OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

OPIC CIPO

PROPERTY OFFICE

(72) BAMFORD, ROGER J., US
(72) KLOTS, BORIS, US
(71) ORACLE CORPORATION, US

51) Int.C1.° GO6F 11/14
30) 1998/02/13 (60/074,587) US
30) 1998/11/24 (09/199,120) US

(12) (19) (CA) Dem ande-Application

(CANADIAN INTELLECTUAL

(21) (A1) 2,320,240
86) 1999/02/12
(87) 1999/08/19

54) PROCEDE ET APPAREIL DE TRANSFERT DE DONNEES DE LA
MEMOIRE CACHE D’UN NOEUD A LA MEMOIRE CACHE

D’UN AUTRE NOEUD

54y METHOD AND APPARATUS FOR TRANSFERRING DATA
FROM THE CACHE OF ONE NODE TO THE CACHE OF

ANOTHER NODE

(57) L 1nvention concerne un procede et un appareil de
transfert d’une ressource de la meémoire cache d’un
serveur de base de donnces a la meémoire cache d’un
autre serveur de base de donne€es sans €criture prealable
de la ressource sur un disque. Lorsqu’un serveur de base
de donnces (Demandeur) souhaite modifier une
ressource, le Demandeur demande une version courante
de la ressource. Le serveur de base de données détenant
la version courante (D¢tenteur) expedie directement la
version courante au Demandeur. En expediant la version,
le Détenteur perd la possibilité de modifier la ressource,
mais continue de garder la ressource en memoire.
Lorsque la version gardee de la ressource, ou une version
ulteérieure, est ¢crite sur un disque, le Détenteur peut
supprimer la version gardee de la ressource. Autrement,
le Détenteur ne supprime pas la version gardee. Grace a
cette technique, on peut rattraper les defaillances de
serveur unique sans devoir fusionner les journaux de
reprise des multiples serveurs de base de données qui
avaient acces a la ressource.

l*l Industrie Canada Industry Canada

(57) A method and apparatus are provided for
transterring a resource from the cache of one database
server to the cache of another database server without
first writing the resource to disk. When a database server
(Requestor) desires to modify a resource, the Requestor
asks for the current version of the resource. The database
server that has the current version (Holder) directly ships
the current version to the Requestor. Upon shipping the
version, the Holder loses permission to modify the
resource, but continues to retain the resource 1n memory.
When the retained version of the resource, or a later
version thereof, 1s written to disk, the Holder can discard
the retained version of the resource. Otherwise, the
Holder does not discard the retained version. Using this
technique, single-server failures are recovered without
having to merge the recovery logs of the various
database servers that had access to the resource.

CA 02320240 2000-08-02

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
o . . - L P
(51) International Patent Classification © : | (11) International Publication Number: WO 99/41664
GO6F 11/14 Al
(43) International Publication Date: 19 August 1999 (19.08.99) |
(21) International Application Number: PCT/US99/02965 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CZ, DE, DK, EE, ES, Fl, GB, GD, GE, |
(22) International Filing Date: 12 February 1999 (12.02.99) GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, |
(30) Priority Data: ™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
60/074,587 13 February 1998 (13.02.98) US (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
09/199,120 24 November 1998 (24.11.98) US (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
! (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI.
(71) Applicant: ORACLE CORPORATION [US/US); 500 Oracle CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
Parkway, Redwood Shores, CA 94065 (US). ’

(72) Inventors: BAMFORD, Roger, J.; 2430 Hyde Street, San | Published

Francisco, CA 94109 (US). KLOTS, Boris; 1566 Winding With international search report.
Way, Belmont, CA 94002 (US). Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(74) Agents: CARLSON, Stephen, C. et al.; McDermott, Will & amendments.
Emery, 600 13th Street, N.-W., Washington, DC 20005-3096
(US).

(54) Title: METHOD AND APPARATUS FOR TRANSFERRING DATA FROM THE CACHE OF ONE NODE TO THE CACHE OF
ANOTHER NODE

(57) Abstract

A method and apparatus are provided for transferring a resource from the cache of one database server to the cache of another
database server without first writing the resource to disk. When a database server (Requestor) desires to modify a resource, the Requestor
asks for the current version of the resource. The database server that has the current version (Holder) directly ships the current version
| to the Requestor. Upon shipping the version, the Holder loses permission to modify the resource, but continues to retain the resource in

memory. When the retained version of the resource, or a later version thereof, is written to disk, the Holder can discard the retained version
of the resource. Otherwise, the Holder does not discard the retained version. Using this technique, single-server failures are recovered
without having to merge the recovery logs of the various database servers that had access to the resource.

.
"

-

’ 14

10

15

20

25

3G

35

N
-
.
-
-
v
L)
-

O O O ST A A
R R R
:::. -t ", l"c: ‘l:".‘.:‘. . :.:!‘ A .
R ST L s 2 LA

. et deint e CaRed A P e s a5 © i e SIS 1t TR T A LN ML i A 1 1 7 AL Ly €St bl m R M D ar Tl de i Rl 2T e LT 4 SRR et e ML 1A R RNARIREE e L

.. . - t-.. -'l e ™ v é
ot RN QS S LD SO T O T § A B

-) d. \.‘ .-. * -)
LA o'’ SOOI
'-atiz-:-:i.‘lté‘}@?x%t:i-:-.-":-':w R3Oy

L)
O
LK
L)
lllllll
4
t.v

B

CA 02320240 2000-08-02

METHOD AND APPARATUS FOR TRANSFERRING DATA FROM THE CACHE
OF ONE NODE TO THE CACHE OF ANOTHER NODE

FIELD OF THE INVENTION

The present invention relates to techniques for reducing the penalty associated
with one node requesting data from a data store when the most recent version of the
requested data resides in the cache of another node.

BACKGROUND OF THE INVENTION

To improve scalability, some database systems permit more than one database
server (each runming separately) to concurrently access shared storage such as stored on
disk media. Each database server has a cache for caching shared resources, such as disk
blocks. Such systems are referred to herein as parallel server systems.

One problem associated with parallel server systems is the potential for what are
referred to as “pings”. A ping occurs when the version of a resource that resides in the
cache of one server must be supplied to the cache of a different server. Thus, a ping
occurs when, after a database server A modifies resource x 1n its cache, and database
server B requires resource x for modification. Database servers A and B would
typically run on different nodes, but in some cases might run on the same node.

One approach to handling pings is referred to herein as the “disk intervention”
approach. The disk intervention approach uses a disk as intermediary storage to transfer
the latest version of the resource between two caches. Thus, in the example given
above, the disk intervention approach requires database server 1 to write its cache
version of resource x to disk, and for database server 2 to retrieve this version from disk
into its cache. The disk intervention approach’s reliance on two disk I/Os per mter-
server transfer of a resource limits the scalability of parallel server systems.
Specifically, the disk I/Os required to handle a ping are relatively expensive and tiffie
consuming, and the more database servers that are added to the system, the higher the
number of pings.

However, the disk intervention approach does provide for relatively efficient
recovery from single database server failures, in that such recovery only needs to apply
the recovery (redo) log of the failed database server. Applying the redo log of the failed
database server ensures that all of the committed changes that transactions on the failed
database server made to the resources in the cache of the failed server are recovered.

The use of redo logs during recovery are described in detail in U.S. Patent Application
No. 08/784.611, entitled “ CACHING DATA IN RECOVERABLE OBJECTS”, filed

1

03]&11113.1'}’,21,1997,, re-contents ot waterare SOTPOTATCaTICTC %

AMENDED SHEET

e et o’o.c'l'o:-%:-"b’d‘ ’:-:-:-'0'0...{‘
e
. s ‘..0 .;_ o :.: .:. ‘at ot

e W f e, M TR D BRI T Fadn SN B o Lidiiea ¢ 61 L HED M |1 - dela iR b 4 E ol AL Y A IO P DA & b S it el s St St 4B e T Cu G S R NDEAL Y

CA 02320240 2000-08-02

233 . : ba X o ”a - ’.::g:-.cg:::::?c;k:;-;:: SECLORSRR R
. & ’ bt 2 b4 vy S -
- -] & & & 'Y . P
- . a
reor ¢ nd ¢ > e e
’ .

Parallel server systems that employ the disk intervention approach typically use a
protocol in which all global arbitration regarding resource access and modifications 1S
performed by 2 Distributed Lock Manager (DLM). The operation of an exemplary DLM
'« described in detail in U.S. Patent Application Number 08/669,689, entitled “METHOD

5 AND APPARATUS FOR LOCK. CACHING?”, filed on June 24, 1996, the contents of
which are incorporated herein by reference. .

In typical Distributed Lock Manager systems, information pertaiming to any
given resource is stored in a lock object that corresponds to the resource. Each lock
object is stored in the memory of a single node. The lock manager that resides on the

10 node on which a lock object is stored is referred to as the Master of that lock object and
the resource it covers. .-

In systems that employ the disk intervention approach to handling pings, pings
rend to involve the DLM in a variety of lock-related communications. Specifically, when
a database server (the “requesting server’) needs to access a resource, the database server

15 checks to see whether it has the desired resource locked in the appropriate mode: either
shared in case of a read, or exclusive in case of 2 write. If the requesting database server
does not have the desired resource locked in the right mode, or does not have any lock on
the resource, then the requesting server sends a request to the Master for the resource to

acquire the lock in specified mode. o
20 The request made by the requesting database server may conflict with the current

«tate of the resource (e.g. there could be another database server which currently holds an
exclusive lock on the resource). If there is no conflict, the Master for the resource grants
the lock and registers the grant. In case of a conflict, the Master of the resource Initiates a
conflict resolution protocol. The Master of the resource instructs the database server that

75 holds the conflicting lock (the “Holder”) to downgrade its lock to a lower compatible
mode. B
Unfortunately, if the Holder (e.g. database server A) currently has an updated |
(“dirty”) version of the desired resource in its cache, it cannot immediately dm.:vngrade its
lock. In order toidetdowngrade its lock, database server A goes through what is referred
30 to as a “hard ping” protocol. According to the hard ping protocol, database server A
forces the redo log associated with the update to be written to disk, writes the resource 1o
disk, downgrades its lock and notifies the Master that database server A 1s done. Uchn
receiving the notification, the Master registers the lock grant and notifies the requesting
server that the requested lock has been granted. At this point, the requesting server B
35 reads the resource into its cache from disk.
As described above, the disk intervention approach does not allow a resource that

has been updated by one database server (a “dirty resource”) to be directly shipped to

-
0‘0
-

-
.
’

L
-

e
" v en actddunesn
-.'I. 0‘:‘:.. - 0:.:0:0.0:'0 ...- LI D
-‘o".".'f‘. O X SO
X) M -)
o - -’y * -
-
- L]
..l . .] -0--
- *. A0 S

ST
. ’.‘,'.'.: a: s .:.’ ¢ :i : .:a y : I:O. o : -:.‘... :.‘ ‘: PO e .',:.:.:’.. :::.0 " 4 : .:'
: B A e IR AR RN e 2 e 1%
» - a ” 4 n.. - c'o.o -‘l — 4 - ... n) . . R
.r ﬁ*ﬁ -2 o &.‘.‘ R 2 S . A 54
- v N M M e s apTm Ay . - ‘.: ¢:l :1:

4 4 ve
- u_d \J .
I.‘_t.t.'.l """" .
oooooo X
LA T
% -
aw

CaC

Yt O)

L LR

wa{ - ww . oa= R . . .o e nr 2o Ak g 1 . e Fr M e . capioie . 50 SEN RIS AL N TS YSUE KANGHESTE AW 19> w005, donis
e e e R a3 Al . el e Ui g o e D SO oI R, Pl Eral B LN AN K DL N A b A mdNL S daat 4R 1 b | WAy LA A N, Lt e i A Sl RA ML b e SIS 4 SIS PR i IECITCE RN NS SLR T P YT SHeS Il 2 1o 20 TR T ol Y AL o E R R A TR R BT R AR i i ey e ek ArSTe o L e - - = Amant 1 A el A I AT S A0 ST el e € Rt e S - i

—— ——— ks, B W W - — - — -~

10

15

20

25

30

35

SR M b s ey A A AT il § ML A L 3 125 o P4 0 o a0 | VRN Lo A L] el AP FRYIE 4 MET e ¢ (Al AT AL LT BT o ¢ v N H - o i e I0d 1 T e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
3.

another database server. Such direct shipment 1s rendered unfeasible due to recovery
related problems. For example, assume that a resource 1s modified at database server A,
and then is shipped directly to database server B. At database server B, the resource 1s
also modified and then shipped back to database server A. At database server A, the
resource is modified a third time. Assume also that each server stores all redo logs to disk
before sending the resource to another server to aillow the recipient to depend on prior
changes.

After the third update, assume that database server A dies. The log of database
server A contains records of modifications to the resource with a hole. Specifically,
server A’s log does not include those modifications which were done by database server
B. Rather, the modifications made by server B are stored in the database server B’s log.
At this point, to recover the resource, the two logs must be merged before being applied.
This log merge operation, if implemented, would require time and resources proportional

to the total number of database servers, including those that did not fail.

The disk intervention approach mentioned above avoids the problem associated
with merging recovery logs after a failure, but penalizes the performance of steady state
parallel server systems in favor of simple and efficient recovery. The direct shipment
approach avoids the overhead associated with the disk intervention approach, but involves
complex and nonscalable recovery operations 1n case of failures.

Based on the foregoing, it is clearly desirable to provide a system and method for

reducing the overhead associated with a ping without severely increasing the complexity
or duration of recovery operations.

SUMMARY OF THE INVENTION

A method and apparatus are provided for transferring a resource from the cache
of one database server to the cache of another database server without first wniting the
resource to disk. When a database server (Requestor) desires to modify a resource, the
Requestor asks for the current version of the resource. The database server that has the
current version (Holder) directly ships the current version to the Requestor. Upon
shipping the version, the Holder loses permission to modify the resource, but continues
to retain a copy of the resource in memory. When the retained version of the resource,
or a later version thereof, 1s written to disk, the Holder can discard the retained version
of the resource. Otherwise, the Holder does not discard the retained version. In the case
of a server failure, the prior copies of all resources with modifications 1n the faiied
server’s redo log are used, as necessary, as starting points for applying the failed

server’s redo log. Using this technique, single-server failures (the most common form

SUBSTITUTE SHEET (RULE 26)

TS TR [TP IO BT [o v Y] S g ogpe ey ST JT N T IO ST PE I e van Trndap Pl b B Ee R ealst S AN ST T L S AR AP R e S e 1 D AT L e AR PO Ll o S Al (BT 7 T St RO ST 1 A A 1 SN DA (b SN U1 o e SO Al 4 {7 RCRad S 41

“2IC AN

[E O T EPOR P ST E R RS STl AR

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-4 -

of failure) are recovered without having to merge the recovery logs of the various

database servers that had access to the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like reference

numerals refer to similar elements and in which:

Figure 1 is a block diagram illustrating cache to cache transfers of the most
recent versions of resources;
10 Figure 2 is a flowchart illustrating steps for transmitting a resource from one
cache to another without disk intervention according to an embodiment of the invention;

Figure 3 is a flowchart illustrating steps for releasing past images of resources,
according to an embodiment of the invention;

Figure 4 is a flowchart illustrating steps for recovering after a single database

15 server failure according to an embodiment of the invention;

Figure 5 is a block diagram illustrating a checkpoint cycle according to an
embodiment of the invention; and

Figure 6 is a block diagram of a computer system on which an embodiment of

the invention may be implemented.
20
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A method and apparatus for reducing the overhead associated with a ping 1s
described. In the following description, for the purposes ot explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
75 invention. It will be apparent, however, to one skilled 1n the art that the present
invention may be practiced without these specific details. In other database servers,

well-known structures and devices are shown in block diagram form 1n order to avold

unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW
30 According to one aspect of the invention, pings are handled by shipping updated
versions of resources directly between database servers without first being stored to
disk, thus avoiding the /O overhead associated with the disk intervention approach.
Further, the difficulties associated with single-instance failure recovery are avolded by
preventing a modified version of a resource from being replaced in cache until the
15 modified resource or some successor thereof has been written to disk, even 1if the

resource has been transferred to another cache.

SUBSTITUTE SHEET (RULE 26)

N b PR 2 A M R TIPE B ¢ 3 A OO ETE TPy LY © b, B AL g ATy € S S RN 254 5 R N o o LR PRVICTOe S e QT U T IIPY TTSe, et e D 1g 1At PO SUTTT IS T T R SR B P ST BRI RTINS U YRR, L R

e dobe BIIRAA Y T2 N T it D Rt b B A G o P i A of A 1INy © - S 3 P 1 Gy S Pt s B0k 1

A a4 A BG40 AT A AR 1 ML ot - O TR AT EAI I 1 1 B Pl S AL A o M 3N L T

e b e e A iy 3 RO £ O T T LG b - AN VIV AARRICE (e 4 M v e AN 0 AR AN, b AU TE N+ - 121 A G s T TS 2 e 3100 it I AR DR i - R DD e - 30 B i IR I g E b

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
_5.

For the purpose of explanation, a copy of a resource that cannot be replaced n
cache is referred to herein as a “pinned’” resource. The act of making a pinned resource

replaceable is referred to as *““releasing” the resource.

THE M AND W LOCK APPROACH
5 According to one aspect of the invention, the modify and write-to-disk
permissions for a resource are separated. Thus, a database server that has permission to
write an updated version of a resource from cache to disk does not necessarily have
permission to update the resource. Conversely, a database server that has permission to
modify a cached version of a resource does not necessarily have permission to write that

10 cached version to disk.

According to one embodiment, this separation of permissions 1s enforced
through the use of special locks. Specifically, the permission to modify a resource may
be granted by a ““M” lock, while the permission to write a resource to disk may be
granted by a “W” lock. However, it should be noted that the use of M and W locks as

15 described herein represents but one mechanism for preventing a transferred version of a

resource from being replaced in cache until that version or a successor thereof 1s written
to disk.

Referring to Figure 2, it illustrates the steps performed in response to a ping in a
database system that uses M and W locks, according to one embodiment of the

20 invention. At step 200, a database server that desires to modify a resource requests the
M lock from the Master for the resource (i.e. the database server that manages the locks
i for the resource). At step 202, the Master instructs the database server currently holding
the M lock for the resource (“‘ the Holder”)to transfer the M lock together with 1ts
cached version of the resource to the requesting database server via direct transier over
25 the communication channel(s) connecting the two servers (the *interconnect™).
At step 204, the Holder sends the current version of the resource and the M lock
to the Requestor. At step 206, the Holder informs the Master about the transfer of the M

lock. At step 208, the Master updates the lock information for the resource to indicate
that the Requestor now holds the M lock.

30 PI RESOURCES
The holder of the M lock does not necessanly have the W lock, and therefore
may not have permission to write the version of the resource that is contained i 1ts
cache out to disk. The transferring database server (i.e. the database server that last held

the M lock) therefore continues to pin its version of the resource in dynamic memory

35 because it may be asked to write out its version to disk at some future point, as

SUBSTITUTE SHEET (RULE 26)

Tt I 2D rtagta o ApkE] S R PR A T T A 2 = A A LT SV RA % Yo M ae o WU TN L AR T S AT b AL e % ekt 2 VIR AR W AT D Ve = M ARG N AN TS O S 0 DU AL SRR TS -

MRV ORI /o e’ TP AL S Gt ML S U a Lk e ST M CIPOUCMA G- A TR0 M/ 0.5 111 1 . et S (w1 4l DRI 1 R ST S

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-6-
described below. The version of the resource that remains in the transferming database
server will become out-of-date if the receiving database server modifies its copy of the
resource. The transferring database server will not necessarily know when the recetving
database server (or a successor thereof) modifies the resource, so from the time the
5 transferring database server sends a copy of the resource, it treats its retained version as

“potentially out-of-date”. Such potentially out-of-date versions of a resource are

referred to herein as past-image resources (Pl resources).

RELEASING PI RESOURCES

10 After a cached version of a resource is released, it may be overwritten with new
data. Typically, a dirty version of a resource may be released by writing the resource to
disk. However, database servers with PI resources in cache do not necessarily have the
right to store the PI resources to disk. One technique for releasing PI resources under
these circumstances is 1llustrated in Figure 3.

15 Referring to Figure 3, when a database server wishes to release a PI resource 1n
its cache, it sends a request for the W lock (step 300) to the distributed lock manager
(DLM). In step 302, the DLM then orders the requesting database server, or some
database server that has a later version of the resource (a successor) in 1ts cache, to write
the resource out to disk. The database server thus ordered to write the resource to disk 1s

20 granted the W lock. After the database server that was granted the W lock writes the
resource to disk, the database server releases the W lock.

The DLM then sends out a message to all database servers indicating the version
of the resource written out (step 304), so that all earlier PI versions of the resource can
be released (step 306). For example, assume that the version written to disk was

25 modified at time T10. A database server with a version of the resource that was last
modified at an earlier time T5 could now use the buffer in which 1t 1s stored for other

data. A database server with a version that was modified at a later time T11, however,

would have to continue to retain its version of the resource in 1ts memory.

PING MANAGEMENT UNDER THE M AND W LOCK APPROACH
30 According to one embodiment of the invention, the M and W lock approach may
be implemented to handle pings as shall now be described with reference to Figure 1.
Referring to Figure 1, it is a block diagram that illustrates four database servers A, B, C
and D, all of which have access to a database that contains a particular resource. At the
time illustrated, database servers A, B and C all have versions of the resource. The

35 version held in the cache of database server A is the most recently modified version of the

SUBSTITUTE SHEET (RULE 26)

Lands k. 2Ry & TR RANT L b r AR AR L Lt AR s S . . 1SN % S0 01 S TURE J andn e AR N e et . L g oo 0 e OMkp] 563 3 ShareT N Ui e A S ALY e I IR O NS AL A I f 0 it A 4 ity Al A O el Lo it e Mg ¢ LD LT Ao A P A ity i S ey w0 e

4o VAT AL D e ‘s AN R R A (1A wd (B D L IACRE I RANY TR e ArRICEYParSo

10

15

20

25

30

35

Pou g oL A <o

1 1ar Snded o B s il AR R e A R A s i e e S N RO O Bt e s ot e R R R A (7 e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-7
resource (modified at time T10). The versions held in database servers B and C are Pl
versions of the resource. Database scrver D 1s the Master for the resource.

At this point, assume that another database server (the “Requestor”) desires to
modify the resource. The Requestor requests the modify lock from the Master. The
Master sends a command to database server A 1o down-convert the lock (a “BAST”) due
to the conflicting request from the Requestor. In response to the down-convert command,
the current image of the resource (whether clean or dirty) 1s shipped from database server
A to the Requestor, together with a permission to modify the resource. The permission
thus shipped does not include a permission to wnte the resource to disk.

When database server A passes the M lock to the Requestor, database server A
downgrades his M lock to a **hold™ lock (and “"H lock™). The H lock indicates that the
database server A is holding a pinned P1 copy. Ownership of an H lock obligates the
owner to keep the PI copy 1n its buffer cache. but does not give the database server any

rights to write the PI copy to disk. There can be multiple concurrent H holders for the
same resource, but not more than one databasc server at a time can write the resource,

therefore only one database server can hold a W lock on the resource.

Prior to shipping the resource, database server A makes sure that the log 1s forced
(1.e. that the recovery log generated for the changes made by database server A to the
resource are durably stored). By passing the modification permission, database server A
loses its own right to modify the resource. The copy of the resource (as 1t was just at the

moment of shipping) is still kept at the shipping database server A. After the shipment of
the resource, the copy of the resource retained in database server A 1s a Pl resource.

COURTESY WRITES

After a database server ships a dirty resource directly to another database server,
the retained copy of the resource becomes a pinned PI resource whose bufter cannot be
used for another resource until released. The buffers that contain PI resources are referred
to herein as PI buffers. These buffers occupy valuable space 1n the caches of the database
servers, and eventually have to be reused for other data.

To replace PI buffers in the buffer cache (to be aged out or checkpointed) a new
disk write protocol, referred to herein as “courtesy wrtes”, 1s employed. According to the
courtesy write protocol, when a database server needs to write a resource to disk, the

database server sends the request to the DLM. The DLM selects a version of the resource

to be written to disk, finds the database server that has the selected version, and causes

that database server to write the resource to disk on behalf of the database server which
initiated the write request. The database server that actually wntes the resource to disk

SUBSTITUTE SHEET (RULE 26)

v od B e Lt B TR ¢ RN A Sl CES s L G et e . . T e N A AR AEN Dyl iy AN R R Y

3 1< b . AT 2 1 G ALY L DA B v T 4= Nl R 11423 U - e MR At i NN AAMTIICTOIR Yo MDA 3 TG o THNC 4 § BEAMILICHCAPMIA Sl # s o m I A0 Wi S plrishodh (A ok s Al W30 0 = £ R

10

15

20

25

30

i B N LR w e < R UNTYFIC TS ST ¥ S Rt

- 7 o2 ORI LTI LSy PR Al Bt s8] i vdie ot ® mir o lm it Al d e Nt W Gl 0N A e e D AR T R e, st e B e T T T R e Y = e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
_8.

may be the database server which requested the write, or some other database server,
depending on the latest trajectory of the resource.

Writing the selected version of the resource to disk releases all PI versions of the
resource in all buffer caches of a cluster that are as old or older than the selected version
that was written to disk. The criteria used to select the version that will be written to disk
shall be described in greater detail hereafter. However, the selected version can be either
the latest PI version known to the Master or the current version (“CURR?") of the resource.
One benefit of selecting a version other than the current version is that selection of
another version leaves the current copy uninterruptedly available for modifications.

A database server that is holding a PI resource can write out its PI copy provided
that it has acquired a W lock on the resource. The writes of the resource are decoupled

from the migration of the CURR resource image among the various database servers.

EFFICIENCY FACTORS
There is no need to write a PI copy each time a resource 1s shipped to another
database server. Therefore, the goal of durably storing resources is to keep the disk copies

recent enough, and to keep the number of non-replaceable resources in the buffer caches
reasonable. Various factors determine the efficiency of a system that employs the courtesy
write protocol described above. Specifically, it 1s desirable to:

(1) minimize I/O activity caused by writing dirty resources to disk;

(2) keep the disk versions of resources current enough to speed up recovery
operations after a failure; and

(3) prevent overflow of the buffer cache with pinned PI resources.

Maximizing the first criteria has a negative impact on the second and third critena,
and visa versa. Therefore, a trade off is necessary. According to one embodiment of the
invention, a self-tuning algorithm may be used which combines different techniques of

checkpointing (LRU mixed with occasional continuous checkpointing) coupled with a
control over the total IO budget.

THE NEWER-WRITE APPROACH
An altemative to the courtesy-write protocol described above i1s referred to
herein as the write-newer approach. According to the write-newer approach, all
database servers have permission to write their PI resources to disk. However, pnor to

doing so, a database server acquires a lock on the disk-based copy of the resource. After
acquiring the lock, the database server compares the disk version with the PI version

that it desires to write. If the disk version is older, then the PI version is written to disk.

SUBSTITUTE SHEET (RULE 26)

Jreti s MR 1B B W 3. b 15 R O RO) Tl IR I a0 S e e (WA L A Skl e R | A) Tl rE I) i 14 2V [V- 79O T HT FANECT R P T R e Y T

10

15

20

25

30

35

a3 I AR, . e O ST AT 13 € 6, A N SN BNV R TS BB, 5 A BCHD FEMA LTCHAMEAE - AW T E RNI 62 12, 27 M |7 oA 240 YO 3 G - S S SR S R A € B4 e o rek e fos Al

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
. -9

If the disk version is newer, then the PI version may be discarded and the buffer that it
occupied may be reused.

Unlike the courtesy-write protocol, the newer-write approach allows a database
server to release its own PI version, either by writing it to disk or determiming that the

disk version is newer. However, the newer-write approach increases contention for the

lock of the disk-based copy, and may incur a disk-I/O that would not have been incurred
with the courtesy-write approach.

PERMISSION STRINGS

Typical DLMs govemn access to resources through the use of a limited number of
lock modes, where the modes are either compatible or conflicting. According to one
embodiment, the mechanism for governing access to resources is expanded to substitute
lock modes with a collection of different kinds of permissions and obligations. The
permissions and obligations may nclude, for example, the permission to write a resource,
to modify a resource, to keep a resource 1n cache, etc. Specific permissions and |
obligations are described in greater detail below.

According to one embodiment, permissions and obligations are encoded in
permission strings. A permission string might be augmented by a resource version
number since many permissions are related to a version of a resource rather than to the
resource itself. Two different permission strings are conflicting 1f they demand the same
exclusive permission for the same version of the resource (e.g. current version for

modification or a disk access for write). Otherwise they are compatible.

CONCURRENCY USING PERMISSION TRANSFERS

As mentioned above, when a resource 1s modified at one database server and 1s
requested for further modifications by another database server, the Master 1nstructs the
database server that holds the current copy (CURR copy) of the resource to pass its M
lock (the right to modify) together with the CURR copy of the resource to the other
database server. Significantly, though the request for the M lock 1s sent to the master, the
grant is done by some other database server (the previous M lock holder). This triangular
messaging mode] deviates significantly from the traditional two-way communication
where the response to a lock request is expected from the database server contamning the
lock manager to which the lock request was 1nitially addressed.

According to one embodiment of the invention, when the holder of the CURR

copy of a resource (e.g. database server A) passes the M lock to another database server,
database server A notifies the Master that the M lock has been transferred. However,

database server A does not wait for acknowledgment that the Master received the

SUBSTITUTE SHEET (RULE 26)

2 nrdmEEY. e v

L DR O o T TSR 0] 4 2 M e T8 A SR 54% G2 e B T T3 T 3T LI NI A G | N A s wiargniic, LONCANMMMIO N Ll el AV A - P B P S AL TMETD | e - Pl LN AR 1Y Lt A atAn e

eat A B A L rrid BN h AL e AP LT 0 ot e i a9 AL AT IR LA ¢ - - o = 1 e i ST AR RIS LI PRI I B e U M | Y R R R A 1 L e e DY DN [s D2 BB s B MmN M P 1 oD e St s '

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-10- |

notification, but sends the CURR copy and the M lock prior to receiving such

acknowledgement. By not waiting, the round trip communication between the master and
database server A does not impose a delay on the transfer, thereby yielding a considerable
saving on the protocol latencies.

5 Because permissions are transferred directly from the current holder of the
permission to the requestor of the permission, the Master does not always know the exact

global picture of the lock grants. Rather, the Master knows only about the trajectory of the
M lock, about the database servers which just ‘held it lately’, but not about the exact

location of the lock at any given time. According to one embodiment, this “lazy”
10 notification scheme is applicable to the M locks but not to W, X, or S locks (or their

counterparts). Various embodiments of a locking scheme are described 1n greater detail
below.

FAILURE RECOVERY
Within the context of the present invention, a database server is said to have
15 failed if a cache associated with the server becomes inaccessible. Database systems that
employ the direct, inter-server shipment of dirty resources using the techmques
described herein avoid the need for merging recovery logs in response to a single-server
failure. According to one embodiment, single-server failures are handled as illustrated in

Figure 4. Referring to Figure 4, upon a single-database server failure, the recovery

20 process performs the following for each resource held in the cache of the failed database
Server:

(step 400) determine the database server that held the latest version of the
resource;
(step 402) if the database server determined in step 400 1s not the failed database
25 server, then (step 404) the determined database server writes its cached version of the
resource to disk and (step 406) all PI versions of the resource are released. This version
will have all the committed changes made to the resource (including those made by the
failed database server) and thus no recovery log of any database server need be applied.
If the database server determined 1n step 402 1s the failed database server, then
30 (step 408) the database server holding the latest PI version of the resource writes out its
cached version of the resource to disk and (step 410) all previous PI versions are
released. The version written out to disk will have the committed changes made to the
resource by all database servers except the failed database server. The recovery log of

the failed database server 1s applied (step 412) to recover the committed changes made
35 by the failed database server.

SUBSTITUTE SHEET (RULE 26)

Ut al e le SR HEN LA M AT 30 S RN L e T, I SO T o RN OO HERAR 143 GUMACEE e g, e i AN o R TR AR A MDA, AL SO AT L o S LA AR £ e Atk i o SACHIRO bl 48 I - e LG b s SOANAT b W AN Br N e St

10

15

20

25

30

35

I e 0ot o K Qe 40 AT TOR S AALLE W16 T MNEIAAC U . 11 A5 0 O T An R LA 3 T MM MV #5040 = 120000 1+ aSAPIIMCIRING WA 6 1 1o ML LA I A S D 32 0 i e 2 Bl I il e Pl 0 N 110 3550

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-11-
Alternatively, the latest PI version of the resource may be used as the starting
point for recovering the current version in cache, rather than on disk. Specifically, the
appropriate records from the recovery log of the failed database server may be applied
directly to the latest PI version that resides in cache, thus reconstructing the current
version 1n the cache of the database server that holds the latest PI version.

MULTIPLE DATABASE SERVER FAILURE

In case of a multiple server failure, when neither the latest PI copy nor any
CURR copy have survived, it may happen that the changes made to the resource are
spread over multiple logs of the failed database servers. Under these conditions, the logs
of the failed database servers must be merged. However, only the logs of the failed
database servers must be merged, and not logs of all database servers. Thus, the amount
of work required for recovery 1s proportional to the extent of the failure and not to the
size of the total configuration.

In systems where it 1s possible to determine which failed database servers
updated the resource, only the logs of the failed database servers that updated the
resource need to be merged and applied. Similarly, in systems where 1t 1s possible to
determine which failed database servers updated the resource subsequent to the durably
stored version of the resource, only the logs of the failed database servers that updated

the resource subsequent to the durably stored version of the resource need to be merged
and applied.

EXEMPLARY OPERATION

For the purpose of explanation, an exemplary series of resource transfers shall be
described with reference to Figure 1. During the series of transfers, a resource 1s
accessed at multiple database servers. Specifically, the resource 1s shipped along a
cluster nodes for modifications, and then a checkpoint at one of the database servers
causes a physical I/0 of this resource.

Referring again to Figure 1, there are 4 database servers: A,B,C, and D.
Database server D is the master of the resource. Database server C first modifies the
resource. Database server C has resource version 8. At this point, database server C also
has an M lock (an exclusive modification right) on this resource.

Assume that at this point, database server B wants to modify the resource that
database server C currently holds. Database server B sends a request (1) for an M lock

on the resource. Database server D puts the request on a modifiers queue associated
with the resource and instructs (message 2: BAST) database server C to:

(a) pass modification permission (M lock) to database server B,

SUBSTITUTE SHEET (RULE 26)

1R AR e OO BRTNRSE R R N 5 RGNS A RS P ¢ S I IR D0 SO ROV e R UMMM e DI tvehk M vl g O T

C B et kA L A G A D VG L b L e B MY Ximarr PRSPPI T TPV FONIV TR NN PRI EEF 1 PP TPPY SEFCSCVIRCTSNNIDI CRVT-OC V- TTTY. TRFPCRUTE ERVTI TRVE TTTRPOF SR NP F | N SITRR S LIC! L PR PSRN R P PR 70 SEEERTIF o e e 2 GV L Lol B RIE 20 T o g b ol Stk :

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-12-
(b) send current image of the resource to database server B, and
(c) downgrade database server C’s M lock to an H lock.
After this downgrade operation, C 1s obligated to keep 1ts version of the resource
(the PI copy) in 1ts buffer cache.

S Database server C performs the requested operations, and may additionally force
the log on the new changes. In addition, database server C lazily notifies (3 AckM) the
Master that it has performed the operations (AST). The notification also informs the
Master that database server C keeps version 8. Database server C does not wait for any
acknowledgment from the Master. Consequently, it 1s possible that database server B

10 gets an M lock before the Master knows about 1t.

Meanwhile, assume that database server A also decides to modify the resource.
Database server A sends a message (4) to database server D. This message may armve
before the asynchronous notification from database server C to database server D.

Database server D (the Master) sends a message (5) to database server B, the last

15 known modifier of this resource, to pass the resource (after B gets and modifies 1t) to
database server A. Note that database server D does not know whether the resource 1s
there or not yet. But database server D knows that the resource will eventually arrive at
B.

After database server B gets the resource and makes the intended changes (now

20 B has version 9 of the resource), it downgrades its own lock to H, sends (6) the current
version of the resource (“ CURR resource”) to database server A together with the M
lock. Database server B also sends a lazy notification (6 AckM) to the Master.

While this resource is being modified at database server A, assume that a
checkpointing mechanism at database server C decides to write the resource to disk.

25 Regarding the asynchronous events described above, assume that both 3AckM and 6
AckM have already arrived to the master. The operations performed in response to the
checkpointing operation are illustrated with reference to Figure 5. |

Referring to Figure 5, since database server C holds an H lock on version 8,
which does not include a writing privilege, database server C sends message 1 to the

30 Master (D) requesting the W (write) lock for its version. At this point in time, the
Master knows that the resource was shipped to database server A (assuming that the
acknowledgments have arrived). Database server D sends an (unsolicited) W lock to
database server A (2 BastW) with the instruction to write the resource.

In the general case, this instruction 1s sent to the last database server whose send

35 notification has arrived (or to the database server which is supposed to receive the
resource from the last known sender). Database server A writes (3) its version of the

resource. The resource written by database server A is version 10 of the resource. By

SUBSTITUTE SHEET (RULE 26)

i e NP AL TN AR AN NI b RIS 1 . IS 1 MM W S EIETMIE -0 213 1 g s Lk e e A1+ 472 i it S M A b MNCFIATIRT , HECH e ORI o Fedi e E0F S0 AT 3 M A oy DR AR A Gz b T s ot T e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-13-
this time, the current copy of the resource might be somewhere else if additional
requestors demanded the resource. The disk acknowledges when the write is completed
(4Ack).
When the write completes, database server A provides database server D with

> the information that version 10 is now on disk (5 AckW). Database server A voluntarily
downgrades 1ts W lock (which it did not ask for in the first place).

The Master (D) goes to database server C and, instead of granting the requested
W lock, notifies C that the write completed (6). The Master commuricates the current
disk version number to the holders of all PI copies, so that all earlier PI copies at C can
10 bereleased. In this scenario, since database server C has no PJ copies older than 10, it
downconverts database server C’s lock to NULL.
The Master also sends an acknowledgment message to database server B

instructing database server B to release its PI copies which are earlier than 10
(7AckW(10)).

15 THE DISTRIBUTED LOCK MANAGER
In contrast with conventional DLM logic, the Master in a system that implements
the direct-shipping technmiques described herein may have incomplete information about
lock states at the database servers. According to one embodiment, the Master of a resource
maintains the following information and data structures:

20 (1) a queue of CURR copy requestors (either for modification or for shared
access) (the upper limit on the queue length 1s the number of database servers 1n the
cluster). This queue is referred to herein as the Current Request Queue (CQ).

(2) when a resource is sent to another CURR requestor, the senders lazily

(asynchronously in a sense that they do not wait for a acknowledgment) notify the
25 Master about the event. Master keeps track of the last few senders. This is a pointer on

the CQ.
(3) the version number of the latest resource version on disk.
(4) W lock grants and a W requests queue.
According to one embodiment, W permission is synchronous: it is granted only
30 by the master, and the master ensures that there is not more than one writer in the cluster
for this resource. The Master can make the next grant only after being notified that the
previous write completed and the W lock was released. If there are more than one
modifier, a W lock 1s given for the duration of the write and voluntarily released after
the write. If there is only one modifier, the modifier can keep the W permission.
33 (5) a list of H lock holders with their respective resource version numbers. This

provides information (though possibly incomplete) about the PI copies in buffer caches.

SUBSTITUTE SHEET (RULE 26)

Fe e el L 0 AT v ¢ - o] P M T M L R 4G e D s MR ot s e g AT AL S0 MV NS LA AN A I I AL T B 5 P LML ST A £ v S o3 I S i, ieeibbnnieg S S S A AN 022 L4 e T Ml B /4 ey T e A

BT W' 3 T T SO TS RY A VO PIRTTTTES RN e W S

10

15

20

25

30

35

Mg e Ve MR LBy e L I A N AT AR VAT T d e 1 15 P AL b M G] A 4 s b G GRS 83 e r e U MER AT 4 S OHE. % B AR e L e L L2 i P 1O SO O R A TMREE T M A ety LT v e o

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-14-

| DISK WARM UP

Since the direct-shipment techniques described herein significantly segregate the
hfe icycles of the buffer cache images of the resources and the disk images, there i1s a
need to bridge this gap on recovery. According to one embodiment, a new step of
recovery, between DLM recovery and buffer cache recovery, 1s added. This new
recovery step 1s referred to herein as ‘disk warm up’.

Although during normal cache operations a master of a resource has only
approximate knowledge of the resource location and about the availability of PI and
CURR copies, on DLM recovery (which precedes cache recovery), the master of a
resource collects complete information about the availability of the latest PI and CURR
copies in the buffer caches of surviving database servers. This is true whether or not the
master of the resource 1s a new master (if before the failure the resource was méstered on
a failed database server) or a surviving master.

After collecting this information, the Master knows which database server
possesses the latest copy of the resource. At ‘disk warm up " stage, the master 1ssues a W
lock to the owner of this latest copy of the resource (CURR if it 1s available, and latest PI

copy 1f the CURR copy disappeared together with the failed database server). The master
then 1nstructs this database server to write the resource to disk. When the write completes,

all other database servers convert their H locks to NULL locks (because the written copy

1s the latest available). After those locks have been converted, cache recovery can proceed
as normal.

Some optimizations are possible during the disk warm up stage. For example, the

resource does not necessarily have to be written to disk if the latest image is in the buffer

cache of the database server performing recovery.

ALTERNATIVES TO LOCK-BASED SCHEME

Various techniques for directly shipping dirty copies of resources between
database servers have been described in the context of a locking scheme that uses special
types of locks (M, W and H locks). Specifically, these special locks are used to ensure that
(1) only the server with the current version of the resource modifies the resource, (2) all
servers keep their PI versions of the resource until the same version or a newer version of
the resource 1s written to disk, and (3) the disk-based version of the resource is not
overwritten by an older version of the resource.

However, a lock-based access control scheme 1s merely one context in which the
present invention may be implemented. For example, those same three rules may be

enforced using any variety of access control schemes. Thus, present invention is not
limited to any particular type of access control scheme.

SUBSTITUTE SHEET (RULE 26)

S o B MEERE) R 2T NN R TV By e v O I o e e e) et e SR FMEAART 5 3 L A Pt - o . D etk M TS M TN e STy B A B 0103 B L A o A WA 3 W g ey 4 T O M

e B PPRERNETL s, L Er o R

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-15-
For example, rather than governing access to a resource based on locks, access
may be governed by tokens, where each token represents a particular type of permission.
The tokens for a particular resource may be transferred among the parallel servers in a
way that ensures that the three rules stated above are enforced.

5 Similarly, the rules may be enforced using a state-based scheme. In a state-based

scheme, a version of a resource changes state in response to events, where the state of a

version dictates the type of actions that may be performed on the version. For example, a

database server receives the current version of a resource in its “current’” state. The
current state allows modification of the resource, and writing to disk of the resource.

10 When a database server transfers the current version of the resource to another node, the
retained version changes to a “Pl writeable” state. In the PI writeable state, the version (1)
cannot be modified, (2) cannot be overwritten, but (3) can be written to disk. When any
version of the resource 1s written to disk, all versions that are in PI wniteable state that are
the same or older than the version that was written to disk are placed 1n a “PI released”

15 state. In the PIreleased state, versions can be overwritten, but cannot be modified or
written to disk.

HARDWARE OVERVIEW
Figure 6 is a block diagram that illustrates a computer system 600 upon which an

embodiment of the invention may be implemented. Computer system 600 includes a bus

20 602 or other communication mechanism for communicating information, and a processor
604 coupled with bus 602 for processing information. Computer system 600 also includes
a main memory 606, such as a random access memory (RAM) or other dynamic storage
device, coupled to bus 602 for storing information and instructions to be executed by
processor 604. Main memory 606 also may be used for storing temporary variables or

25 other intermediate information during execution of instructions to be executed by
processor 604. Computer system 600 further includes a read only memory (ROM) 608 or
other static storage device coupled to bus 602 for storing static information and
instructions for processor 604. A storage device 610, such as a magnetic disk or optical
disk, is provided and coupled to bus 602 for storing information and instructions.

30 Computer system 600 may be coupled via bus 602 to a display 612, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
614, including alphanumeric and other keys, is coupled to bus 602 for communicating
information and command selections to processor 604. Another type of user input device

1s cursor control 616, such as a mouse, a trackball, or cursor direction keys tfor
35 communicating direction information and command selections to processor 604 and for

controlling cursor movement on display 612. This input device typically has two degrees

SUBSTITUTE SHEET (RULE 26)

et e g N8 s Ay e iy B SR e L L 6 L by & W 240 1« D A e 10 A CRATHETNHET .\ - - e 1 M ! ! oM AT A A 4) e ol s €4 2 BEARR | A L 1 O, S IR B e e AL =10 % MO M e e § DR 20 PO SRR S lin Y b s o o 7| M S] Gt RN Bt Ve W A i & 5 Ate A ey vt AN M NTAAE 2 MR ik G R S i P DA A D o ot Y SSRGS TR AT A LA IR D WP TITTRAT B LIS TE SN T Al A7 T 10 b] v e SRR P e e

rlojanbrivtsiow sdMr S

10

15

20

25

30

35

R S-SRI . © * e A P S e 1 20 L S 2 AN T BN 1Ih- 1113 b st 504N LR Ay O TT 22 ORI 0P VST AT 20 @ ¢ FITRD (o SRl o d a0 1t Ui Piailteal e he e e ot s WA KSR A URS < b RER - P EDE W F ST OIASNE N AERN a0V IR AN SRS -1 de 2R

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-16-

of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The 1invention is related to the use of computer system 600 for reducing the
overhead associated with a ping. According to one embodiment of the invention, the
overhead associated with a ping is reduced by computer system 600 in response to
processor 604 executing one or more sequences of one or more instructions contained in
main memory 606. Such instructions may be read into main memory 606 from another
computer-readable medium, such as storage device 610. Execution of the sequences of
instructions contained in main memory 606 causes processor 604 to perform the process
steps described herein. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 604 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 610. Volatile media includes dynamic memory, such as main
memory 606. Transmission media includes coaxial cables, copper wire and fiber optics,
mcluding the wires that comprise bus 602. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

Common forms of computer-readable media include, for example, a floppy disk,
a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM,
any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carner wave as described hereinafter, or any other medium
from which a computer can read.

Various forms of computer readable media may be mvolved in carrying one or
more sequences of one or more mstructions to processor 604 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the mstructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
600 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the

infra-red signal and appropriate circuitry can place the data on bus 602. Bus 602 carries
the data to main memory 606, from which processor 604 retrieves and executes the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

o A NP s 0 M 54 RN o320 R GMAEA FIS b, TN 5] AT i 7 T W St 4 HLOL A GRS NG U 0l M L 2 S D L 2N V8 a1 0 AR S S TR B 1000 W) e DRI Y A 18 bR € bt e 37wt e e e b ol ey O ARG ¥

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965

-17-

mstructions. The instructions received by main memory 606 may optionally be stored on
storage device 610 either before or after execution by processor 604.

Computer system 600 belongs to a shared disk system in which data on one or
more storage devices (e.g. disk drives 655) are accessible to both computer system 600
and to one or more other CPUs (e.g. CPU 651). In the illustrated system, shared access to
the disk drives 655 1s provided by a system area network 653. However, various
mechanisms may alternatively be used to provide shared access.

Computer system 600 also includes a communication interface 618 coupled to
bus 602. Communication interface 618 provides a two-way data communication
coupling to a network link 620 that is connected to a local network 622. For example,
communication interface 618 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 618 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 618 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

Network link 620 typically provides data communication through one or more
networks to other data devices. For example, network link 620 may provide a
connection through local network 622 to a host computer 624 or to data equipment
operated by an Internet Service Provider (ISP) 626. ISP 626 in turn provides data
communication services through the world wide packet data communication network
now commonly referred to as the “Internet” 628. Local network 622 and Internet 628
both use electrical, electromagnetic or optical signals that carry digital data streams.

The signals through the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital data to and from computer
system 600, are exemplary forms of carner waves transporting the information.

Computer system 600 can send messages and receive data, including program
code, through the network(s), network link 620 and communication interface 618. In

the Internet exampie, a server 630 might transmit a requested code for an application
program through Internet 628, ISP 626, local network 622 and communication interface
618.

The received code may be executed by processor 604 as it is received, and/or

stored 1n storage device 610, or other non-volatile storage for later execution. In this

manner, computer system 600 may obtain application code in the form of a carrier
wave,

SUBSTITUTE SHEET (RULE 26)

8L e D e R e Ol TS W Ao gy s,) el o) o w A HELICE! et N AN 1 At o AR s € Rty s At A La R AP

MV TRTER 7T LRI N STV PR v S AL] du vt

T e i U s e b 4 Ly P 4 D3 W ety e L e el e R DGR b LA PRI W e € 4 e 8 11 W= RN O, VRN SRR TGN b DR TRT [223303 U 1 1 v el 4R TN G S IR RO T e L e Y ahe b U IR e diige 2 At

CA 02320240 2000-08-02

T Bl S e 3 0 TR TRy AT e T
P2 QL0
SRR ve T2 e " *s o»
é 9 v 4 ® & v e
¢ & 'y P
- . * ® 4 ¢
B A Y 5 ¢ e ay
. . 9 .
s V9 Q ® .
: o o > seows P as

While techniques for handling pings have been described herein with reference
to pings that occur when multiple database servers have access to a common persistent
storage device, these techniques are not restricted to thus context. Specifically, these
techniques may be applied in any environment where a process associated with one

5 cache may require a resource whose current version is located m another cache. Such
environments include, for example, environments in which text servers on different
nodes have access to the same text material, environments in which media servers on
different nodes have access to the same video data, efc.

1C Handling pings using the techniques described herem provides efficient inter-
database server transfer of resources so uptime performance scales well with increasing
number of database servers, and users per database server. In addition, the techniques
result in efficient recovery from single-database server failures (the most common type
of failure) that scales well with increasing number of database servers.

15 Significantly, the techniques described heremn handle pings by sending resources
via the IPC transport, not through disk intervention. Consequently, disk I/Os for
resources that result in a ping are substantially eliminated. A synchronous I/O is
involved only as long as it is needed for the log force. In addition, while disk I/O is
incurred for checkpointing and buffer cache replacement, such I/O does not slow down

20 the buffer shipment across the cluster.
The direct shipping techniques described herein also tend to reduced the number

of context switches incurred by a ping. Specifically, the sequence of round trip
messages between the participants of the protocol (requestor and holder) and the Master,
is substituted by the communication triangle: Requestor, Master, Holder, Requestor.

-~ 4 a » '
- — - - » -~ " - -~ - iy - . — whe— . - - F Y -,

- - -~ e - 4 —

4
I waw - w w LU YWIiLh (e o

4. c @ d
25 R e TOFe SO E-SPeeI R e a0, R Ci1s
g

specific embodiments thereof. It will, however, be evident thatsarrous modifications
and changes may be made thereto withontdepatfing from the broader spirit and scope of

the invention. The specification and drawings are, accordingly, to be regarded m an

v g O o Aoy - - iy . S £ wals B . - - e W o

o B e .. e
TS LL ¢ ‘ Ay N NYrotmae w : oS\ s

AMENDED SHEET

C-' -‘...‘... '.’
3:::;':.:.: R o B R
I.I . J . -‘
UL
:::: o' -’0 :

PAII AR A n E e s s em P et
g O Sttt
* O ’:.0"::.v.0 Tara e’ J':.:.:‘. - n.:-:.o) ety Pote
N - i s X b “.". KX R O3 F K o :':
» a: - : . :- :.:.: !.:.-..:. ! 'c: 0‘ . .-‘“.. _0. .:Q 1' v.’ '9.

i

MO e eI R, e o MR B R ST 3. AP T | oA ot d A O R R M LT AU e nt LDl st s s 0 s e ARt S AT AR A S e AR N

IPEETRPITCE S + Pyl AN AP RO -4 MM DN VN IO TRRMA RATE 3 ¢ AW e s "

CA 02320240 2000-08-02

o odHie g
¢ » 4 s :
* o S . !
o - “ne »

What 1s claimed is:

AUz
1.
d
2.
10
3.
15
4,
20
3.
25
30 6.

o Sl OOt S S RN v
:-:a'f:-:-°i:.:=:t:352'1':‘.-:«:5:‘;:5:5:;:5:': RS R
oo ey

ot retad s bbbl e A FRAEY i | it MR 57 BRI ot w11 S VPR TR AT 3 1 PO M 40 R SOV MR e £ PO M 47 e o Pt B oA st S P Nt 3 b3 ety (bt s+ d Mot A LS A R e e AT

A method for transferring a resource from a first cache to a second cache, the
method comprising the steps of:

o8

retaining a first cop e resource in said first cache while transferring a second

copy‘ﬁﬂ%e resource from the first cache to the second cache without first
durably storing said resource from said first cache to a persistent storage;

preventing g%.lc’l.})ﬁrst copy'l""_m being replaced 1n said first cache until said first

coPyY"fthe resource or a successor thereof 1s durably stored. -

The method of Clalm 1 wherein said first cache 1s a cache maintained by a first

database serverI"'d sald second cache 1s a cache mamtained by a second database

server B B.C)

The method of Claim | ﬁl{t)her comprising the steps of:
allowing said first cop)goef s’?nd resource to be modified in said first cache prior to
(5.40)
transfermring said ggcond copyvo said second cache; and

A0)
sald second copyf(io said second cache.

preventing said first co;;;‘f said resource from being modified after transferring

The method of Claim 1 further com nsmg the steps of:

after transferring said second copyftﬁ“s'agrd se%gnd cache, sending a request for

permission to release said first copyfe (2 55
in response to said request, causing said first copy({or 2 successor thereof to be

durably stored; and

in response to said successor being durably stored, sending a message that
mndicates that said first copyf can be released.

The method of Claim 4 wherein: (89

the step of sending a request for permission to release said first copylis performed
by a sending process; and (89)
the step of causing said first copyﬂ:;;i successor thereof to be durably stored

includes the step of causing a process, other than the sending process to

store a successor to said first copylof said resource.

The method of Claim 1 wherein the step of preventing said first copy from being
replaced includes the steps of:

) AMENDED SHEET

o =3 o Ot D TR A SR N R S A SRR A N W g LI T A - (AT] S I SR LA (LALLM L0 &1 A b e A CALARL L pB il o, e o A Tl e 4 -

e e A I S LRI L5 43 - b L s e s AN et A P b R N - v it 4 6 | O SN TR 8 i A SRS Thovd £ TR v VY S P 4 4104 A O M - FAC L, 2 - 1A L L R oo St bl M < e o Al D et 2T

CA 02320240 2000-08-02

g S g e . b s
e b S R .-:f; ._-'?"" ;" . r ve t: - e e S a b-& R -: R
- T
- : s : z & 8 < :' : : : &
¢ s : « 4 - \ ¢ o & 3 }
- o ¢ " o ¢ s a @

prior to attempting to durably store said first copy,, determining Whethe(r 2 (glu.rably

stored copy of said resource is more recent than said %ﬁcopy{""
if said durably sg%red copy is more recent than said first (g 0 then releasing said
first copyfwithout durably storing said first copyf and (8,3)
5 if said durably stored copy is not more recent than said first c0py('_ hen durably

: . g.95)
storing said first copyf.

7. The method of Claim 3 further comprising the step of transferring a modify
permission from a sending process associated with the first cache to a gecewmg
process associated with the second cache along with said second c:opyi of said

10 resource.

8. The method of Claim 7 wherein: (D)
permissions for accessing said resource are governed by a masterf and
the step of transferring said modify permission to the receiving process is)
performed prior to receiving acknowledgement from said master(for

15 transfer of said modify permission to said receiving process.

9. The method of Claim 1 further comprising the steps of:
a receiving process associa (ed with said second cache sending a request for said

resource to a master/of said resource; (D)
in response to said request from said receiving process, said masteriof said

20 resource sending a message to a sending process associated with said first

cache; and (3,40)

said sending process transferring said second copy(*ald receiving process in

D)
response to said message from said master.

10. The method of Claim 1 further compns geﬁomg the following steps after

25 the step-of transferring said second cop to said second cache:
a sending process associated with said first cache requesting a lock from a lock

manager, wherein said lock grants permission to write said resource to

disk but not permission to modify said resource;
said lock manager selecting a process that has a version of said resource that is at

y)(L"z’:’, 2)
30 least as recent as said first copy;
said lock manager granting said lock to said selected process; and

said selected process writing said version of said resource to disk.

A AMENDED SHEET 5

UEEYIPE R PO W DR 7 T TN I L2 | PO B . . el e 3 ads ATk v ATl T SREA R RS T O L GNP | P G 1 K e N Lt el TR AP et S ST Ol o el Tl i, P e el kgt el S e 5V OO Tk Pt Vs SR i D PSR KT 444 S VI L O el S A D e

AsuzEn;

2 "-w-.o.n.a. ':.:""

11.
12,
.
10
13.
15
14.
20
15.
25
30

CA 02320240 2000-08-02

YD
EROCIROLDRS BRI S .‘ . : voe r e >e
¢ v & e > " 1 4 :
: : : L @ d] Py »
-~ * g : . *

21-

The method of Claim 10 further comprising the step of, in response to said
version of said resource being written to disk, said lock manager causes all
versions of said resource that are older than said version to be released.

The method of Claim 1 further comprising the steps of, after a failure of a cache
that holds a dirty copy of said resource:
determining whether the failed cache held the latest version of the resource;
if the failed cache held the latest version of the resource, then
writing a latest past image of the resource to disk;
releasing all previous past 1mages of the resource; and
applying a recovery log of said failed cache to reconstruct the latest

version. of the resource.

The method of Claim 12 further comprising the steps of:

if the failed cache did not hold the latest version of the resource, then
writing the latest version of the resource to disk; and
releasing all past images of the resource.

The method of Claim 1 further comprising the steps of, after a failure of a
plurality of caches that hold dirty versions of said resource:
determining whether any of the failed caches held the latest version of the
resource; and
if any of the failed caches held the latest version of the resource, then
merging and applying the recovery logs of said failed caches to reconstruct
the latest version of the resource.

A computer-readable medium carrying one or more sequences of instructions for
transferring a resource from a first cache to a second cache, wherein execution of
the one or more sequences of Instructions by one or more processors causes the

0n€ OF MOTe Processors to perform the steps of:

)

retaining a EﬁéSt cng of the resource in said first cache while transferming a second
copylof the resource from the first cache to the second cache without first
durably storing said resource from said first cache to a persistent storage;
and (£2)

preventing sald ﬁrst COp}’rJ-(-Z)m being replaced in said first cache untl said first
copy of the resource or a successor thereof 1s durably stored.

X X

. e e & — . A V. e terme s 0 N N

Ve e R M A ST Ty 1 SR 4 MSHR I L INTRL U 1) TR LIt IR T P P VAP RF T | I PR P P IRCY AP [N PP EFEPRCINT W TEDTE VRt P 1 A L 4, L AN S0 T P A L SV WAl oy AT N A R S0, o A A T A g B Bh Sy 0D 4 2l TS e M P i STk g g] £ B wy (00 W g

& ¢
:t‘j'.. ".:.‘ :.... '.‘ .1-.‘ vl q&' '.‘: .:. ‘e
E:EEE::’{::::;-‘.::t.‘{:. REXTARE R w IR l..:I_ OCy
e

AXMAEEBAO0 o Taln e ataT et 2%,
taletaralslen 't:‘:‘:':{::%{.",":{’:‘:‘:':':‘i' DOCE

16.

5
17.

10
15 18&.

20
15.

25
20.

30

s ..: .:’ -y ’
."9:‘.- ..: ..

. o
g a2y

»

» . ‘l
- -

PO I

s 'y

. o -
*n

. .
. * RO 'Q

-. "Q.C‘ L
s -an -

L
u®
(OO0
L
4
v

* A N
- - netN c.-‘ :o »
- ~:-*|3:o:1:f:1:2:-"?-:1:"
I‘ LR - . .
- L&

ST

’ ..J .!‘0. '0.0.. - ’.....0'
O St NS -
- . .-.‘.'-O L) 0.0 L/ - UL
o ‘ﬁ-t::tzrf.‘@‘ 2 L
.-.. . " vy > .l'
- ‘43-3’. - ?-

20

CA 02320240 2000-08-02

Bt POl KRN DR R AN & X g TIR O O o A LA IRy, DA 4 N LS5 B
B3 IR S 5] K0 5 55 0 o B/ PN o8t 1 @ 20 04 R B S R
B R R A g4 e Ty oa R e Ry S e

b v o N * r4q4 » s b2 e

M ‘ s of ¢ x . 0 ¢ a4 4

¢ v é . v 9 ® & & by

- T B : . - 9 . e A &

_.2 2 - * - LR £ | > o 4

The computer-readable medium of Claim 15 further comprising sequences of

instructions for perfom&;&%m steps of:

allowing said first copyfof said resource é:g be modified in said first cache prior to
transferring said scec%d copyft_'o—gaid second cache; and

preventing said first col?éf%fc—;s)aid resource from being modified after transferring
said second copylto said second cache.

The computer-readable medium of Claim 15 further comprising sequences of

instructions for performing the stc)sgg&% |

after transferring said second copylto said second cache, sending a request for
permission to release said first c:cwp)ag,'ti >)(2= -

in response to said request, causing said first copy or a successor thereof to be

durably stored; and

In response to said successor being(%m(;ably stored, sending a message that
indicates that said first copyltan be replaced.

The computer-readable medium of Claim 17 wherein: 5 %)

the step of sending a request for permission to release said first copylis performed
by a sending process; and (2.%)

the step of causing said first copym successor thereof to be durably stored

includes the step of causing a procegs i’c.z‘ther than said sending process to
store a successor to said first copy’of said resource.

The comqytgr,-readablemedium of Claim 15 wherein the step of preventing said

first copy!from being replaced includes the steps of“(? 5)

prior to attempting to durably store said first copﬁtermining whethe,g’ ac_c%urably
stored copy of said resource 1s more recent than said first opﬂ}L-'_z —

1f said durably st(%:%d copy is more recent than said ﬁrsgégyﬂt%él releasing said
first copy!\—ﬁi)hout durably storing said first copy; and (ga)

if said durably stored copy is not more recent than said first cop)J:'tEn durably

: : 8.9
storing said first copyf‘—)

The computer-readable medium of Claim 16 further comprnsing instructions for

performing the step of transferring a modify permission from a sending process
associated with the first cache to a receiving process associated with the second

cache along with said second copy of said resource.

***** AMENDED SHEET

- @ e e ¢ e— —— . — Y * TICR @Yt s M e

1 'Z.filgfvgﬂ§ Q.

21.

5
22.

10
15 23,

20)
25 24,
25.

3()

.........

......................

CA 02320240 2000-08-02

SIS "
¢ & s ¢ é s «
¢ ” 4 a @

e & "e seoea

The computer-readable medium of Claim 20 wherein: (Y

permissions for accessing said resource are governed by a master; and
the step of transferring said modify permission to the receiving process is (D)
performed prior to receiving acknowledgement from said masterffo’r—/

transfer of said modify permission to said recelving process.

The computer-readable medium of Claim 15 further comprising sequences of

instructions for performing the steps of:

a recelving process associat%% with said second cache sending a request for said
resource to a masterﬁf%aid resource; (D)

in response fo said request from said receiving process, said masterlof'said
resource sending a message to a sending process associated with said first
cache; and (8.40)

said sending process transferring said second copyr_a aid receiving process 1
response to said message from said mastef—D

The computer-readable medium of Claim 15 further compnising instructions for(9, 4 0)
performing the following steps after the step of transfermng said second copy/to

sald second cache:
a sending process associated with said first cache requesting a lock from a lock

manager, wherein said lock grants permission to write said resource to

disk but not permission to modify said resource;
said lock manager selecting a process that has a version of said resource that 1s at

least as recent as said first copy;
said lock manager granting said lock to said selected process; and
said selected process writing said version of said resource to disk.

sl

The computer-readable medium of Claim 23 further comprising instructions for
performing the step of, in response to said version of said resource being written

to disk, said lock manager causes all versions of said resource that are older than

said version to be released.

The computer-readable medium of Claim 15 further comprising sequences of
instructions for performing the steps of, after a failure of a cache that holds a dirty
copy of said resource:

determining whether the failed cache held the latest version of the resource;

if the failed process held the latest version of the resource, then

it 04 v). i AT b Mt o T S s \ AL SOATRS. W00 B arh ot Db . i S S AT R w00 L. ¥ e N b B WA e At e e T = SRR T - PR R BT R S e T I R A e L e T I SRt L R L PHEZEIACT AT | G A (1 - 4 VRTINS 1 AT LA Ve P it Do (0 PR b kALt M AN APPSR IR Y

AR

:" 1.:":{‘.'."51& E{JIJU

....... .'"" ’:"' .' "."-:

5 26.
10 27.
15

lllllllllllllllll

101 mamatviN de Laioek b st DI o WIADANT ot s 400 e 3 A eI AL R LTS v . (v anviartireed v e

oooooooo

F}rmmﬁm"m-ﬁmﬁ?ﬁﬂh

O S L LM MM TERN T & 10 | SR REC N P A S G s+ e AR LN A (P rR T e T e e et T o

CA 02320240 2000-08-02

writing a latest past image of the resource to disk;
releasing all previous past images of the resource; and

applying a recovery log of said failed cache to reconstruct the latest
version of the resource.

The computer-readable medium of Claim 25 further comprising sequences of
instructions for performing the steps of:
if the failed cache did not hold the latest version of the resource, then

writing the latest version of the resource to disk; and

releasing all past images of the resource.

The computer-readable medium of Claim 15 further comprising sequences of

instructions for performing the steps of, after a failure of a plurality of caches that

hold dirty versions of said resource:

determining whether any of the failed caches held the latest version of the
resource; and

if any of the failed caches held the latest version of the resource, then

merging and applying the recovery logs of said failed caches to reconstruct
the latest version of the resource.

v VA v (HTT) S I & AR AR e S MR K S e 1 e S RO s it BB R S G AR e e Tl

AMENDED SHEET

-y e oy bk T v e | —— A W s W e —a

A R ARy L R s b 5 2RO D 1 U I LMY A T 1 LA DTN VAT S M A0 44T 5 R i SO LT IS P Tt At v b e o vk b abAow e 2 LT AR i IR I A e AT L A

Tore D ORAGR A T A 1 AR AT AR M T L Tt ey s e g M

CA 02320240 2000-08-02

WO 99/41664 ; PCT/US99/02965
1/6

——— fg->bg msg

—» bg-> bg msg

----- > bg->bg lazy msg

wmmey- blOCK XfEr

block
Version X

Database Server D

Database Server A |
4 RegM |

SBastM‘ '

Database Server C

6 Block+M

Database Server B

. . . 3 - . e A . T RSP ESPURRIE FRIET W VRPN TN TIEGIRPRY OO VEPINENE T T-Y SRRy P W PTRESESIY CEE EE T T S et 0 AR A S APV A YRV AR A JRAII Y 37t Mo A vl 4ol | AN R SO o Vi T e ey, e e
e Al s T e G AR et L] ZIGY AT L R A) ORI it FRE 5L r 1o Y HERRARAIN St 1 I B] PR LAt LAt S - HiNv - K. 3 RS 305 NG Je A (i g R 2 i B 2 oY SRR MR i Al b . ey P -~ o ey & ai bl . ¢

WO 99/41664

Fig. 2

CA 02320240 2000-08-02

216

200

REQUESTOR REQUESTS M

LOCK FROM MASTER

202

MASTER INSTRUCTS
HOLDER TO DOWNGRADE

204

HOLDER SENDS CURRENT COPY
OF RESOURCE AND M LOCK
DIRECTLY TO REQUESTOR

206

HOLDER INFORMS MASTER
ABOUT TRANSFER OF M LOCK

208

MASTER UPDATES LOCK INFORMATION
TO INDICATE REQUESTOR HOLDS M LOCK

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02965

WO 99/41664

Fig. 3

CA 02320240 2000-08-02

3/6

300

PI HOLDER REQUESTS W LOCK

302

DLM CAUSES THE P!
RESOURCE, OR A SUCCESSOR
THEREOF, TO BE WRITTEN TO DISK

304

DLM INFORMS DATABASE
SERVERS OF VERSION

OF RESOURCE WRITTEN TO DISK

306
DATABASE SERVERS WITH EARLIER
VERSIONS OF RESOURCE RELEASE
THEIR VERSIONS

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02965

CA 02320240 2000-08-02

WO 99/41664

4/6

400

PCT/US99/02965

DETERMINE DATABASE SERVER THAT
HELD THE LATEST VERSION

OF RESOURCE

NO

404

LATEST VERSION
IS WRITTEN TO DISK

406

RELEASE ALL
Pl VERIONS OF
THE RESOURCE

402

DID FAILED SERVER
HAVE LATEST
VERSION ?

YES

408

WRITE LATEST Pl

VERSION OF RESOURCE

TO DISK

410
ALL PREVIOUS Pl

VERSIONS ARE
RELEASED

412

APPLY RECOVERY LOG OF

SUBSTITUTE SHEET (RULE 26)

i e b A 1 S, Sl BT 1 RTG GG g 1 A {1 hiaoi s . o PMRITARE KRRV SHEE o | B T T X ettt IR duqeen o

FAILED SERVER TO
RESOURCE

FY O

CA 02320240 2000-08-02

WO 99/41664 / PCT/US99/02965
5/6

ey A A . - —— —y g P —— W W S— =

- ——» Dbg-> bg msg

----- » bg-> bg lazy msg
s blOCK Write Database Server D

i - block

version X

(MASTER)

5 AckW(10 BACKW(10)

Database Server A 2 BastW 1 Rqu

7 AckW(10)

Database Server C

S —— e Wy

{
l
i
J
I
|
i
i
I
i
)

- s A e bt iy W e A S -

Database Server B

- 2 b ARt M3 A 1 A AL A U SUCALICAL 112 AT A7 o oM S QEELHGRTS AT RN I- b e vr(drd AT S e el A LAY o 1 R - e AR, LENOE S Y 307 M e 3 B S SRR R AR 6 AL el e B
« o o DA T AT A W S W S

CA 02320240 2000-08-02

PCT/US99/02965

WO 99/41664

6/6

9¢9

8¢s

€69 YHOMLIN

809 903
AHOWIN

NOY NIVIA

e 0 s vk~
III.’I'I.I-.I-

vIUY NALSAS n
P ————————
<>
11111111 _ o —-- -
| |
_
_ 39V4H3LNI ¥09 _
NOILYDINNWWOD J0S$300dd "
_
_
|
_
_
_

GG9 SAARA MSIA

719

—

30IA30 LNdNI

SUBSTITUTE SHEET (RULE 26)

& ot AL

e O Ml

P M D e TR N IS 1 = IR | khT P SR e 3 2 Sl v O AR it = AN A NINELCIRCLAIS - 34 TP Cah 0 0ok A (e i 3 B ot Sk S S O CHM ifibebirs SAETS Y

S o IS ARSI ATRAMAIL B Iy et '

&R 5 o) N AT el D0 e 20T s

o Tiads il e AnEY AALENY OSER . EEAN LS AR R RLer e

B laiet et ddie. don ot PAMAAIEE MR A b IO AN P, S R A SR ae s & LY vsaais el L L Aen Ve e et Tl

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

