercial application
binary for a corresponding expression/statement in the source code for those points of
interest.

[0051] An exemplary embodiment for offline determination of the virtual addresses for
the points of interest will be described. Certain important and useful functions in the

source code 110 that implement the functionalities of interests may be identified in the

-15-

WO 2018/022255 PCT/US2017/040492

matching reference source code. Various points within the source code 110 may be
manually determined to form a unique set of points that together would represent a
particular unique functionality. It should be appreciated that this may be equivalent to a
set of sample points within the source code 110 that uniquely represent the overall
functionality of the complete source code 110 for the functionality. The source code
110 may be compiled, assembled, and linked to a reference application that is
equivalent to the actual commercial third party application. Both the binaries (reference
and commercial third party) may originate from the same source code 110 and use
similar build techniques (e.g., compile, assemble, link) and toolchains. As known in the
art, open source applications may use freely available GCC or LLVM toolchains. The
compiler, assembler, and linker tools may be used to generate a reference binary
application and the virtual address points corresponding to the important points in the
source code may be noted. Because the virtual addresses for the points of interest may
comprise a direct mapping of the points of interest in the source code 110 from which
the binary application is built (compiled, assembled, linked), the reference binary may
be used offline to compare with the commercial binary to identify the virtual address
points of interest in the commercial third party binary. It should be further appreciated
that other offline or other techniques may be used to determine the virtual address for
the points of interest in the commercial third party binary. In an embodiment, FIG. 2
shows how different points of interest (201, 203, 205) in the source code 110 may be
directly mapped to the corresponding virtual addresses (202, 204, 206) in the binary
108.

[0052] FIG. 6 illustrates a logical mapping 600 between the VAFMT 120 of FIG. 5
and an exemplary IVAMT 122. The VAFMT 120 comprises virtual addresses of fixed
and known points of interest in the binary application whose execution are of interest
and are being tracked. These virtual addresses may be updated whenever the binary
application changes. The IVAMT 122 comprises virtual addresses of specific points
that are created or updated when the binary application executes, which may be
dynamic and represent virtual addresses of dynamic items (e.g.,,runtime buffer start or
end points). The left hand column (302) of VAFMT 120 comprise the virtual addresses,

and the right hand column (304) may indicate the functional description that is present

-16-

WO 2018/022255 PCT/US2017/040492

in the binary code 108 at that virtual address point. In this manner, the VAMFT 120
maps virtual address to functional meanings. In general, the IVAMT 122 comprises the
reverse. In this case, the functional meaning or macro names are known, and the system
determine the virtual address 602 where the functional meaning or the macro name 604
are implemented or available in the execution instance of the binary application. The
virtual addresses in the IVAMT 122 may comprise dynamic values that are determined
at runtime. For the case where the start and the end of a dynamically allocated buffer
(or the virtual machine heap or its sub spaces) are determined, the virtual addresses for
the points of interest within the functions in the binary application that are doing the
dynamic buffer/heap-space allocation may be obtained from the VAFMT 120. The
execution of these functions may be determined by detecting the execution of the virtual
addresses in the VAMEFT 120. Furthermore, the start/end virtual addresses of the
buffer/heap-space allocation may be determined by detecting the system memory
allocation functions invoked from these functions. These determined start/end virtual
addresses of the buffer/heap-space allocations may be updated in the IVAMT (122).

[0053] FIG. 7 shows the impact of garbage collection on the VM heap code space and
how the JavaScript sources may be determined consistently in the presence of garbage
collection activity of the virtual machine 118. It should be appreciated that garbage
collection is an integral activity of a managed runtime or virtual machine because
allocation of new objects and deallocation of dead (i.e., not in use) objects may be
explicitly handled by the runtime or virtual machine 118. The activity of reclaiming
dead (unused) objects from the managed VM heap is referred to as garbage collection.
In this regard, when unneeded Script objects or other objects are reclaimed, the VM
heap may be reorganized and existing objects moved around and compacted to make
space for new object allocations. FIG. 7 shows the effect of such a garbage collection
activity on VM heap code Space 704a. VM heap code space 704a comprises JavaScript
Objects JS1, JS2, JS3, JS4. After a garbage collection event, they may be compacted
with the removal of a JavaScript Object JS3 that was detected as unneeded or dead by
the garbage collector and, therefore, reclaimed (deleted) from the VM heap code space
704b. However, any such movement (e.g., removal, compaction, efc.) of objects in the

VM heap changes the virtual addresses start and end locations that determine where the

-17-

WO 2018/022255 PCT/US2017/040492

JavaScript object resides. In an exemplary method, the virtual addresses may be
changed by re-running the virtual address determination mechanism illustrated in FIGS.
5 & 6 for the VM heap and the various spaces within the heap (FIG. 9) after every
garbage collection activity, thereby updating the virtual addresses with the new values if
the Script Object moved during garbage collection. As illustrated in FIG. 8, the kernel
may keep track of the object moves happening during garbage collection and the
distance by which they move. By keeping track of the address offset the objects moved,
the virtual address values for the start and the end of the JavaScript object in the VM
heap code space may be updated. In a similar manner, the virtual address in IVAMT
122 for the VM heap’s various code spaces may be updated by tracking the
allocations/deallocations/moves of the various sub-spaces of the VM heap illustrated in
FIG. 9.

[0054] FIG. 10 is a flowchart illustrating an embodiment of a method 1000 for
detecting malicious code activity in a managed runtime or virtual machine execution
model. It should be appreciated that the steps or functionality represented in blocks
1002, 1004, 1006, 1008, and 1010 in FIG. 10 may generally correspond to blocks 402,
404, 406, 408, and 410 described above in connection with the method of FIG. 4. At
block 1012, the method 1000 detects the points of interest virtual addresses for the VM
heap allocator/deallocator functions when executed. As illustrated at block 1014, when
the execution is detected to be inside a VM heap allocator/deallocator function, the
method 1000 may detect the entry VM into the kernel’s system allocator/deallocator
function and record the system memory allocation/deallocation. Based on that, the
method 1000 may compute and determine the start/end virtual addresses of the VM’s
heap. By implementing similar mechanism(s) for a specific allocation region for the
VM heap (e.g., code space, large object space, elc.), the start/end virtual addresses for
the specific sub-regions (e.g., code space, large object space, efc.) within the VM heap
may be determined. A illustrated at block 1016, once the VM heap space used to store
the JavaScript Source Code objects are determined at block 1014, the method 1000 may
use a Script Object Header signature/pattern (in binary) to determine the start of the
JavaScript Object within the VM heap. The length of the JavaScript Object may be

extracted from the header and used to extract the entire JavaScript Source code. As

-18-

WO 2018/022255 PCT/US2017/040492

illustrated at block 1018, the JavaScript source code may be used to extract specific
features of interest used by the detection algorithm(s) 116 to detect, for example,
malicious behavior. At block 1020, the malicious behavior of the JavaScript code may
be determined based on, for example, the features extracted from the JavaScript source
in block 1018.

[0055] As mentioned above, the VAFMT 120 may be initially configured in an off-line
manner and provided to the computing system 100 (FIG. 1). In an embodiment, when a
new version of the application binary code 108 is made available to the computing
system 100, the VAFMT 120 may be similarly updated in an off-line manner and
provided to the computing system 100 via, for example, a communication network
(referred to as an “over-the-air (OTA) update”). Updating the VAFMT 120 in this
manner may be a disadvantage for binary applications that are frequently updated. It
should be appreciated that a relatively large portion of the binary code in the updated
version of the application binary code 108 may remain unchanged. The functional
points of interest 304 identified in the VAFMT 120 may comprise a relatively limited
portion of the application binary code 108 and/or binary code that may be unchanged
from version-to-version.

[0056] For example, compiler operations and/or settings may infrequently change and
the various modules in the binary code may maintain similar or predetermined offsets
among the modules. FIGS. 12 — 16 illustrates various mechanisms that may be
implemented in the computing system 100 for automatically updating the virtual
addresses in the VAFMT 120 when a new or updated version of the application binary
code 108 is installed.

[0057] It should be appreciated that these mechanisms may reduce the need for OTA
updates of the VAFMT 120 for various types of applications and/or use cases. For
example, in the context of web security applications, these mechanisms may eliminate
the need for OTA updates for many of the most frequent types of updates to web
browser applications that are based on the same originating codebase. Existing web
browser applications may update binary application code on a weekly or monthly basis.
Virtual addresses for the new binary version may change even when the source code has

not changed for the specific modules related to the functional points of interest 304. In

-10-

WO 2018/022255 PCT/US2017/040492

this case, the virtual addresses may change where there are source code changes in parts
of the application other than the functional points of interest 304, or changes in variable
types and data structure types (e.g., C++ classes, C-structures, unions, efc) accessed in
other parts of the application. Furthermore, certain kinds of changes in compiler,
assembler, and linker options may result in virtual changes in other parts of the
application.

[0058] FIG. 12 illustrates an embodiment of exemplary mechanisms that may be
implemented in the computing system 100 for automatically updating the VAFMT 120
when a new or updated version of the application binary code 108 is installed. As
illustrated in FIG. 12, the VAFMT 120 may be supplemented with metadata 1200 and
one or more pseudo binary code templates 1202. As described below in more detail, the
metadata 1200 and the pseudo binary code templates 1202 may enable the HLOS 106 to
determine new virtual addresses 302 for the functional points of interest 304 when the
application binary code 108 is updated with a new version.

[0059] It should be appreciated that the pseudo binary code template 1202 comprises a
sequence of operation statements using symbolic representation for storage locations in
memory and pseudo-registers for local variables. The pseudo binary code template
1202 may use various categories of pseudo registers that indicate their purpose. In an
embodiment, an ArgumentReg# may denote pseudo registers that pass arguments to
subroutines. A ReturnReg may comprise the return address when returning back from a
subroutine call. A ProgCounter may comprise the current address pointed by the
program counter of the processor. A ReturnValueReg# may denote the registers used to
return values from subroutine calls back to the caller code. The operations may
comprise close representations of the assembly operations in the processor with inputs
and outs that can be variables or storage locations. For example, an AddWord variable
may indicate an addition operation of operands of sizes 4-bytes or l-word. A
LoadWord variable may indicate loading a wvalue from memory that is of a
predetermined size (e.g., 4 bytes or 1 word). A LoadByte variable may indicate loading
a value from memory that is of a predetermined size (e.g., 1 byte). A branchEQ may
comprise a conditional branch that branches to the target provided as an operand if the

previous comparison operation results in the equality of the operands being compared.

-20-

WO 2018/022255 PCT/US2017/040492

The addressing modes or address computation may be separated from the load or the
store operations. In an embodiment, a load operation with a base register and an offset
may be split into two operations: an add operation that computes the final address by
adding the constant offset value to a pseudo register, followed by the actual load
operation that uses the pseudo register containing the computed final address. This may
be done to keep the representation in a most generic form as addressing modes of
various forms can be used by the updated application binary. The operation arguments
that are constants may be represented by a number of bits that is needed to encode the
valid range of constants.

[0060] For example, a constant “Const8bits” may be used as an operand for an
operation that indicates that the operand is any valid value that can be encoded by 8 bits
and, therefore, determine the valid dynamic range of values allowed. Some operands
may be hard-coded constants (e.g., “#8” indicating the value ‘8’). The operands of the
direct branch operation may be represented as an offset from the current program
counter (e.g., (“ProgCounter + #Const20bits”, or “ProgCounter + #12”)). A pseudo
binary code template 1202 may implement the functionality of interest using these or
other operation statements. It should be appreciated that the operation statements may
be used to identify the region in the new updated binary that implements the exact
functionality via, for example, a matching functionality or module. The matching
module is configured to understand both the format and the representation of the pseudo
binary code template 1202 and the actual binary of the application. The matching
module may perform an operation-by-operation comparison within a window of
operations to detect matches, or use control-data-flow and the operations within the
control-data-flow region for comparison.

[0061] Various matching techniques may be used. The operation statements in the
pseudo binary code template 1202 may use Static Single Assignment (SSA)
representation, where a particular pseudo register variable is assigned only once,
thereby exposing the true dependencies among the operation statements. The SSA
representation may enable improved matching of the functionality region in the updated
binary of the application. The term “pseudo” refer to the fact that the representation is

not a binary executable and does not use actual assembly instructions, registers, and

21-

WO 2018/022255 PCT/US2017/040492

addressing mode of the processor and is not assembled into binary code. The pseudo
binary code template 1202 provides the functionality reference that the matching
module uses as a template pattern and guideline to detect the functionality of interest in
the updated binary of the application. It should be appreciated that the actual format
and representation of the pseudo binary code template 1202 is implementation
dependent and various other alternatives can be used. In other embodiments, some
implementations may use the actual assembly instruction representation or
representation(s) that resemble the assembly representation for the CPU 102 on which
the binary application runs.

[0062] As described above, the HLOS 106 may maintain a list of registered applications
112. For each registered application, the HLOS 106 maintains tables (e.g., VAFMT
120, IVAMT 122) comprising virtual addresses 302 for functional points of interest
304. As illustrated in FIG. 12, one or more virtual addresses 302 in the VAFMT 120
may be associated with a pseudo binary code template 1202. In the embodiment of
FIG. 12, the pseudo binary code template 1202 is associated with a set of virtual
addresses 302 for a particular set of functional points of interest 304 representing a
unique functionality (documentWrite function). The pseudo binary code template 1202
comprises pseudo code instruction(s) generically equivalent to the binary code covering
the documentWrite function. In an embodiment, the pseudo binary code template 1202
may not use the processor instruction set architecture (ISA) and need not be assembled
into actual binary code. The pseudo binary code template 1202 may use operation
statements similar to assembly operations and use pseudo registers and symbolic
references for storages. Through the use of a sequence of such operation statements, the
pseudo binary code template 1202 may implement the functionality of interest that it
represents (e.g., functionality of “documentWrite” function in the above example) that
is the same as or equivalent to the functionality of interest (e.g., the documentWrite
function) implemented in the actual binary of the application. It should be appreciated
that the computing system 100 may include any number of pseudo binary code
templates 1202. The number of different pseudo binary code templates 1202 may be
such that all the different functionalities captured in the VAFMT 120, through the

different sets of functional points of interest, have at least one representative pseudo

270

WO 2018/022255 PCT/US2017/040492

binary code template 1202 that is used for updating the virtual addresses for the
function points it covers when a new application binary code is installed.

[0063] In an embodiment, the pseudo binary code template 1202 may comprise a
generic form of the target assembly instruction(s), one or more pseudo registers, and
memory access offsets from a generic base (e.g., global heap or stack, a symbol/variable
name) representing a specific reference points in memory. The metadata 1200
generally comprises a virtual-address free representation using, for example, a byte
offset. The metadata 1200 for the virtual address (0x3473fac8) comprises a byte offset
(BASE2 = BASEO + 74709704). The metadata 1200 for the virtual address
(0x3473fad4) comprises a byte offset (BASE2 + 12). The metadata 1200 for the virtual
address (Ox3473fae8) comprises a byte offset (BASE2 + 32). It should be appreciated
that this metadata may form a unique set corresponding to the set of three virtual
address points of interest that uniquely represents the “document write” functionality.
[0064] The pseudo binary code templates 1202 may be initially generated in an off-line
manner, provided to the computing system 100, and stored in the secure storage of the
device. It should be appreciated that the pseudo binary code templates 1202 may only
need to be updated when there is a noticeable change in, for example, code and/or data
structures in a region covered by the functional points of interest 304. These types of
changes may be relatively infrequent (e.g., once per 6 months). Updates of this or other
types may be implemented via an OTA update. This may enable a significant reduction
of OTA updates of the virtual addresses from, for example, a weekly/monthly basis to
only doing the OTA updates of the pseudo binary code templates 1202 once per 6
months.

[0065] An update or a re-install of a new binary version for an existing registered
application may be detected. In response, the metadata 1200 and the pseudo binary
code templates 1202 may be used to automatically update the VAFMT 120. As
illustrated in FIG. 12, the pseudo binary code templates 1202 may be used to pattern
match a region 1206 of the binary code in the new application where the functional
points of interest 304 represented by pseudo binary code templates 1202 (and hence the
virtual address points of interests that this particular pseudo binary code template

represents) are located. The metadata 1200 may be used to focus the region 1206 to be

-23-

WO 2018/022255 PCT/US2017/040492

searched in the updated version 1204 of the application binary code 108. Initial
attempts may be made to search on a focused region 1206 (e.g., a predetermined
percentage before and after the base, BASE2) by using a relative OFFSET from an
original base (BASEO) for the functional points of interest 304 for a unique
functionality. It should be appreciated that in many types of frequent updates these
relative offsets remain close by. As further illustrated in FIG. 12, when a match is
detected, the new virtual addresses may be obtained from the new binary, and the
VAFMT 120 may be updated to reflect the new virtual addresses. If one or more
functional points of interest 304 fail to yield a match in the new binary, the computing
system 100 may initiate an OTA update or, in other embodiment, delete the specific
functionality of interest and the associated virtual addresses from the VAFMT 120
based on the importance of the particular functionality.

[0066] FIG. 13 shows the VAFTM 120 from FIG. 12 with updated virtual addresses
(represented by grey-out boxes). The virtual address 302 corresponding to the
DOCUMENT WRITE FUNCTION START point of interest 304 has been updated to
a new virtual address (0x3133b61c). The virtual address 302 corresponding to the
DOCUMENT WRITE 1 point of interest 304 has been updated to a new virtual
address (0x3133b62c¢). The wvirtual address 302 corresponding to the
DOCUMENT_ WRITE 2 point of interest 304 has been updated to a new virtual
address (0x3133b62c). As further illustrated in FIG. 12, the metadata 1200
corresponding to the virtual addresses may also be updated. As illustrated in FIG. 13,
metadata 1200 for the new virtual address (0x3133b61c) has been updated to “BASE2 =
BASEOQ + 74709000”. This illustrates that there has been a slight relative position
change between the two functionalities of interest in the updated binary of the
application (ie., between the “KERNEL ALLOCATOR FUNCTION” and the
“DOCUMENT WRITE FUNCTION”). The change may be relatively slight. For
example, the change may be a reduction in 704 bytes out of the total original distance of
74709704 bytes between them. Therefore, with the search having been focused with
some tolerance before and after the base offset metadata (i.e., 74709704 bytes) between
the two functionalities of interest allows for effective matches by narrowing the search

region. Metadata 1200 for the new virtual address (0x3133b62¢) has been updated to

-24-

WO 2018/022255 PCT/US2017/040492

BASE2 + 16. Metadata 1200 for the new virtual address (0x3133b640) has been
updated to BASE2 + 36.

[0067] FIGS. 14 & 15 illustrate an exemplary embodiment of a psecudo binary code
template 1202 associated with a set of functional points of interest 304 related to a
DOCUMENT_ WRITE function. The set of functional points of interest 304 comprises
a DOCUMENT WRITE FUNCTION START module, a DOCUMENT WRITE 1
module, and a DOCUMENT WRITE 2 module. As illustrated in FIG. 14, each of the
functional points of interest 304 in the set are directly associated with specific pseudo
code instructions that form the “pseudo binary instruction points of interest” within the
pseudo binary code template 1202. These “psuedo binary instruction points of interest”
within the pseudo binary code template 1202 comprise the one-to-one mapping of the
virtual address points of interest in the current VAFMT 120 with the new virtual
address points of interest in the updated version of the application binary depending on
the specific binary instructions in the updated application binary that directly matched
with the “pseudo binary points of interest”. As illustrated in FIG. 14, the
DOCUMENT WRITE FUNCTION START module is associated with a “push”
operation that saves the first two caller saved pseudo registers (CallSaveO, CallSavel)
and the Return register (ReturnReg). It is followed by an AddWord operation that
computes the address required by the subsequent LoadWord operation. The AddWord
operation adds a constant value that should fit in 8 bits with the program counter and
saves the result in pseudo register reg0. The subsequent LoadWord operation directly
uses the address in reg0 as the address to load the value from. In the actual binary for
the application, the AddWord with the 8 bit constant can be directly included in the
LoadWord instruction as a part of the addressing mode. The ‘Const8bits’ allows the
option to have any constant value that fits in 8-bits. The loaded value is kept in the
pseudo register regl and is used as the address for the second LLoadWord operation that
loads a value in pseudo register reg2. For the functional point of interest denoted by
DOCUMENT_ WRITE FUNCTION START, the “push” operation is the “pseudo
binary instruction point of interest” in this pseudo binary code template 1202.

[0068] The DOCUMENT WRITE 1 module is associated with a logical-shift-left

operation by 16-bits of a value that is kept in pseudo register (reg0) and saved in pseudo

-25-

WO 2018/022255 PCT/US2017/040492

>

register regl. It is then added with the constant value ‘4’ and saved in pseudo register
reg2 that is then used as an address from which a value is loaded in pseudo register
(reg3). It is to be noted that for the actual binary load instruction, the addressing mode
could directly perform the addition by the constant value 4, and hence the AddWord and
the LoadWord could be represented by a single load instruction. The value in reg3 is
further added to the program-counter value (PC) to create the final address in pseudo
register reg4 that is the address from which a byte value is loaded into the first argument
register ‘ArgumentReg0’ that is used to pass as the first argument to a called routine.
After that there is a direct branch to the address that is at an offset which is a value that
can fit in 20 bits. However, before the direct branch instruction there is an AddWord
instruction that saves the address to return to (by properly setting the ReturnReg) after
the direct branch takes the control to a different part of the application. The “logical-
shift-left” operation is the “pseudo binary instruction point of interest” in this pseudo
binary code template 1202 for the functional point of interest denoted by
DOCUMENT WRITE 1.

[0069] The DOCUMENT WRITE 2 module is associated with an AddWord operation
that adds a constant value that can fit in 8bits with the program counter and keeps the
result in pseudo register regO. The pseudo register regO is then used as an address from
which a value is loaded in pseudo register (reg2). It is followed by another AddWord
operation that adds the pseudo register (reg2) and the current value of the program
counter and keeps the result in pseudo register regl. The pseudo register regl is then
used as an address from which a value is loaded in the ArgumentRegO that is used to
pass a value to the subsequent subroutine call through a direct branch instruction. It is
to be noted that for the actual binary load instruction, the addressing mode could
directly perform the addition by the constant value, and hence the AddWord and the
LoadWord could be represented by a single load instruction in the actual binary of the
application. After the LoadWord operation, there is a direct branch to the address that is
at an offset which is a value that can fit in 20 bits. However, before the direct branch
instruction there is an AddWord instruction that saves the address to return (by properly
setting the ReturnReg) to after the direct branch takes the control to a different part of

the application. The call to the subroutine is followed by two sets of comparisons and

26-

WO 2018/022255 PCT/US2017/040492

branching to nearby locations within the pseudo binary code template 1202. Both the
comparisons are done on the first Subroutine Return Value Register (ReturnValueReg0)
to check for specific values (‘0 and ‘1’) returned by the subroutine and based on the
returned value doing branches locally using BrnachEQ and BranchNE operations
respectively. The branch target addresses are provided as a Constant offset from the
current program counter value. The AddWord operation that adds the Const8bits
operand with the program counter is the “pseudo binary instruction point of interest” in
this pseudo binary code template 1202 for the functional point of interest denoted by
DOCUMENT WRITE 2. 1t is to be noted that the actual binary of the application
could have this address computation operation (AddWord) together with the LoadWord
operation in the pseudo binary code template match to a single actual binary instruction
(as “1dr rl, [pc,#80]), and in this case the actual binary instruction where the “pseudo
binary instruction point of interest” matches either in full or as a subpart of, becomes
the instruction that determines the updated virtual address in the new version of the
binary of the application.

[0070] FIG. 15 illustrates the matching of each of the pseudo code instructions in the
pseudo binary code template 1202 to equivalent corresponding binary code in the
matched region 1206 of the updated version 1204 of the application binary code 108. In
operation, when the pseudo binary code template 1202 matches the region 1206, the
virtual addresses of the corresponding instructions in the binary code that match the
functional points of interest 304 become the new virtual addresses and are updated in
the VAFMT 120. The new base and offsets may be computed based on the new virtual
addresses, and the metadata 1200 may be updated.

[0071] FIG. 16 illustrates an embodiment of a method 1600 implemented in the
computing system 100 for automatically updating the VAFMT 120 when a new or
updated version of the application binary code 108 is installed. At block 1602, a virtual
address mapping table 120 for an application registered with the HLOS 106 may be
stored in the computing system 100, as described above. The VAFMT 120 may be
stored in a secure memory in the HLOS 106. As illustrated in FIG. 12, the VAFMT
120 may comprise a plurality of sets of virtual addresses 302 mapped to corresponding

target application functionalities (functional points of interest 304) in the application

27-

WO 2018/022255 PCT/US2017/040492

binary code 108 for the registered application. In response to receiving an updated
version 1204 of the application binary code 108 (decision block 1604), the
corresponding pseudo binary code templates 1202 associated with one or more of the
plurality of sets of virtual addresses 302 in the virtual address mapping table 120 may
be determined (block 1606). As mentioned above, in an embodiment, the pseudo binary
code templates 1202 may initially be acquired through over-the-air (OTA) updates to
the system 100 together with the initial VAFMT 120, or by any other means of
downloading and installing code/date on the system 100. Both these pseudo binary
code templates 1202 and the VAFMT 120 may be stored in the system 100 in locations
accessible by the HLOS 106 and the kemel. The actual storage location is
implementation dependent. Various levels of security protection or secure memory
configurations can be considered for the storage locations and is dependent on the
implementation choice. The pseudo binary code templates 1202 may be updated when,
for example, one or more of the existing templates are not able to find any matches in
the updated binary of the application. Mismatches may happen due to large scale
change in the application code in the regions of interests, or other kinds of changes
described above. During such situations, updated pseudo binary code templates 1202
and an updated VAFMT 120 may be OTA downloaded and installed in the system 100.
At decision block 1608, the pseudo binary code template 1202 is used to search the
updated version 1204 of the application binary code 108 and match the pseudo code
instruction(s) to the equivalent binary instructions. When matches are found, at block
1610, the new virtual addresses corresponding to the binary instructions are determined.
At block 1612, the virtual address mapping table 120 may be updated with the new
virtual addresses and corresponding updated base/offset metadata 1200.

[0072] As illustrated in FIG. 16, blocks 1606, 1608, 1610, and 1612 may be iterated for
all the different pseudo binary code templates 1202 until all the pseudo binary code
templates 1202 are matched and all the virtual addresses in the VAFMT 120 are
updated. At decision block 1611, the method 1600 may determine if all pseudo binary
code templates 1202 have been processed. If “yes”, the method 1600 may end at block
1613. If “no”, a new psecudo binary code template 1202 may be selected at block 1606.

At decision block 1608, as matching binary sequences are identified in the updated

28-

WO 2018/022255 PCT/US2017/040492

binary of the application for a particular pseudo binary code template 1202, the method
1600 may iterate to the next pseudo binary code template 1202 for matching. If at some
iteration there is no match for a pseudo binary code template 1202 in the updated binary
of the application, it is first determined if the functionality of interest, represented by the
pseudo binary code template 1202, can be deleted from the VAFMT 120 (decision
block 1607). If it can be deleted (which may be due to different reasons, including the
importance of the functionality being low), all the virtual address point of interest
entries for this functionality of interest may be deleted from the VAFMT 120 (block
1605) and the iteration continues to block 1606 to search for a match for the next
pseudo binary code template 1202. However, if the functionality (and hence the pseudo
binary code template1202) is important and should not be deleted (block 1609), an
automatic update mechanism fails, in which case a complete over—the-air (OTA) update
for the virtual addresses and/or the pseudo binary code templates 1202 may be
performed. This may represent the case where there is a drastic change/modification in
the updated binary of the application (e.g., that happens with less frequency, once in a
6-month).

[0073] Tt should be appreciated that one or more of the method steps described herein
may be stored in the memory as computer program instructions, such as the modules
described above. These instructions may be executed by any suitable processor in
combination or in concert with the corresponding module to perform the methods
described herein.

[0074] Certain steps in the processes or process flows described in this specification
naturally precede others for the invention to function as described. However, the
invention is not limited to the order of the steps described if such order or sequence
does not alter the functionality of the invention. That is, it is recognized that some steps
may performed before, after, or parallel (substantially simultaneously with) other steps
without departing from the scope and spirit of the invention. In some instances, certain
steps may be omitted or not performed without departing from the invention. Further,

2 <

words such as “thereafter”, “then”, “next”, etc. are not intended to limit the order of the
steps. These words are simply used to guide the reader through the description of the

exemplary method.

-20.

WO 2018/022255 PCT/US2017/040492

[0075] Additionally, one of ordinary skill in programming is able to write computer
code or identify appropriate hardware and/or circuits to implement the disclosed
invention without difficulty based on the flow charts and associated description in this
specification, for example.

[0076] Therefore, disclosure of a particular set of program code instructions or
detailed hardware devices is not considered necessary for an adequate understanding of
how to make and use the invention. The inventive functionality of the claimed computer
implemented processes is explained in more detail in the above description and in
conjunction with the Figures which may illustrate various process flows.

[0077] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted as one or more
instructions or code on a computer-readable medium. Computer-readable media
include both computer storage media and communication media including any medium
that facilitates transfer of a computer program from one place to another. A storage
media may be any available media that may be accessed by a computer. By way of
example, and not limitation, such computer-readable media may comprise RAM, ROM,
EEPROM, NAND flash, NOR flash, M-RAM, P-RAM, R-RAM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any
other medium that may be used to carry or store desired program code in the form of
instructions or data structures and that may be accessed by a computer.

[0078] Also, any connection is properly termed a computer-readable medium. For
example, if the software is transmitted from a website, server, or other remote source
using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (“DSL”), or
wireless technologies such as infrared, radio, and microwave, then the coaxial cable,
fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium.

[0079] Disk and disc, as used herein, includes compact disc (“CD”), laser disc, optical
disc, digital versatile disc (“DVD”), floppy disk and blu-ray disc where disks usually

reproduce data magnetically, while discs reproduce data optically with lasers.

-30-

WO 2018/022255 PCT/US2017/040492

Combinations of the above should also be included within the scope of computer-
readable media.

[0080] Alternative embodiments will become apparent to one of ordinary skill in the
art to which the invention pertains without departing from its spirit and scope.
Therefore, although selected aspects have been illustrated and described in detail, it will
be understood that various substitutions and alterations may be made therein without
departing from the spirit and scope of the present invention, as defined by the following

claims.

31-

WO 2018/022255 PCT/US2017/040492

CLAIMS

What is claimed is:

1. A method for detecting high-level functionality of an application executing on a
computing device, the method comprising:

storing, in a secure memory on a computing device, a virtual address mapping
table for an application, the virtual address mapping table comprising a plurality of
virtual addresses in the application binary code mapped to corresponding target
application functionalities;

registering the application with a high-level operating system (HL.OS); and

during execution of the application binary code, the HLOS detecting when one
or more of the virtual addresses corresponding to the target application functionalities

are executed based on the virtual address mapping table.

2. The method of claim 1, wherein the secure memory resides in a trusted zone in
the HLOS.
3. The method of claim 1, further comprising;:

updating the virtual address mapping table with revised virtual addresses for the

target application functionalities when the application binary code is updated.

4. The method of claim 1, further comprising:
providing the executed target application functionalities as detected from the
virtual addresses into an exception handling module configured to detect one or more

exceptions or behaviors associated with execution of the application.

5. The method of claim 4, wherein the exception handling module comprises a

malicious code detection algorithm.

6. The method of claim 1, wherein the application comprises one of a secure web

application and a web browser.

-32-

WO 2018/022255 PCT/US2017/040492

7. The method of claim 1, wherein the application binary code is executed as

native binary code.

8. The method of claim 1, wherein the application binary code comprises an

associated virtual machine.

9. A system for detecting high-level functionality of an application executing on a
computing device, the system comprising

means for storing, in a secure memory on a computing device, a virtual address
mapping table for an application, the virtual address mapping table comprising a
plurality of virtual addresses in the application binary mapped to corresponding target
application functionalities;

means for registering the application with a high-level operating system
(HLOS); and

means for detecting, during execution of the application binary code, when one
or more of the virtual addresses corresponding to the target application functionalities

are executed based on the virtual address mapping table.

10. The system of claim 9, wherein the secure memory comprises a trusted zone in
the HLOS.
11. The system of claim 9, further comprising:

means for updating the virtual address mapping table with revised virtual
addresses for the target application functionalities when the application binary code is

updated.

12. The system of claim 9, further comprising:
means for providing the executed target application functionalities as detected
from the virtual addresses into an exception handling module configured to detect one

or more exceptions associated with execution of the application.

-33-

WO 2018/022255 PCT/US2017/040492

13. The system of claim 12, wherein the exception handling module comprises a

malicious code detection algorithm.

14. The system of claim 9, wherein the application comprises one of a secure web

application and a web browser.

15. The system of claim 9, wherein the application binary code is executed as native
binary code.
16. The system of claim 9, wherein the application binary code comprises an

associated virtual machine..

17. A computer program embodied in a memory and executable by a processor for
detecting high-level functionality of an application executing on a computing device,
the method comprising:

storing, in a secure memory on a computing device, a virtual address mapping
table for an application, the virtual address mapping table comprising a plurality of
virtual addresses in the application binary mapped to corresponding target application
functionalities;

registering the application with a high-level operating system (HL.OS); and

during execution of the application binary code, the HLOS detecting when one
or more of the virtual addresses corresponding to the target application functionalities

are executed based on the virtual address mapping table.

18. The computer program of claim 17, wherein the secure memory comprises a

trusted zone in the HLOS.
19. The computer program of claim 17, wherein the method further comprises:

updating the virtual address mapping table with revised virtual addresses for the

target application functionalities when the application binary code is updated.

-34-

WO 2018/022255 PCT/US2017/040492

20. The computer program of claim 17, wherein the method further comprises:
providing the executed target application functionalities as detected from the
virtual addresses into an exception handling module configured to detect one or more

exceptions or behaviors associated with execution of the application.

21. The computer program of claim 20, wherein the exception handling module

comprises a malicious code detection algorithm.

22. The computer program of claim 17, wherein the application comprises one of a

secure web application and a web browser.

23. The computer program of claim 17, wherein the application binary code is

executed as native binary code.

24. The computer program of claim 17, wherein the application binary code

comprises of an associated virtual machine.

25. A system for detecting high-level functionality of an executing application, the
system comprising:

a processing device configured to execute application binary code; and

a high-level operating system (HLOS) comprising a virtual address mapping
table comprising a plurality of virtual addresses in the application binary mapped to
corresponding target application functionalities, the HLOS configured to detect when
one or more of the virtual addresses corresponding to the target application

functionalities are executed.

26. The system of claim 25, wherein the secure memory comprises a trusted zone in

the HLOS.

-35-

WO 2018/022255 PCT/US2017/040492

27. The system of claim 25, wherein the HLOS further comprises an exception
handling module configured to receive the executed target application functionalities as
detected from the virtual addresses and detect one or more exceptions associated with

execution of the application.

28. The system of claim 27, wherein the exception handling module comprises a

malicious code detection algorithm.

29. The system of claim 25, wherein the application comprises one of a secure web

application and a web browser.

30. The system of claim 25, wherein the application binary code comprises of an

associated virtual machine.

-36-

PCT/US2017/040492

WO 2018/022255

1/16

2l 319vL ONIddVIA
S$S3HAAv -vNLYIA

h .mu\ n\ 917 (SINHLIYODTY
gOiip-EIENEe] NOILD313a 3d09 SNOIDITYIA
71T 3INOZ @3LSNdL
0ZF 31avL ONIddVIN
NOILONN4-OL ZIT SNOILYDI1ddY d3y31SIo3y
-$S34aay vNLYIA
901 (SOTH) WILSAS ONILYYIdO 13ATT-HOIH
20T NdD
0l 3d09 80+ 3009 81T ANIHOVIA
324N0S NOILYDITddY AYVNIE NOILYDI1ddY TVNLYIA
70T AYOW3N

/!

00}

PCT/US2017/040492

WO 2018/022255

2/16

00¢

G0Z

¢ Ol

(Juswinooanoe ‘Bulgpaiuswbas)aium<-Jusndop
:(yuswinoop<-()jdwi<
Syowao_mno_O_mo_xw_A-owxwvzovc >>_>_On_wﬁmm = WUBWNI0JBAINDE LIUSWIND0(
{((} ‘191081RY hf Buyspajuswbos
{oumeNppe) Ji

{{{

90z —| HEILivExd [{(BumSenbesans prigdde-BuLigpsjuswbes
. aaxa—=-BdgIusnbasans bug
— }(++ 0ZIS > 11|, = 1] 92IS) J0}
POC — VRBIELYEXD }osip
..... €0z (eso-buligpejuswbes (azisj) §i
coz— BUElE/pE @ H () =i 9218) §
busisiy = bulygpsjuswbes Bulygpauswbag
SHINUBWINGOP 50§ &3 AUl (22X 8)aN|eA<-(08X8)BuLIS0) (0)iuswnbie<-oexe = bulg)sily Bug
oE:oQEoE:QmA-ooxo ou_wﬁ “oz1s }
L0C SpHBUIMON
UBWNS0P LIUSLINJOQTNLH ‘09Xd ,2)R1S00XT)a}IA Op-PIoA-BUIUI 21B)S
801 BILIAIUSINOOP LGH: ir 04 BHOG 1)

/!

oLl

PCT/US2017/040492

WO 2018/022255

3/16

€ 9

14V1S NOILONNS LNOINILLIS 79¢8./P6SX0
NOILONNS 300D INIWNJOA AC8.P6SX0
NOILONNA YDITINO 0Z¥€6962X0

Z 3LM LNIAND0QA geelc/yEX0

T 3L¥M LNIWND0Q yPBIELEX0

14V1S NOILONNS LM LNIND0Q goele/EX0
NOILONNS VA3 ¥B6BIELTEXD

HERICLPEXG

]

FREIE X

/

BRI VEXG

SJIANUBWINDOP 33} 8100 ABUIE

¥0€ LSTYIALNI 40 LNIOd T¥NOILONNA

20€ SSIHUAAY VNLYIA

0¢1 379V1 ONIddVIN NOILONN4-0OL-SS3¥AAV TvNLHIA

/!

00€

/

801

90¢

¥0¢

¢0¢

WO 2018/022255 PCT/US2017/040492
4/16

400

g

GENERATE A VIRTUAL ADDRESS-TO-FUNCTION MAPPING TABLE
(VAFMT) FOR AN APPLICATION, THE VAFMT COMPRISING A
PLURALITY OF VIRTUAL ADDRESSES OF INTEREST MAPPED TO
CORRESPONDING HIGH-LEVEL APPLICATION FUNCTIONALITY

— 402

:

INSTALL THE APPLICATION ON A COMPUTING DEVICE |— 404

l

REGISTER THE APPLICATION FOR SECURITY SUPPORT
WITH A HIGH-LEVEL OPERATING SYSTEM (HLOS)

l

LAUNCH THE APPLICATION AND BEGIN
EXECUTING THE APPLICATION BINARY CODE

l

INTERCEPT RUNNING PROCESSES FOR THE
APPLICATION BINARY CODE

l

DETECT AND RECORD VIRTUAL ADDRESSES OF
INTEREST FROM THE VAFMT WHEN EXECUTED

l

PROVIDE THE RECORDED VIRTUAL ADDRESSES OF
INTEREST TO A MALICIOUS CODE DETECTION ALGORITHM

|

DETERMINE MALICIOUS CODE ACTIVITY BASED ON THE
RECORDED VIRTUAL ADDRESSES OF INTEREST 416

— 406

—— 408

— 410

— 412

414

FIG. 4

PCT/US2017/040492

WO 2018/022255

5/16

140
[£6BIELIEX0)
14VLS NOILONNd LNOIWILLES 7928/P6SX0 c0s
- - apoo Aleuig
NOILONN4 3IN00D INIWND0A ?d28.P6GX0
NOILONNL NJINONO 0ZPE6962X0 20 v\
¢ 3L¥Mm INIWND0QA geeIe /EX0
T 3L¥M INIWND0Q PBIE/FEXD
14V1S NOILONNS 3LI¥M LNIWNJ0Q 8oBJE/PEX0
NOILONNZ VA3 6BIELTEXD

70€ LSIYILNI 40 LNIOd TYNOILINNA

20 SS3YAAv vNLYIA

¢l 319V1 ONIddVIN NOILONNZ-OL-SS3¥AAV TvNLYHIA

/

00S

11
|

} ()ooedg

SPODINASIEJ0IY

\

oLl

G Ol4

PCT/US2017/040492

WO 2018/022255

6/16

14VLS NOILONN4 LNO3IWILLIS 928/P6SX0
NOILONNS 31002 INJIWNJ0Q d28/P6SX0
NOILINNA YII1INO 0Z¥€6962X0
T 3LM INJNND0QA geelc/yEXD
T 3L¥M LNINND0Q PPBICLEX0
14V1S NOILONNS 3LI¥M LNIWNJ0Q goele/yeEX0
NOILONNS VA3 BRI LZEX0
¥0€ LS3IYILNI 40 LNIOd T¥YNOILONNA 20 YA

¢l 319V1 ONIddVIA NOILONNS-OL-SS3HAAav 1vNLAIA

80aJ£99¢X0 ANT 3OVdSMAN WA

08BJ£99¢X0 LHVLS FOVASMIN WA

aN3 30VdS rgo 39dvT WA

LYV1S IOVdS ME0 3oV WA

08BIE.FEX0 adN3 32VdS 3000 WA

el 80B9ZBIZX0 1¥Y1S 30VdS 3300 WA

209 s3ass3yaayv vnldiA | 709 ONINVIIN OHIVIN

221 31gavl
ONIddVIN SSIHAAY TYNLHIA-OL-¥IIHILNIAl

"\ 9 94

009

PCT/US2017/040492

WO 2018/022255

7/16

L 9Ol4

/

0Z (3)¥3av3H L23rdo 1di¥os

dr0Z 30VdS 3d0I NA
vSr | ¢SI | LSP
90Z NOILD37109
3OVayY9
vSr | €SP A RN
By0/ 3OVdS 3A0J NA

004

PCT/US2017/040492

WO 2018/022255

8/16

8 Old

08

| 7P CCY X0

et | 16B4E/9CX0

¥0€ LS3IYILINI 40 LNIOd

T¥NOILONNA

20€
SS34AAY TvNLHIA

208
2poo Aleuig

1 (108)j008beqIES)

¢l 379V1 ONIddVIN NOILONNS-O1-SS3HAAV TVNLHIA

/

801

oLl

008

PCT/US2017/040492

WO 2018/022255

9/16

6 Ol

(s48Y10 0}
Bunuiod syoslqo “68)
016 Y¥3LNIOd d10

(sbulns “69)
806 Y.1lvaddaio

906
103rdo 394V

(ojur 1noAej 108lqo)
706 dvN

(epo2vifg
‘Aleulq NSV LIr)
206 30090

| R

006

106 $3SS3YAAY VNLYIA

ccl

WO 2018/022255 PCT/US2017/040492

10/16

.~ 1000

GENERATE A VIRTUAL ADDRESS-TO-FUNCTION MAPPING TABLE
(VAFMT) FOR AN APPLICATION, THE VAFMT COMPRISING A
PLURALITY OF VIRTUAL ADDRESSES OF INTEREST MAPPED TO
CORRESPONDING HIGH-LEVEL APPLICATION FUNCTIONALITY

— 1002

v
INSTALL THE APPLICATION ON A COMPUTING DEVICE |—

v

REGISTER THE APPLICATION FOR SECURITY SUPPORT
WITH A HIGH-LEVEL OPERATING SYSTEM (HLOS)

v

LAUNCH THE APPLICATION AND BEGIN
EXECUTING THE APPLICATION BINARY CODE

v

INTERCEPT RUNNING PROCESSES FOR THE
APPLICATION BINARY CODE

v

DETECT VIRTUAL ADDRESSES OF INTEREST FOR THE
VIRTUAL MACHINE HEAP ALLOCATOR/DEALLOCATOR |—
FUNCTION(S) WHEN EXECUTED

v

1004

1006

—— 1008

— 1010

1012

DETECT THE VIRTUAL MACHINE ENTRY INTO A KERNEL SYSTEM
ALLOCATOR/DEALLOCATOR FUNCTION; DETERMINE START/END
VIRTUAL ADDRESSES OF THE VIRTUAL MACHINE HEAP

— 1014

:

USE A SCRIPT OBJECT HEADER SIGNATURE/PATTERN TO
DETERMINE A START OF THE JAVASCRIPT OBJECT WITHIN THE
VIRTUAL MACHINE HEAP

— 1016

:

USE THE JAVASCRIPT SOURCE CODE TO EXTRACT HIGH-LEVEL
APPLICATION FUNCTIONALITY TO DETECT MALICIOUS BEHAVIOR

— 1018

:

DETERMINE MALICIOUS BEHAVIOR OF THE JAVASCRIPT CODE
BASED ON THE EXTRACTED HIGH-LEVEL APPLICATION
FUNCTIONALITY

— 1018

FIG. 10

PCT/US2017/040492

WO 2018/022255

11/16

L Ol

ONfsgA ¢ 7 T SUGIEEBEX] | DERBIELBEXD PRBICLPPA] BIRILLYEXD
ONISHA v e OBEICIFEXD | BREAIRIIKD FERILLFVAD YERILLPEXD
—_ _— {uonemdde ==
viil fipuondn} OLLl 40 Bugpro; Okl
feungdo] feoondo) OgiBAR Buynp (payepdny Y10

{payepdn y1O 01T SOTT patuseG) P peLusiag
(pgepdn | ppowesg | (POIEROn YLD uopeacHe ABOBEIS /BUIID)
Vio AyEoges ¥ patjlusmy asgInNe
¥ FBUBEEO) Aponers BjRR 40 Joyng uoReoOHEe
poLuLeer s} Buop suonsu BanpnGe
ABBINEES BAINAS {psLnieBn (PBURLISIBD sicmenyddy 210 10 JBng
e} BB IO annas Anponueudny} | Aneouuetiey) G PaNoAL Buap uooun)
DEIEOONE UM BJEp 940 LSivpeaue uopeMddy
sepund sophe ur Busy | pelesnRe WA SASERINPY SRESHIPDY wisshs 1B5M0IE
& pjoy dapnod e | yasgo sued {RALIA e jauBy, B4 {OBAR 94 20}
JoQUIBiY &} SRGLIBIY A DBy Joquat puS JBung HRIQ JaUng | D) SSeUppY BNUA | SSRIDDY BryaA
, pBuay pue Jesgo yym sjqe), Buddey ssoippy jenuis wepsng
\ ZLLL 12017

0cl

PCT/US2017/040492

WO 2018/022255

12/16

¥0¢l 3d02
AUVYNIE NOILVOIddV
40 NOISY3A d31vddn

90c1
NOIO3H d3FHOLVIN

AAA

¢l Ol4

¢0cl
41V1dW31 3d0D
AdVNIE OaN3Sd

Yivav.i3in
ANV S3SS3HAav 1vNnldiA d3ilvddn
03svg NOILONNS HOLVYI0TIV 1INYIN 0000000£X0
7€ + 73SV 7 LM INIWND0J goeIC/EX0
T +73Svde T 3L1¥M INJINND0A rPRIC /PEX0
v0L60LYL + 035V = 73SVY LHVIS NOILONNS LM INIWND0Jd 8oele/eX0
S ¥0€ 20€ Ss3ayaav
00ch V1vav.lIn 1S34E31NI 40 INIOd T¥YNOILONNA TVYNLYIN

¢l 3719V1 ONIddVIN NOILONNS-O1-SS3JAAv 1vNnLdiA

t11

#

801 300 AYVNIE NOILYITddY

PCT/US2017/040492

WO 2018/022255

13/16

€L OI4

03svd

NOILONNS ¥OLVYI0T1IV 1INYIN

1904q9¢X0

T LM INIWND0Q

T 3L1¥M INIWND0A

00060L¥L +

03Svd = ¢35vd

L1YVIS NOILONN4 ILHM LNIWNJ0QJ

00cl

3344 SS3HAAVY

13S440-31A8 ONISN NOILY.INISIdd3d

“IVNLYIA

70E ONINVIN T¥NOILINNS
ONILNISIHdIH OHOVIA

20 ss3ayaav
TVNLEIA

¢l 3718V1 ONIddVIA NOILONNS-OL-SS3dAav 1vnLdiA

PCT/US2017/040492

WO 2018/022255

14/16

{snggIsunss + Buneobosg) INusuRIg

1# ‘phevenpamey aediuos

{21 + myunonBoig) DIyouRIg

n# ‘nheyeniealaney asedwon
{symnzisuosg + unodBoig) sCyoueg

g ounonbond fonumsy oAby
{1804 ‘ofoquswnBay DIOAADROT
ssunonBosd 2les 18 monphy

{obau} ‘78 piopapea

SRISURSE TRURGGEaE] JEET PICRPPY

YRA IV YRR YR

{(SUGDZISU0o0H « JBUnonboigl JoysuBg
i equnaeBoid ‘Beppunmen pOARDY
{phad ‘oheymmuwnbly syigpesy
Jownonbioig ‘efes v orABDY
{abad] ‘ghas paopapeo

by e Zhar popppy

¥ 47

Big 008 T 00 I]

ISR P PR YT YRR T

f1Bay] "Z0a piossDeOn
{oBn LBay piosspeoy
spagmsualy vejunogBosd ‘phar piomppy
{Boyumiay (oARGRS TeAEEIes] ywid

TOET eyepdhwial apon Assulg opnesd

vi Ol

NOILONNS HOLVIOTIV 13NY3N 0000000€X0

¢ 3L9M LNINND0A geBIE/YEX0

T 3LYM INIWND0QA yPeleLteEX0

1¥V1S NOILONNG 3L¥M LNIWND0Q goele/yeEX0

70E ONINVIN T¥NOILINNS
ONILNIS3Hd3d OHOVIN

Z0€ sSs3daav
IVYNLHIA

ocl

31718V.1 ONIddVIN NOILONNS-OL-SSAAAV TVNLAIA

PCT/US2017/040492

WO 2018/022255

15/16

P T S T I T ST TS TR OO PO PP

OV PORIOE BAOW IGIUEELE

gl Ol

R T T TR AT

{(Bigsmuol + Jounoaboig) aNyIuRg
18 ‘ofoyammamon amdunn

{214 + sopno0Boid) DIYoueg

o8 ‘pfeuanmauinigy ampdunn
{ByqorIsunng + mnnnboll) arunuRg
o unonBosd 'BesuInsy IOMDDY
{1 Baq "nheyusuntey pioppes
munenBond 7has " 1Bar osARDY
Infedl 20 pispapEO

{sugomsuong + munonBold) agubuRig

ot 14 BADUL PGUBRLE
BYGA9LE 1 (IBUELELE
o s @ P OGEURELE
¥O# "0 ADW 1ROGOETLE
fog o4 o i RIR0EELE
PZEBOCLE 19 HIYAELLE
PAOUEDLE 2UG VGHICE10
b o duis GEIGEELE
0BRUECLE bed (96BUELLS
{1 dwis (GRUEELE
SYOORPLE %4 BHRULELE
gy IPLSYRUESLE
o84 pRR FPQuLE it

YR T B OrEaEL e
OeREYLE 1§ DENGELLE
o8 "4 o P RESUCELE
od gl pUB FESUCELE

Top "24] "o 1} GERGESLE
TE MR] SCatRE b
foos "od} "1 P} 8TSNES1E
0]y Pt YERUEELS
{yog ‘od] ‘g P} IOZGURELE
TNt T BTN
o X0 GI9URELE
D' igd 'ps) s wemupy PLGORELE
9l g4 AW OLBUEELE
'y O OOGOTRLE

& o KOS IROGUETLE
b4

AHYNIE NOLLYONddY 40 NOIBY3A 31vadD

184 2B
fifad} ' Bas

o ‘euinonfiosd Boxuimas RIOKDDY
nfas) nBowuaunbyy ayigpeny
spnonbois thervBes pioprDy
zfas]'pBay panpspmoy

vi 100 gher papppY

e B 1F T YR YR T T ST

UEIEEINoT

PINDEDY
PIDAEEOT

syamsuons epnopBold ‘ofer piopppy
S~ (BETIRTE Y AREEES TpEREEEsT R

THZ1 mdws) spog Amug Opnasy

WO 2018/022255

PCT/US2017/040492
16/16

i

STORE A VIRTUAL ADDRESS MAPPING TABLE ASSOCIATED WITH
APPLICATION BINARY CODE REGISTERED WITH A HIGH-LEVEL
OPERATING SYSTEM, THE VIRTUAL ADDRESS MAPPING TABLE

COMPRISING A PLURALITY OF VIRTUAL ADDRESSES MAPPED TO

CORRESPONDING TARGET APPLICATION FUNCTIONALITIES IN THE
APPLICATION BINARY CODE

1605
I

DELETE THE VIRTUAL
ADDRESS POINT
ENTRIES FOR
CURRENT PSEUDO
BINARY CODE
TEMPLATE

NEW OR
UPDATED
VERSION?

NO

1604

1606

SELECT A PSEUDO BINARY CODE TEMPLATE
ASSOCIATED WITH ONE OR MORE OF THE
PLURALITY OF VIRTUAL ADDRESSES IN THE
VIRTUAL ADDRESS MAPPING TABLE

l / 1608

MATCH THE PSEUDO BINARY CODE
TEMPLATE TO BINARY INSTRUCTIONS IN
THE UPDATE VERSION OF THE
APPLICATION BINARY CODE?

l YES

— 1602

INITIATE OTA UPDATE DETERMINE THE NEW VIRTUAL | — 1810
FOR THE PSEUDO ADDRESSES CORRESPONDING TO
BINARY CODE THE BINARY INSTRUCTIONS
TEMPLATE l
UPDATE THE VIRTUAL ADDRESS
MAPPING TABLE WITH THE NEW [— 1612
VIRTUAL ADDRESSES
1611
NO
ALL TEMPLATES?
1613
FIG. 16 -

> END

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/040492

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/53
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 7 April 2011 (2011-04-07)

JAYANTH [US])
15 November 2012 (2012-11-15)

30 January 2014 (2014-01-30)

paragraph [0046] - paragraph [0067]

paragraph [0023] - paragraph [0035]

paragraph [0049] - paragraph [0063]

X US 2011/082962 Al (HOROVITZ ODED [US] ET 1-30

A WO 2012/154996 Al (QUALCOMM INC [US]; 1-30
KOTTILINGAL SUDEEP RAVI [US]; MANDAYAM

A US 2014/032875 Al (BUTLER JAMES [US]) 1-30

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 September 2017

Date of mailing of the international search report

06/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Chabot, Pedro

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/040492
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011082962 Al 07-04-2011 NONE
WO 2012154996 Al 15-11-2012 BR 112013028501 A2 10-01-2017
CA 2835000 Al 15-11-2012
CN 103518206 A 15-01-2014
EP 2707831 Al 19-03-2014
JP 6049702 B2 21-12-2016
JP 2014519089 A 07-08-2014
KR 20140016370 A 07-02-2014
RU 2013154544 A 20-06-2015
US 2013132735 Al 23-05-2013
US 2015106630 Al 16-04-2015
WO 2012154996 Al 15-11-2012
US 2014032875 Al 30-01-2014 EP 2877927 A2 03-06-2015
US 2014032875 Al 30-01-2014
WO 2014018458 A2 30-01-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report

