嵌入式软件自动测试系统及其方法

本发明公开了一种嵌入式软件自动测试系统，包括主机及CAN总线网络系统，其特征在于：所述主机经串口与节点控制器连接，所述节点控制器通过CAN总线与所述待测设备组成CAN网络；所述节点控制器内设有数据缓冲单元、协议转换单元及控制单元；其方法：(1) 主机通过串口将预设的用例参数发送给节点控制器；(2) 协议转换单元转换为CAN协议，以广播的方式发送给各个待测设备；(3) 待测设备按照用例参数进行处理，反馈结果；(4) 数据整理后上传至主机；(5) 主机进行判别，输出测试结果。本发明通过在主机与网络系统之间设置节点控制器，实现了主机与CAN总线网络内的各个待测设备进行数据传输，获得对整个系统网络性能与协调性的检测。
1. 一种嵌入式软件自动测试系统，包括带有监控程序的主机，以及由复数台待测设备与 CAN 总线连接组成的网络系统，其特征在于：还包括一节点控制器，所述主机经串口与所述节点控制器连接，所述节点控制器经 CAN 总线分别与所述待测设备组成 CAN 网络；所述节点控制器内设有数据缓冲单元、协议转换单元及内设有数据整理程序的控制单元。

2. 一种嵌入式软件自动测试方法，其测试步骤为：
 (1) 主机通过串口将预设的用例参数发送给节点控制器；
 (2) 节点控制器中的协议转换单元将接收到的用例参数的 Modbus 协议转换为 CAN 协议，以广播的方式通过 CAN 总线发送给网络系统中每一待测设备上；
 (3) 所有待测设备接收到用例参数后，按照用例参数进行相应的处理，将运行结果经 CAN 总线反馈至节点控制器中，通过协议转换单元将 CAN 协议转换为 Modbus 协议，并存入节点控制器内的数据缓冲单元内；
 (4) 存入数据缓冲单元内的数据，根据预存于节点控制器控制单元内的数据整理程序，对数据缓冲单元内的数据组合后经串口上传至主机内；
 (5) 主机接收到数据后进行判别，输出测试结果。

3. 根据权利要求 2 所述的嵌入式软件自动测试方法，其特征在于：所述主机内的用例参数在预设时，用户采用 Excel 文档格式设计测试用例，每个测试用例包括输入、输出、判别方式信息，通过主机内预设的文件转换工具，将所述测试用例转换为下载用的所述用例参数。

4. 根据权利要求 2 所述的嵌入式软件自动测试方法，其特征在于：所述步骤 (5) 中，主机接收到数据后进行判别，由主机生成过程报表与错误记录，并输出显示。
嵌入式软件自动测试系统及其方法

技术领域

[0001] 本发明涉及一种软件测试系统与测试方法，尤其涉及一种嵌入式软件自动测试系统及其方法。

背景技术

[0002] 嵌入式软件就是嵌入在硬件中的操作系统和开发工具软件，它在产业中的关联关系体现为：芯片设计制造→嵌入式系统软件→嵌入式电子设备开发、制造。广泛应用于国防、工控、家用、商用、办公、医疗等领域，如我们常见的移动电话、掌上电脑、数码相机、机顶盒、MP3等都是用嵌入式软件技术对传统产品进行软件化改造的结果。通常嵌入式系统对可靠性的要求比较高，嵌入式系统安全性的失效可能会导致灾难性的后果，即使是非安全性系统，由于大批量生产也会导致惊人的经济损失。这就要求对嵌入式系统，包括嵌入式软件进行严格的测试、确认和验证。因而，引入测试软件，对嵌入式软件进行测试，尤其是验证嵌入式软件与其所控制的硬件设备能否正确地交互。

[0003] 目前，嵌入式软件都是在特定目标系统上运行的软件，其硬件平台和操作系统往往是专用的，不具有通用性，比如PDA、工业显示屏、控制器、GPRS通讯设备等使用的软件。嵌入式软件测试有别于桌面软件系统测试的一个显著特点是，它一般需要一个交互编译和调试环境，主机和目标机建立起通讯连接，并传输调试命令和数据。由于主机和目标机往往运行着不同的操作系统，而且处理器的体系结构也彼此不同，这就提高了嵌入式开发的复杂性。现有技术中，对嵌入式软件测试的方案基本上都是对独立的单个设备进行的，而实际工程应用的系统软件往往是分散在多个设备组成的网络系统，每个设备又都有自己的分工，相互之间又有着数据通讯，单独测试无法对整个系统整体性能及协调性进行测试，不能找出系统功能方面存在的问题。而主机作为客户端无法直接接入CAN总线组成的系统网络中，因而以前的测试方法与系统来说，不能满足实际工程应用的需要。

发明内容

[0004] 本发明目的是提供一种嵌入式软件自动测试系统及其方法，通过对测试系统及测试方法的改进，可获得整个网络系统的整体测试信息，找出整个系统功能方面存在的问题，可有效提高各设备之间协调性。

[0005] 为达到上述目的，本发明采用的技术方案是：一种嵌入式软件自动测试系统，包括带有监控程序的主机，以及由复数台待测设备与CAN总线连接组成的网络系统，包括一节点控制器，所述主机经串口与所述节点控制器连接，所述节点控制器经CAN总线分别与所述待测设备组成CAN网络，所述节点控制器内设有数据缓冲单元、协议转换单元及内设有数据整理程序的控制单元。

[0006] 上述技术方案中，通过节点控制器，建立待测设备与主机之间的连接，起到网桥与数据整理的作用，从而实现主机通过串口SCI（RS232）对CAN总线网络组成系统进行数据的输入与输出，使待测网络系统在完全脱离外部输入信号与输出负载的情况下对其进行测
试，测得整个网络的功能是否完备，协调是否正确。

【0007】为达到上述目的，本发明采用的方法技术方案是：一种嵌入式软件自动测试方法，其测试步骤为：

【0008】（1）主机通过串口将预设的用例参数发送给节点控制器；

【0009】（2）节点控制器中的协议转换单元将接收到所述用例参数的 Modbus 协议转换为 CAN 协议，以广播的方式通过 CAN 总线发送给网络系统中每一待测设备上；

【0010】（3）所有待测设备接收到用例参数后，按照用例参数进行相应的处理，将运行结果经 CAN 总线反馈至节点控制器中，通过协议转换单元将 CAN 协议转换为 Modbus 协议，并存入节点控制器内的数据缓冲单元内；

【0011】（4）存入数据缓冲单元内的数据，根据预存于节点控制器控制单元内的数据整理程序，对数据缓冲单元内的数据组合后经串口上传至主机内；

【0012】（5）主机接收到数据后进行判别，输出测试结果。

【0013】上述技术方案中，该测试方法属于黑盒测试，测试输入与输出的对应关系是否正确。在测试之前，需要预先设计好输入和相应的输出。测试的时候将输入部分下载到网络里去，然后读取指定输出，再判断是否正确。而预先设计好的输入与相应的输出就是预存于主机内的所述用例参数。数据缓冲单元是由控制单元预设程序代码定义好的一块静态数据存储区，包括存储的数据量大小，数据类型，加载后，不能修改。通过 CAN 总线上传的数据先由协议转换单元将 CAN 协议转换为 Modbus 协议（可采用现有的协议转换芯片实现），并按照数据缓冲单元的设定格式存入，整理后的数据最后上传到主机，由主机内的监控程序判定，输出测试结果。

【0014】上述技术方案中，所述主机内的用例参数在预设时，用户采用 Excel 文档格式设计测试用例，每个测试用例如包括输入、输出、判别方式信息，通过主机内预设的文件转换工具，将所述测试用例转换为下载用的所述用例参数。由于用例参数是需要一定专业知识的，对使用人员有一定的要求，采用便于使用的 Excel 文档做测试设计，然后通过文件转换程序这一小工具，将其转换为专业的参数文件，转换过程为：将 Excel 文档里原本设计好的一些数据，进行提取，然后按照一定的格式（用例参数规范格式）重新生成参数文件，参数文件是用于访问被测网络用的规范文件，是上位机访问下位机的标准格式文件，如此方便使用人员设计用例与测试系统，对人员的专业知识要求降低。

【0015】上述技术方案中，所述步骤（5）中，主机接收到数据后进行判别，由主机生成过程报表与错误记录，并输出显示。

【0016】由于上述技术方案运用，本发明与现有技术相比具有下列优点：

【0017】1. 本发明通过在主机与 CAN 总线网络系统之间设置节点控制器，提供网桥和数据整理的作用，实现主机与 CAN 总线网络内的各个待测设备进行数据传输，获得对整个控制系统性能与协调性的检测，把系统看作一个完整的对象进行测试，从而便于找出系统网络的问题所在，提高整个控制系统的能力与协调性；

【0018】2. 用例参数可采用常用的 Excel 文档格式来设计测试用例，通过主机内的带有的文件转换工具，转换为下载用例参数发送给节点控制器，而后进入 CAN 总线网络系统内，各设备按照用例参数进行相应处理，得到结果经节点控制器整理后回传给主机，由主机判别输出显示测试结果，该测试方式对测试人员专业知识要求较低，使测试工作变得简单而轻
附图说明
[0019] 图 1 是本发明实施例一的结构原理图；
[0020] 图 2 是本发明实施例一中节点控制器数据存储结构示意框图。

具体实施方式
[0021] 下面结合附图及实施例对本发明作进一步描述：
[0022] 实施例一：参见图 1、2 所示，一种嵌入式软件自动测试系统，包括带有监控程序的
主机，节点控制器 TestNode 以及由 Contr0、Contr1、Contr2 三台待测设备与 CAN 总线连接
组成的网络系统，所述主机经串口 SCI（RS232）与所述节点控制器连接；所述节点控制器经
CAN 总线分别与所述待测设备组成 CAN 网络；所述节点控制器内设有数据缓冲单元、协议转
换单元及内设有数据整理程序的控制单元；其测试步骤为：
[0023] (1) 主机通过串口将预设的用例参数发送给节点控制器；
[0024] (2) 节点控制器中的协议转换单元将接收到所述用例参数的 Modbus 协议转换为
CAN 协议，以广播的方式通过 CAN 总线发送给网络系统中每一待测设备上；
[0025] (3) 所有待测设备接收到用例参数后，按照用例参数进行相应的处理，将运行结果
经 CAN 总线反馈至节点控制器中，通过协议转换单元将 CAN 协议转换为 Modbus 协议，并存
入节点控制器内的数据缓冲单元内；
[0026] (4) 存入数据缓冲单元内的数据，根据预存于节点控制器控制单元内的数据整理
程序，对数据缓冲单元内的数据组合后经串口上传至主机内；
[0027] (5) 主机接收到数据后进行判别，由主机生成过程报表与错误记录，并输出显示。
[0028] 在本实施例中，所述主机内的用例参数在预设时，采用 Excel 文档格式设计测试
用例；每个测试用例包括输入、输出、判别方式等详细信息，通过主机内设置的文件转换工
具，将所述测试用例转换为下载用的所述用例参数，如此便简化了用例参数的设计，降低了
专业知识要求，便于用户进行测试。
图 2