

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property  
Organization  
International Bureau

(10) International Publication Number

WO 2017/216583 A1

(43) International Publication Date  
21 December 2017 (21.12.2017)(51) International Patent Classification:  
*H05B 3/84* (2006.01)      *B32B 17/10* (2006.01)(21) International Application Number:  
PCT/GB2017/051773(22) International Filing Date:  
16 June 2017 (16.06.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
1610639.5      17 June 2016 (17.06.2016)      GB

(71) Applicant: SWANSEA UNIVERSITY [GB/GB]; Department of Research, Engagement &amp; Innovation Services, Singleton Park, Swansea SA2 8PP (GB).

(72) Inventors: BOOTE, Joseph Jeremy; Pilkington Technology Centre, Hall Lane, Lathom, Ormskirk Lancashire L40 5UF (GB). LAU, Yin Cheung; Swansea University Bay Campus, Engineering Dept., Fabian Way Crymlyn Burrows, Swansea Swansea SA1 8EN (GB). CLAYPOLE, Timothy; Swansea University Bay Campus, Engineering Dept., Fabian Way Crymlyn Burrows, Swansea Swansea SA1 8EN (GB). BEYNON, David; Swansea University Bay Campus, Engineering Dept., Fabian Way Crymlyn Burrows, Swansea Swansea SA1 8EN (GB). JEWELL, Eifion; Swansea University Bay Campus, Engineering Dept., Fabi-

an Way Crymlyn Burrows, Swansea Swansea SA1 8EN (GB). SEARLE, Justin; Swansea University Bay Campus, Engineering Dept., Fabian Way Crymlyn Burrows, Swansea Swansea SA1 8EN (GB).

(74) Agent: KNOWLES, James; Atherton Knowles, St Brandon's House, 29 Great George Street, Bristol Bristol BS1 5QT (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: GLASS LAMINATE STRUCTURE

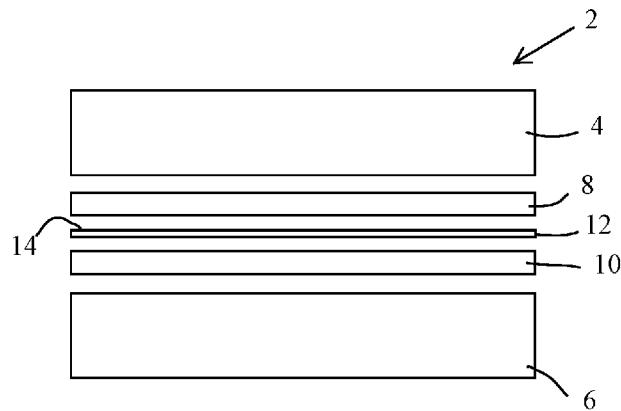



Figure 1

(57) Abstract: A glass laminate structure is disclosed with a first and a second glass ply and a printed polymer ply interposed between the first and second glass plies, the printed polymer ply may be of PVB or PET having nanoparticle-containing ink adhered to at least a portion of a surface. Optionally there may be at least one further polymer ply which may be of PVB, PVA, COP or TPU. The nanoparticle-containing ink may contain electrically conductive nanoparticles, especially silver nanoparticle-containing ink. Also disclosed is a process for producing such a glass laminate structure.



---

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

**Published:**

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

### Glass Laminate Structure

The present invention relates to glass laminate structures, to processes for producing glass laminate structures and to vehicle glazings comprising such glass 5 laminate structures.

Laminated glass may be used in both the automotive and architectural fields to provide laminated glazings. Laminated glass usually comprises at least one polymer interlayer, often of polyvinyl butyral (PVB), bonded between two plies of glass. The laminating process usually takes place under heat and pressure, after which the PVB 10 interlayer becomes optically clear and adheres strongly to the glass plies. The resulting laminate behaves as a single unit.

Glass, in particular for automotive uses, either single sheets or laminates, may be provided with electrically conductive features often screen-printed and then fired on glass substrates using a silver-containing ink mixed with a relatively low melting 15 glass frit. Printing and firing the silver-containing ink requires heat treatment to above 400°C that may be done during shaping or toughening of glass substrates or may require a separate heating step. Typical inks for printing electrical circuits on glass comprise 50 to 83 wt% elemental silver as e.g. flakes, 3 to 6% glass frit and 1 to 12% other additives (e.g. colour improvers). On heating the glass to a sufficiently high 20 temperature, the frit melts and fuses to the glass surface and the silver flakes or particles sinter.

Electrically conductive features may be used for the elements of heating circuits on e.g. rear automotive glazings to enable the glass to be demisted in humid, wet or cold weather conditions. The conductive features may also be used for other 25 functions such as antennae, sensors, glazing lighting systems or busbars.

US-A-5,182,431 discloses an electrical resistance heated window having three or more heatable zones connected in series. The zones consist of a plurality of vertical, electrically conducting resistive filaments, and the electrical heating system may be applied to the window by well-known screen printing techniques.

30 WO-A-2008/062229 discloses an improved electrically conductive ink for printing on automotive glass having improved resistance to scratching.

There is a need to provide further electrical features on, in particular, automotive glazings. For examples, heating circuits may additionally or alternatively be provided by using wires embedded within a laminate, or by printing with a conductive ink on to one of the inner surfaces of the glass layers.

5 GB-A-1,365,785 discloses a window provided with an array of wires for heating. EP-A-0 788 294 discloses a window provided with an array of wires for heating and also discloses a method by which such windows may be manufactured.

GB-A-2,372,927 describes a heating circuit comprising at least two heating banks comprising a plurality of heating elements which extend over the vehicle 10 window between bus bars, said elements being formed from screen printed heat-resistant conductive ink on the glass or conductive wires contacting the interlayer of a laminated vehicle window.

Other electrical components have also been used in laminated glazings.

US-A-2013/0228365 discloses aircraft glazings laminated with a conductive 15 mesh that is inkjet printed on a polymer film that may be PET, polycarbonate or PU. The conductive mesh is for de-icing or electro-magnetic shielding and can have a sheet resistive of under 100  $\Omega/\text{sq}$ .

US-A-2010/0220019 discloses conductive indium tin oxide coatings screen 20 printed on to glass in a laminate. The printing thickness may be 10 to 250 nm.

US-B-4,443,691 discloses electrically heated windows including a laminate with a polyester film to which a resistive layer may be applied.

EP-A-2 574 454 discloses a window having printable layers of PET and adhesive layers of PVB between glass sheets. Printed electronic structures such as sensors and antennae are provided on a surface of the printable layer facing the 25 surface of a glass sheet.

US-A-2005/238,857 describes a laminated glazing panel comprising two glass plies and a plastic ply having one or more light emitting diodes mounted on a circuit board laminated between the glass plies, forming an LED device. The circuit board is ordinarily a flexible circuit board comprising a substrate (of, for example, polyimide 30 or polyester) and a conductive layer (for example, a copper foil or conductive ink).

There exists a need to provide an alternative method for providing conductive features on glass laminates. It is an aim of the present invention to address this need.

The present invention accordingly provides, in a first aspect, a glass laminate structure comprising: a first glass ply, a second glass ply, a printed polymer ply interposed between the first and second glass plies, and optionally at least one further polymer ply, wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at least a portion of at least one surface thereof.

Such a glass laminate is advantageous because, surprisingly, it provides for functional (or decorative) printing on the inside surface of the laminate by printing on a polymer ply. Previously, it had been thought that printing on to the glass substrates, requiring high temperature treatments to successfully fire the ink, was necessary. Since features, e.g. electrically conductive features, may be printed inside the laminate, it enables other features to be printed on the other surface of the laminate especially the glass plies. This provides further functionality of laminated glazings.

The nanoparticle- containing ink will usually comprise electrically conductive nanoparticles.

Preferably, the nanoparticle-containing ink comprises an inorganic nanoparticle-containing ink, more preferably a silver nanoparticle-containing ink. Silver nanoparticle inks enable electrically conductive features to be provided with great advantages in providing functionality to glass laminate structures especially in e.g. automotive glazings. Other preferred nanoparticle materials, which also have the advantage of being electrically conductive, include one or more of Cu, copper oxide (that may be reduced to copper after printing), Pt, Pd, and Au.

Thus, the portion of at least one surface of the printed polymer ply may be electrically conductive. The printed portion of at least one surface of the printed polymer ply will preferably have a sheet resistance in the range 0.005  $\Omega$ /square to 200  $\Omega$ /square, usually 0.05  $\Omega$ /square to 200  $\Omega$ /square, more usually 0.1  $\Omega$ /square to 200  $\Omega$ /square and most usually 0.5  $\Omega$ /square to 200  $\Omega$ /square.

Usually, the printed polymer ply will be laminated to at least one other ply in the laminate structure. The at least one other ply may be a glass ply or a further polymer ply. Lamination provides good adhesion and ensures the protection of the printed portion of the printed polymer laminate, in use.

Advantageously, the nanoparticles (preferably, before heating) may have a dimension in the range 1 nm to 150 nm, usually 1 nm to 100 nm, preferably 5 nm to 80 nm, more preferably 8 nm to 70 nm, most preferably 10 nm to 60 nm. Particle size may be determined by various methods, for example by dynamic light scattering.

5 Such dimensions of the particles are advantageous because they provide that sintering may take place even at the relatively low temperatures compatible with the polymer ply.

10 The printed polymer ply may comprise polyvinyl butyral (PVB), polyvinyl acetate (PVA) and thermoplastic polyurethane (TPU) or polyethylene terephthalate (PET). PVB (PVA and TPU) is/are advantageous because of good lamination to glass. PET is advantageous because it provides a particularly stable surface for printing even at relatively elevated temperatures.

15 The printed polymer ply may be textured. The textured surface may form shallow channels on the polymer ply surface. This may be advantageous because it provides improved routes for gases released from the ink on heating/lamination and for e.g. plasticiser from the polymer ply or plies during heating/lamination.

20 Preferably, the glass laminate structure further comprises at least one further polymer ply, the further polymer ply comprising a polymer selected from polyvinyl butyral (PVB), polyvinyl acetate (PVA), polyethylene terephthalate (PET), cyclic olefin copolymer (COP) and thermoplastic polyurethane (TPU), preferably PVB.

Thus, in preferred embodiments, the glass laminate structure may comprise a first PVB polymer ply, the printed polymer ply and a second PVB polymer ply. The printed polymer ply may comprise PET.

25 In other preferred embodiments, the glass laminate structure may comprise a printed PVB polymer ply and a second PVB polymer ply.

30 Usually, the thickness of the printed polymer ply is in the range 20  $\mu\text{m}$  to 2000  $\mu\text{m}$ . For some polymers (e.g. PET) the thickness of the printed polymer ply may be in the range 20  $\mu\text{m}$  to 80  $\mu\text{m}$ . For other polymers (e.g. PVB) the thickness of the printed polymer ply may be in the range 200  $\mu\text{m}$  to 800  $\mu\text{m}$ , as may the thickness of PVB further polymer plies.

Preferably, the nanoparticle-containing ink has not undergone a separate sintering process.

In a second aspect, the present invention provides a glass laminate structure comprising: a first glass ply, a first PVB ply, a second PVB ply, a printed polymer ply 5 interposed between the first and second PVB plies, and a second glass ply; wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at least a portion of at least one surface thereof.

In a third aspect, the present invention provides a glass laminate structure comprising: a first glass ply; a printed PVB ply, a second PVB ply, and a second glass 10 ply; wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at least a portion of at least one surface thereof.

Optional and preferred features of the second and third aspects of the invention are as described above in relation to the first aspect of the invention.

Glass laminate structures according to the first and second aspects of the 15 invention may be made by lamination processes.

Thus, the present invention according provides, in a fourth aspect, a process for producing a glass laminate structure, the process comprising: a) providing a first glass ply and a second glass ply, b) providing a printed polymer ply having a nanoparticle-containing ink adhered to at least a portion of at least one surface 20 thereof, and c) interposing the printed polymer ply between the first and second glass plies.

The process will preferably further comprise heating the glass laminate structure to a pre-nip temperature preferably in the range 80°C to 99°C. This is 25 advantageous because it tends to soften the polymer plies (e.g. of PVB) and ensures good adhesion between the plies before subsequent lamination steps. A pre-nip temperature in the range 80°C to 99°C is particularly useful for PVB, other polymers may have other useful ranges of temperature, e.g. over 60 °C to 200 °C.

Optionally, the process will further comprise applying reduced pressure to the glass laminate structure during heating to the temperature in the range 80°C to 99°C. 30 This is advantageous because it improves out-gassing of the polymers and ink, reducing the possibility of bubble formation or subsequent poor lamination.

The process preferably further comprises lamination by heating the printed polymer ply to a lamination temperature in the range 90°C to 160°C, thereby preferably laminating the glass laminate structure and preferably sintering the nanoparticle containing ink at the same time. One of the great advantages of the 5 present invention is that lamination, even at this relatively low temperature range, also results in firing/sintering of the nanoparticle containing ink, so that a separate sintering step is not usually required, thereby improving efficiency of manufacture.

Optionally, the process further comprises applying pressure in the range of 1 bar to 20 bar (100 kPa to 2000 kPa) to the glass laminate structure during heating to 10 the lamination temperature in the range 90°C to 160°C.

The process may usually also include the step whereby the printed polymer ply is printed with the nanoparticle-containing ink. Thus, preferably, providing a printed polymer ply comprises printing a polymer ply with the nanoparticle-containing ink.

15 Printing the polymer ply may use generally any suitable printing process. Thus, the printing step may use a printing method selected from roller coating, screen printing, gravure, flexography, lithography, pad printing, inkjet, and aerosol printing.

The ink will usually comprise nanoparticles and at least one solvent.

10 The solvent may be selected from a straight or branched chain C<sub>2</sub> to C<sub>12</sub> alcohol, preferably a C<sub>5</sub> to C<sub>10</sub> straight or branched chain alcohol, and more preferably 20 a branched chain C<sub>8</sub> alcohol (preferably isoctyl alcohol); a polyether, and preferably a branched chain C<sub>8</sub> alcohol (preferably isoctyl alcohol); a polyether, and preferably propylene glycol; and water.

The ink may comprise 10% and 80% by wt nanoparticles, preferably between 20% and 70% by wt nanoparticles.

25 The process may further comprise a step of depositing a conductive layer on the nano-particle containing ink before interposing the printed polymer ply between the first and second glass plies. This is advantageous because it may increase electrical conductivity. Depositing the conductive layer may be by an electrodeposition or electroless-deposition process. The conductive layer will usually 30 be a metallic layer and may comprise copper or silver or other suitable electrically conductive material.

Preferably, the nanoparticle-containing ink has not undergone a separate sintering step in the process.

The aspects of the invention have many potential uses, especially in automotive glazings.

5 Thus, in a fifth aspect, the present invention provides, a vehicle glazing, comprising a glass structure laminate according to the first, second or third aspect.

In a sixth aspect, the present invention provides a vehicle comprising a glazing according to the fourth aspect.

10 The glass laminate structure of the present invention has many potential uses in automotive (or architectural) glazings, for example it may be used in vehicle heated wiper area, vehicle windscreen / mirror demister, sensors (capacitors), lighting systems and generally as bus bars.

15 The present invention is advantageous because it provides that the printing of inks, especially conductive inks, on laminates can be separated from the laminating process, in time and distance. Printed polymer plies (e.g. PET or PVB sheets) can be rolled up for storage or shipment to the glass production site. Handling and transporting glass components is kept to a minimum. The invention is particularly advantageous because it enables printed features to be added to glazings at any time in the manufacturing process e.g. either before, or after, shaping of glass, thus separating 20 the printing stage from the shaping stage in production of glazing products.

The present invention will now be described by way of example only, and with reference to, the accompanying drawings, in which:

Figure 1 illustrates a schematic, not to scale, exploded view of a glass laminate structure according to a first embodiment of the present invention.

25 Figure 2 illustrates a schematic, not to scale, exploded view of a glass laminate structure according to a second embodiment of the present invention.

Figure 3 illustrates a schematic, not to scale, exploded view of a glass laminate structure according to a third embodiment of the present invention.

30 Figure 1 illustrates schematically and not to scale an exploded view of a glass laminate according to the invention. The laminate 2 comprises a first glass ply 4 and a second glass ply 6. Each glass ply is approximately 2.1 mm thick. Between the glass

plies 4, 6 are a first PVB ply 8 (about 0.33 mm thick) and a second PVB ply 10 (about 0.38 mm thick). Interposed between the first and second PVB plies 8, 10 is a printed polymer ply 12 of PET (about 50  $\mu\text{m}$  thick) having a printed surface 14 of silver nanoparticle ink (about 1.5  $\mu\text{m}$  dry thickness).

5 In Figures 2 and 3 the same reference numerals are used to indicate the same or similar features.

Figure 2 illustrates schematically and not to scale an exploded view of a second glass laminate according to the invention. The first and second glass plies 4, 6 and first and second PVB plies 8, 10 are present. However, in this embodiment, the 10 printed polymer ply is the first PVB ply 8 (about 0.38 mm thick) having a printed surface 14 of silver nanoparticle ink (about 1.5  $\mu\text{m}$  dry thickness).

Figure 3 illustrates schematically and not to scale an exploded view of a third glass laminate according to the invention. The same reference numerals are used to indicate the same or similar features. The first and second glass plies 4, 6 and first 15 PVB ply 8 are present. However, in this embodiment, the second PVB ply is not present and the printed polymer ply is the first PVB ply 8 having a printed surface 14 of silver nanoparticle ink (about 1.5  $\mu\text{m}$  dry thickness).

In some embodiments, the printed surface of the polymer layer in the laminate may have a further conductive layer deposited on the nanoparticle ink.

20 The invention is further illustrated, but not limited, by the following Examples.

#### *Examples 1 to 16*

25 PET-PVB duplet substrates (30cm  $\times$  30cm; 50  $\mu\text{m}$  thick PET and 330  $\mu\text{m}$  thick PVB, the PVB and PET plies adhered together) were coated/printed with silver nano-particle containing flexographic silver ink using a K Bar coater (US3 Wire gauge, speed set at 3). The coating was applied to the surface of the PET ply.

30 The coating area was approximately 10 cm  $\times$  10 cm, with a dry coating thickness of approximately 1.5  $\mu\text{m}$  (as measured by DekTak profilometer). The samples were then air dried.

Bus bars of tinned copper were applied to the top and bottom boundaries of the coated area.

A second PVB ply (thickness 380 µm) was applied to the PET side of the PET-PVB duplet.

5 Two glass plies (2.1 mm thick) were placed on either side of the polymer plies.

A pre-nip process was applied to the laminates by heating to 95°C under reduced pressure in a vacuum bag to adhere and out-gas the polymer plies.

10 The structures were then subjected to a lamination process by heating at 125°C under 10 bar (1000 kPa) of pressure in an autoclave.

The circuit resistance of the laminates as prepared, after pre-nip and after lamination was determined. The results for the circuit resistance measurements are indicated in Tables 1 to 3 below.

Measurements were taken at three locations:

15 1. both connectors connected to the top bus bar (“Top”);  
2. both connectors connected to the bottom bus bar (“Bottom”); and  
3. connectors connected diagonally between the top and bottom bus bars (“Diagonal”; X).

Measurements were taken:

20 1. after the prototype has been assembled (see Table 1),  
2. after the pre nip cycle (see Table 2); and  
3. after the autoclave cycle (see Table 3).

25 The circuit resistance of control samples was also determined to show the change in resistance during the lamination cycle: control sample 1 containing a bus bar (I configuration), and control sample 2 containing 3 bus bars connected together (H configuration) and to show that the bus bars were not affecting the results.

Table 1: Circuit resistance PET-PVB duplet after assembly

| Example    | Circuit Resistance ( $\Omega$ ) |        |          |
|------------|---------------------------------|--------|----------|
|            | Top                             | Bottom | Diagonal |
| 1          | 0.014                           | 0.014  | 0.099    |
| 2          | 0.014                           | 0.015  | 0.064    |
| 3          | 0.014                           | 0.015  | 0.105    |
| 4          | 0.015                           | 0.015  | 0.127    |
| 5          | 0.017                           | 0.018  | 0.077    |
| 6          | 0.014                           | 0.014  | 0.135    |
| 7          | 0.018                           | 0.018  | 0.112    |
| 8          | 0.015                           | 0.016  | 0.115    |
| 9          | 0.015                           | 0.017  | 0.147    |
| 10         | 0.014                           | 0.016  | 0.099    |
| 11         | 0.015                           | 0.015  | 0.095    |
| 12         | 0.016                           | 0.015  | 0.101    |
| 13         | 0.015                           | 0.016  | 0.132    |
| 14         | 0.016                           | 0.015  | 0.103    |
| 15         | 0.017                           | 0.016  | 0.145    |
| 16         | 0.015                           | 0.016  | 0.162    |
|            |                                 |        |          |
| 3 bus bars | 0.014                           | 0.015  | 0.024    |
| 1 bus bar  | 0.015                           |        |          |

Table 2: Circuit resistance PET-PVB duplet after pre nip.

| Example    | Circuit Resistance ( $\Omega$ ) |        |          |
|------------|---------------------------------|--------|----------|
|            | Top                             | Bottom | Diagonal |
| 1          | 0.015                           | 0.015  | 0.050    |
| 2          | 0.015                           | 0.015  | 0.037    |
| 3          | 0.014                           | 0.015  | 0.154    |
| 4          | 0.015                           | 0.015  | 0.062    |
| 5          | 0.015                           | 0.015  | 0.040    |
| 6          | 0.014                           | 0.014  | 0.058    |
| 7          | 0.015                           | 0.014  | 0.057    |
| 8          | 0.015                           | 0.015  | 0.060    |
| 9          | 0.015                           | 0.014  | 0.065    |
| 10         | 0.015                           | 0.014  | 0.051    |
| 11         | 0.015                           | 0.014  | 0.047    |
| 12         | 0.014                           | 0.014  | 0.047    |
| 13         | 0.014                           | 0.014  | 0.064    |
| 14         | 0.016                           | 0.015  | 0.052    |
| 15         | 0.015                           | 0.016  | 0.066    |
| 16         | 0.015                           | 0.014  | 0.080    |
|            |                                 |        |          |
| 3 bus bars | 0.014                           | 0.014  | 0.020    |
| 1 bus bar  | 0.015                           |        |          |

Table 3: Circuit resistance PET-PVB duplet after autoclave cycle

| Example    | Circuit Resistance ( $\Omega$ ) |        |          |
|------------|---------------------------------|--------|----------|
|            | Top                             | Bottom | Diagonal |
| 1          | 0.014                           | 0.014  | 0.035    |
| 2          | 0.014                           | 0.014  | 0.026    |
| 3          | 0.013                           | 0.014  | 0.037    |
| 4          | 0.015                           | 0.015  | 0.041    |
| 5          | 0.015                           | 0.015  | 0.028    |
| 6          | 0.016                           | 0.015  | 0.040    |
| 7          | 0.014                           | 0.014  | 0.038    |
| 8          | 0.014                           | 0.014  | 0.039    |
| 9          | 0.015                           | 0.016  | 0.045    |
| 10         | 0.014                           | 0.015  | 0.037    |
| 11         | 0.015                           | 0.015  | 0.035    |
| 12         | 0.015                           | 0.015  | 0.034    |
| 13         | 0.015                           | 0.015  | 0.045    |
| 14         | 0.015                           | 0.015  | 0.035    |
| 15         | 0.015                           | 0.015  | 0.044    |
| 16         | 0.015                           | 0.016  | 0.052    |
|            |                                 |        |          |
| 3 bus bars | 0.014                           | 0.015  | 0.024    |
| 1 bus bar  | 0.015                           |        |          |

*Examples 17 to 20.*

PVB polymer plies (30cm × 30cm; 0.38 mm thick PVB) were coated/printed with silver nano-particle containing flexographic silver ink using a K Bar coater (US3 Wire gauge, speed set at 3).

5 The coating area was approximately 10 cm × 10 cm. After coating, the samples were air dried.

Bus bars of tinned copper were applied to the top and bottom boundaries of the coated area.

10 A second (non-printed) PVB ply (0.38 mm thick) was positioned on the printed side of the printed PVB ply. Two glass plies (2.1 mm thick) were placed on either side of the PVB.

A pre-nip process was applied to the laminates by heating to 95°C under reduced pressure in a vacuum bag for 1 hour to adhere and out-gas the polymer plies.

15 The assemblies were then subjected to a lamination process by heating at 125°C under 10 bar (1000 kPa) of pressure for 45 minutes in an autoclave. The sheet resistance of the laminates on assembly, after pre-nip and after lamination was determined using a Nagy SRM-12 (to measure non-contact sheet resistance). The results are indicated in Table 4.

| Example | On Assembly                 | After Prenip                | After Autoclave             |
|---------|-----------------------------|-----------------------------|-----------------------------|
|         | Nagy<br>( $\Omega$ /square) | Nagy<br>( $\Omega$ /square) | Nagy<br>( $\Omega$ /square) |
| 17      | 12.71                       | 0.201                       | 180.2                       |
| 18      | 13.41                       | 0.239                       | 163.2                       |
| 19      | 13.07                       | 0.201                       | 173.7                       |
| 20      | 12.71                       | 0.286                       | 176.3                       |

20

Table 4

*Examples 21 to 28.*

These examples were made using nano-silver screen ink printed on (50 cm × 50 cm) 175  $\mu\text{m}$  thick PET (SU 330). The screen that was used was a 61/64 mesh giving a wet coating thickness of around 36  $\mu\text{m}$ . Eight samples were produced. Once 5 printed and air dried, four of the samples were plated in an electroplating bath to deposit around 10  $\mu\text{m}$  copper layer above the printed area. The samples were laminated using PVB sheets (each 0.76 mm thick) and two glass plies (2.1 mm thick).

The conductivity of the printed and plated samples was too low to measure using non-contact measurement so busbars were applied to provide an area 50 mm 10 wide with a 45 mm separation. Pre-nip conditions were 45 mm cold de-air in a vacuum bag followed by 1hr at 95 °C (still in the vacuum bag). The samples were autoclaved (1hr, 125 °C, 10 bar pressure).

Resistance measurements are shown in Table 5, below, for the printed only samples (Examples 21 to 24) and the printed and plated samples (Examples 25 to 28). 15 The measurements include the busbar resistance, and the contact resistance between the busbar and measurement area. However, by comparing measurements of the printed and printed and plated samples such contributions cannot account for the changes measured on the plated samples.

| Example | Printed and/or plated | On Assembly  | After Prenip | After Autoclave |
|---------|-----------------------|--------------|--------------|-----------------|
|         |                       | ( $\Omega$ ) | ( $\Omega$ ) | ( $\Omega$ )    |
| 21      | Printed only          | 0.082        | 0.053        | 0.047           |
| 22      | Printed only          | 0.088        | 0.061        | 0.050           |
| 23      | Printed only          | 0.085        | 0.060        | 0.049           |
| 24      | Printed only          | 0.086        | 0.059        | 0.049           |
| 25      | Printed and Plated    | 0.012        | 0.012        | 0.012           |
| 26      | Printed and Plated    | 0.010        | 0.010        | 0.010           |
| 27      | Printed and Plated    | 0.010        | 0.010        | 0.010           |
| 28      | Printed and Plated    | 0.011        | 0.011        | 0.011           |

Table 5

**Claims**

1. A glass laminate structure comprising:

a first glass ply;

5 a second glass ply; and

a printed polymer ply interposed between the first and second glass plies, and  
optionally at least one further polymer ply,

wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at  
least a portion of at least one surface thereof.

10

2. A glass laminate structure as claimed in claim 1, wherein the nanoparticle-  
containing ink comprises electrically conductive nanoparticles.

3. A glass laminate structure as claimed in either claim 1 or claim 2, wherein the

15 nanoparticle- containing ink comprises an inorganic nanoparticle-containing ink,  
preferably a silver nanoparticle-containing ink.

20 4. A glass laminate structure as claimed in any one of the preceding claims,

wherein the printed portion of at least one surface of the printed polymer ply is  
electrically conductive.

5. A glass laminate structure as claimed in any one of the preceding claims,

wherein the printed portion of at least one surface of the printed polymer ply is  
electrically conductive and has a sheet resistance in the range 0.005 Ω/square to 200

25 Ω/square.

6. A glass laminate structure as claimed in any one of the preceding claims,

wherein the printed polymer ply is laminated to at least one other ply in the laminate  
structure.

7. A glass laminate structure as claimed in any one of the preceding claims, wherein the nanoparticles before heating have a dimension in the range 1 nm to 150 nm, preferably 1 nm to 100 nm, more preferably 5 nm to 80 nm, even more preferably 5 nm to 70 nm, most preferably 10 nm to 60 nm.

8. A glass laminate structure as claimed in any one of the preceding claims, wherein the printed polymer ply comprises polyvinyl butyral (PVB), polyvinyl acetate (PVA), thermoplastic polyurethane (TPU) or polyethylene terephthalate (PET).

10

9. A glass laminate structure as claimed in claim 8, wherein the printed polymer ply is textured.

15

10. A glass laminate structure as claimed in either claim 8 or claim 9, further comprising at least one further polymer ply, the further polymer ply comprising a polymer selected from polyvinyl butyral (PVB), polyvinyl acetate (PVA), polyethylene terephthalate (PET), cyclic olefin copolymer (COP) and thermoplastic polyurethane (TPU).

20

11. A glass laminate as claimed in any one of the preceding claims, comprising a first PVB polymer ply, the printed polymer ply and a second PVB polymer ply.

12. A glass laminate as claimed in any one of claims 1 to 10, comprising a printed PVB polymer ply and a second PVB polymer ply.

25

13. A glass laminate structure as claimed in any one of the preceding claims, wherein the thickness of the printed polymer ply is in the range 20  $\mu\text{m}$  to 2000  $\mu\text{m}$ .

30

14. A glass laminate structure as claimed in claim 13, wherein the thickness of the printed polymer ply is in the range 20  $\mu\text{m}$  to 180  $\mu\text{m}$ .

15. A glass laminate structure as claimed in any one of the preceding claims, wherein the printed polymer ply comprises a further conductive layer deposited on the nanoparticle-containing ink.

5

16. A glass laminate structure comprising:

a first glass ply;

a first PVB ply,

a second PVB ply,

10 a printed polymer ply interposed between the first and second PVB plies, and a  
a second glass ply;

wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at least a portion of at least one surface thereof.

15 17. A glass laminate structure comprising:

a first glass ply;

a printed PVB ply,

a second PVB ply, and a

a second glass ply;

20 wherein the printed polymer ply comprises nanoparticle-containing ink adhered to at least a portion of at least one surface thereof.

18. A glass laminate as claimed in any one of the preceding claims, wherein the nanoparticle-containing ink has not undergone a separate sintering process.

25

19. A process for producing a glass laminate structure, the process comprising:

a) providing a first glass ply and a second glass ply;

b) providing a printed polymer ply having a nanoparticle-containing ink adhered to at least a portion of at least one surface thereof; and

c) interposing the printed polymer ply between the first and second glass plies.

20. A process as claimed claim 19, further comprising heating the glass laminate structure to a temperature in the range 80°C to 99°C.

5

21. A process as claimed in claim 20, further comprising applying reduced pressure to the glass laminate structure during heating to the temperature in the range 80°C to 99°C.

10 22. A process as claimed in any one of claims 19 to 21, further comprising heating the printed polymer ply to a temperature in the range 90°C to 160°C.

15 23. The process as claimed in claim 22, further comprising applying pressure in the range of 1 bar to 20 bar to the glass laminate structure during heating to the temperature in the range 90°C to 160°C.

24. The process as claimed in any one of claims 19 to 23, wherein providing a printed polymer ply comprises printing a polymer ply with the nanoparticle-containing ink.

20

25. A process as claimed in claim 24, wherein printing the polymer ply uses a printing method selected from roller coating, screen printing, gravure, flexography, lithography, pad printing, inkjet, and aerosol printing.

25 26. A process as claimed in any one of claims 19 to 25, wherein the ink comprises nanoparticles and at least one solvent.

27. A process as claimed in claim 26, wherein the solvent is selected from a straight or branched chain C<sub>2</sub> to C<sub>12</sub> alcohol, preferably a C<sub>5</sub> to C<sub>10</sub> straight or

branched chain alcohol, and more preferably a branched chain C<sub>8</sub> alcohol (preferably isooctyl alcohol); a polyether, and preferably propylene glycol; and water.

28. A process as claimed in any one of claims 19 to 27, wherein the ink comprises

5 10% and 80% by wt nanoparticles, preferably between 20% and 70% by wt nanoparticles.

29. A process as claimed in any one of claims 19 to 28, further comprising a step  
of depositing a conductive layer on the nano-particle containing ink before interposing  
10 the printed polymer ply between the first and second glass plies.

30. A process as claimed in claim 29, wherein depositing a conductive layer is by  
an electrodeposition or electroless-deposition process.

15 31. A process as claimed in either claim 29 or 30 wherein the conductive layer  
comprises copper.

32. A process as claimed in any one of claims 19 to 31, wherein the nanoparticle-  
containing ink has not undergone a separate sintering step.

20

33. A vehicle glazing, comprising a glass structure laminate as claimed in any one  
of claims 1 to 18.

34. A vehicle comprising a glazing as claimed in claim 31.

25

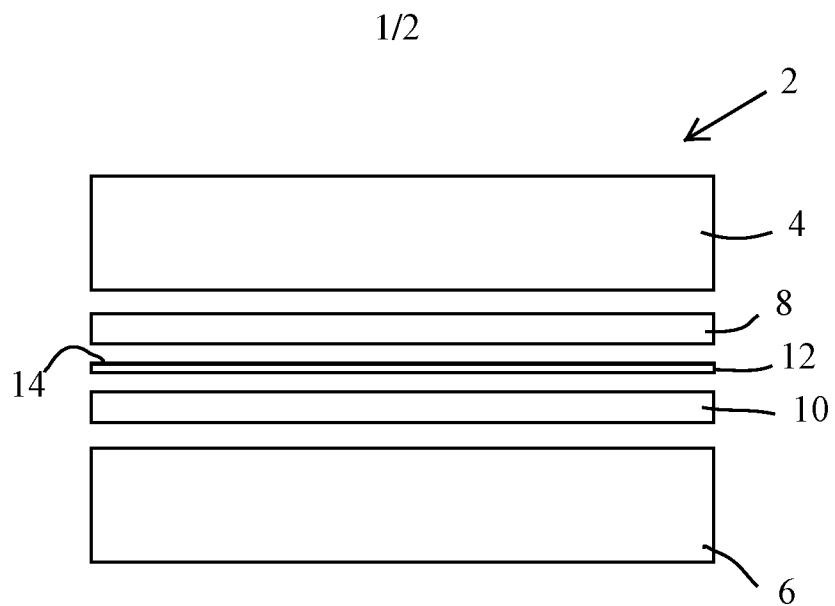



Figure 1

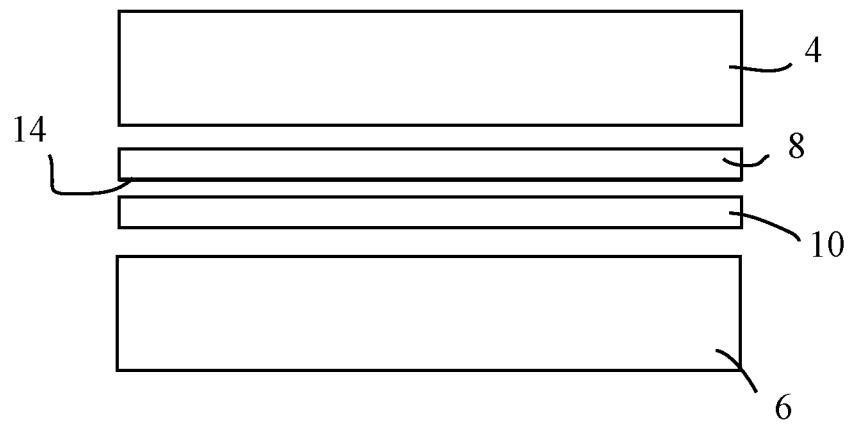



Figure 2

2/2

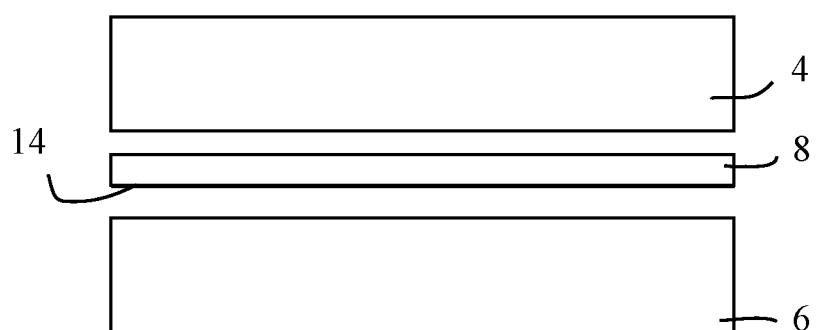



Figure 3

# INTERNATIONAL SEARCH REPORT

International application No  
PCT/GB2017/051773

**A. CLASSIFICATION OF SUBJECT MATTER**  
INV. H05B3/84 B32B17/10  
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
H05B B32B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                            | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | US 2013/228365 A1 (UPRETY KRISHNA K [US] ET AL) 5 September 2013 (2013-09-05) paragraphs [0070] - [0085]; figures 3-10<br>-----                                                                               | 1-34                  |
| Y         | US 2014/197159 A1 (PANICO C RICHARD [US] ET AL) 17 July 2014 (2014-07-17) paragraphs [0002], [0003], [0010], [0012], [0015], [0019]<br>-----                                                                  | 1-34                  |
| Y         | US 2005/238804 A1 (GARBAR ARKADY [IL] ET AL) 27 October 2005 (2005-10-27) paragraphs [0006], [0010], [0011], [0024], [0026], [0030] - [0032], [0058], [0059], [0061], [0063], [0064], [0066], [0072]<br>----- | 5,7                   |



Further documents are listed in the continuation of Box C.



See patent family annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

|                                                                                                                                                                      |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search                                                                                                            | Date of mailing of the international search report |
| 29 September 2017                                                                                                                                                    | 10/10/2017                                         |
| Name and mailing address of the ISA/<br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040,<br>Fax: (+31-70) 340-3016 | Authorized officer<br><br>Molenaar, Eelco          |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No  
PCT/GB2017/051773

| Patent document cited in search report | Publication date | Patent family member(s) |    | Publication date |
|----------------------------------------|------------------|-------------------------|----|------------------|
| US 2013228365                          | A1 05-09-2013    | CA 2865916              | A1 | 06-09-2013       |
|                                        |                  | CN 104395066            | A  | 04-03-2015       |
|                                        |                  | EP 2819839              | A1 | 07-01-2015       |
|                                        |                  | JP 2015513487           | A  | 14-05-2015       |
|                                        |                  | TW 201337964            | A  | 16-09-2013       |
|                                        |                  | US 2013228365           | A1 | 05-09-2013       |
|                                        |                  | US 2016242282           | A1 | 18-08-2016       |
|                                        |                  | WO 2013130137           | A1 | 06-09-2013       |
| US 2014197159                          | A1 17-07-2014    | US 2014197159           | A1 | 17-07-2014       |
|                                        |                  | WO 2014113463           | A1 | 24-07-2014       |
| US 2005238804                          | A1 27-10-2005    | NONE                    |    |                  |