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CLASSIFICATION TECHNIQUES FOR MEDICAL DIAGNOSTICS USING
OPTICAL SPECTROSCOPY

PRIORITY

[0001]  This application claims the benefit of U.S. Provisional Application No.
61/163,423, filed March 25, 2009, entitled “Pattern Recognition Algorithms for Spectral
Classification with Applications to Detections/Screening of Cancer and Other
Pathologies Using Optical Spectroscopy,” the entirety of which is hereby incorporated by

reference.

GOVERNMENT SUPPORT
[0002] This invention was made with Government Support under Contract No.
CA104677 awarded by the National Institutes of Health. The Government has certain

rights in the invention.

BACKGROUND

1. Field

[0003] The subject invention relates to systems and methods for classifying optical
spectroscopy image data of biological tissues such as cancer and other pathologies for

medical diagnostics.

2. Related Art

[0004] Current screening for early detection of breast cancer, for example, is based
on either abnormalities visible in a mammography or lumps detected by the patients or
doctors using palpation. Before any treatment is initiated, the diagnosis must be
confirmed. This is usually accomplished by performing a biopsy, which is an invasive

procedure, and then determining the histology of the tumor. A less invasive alternative is
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the use of fine-needle aspiration cytology (FNA). FNA is infrequently used, however,
due to a significant false-negatives rate. Approximately 50,000 diagnostic lumpectomies
are performed annually in the U.S. Of those, only about 12,000 turn out to be malignant
when histology is performed by a pathologist. If it had been known in advance that the
remaining 38,000 lesions were benign, the potentially disfiguring surgery could have
been avoided, as many benign lesions resolve spontaneously in time, without

intervention.

[0005] Cervical cancer is the third most common cancer in women worldwide and is
the leading cause of cancer mortality for women in developing countries. When
precancerous lesions are detected early they are easily treatable by ablation or excision.
At more advanced stages, cervical cancer often requires hysterectomy, chemotherapy,
radiation therapy, or combined chemo-radiation therapy. Current screening for this type
of cancer is accomplished first by a Papanicolaou (Pap) smear, with sensitivities and
specificity values ranging from 11% to 99% and 14% to 97% respectively, and results
usually available in two weeks. The second stage of the screening process, after an
abnormal Pap smear, is a colposcopy. This test has an excellent sensitivity (>90%) but
poor specificity (<50%), even in the hands of an experienced practitioner. Because of the
poor specificity, a biopsy is required to confirm the diagnosis. Currently, women often
wait up to eight weeks to be treated as part of the standard care in the diagnosis and

treatment of cervical cancer after an abnormal Pap smear.

[0006] Barrett’s Esophagus is a pre-cancerous condition that is an important risk
factor in developing esophageal adenocarcinoma, the most common form of esophageal

cancer. It is associated with chronic gastrointestinal reflux disease and is increasing in
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incidence in western countries. The development of malignancy is thought to be a
progression from nondysplaic Barrett’s mucosa, through low-grade dysplasia (LGD) to
high-grade dysplasia (HGD), to carcinoma. Consequently, it is critical to identify
patients with Barrett’s esophagus that are most at risk of developing cancer. Patches of
dysplasia within a section of Barrett’s mucosa cannot be detected visually using
conventional white light endoscopy. Diagnosis requires multiple random biopsies and
subsequent histological examination. As many as 20-30 “random” biopsies may be taken
in one session. This is a time consuming (and expensive) procedure, which entails some
degree of risk for the patient. For each conventional biopsy, the biopsy tool must be
withdrawn from the endoscope and the specimen removed before the tool can be
reinserted for the next biopsy. Because biopsies are taken at random from within a

section of Barrett’s esophagus, detection of pre-cancerous changes is relatively poor.

[0007] In recent years, several spectroscopy techniques have been proposed as
potential methods for distinguishing between different tissue pathologies. The motivation
of these techniques is to reduce, or eliminate, the need for surgical removal of biopsy
tissue samples. Instead, some form of spectral analysis of the tissue is applied to
measurements obtained with an optical probe placed on or near the surface of the tissue
in question. A diagnosis of the tissue is then attempted based on these measurements, in
situ, noninvasively and in real time. Additionally, there is the potential for reduced
health care cost and patient distress as a consequence of the reduced need for histology
and the need for the surgical environment required to take the biopsy samples. Some of

these proposed spectroscopic techniques include Raman spectroscopy, autofluorescence
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spectroscopy, fluorescence spectroscopy, reflectance spectroscopy, and elastic-scattering

spectroscopy.

[0008] Screening and/or detection of cancer at an early stage is of significant
importance as many incidences of the disease can be treated successfully at early stages.
In recent years, these optical spectroscopy methods have received increased attention for
this purpose, due to the fact that they possess some desirable properties - they are
noninvasive, in situ, and results can be obtained almost in real time. These methods
provide data sensitive to changes of the underlying tissue (e.g. structural, biochemical),
which can be exploited for the development of diagnostic algorithms. Various statistical
pattern recognition and machine learning methods have been used to develop these

diagnostic algorithms.

[0009] For example, A MAP (Maximum A-Posteriori) classifier was used to
distinguish between squamous intraepithelial lesions (SILs) and normal squamous
epithelia, and to distinguish between high-grade squamous intraepithelial lesions
(HGSILs) and low-grade squamous intraepithelial lesions (LGSILs) using fluorescence
spectroscopy applied to cervical tissue. Posterior probabilities were computed after fitting
the training data to a gamma function. A sensitivity and specificity of 82% and 68%,

respectively, for the first case and of 79% and 78% for the second case were reported.

[0010] Linear discriminant analysis has also been used. A classification accuracy of
72% was reported for distinguishing malignant melanoma from benign nevi in the skin
using reflectance spectra. Elastic-scattering spectroscopy was used to detect dysplasia in

the esophagus. Sensitivity of 77% and specificity of 77% were obtained in detecting
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“high risk” biopsies. The same spectroscopy technique has been employed to detect
cancer in the sentinel lymph node for breast cancer, with a resulting sensitivity of 75%

and specificity of 89%.

[0011]  Fisher’s lincar discriminant has also been used. This method obtains the linear
function yielding the maximum ratio of between-class scatter to within-class scatter.
Raman spectroscopy was used to distinguish between normal tissue, low-grade dysplasia,
and high-grade dysplasia/carcinoma in situ using rat models. A specificity of 93% and
sensitivity of 78% were obtained for detecting low-grade dysplasia, and a sensitivity and
specificity of 100% was obtained for detecting high-grade dysplasia/carcinoma in situ.
Fluorescence spectroscopy was applied in order to detect cancer in the oral cavity. The
results were of a sensitivity of 73% and specificity of 92%, after selecting features using

recursive feature elimination (RFE).

[0012] Reflectance and fluorescence spectroscopy, respectively, have been used to
differentiate normal and precancerous (neoplastic) cervical tissue using a Mahalanobis
distance classifier. A sensitivity of 72% and specificity of 81% were reported when
discriminating between squamous normal tissue and high-grade squamous intraepithelial
lesions, while a sensitivity of 72% and a specificity of 83% were obtained when
discriminating columnar normal tissue from high-grade squamous intraepithelial lesions.
An average sensitivity and specificity of 78% and 81% respectively were obtained when
the pairwise analysis between squamous normal tissue, columnar normal tissue, low-
grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions

was done.
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[0013]  Another method being applied to spectroscopy data is artificial neural
networks (ANN). These are typically known for being able to handle nonlinear
problems. As an example of their use, an ANN classifier was used for distinguishing
malignant melanoma from benign nevi in the skin using reflectance spectra, with a
classification accuracy of 86.7% being reported. ANN yielded sensitivities of 69% and
58%, and specificities of 85% and 93%, for breast tissue and sentinel nodes, respectively,

using data from elastic-scattering spectroscopy measurements.

[0014] In recent years, support vector machines (SVM) have received increased
attention in these types of applications. This is in part due to the fact that SVMs exhibit
good generalization capability and are able to yield nonlinear decision boundaries
through the implicit mapping of the data to a higher dimensional space by the use of
kernel functions. Linear SVMs were used to classify nonmalignant and malignant tissue
from the breast measured with fluorescence spectroscopy, obtaining a sensitivity of 70%
and specificity of 92%. SVMs with linear and radial basis function (RBF) kernels have
also been used. Sensitivities of 94% and 95%, and specificities of 97% and 99%,
respectively, were obtained for distinguishing normal tissue from nasopharyngeal
carcinoma using autofluorescence spectra. Fluorescence spectroscopy has been applied
in order to detect cancer in the oral cavity. The results were of a sensitivity of 88%, 90%,
93% and specificity of 94%, 95%, 97%, for linear, polynomial, and RFB SVMs

respectively, after selecting features using recursive feature elimination (RFE).

[0015]  As support vector machines (SVMs) have garnered increased attention for
classification problems, several error-rejection rules have been presented for this type of

classifier. For points near the optimal hyperplane the classifier may not be very confident
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in the class labels assigned. In these prior approaches, a rejection scheme was proposed
in which samples whose distance to the separating hyperplane is below some threshold
are rejected. A similar approach was used where the distance of tested data points to the
optimal separating hyperplane was thresholded in order to reject a user-defined
percentage of miss-classified patterns, allowing for the reduction of the expected risk. A
ROC-based reject rule has been proposed for SVMs. The ROC curve for the SVM
classifier is obtained by varying the decision threshold, which is assumed to be zero, from
-oo to oo. The true positive and false positive rates are obtained from the class-conditional
densities produced by the outputs of the SVMs. A distance reject threshold has also been
presented for SVM classifiers. The SVM output is the distance of that particular input

pattern to the optimal separating hyperplane.

[0016] The foundation of these error rejection rules can be traced to the work
presented by Chow. These error rejection rules are disadvantageous because they assume
that the probability distribution for each class is known. In most pattern recognition

applications common parametric forms rarely fit the densities encountered in practice.

[0017] Chow first explored error rejection in the context of Bayes decision theory.

Within this framework, a feature vector x is said to belong to class wy if

P(wk/x):rnlaxP(wl./x), i=1,..,N ()
where P(wl. / x) is the a posteriori probability and N is the total number of classes. This
rule divides the feature space into N regions D;...Dy and classifies x as wy if it lies in the
region Dy. Furthermore, it is optimal in the sense that it minimizes the probability of

error, also called the Bayes error,
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Py =33 pls/w, o, . @)

Chow introduces the reject option in order to obtain a probability of error lower than the
Bayes error. This is accomplished by refraining from classifying patterns that are likely to
be misclassified. Chow’s rule states that a feature vector x is classified as belonging to
class wy if

max P(w,/x) = P(w, /x)> 3)
and rejected if

max P(w,/x)=P(w, /x)<t 4)
where ¢ is the rejection threshold. Thus, the introduction of the reject option divides the
feature space into N+1 decision regions Dy, Dy, ..., Dy and classifies x as wy if it lies in the

region Dy and rejects it if it lies in Dy. It is optimal since P(wk / x) is the conditional

probability of correctly classifying the pattern x. Note that both the probability of error
(2) and the probability of rejection
N
Pe = [ plx/w, JP(w, (5)
D, i=1

I

are now functions of the threshold z. Chow states that since (2) and (5) are monotonic
functions of the threshold #, the performance of the recognition system is completely
described by the curve resulting from (2) versus (5). In this error-reject tradeoff curve Py
decreases and Py increases as the threshold ¢ increases. In particular, Py equals the Bayes
error and Pr=0 for /=0, and Pz=0 for +=1. A similar relationship was presented between
false acceptance rates and false rejection rates as a function of the rejection threshold in

the application of biometric verification systems.
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[0018]  Another rejection scheme was proposed to improve reliability in neural
networks. It defines two classification rules and finds a threshold for each. Let Oy, be the
output node corresponding to class £, if the input samples corresponds to the kth class
then the output node O,=1 while all other equal zero. The first rule states that an input

pattern belongs to class & if

max O, =0, 2o (6)

where ois the rejection threshold, similar to Chow’s rule. The second rule states that
0,-0,<0 (7)

where O, is the output node with the second highest value and J'is the rejection threshold.
Thus, if the difference between the two highest output values is less than some threshold
the input pattern is not classified. The two thresholds are then obtained by maximizing a
performance function that depends on the error and rejection rates as well as their
respective costs.
[0019] The optimality of Chow’s rule has also been investigated. Some say that
Chow’s rule is optimal only if the posterior probabilities of the data classes are exactly
known; however, it is generally not the case and posterior probabilities have to be
estimated from the training data. As a result, sub-optimal results are obtained when this
rule is applied to the estimated probabilities since the decision regions are shifted with
respect to where they would be in the optimal case. The use of multiple class dependent
thresholds has been proposed as a solution. In this approach Chow’s rule is modified, a

pattern x is classified as belonging to class wy if

max P(w, /x)= P(w, [x) 21, (®)
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and rejected if

max P(w,/x)=P(w, /x)<t,. 9)
Here P(w, /x) is the estimated posterior probability. The thresholds are determined by
maximizing the accuracy probability subject to maintaining the reject probability below a
user defined value. Both the accuracy and reject probabilities are function of the class

thresholds.

[0020] Another rejection rule was based on analysis of the Receiver Operating
Characteristic (ROC) curve. The two classes are called Positive (P) and Negative (N) and

the decision rule is defined as:

assign the sample to N ifx <ty
assign the sample to P ifx>1p
reject the sample iftn<x<tp

where #y and 7p (ty< tp) are the rejection thresholds. The optimal thresholds maximize a
performance function defined by the false negative, true negative, false positive, true
positive and rejection rates, respective costs and prior probabilities. The solution yields a
set of parallel straight lines whose slopes are determined by the costs and prior
probabilities. The optimal values for the thresholds are then found by searching the point
on the ROC curve, constructed by graphing the true positive rate versus false positive
rate, which intersect these lines and have minimum value.

[0021]  Another rejection rule that has been considered deals with incomplete
knowledge about classes. In this work two rejection thresholds were defined. The first,
the ambiguity reject threshold, like Chow’s rule aims to reject samples with high risk of
misclassification in order to decrease the classification error. The second, denoted

distance reject threshold, aims to decrease the probability of erroneously classifying an

10
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input pattern x into one of the N classes when it is “far” from the known classes (i.e.
outliers). The assumption is that not all patterns come from one of the N previously
defined classes. This same rejection rule was applied to neural networks classifiers. The
optimum class-selective rejection rule is presented. This approach is another extension of
the rejection rule, when an input pattern cannot be reliably classified as one of the defined
N classes, instead of being rejected it is assigned to a subset of classes to which the
pattern most likely belongs to. Thus the feature space is divided into 2™-1 decision

regions instead of N+1 regions as in Chow’s rule.

[0022] Even though these methods cover a wide range of applications using different
spectroscopy methods and several types of classifiers, the sensitivities and specificities
obtained do not vary much for each of the cases presented. With few exceptions, the

average sensitivity and specificity fluctuates between 70% and 85%.

[0023] Thus, what is needed is an improved method for classifying optical
spectroscopy data. These improved methods can be used to improve diagnosis and,

therefore, treatment of cancer and other pathologies.

SUMMARY

[0024] The following summary of the invention is included in order to provide a
basic understanding of some aspects and features of the invention. This summary is not
an extensive overview of the invention and as such it is not intended to particularly
identify key or critical elements of the invention or to delineate the scope of the
invention. Its sole purpose is to present some concepts of the invention in a simplified

form as a prelude to the more detailed description that is presented below.

11
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[0025]  According to an aspect of the invention, a method is provided for classifying a
tissue sample that includes training a classifier to determine a rejection region of
biomedical spectra data corresponding to tissue samples that are likely to be
misclassified; classifying the tissue sample if biomedical spectra data corresponding to
the tissue sample is not in the rejection region; and withholding from classifying the
tissue sample if the biomedical spectra data corresponding to the tissue sample is in the

rejection region.

[0026] The method may also include performing a biopsy of the tissue sample if the

classification is withheld.

[0027] The method may also include performing additional optical measurements of

the tissue sample if the classification is withheld.

[0028] Training the classifier may include formulating a training problem as a convex

optimization problem dual training algorithm.

[0029] The biomedical spectra data may be ESS data.

[0030] According to another aspect of the invention, a method for classifying a tissue
sample is disclosed that includes classifying a first region of biomedical spectra data
using a first classifier; classifying a second region of biomedical spectra data using a
second classifier, the first region being different than the second region; and combining
the classification of the first classifier with the classification of the second classifier to

determine a classification of the tissue sample.

[0031] The biomedical spectra data may be ESS data.

12
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[0032] The classification of the first classifier and the classification of the second

classifier may be selected from the group consisting of positive, negative and rejected.

[0033] The first region may overlap the second region.

[0034] The method may also include classifying a third region of the biomedical
spectra data using a third classifier and classification of the third classifier may be
combined with the classification of the first classifier and the classification of the second

classifier to determine the classification of the tissue sample.

[0035] Classifying the first region may include withholding from classifying the first
region. Classifying the second region may include withholding from classifying the

second region.

[0036] The first classifier and the second classifier may be support vector machines.
The first classifier and the second classifier may be support vector machines embedded

with error rejection.

[0037] Combining the classification of the first classifier with the classification of the
second classifier may use a majority voting rule. Combining the classification of the first

classifier with the classification of the second classifier may use a naive Bayes rule.

[0038] According to a further aspect of the invention, a machine readable storage
medium comprising instructions executable by a data processing machine is disclosed to
perform the methods disclosed herein. According to additional aspects of the invention, a

computer system is disclosed including memory and a processor configured to perform

13
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the method steps disclosed herein and a computer system is disclosed including means

for performing the method steps disclosed herein.

[0039] According to another aspect of the invention, a system configured to classify a
tissue sample is disclosed that includes an optical probe configured to measure the
biomedical spectra data; and a classification system coupled to the optical probe
comprising a support vector machine with embedded error rejection to classify the

biomedical spectra data.

[0040] The optical probe may be an integrated biopsy forceps tool. The integrated
biopsy forceps tool may include an illuminating optical fiber to direct light at tissue to be
imaged and a collecting optical fiber to collect the light scattered in the tissue. The

biomedical spectra data may be ESS data.

[0041] The classification system may include a plurality of support vector machines
with embedded error rejection to classify the biomedical spectra data. Each of the
plurality of support vector machines with embedded error rejection is configured to
classify a different region of the spectra data. The classification system may combine the
outcome of each of the plurality of support vector machines with embedded error

rejection to make a final classification of the biomedical spectra data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0042] The accompanying drawings, which are incorporated in and constitute a part
of this specification, exemplify the embodiments of the present invention and, together
with the description, serve to explain and illustrate principles of the invention. The

drawings are intended to illustrate major features of the exemplary embodiments in a

14
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diagrammatic manner. The drawings are not intended to depict every feature of actual
embodiments nor relative dimensions of the depicted elements, and are not drawn to

scale.

[0043] Figure 1A illustrates an optical geometry of a fiber probe used for ESS.
[0044] Figure 1B illustrates a fiber probe detection system.

[0045] Figure 2A illustrates an integrated biopsy forceps.

[0046] Figure 2B illustrates an integrated biopsy forceps.

[0047]  Figure 3 illustrates exemplary measured ESS spectra for normal and

cancerous tissue.
[0048] Figure 4 illustrates a SFFS algorithm.
[0049] Figure 5 illustrates a SVDSS algorithm.

[0050] Figures 6A and 6B illustrates average spectra and histogram of selected

features with SFFS.

[0051]  Figure 7A illustrates behavior of function h(fl. , 8).

[0052] Figure 7B illustrates behavior of function g(ai,g).

[0053] Figure 8 illustrates parabolas.

[0054] Figure 9 illustrates a process to analytically optimize two lagrange multipliers.

15
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[0055] Figure 10 illustrates KKT violations.

[0056] Figure 11 illustrates rejection regions with different kernels.

[0057]  Figure 12 illustrates class dependent weighting in a SVM classifier with

SMOER and with a RBF kernel.

[0058]  Figure 13 illustrates a multiple classifier system.

[0059] Figure 14 illustrates an AdaBoost training algorithm.

[0060] Figure 15 is a block diagram of an exemplary computer system.

DETAILED DESCRIPTION

[0061] Various types of optical spectroscopy, in general, including elastic-scattering
spectroscopy (ESS), provide a minimally invasive approach for obtaining spectral
measurements of the scattering properties of tissue. These techniques allow for the
acquisition of spectral signatures of the underlying tissue, for the purpose of sensing
pathologies including, for example, cancer. The ESS method is sensitive to the
wavelength dependence of the tissue optical scattering properties, which vary due to
architectural changes at the cellular and sub-cellular level as a result of the different
pathologies. These changes influence the measured spectral signatures, with spectral

variations that depend on the pathology.

[0062] Embodiments of the present invention make use of mathematical/statistical
pattern-recognition systems, with novel approaches in implementation, to distinguish

between different pathologies and benign conditions (e.g., normal or cancerous tissue)

16
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given the spectra measured using optical spectroscopy, such as EES. In embodiments of
the present invention, a given spectrum may be specified as normal or cancerous, but may
also not be classified (i.e., rejected). Samples that are not classified (i.e., rejected)
include samples with a high risk of misclassification (i.c., samples lying close to the
decision boundary within certain thresholds). The training algorithm is reformulated for
cach of the classifiers to optimally determine the decision boundary and these thresholds

without significantly changing the classifier’s original structure.

[0063] Embodiments of the present invention are directed to multiple classifier
systems that makes a final diagnostic decision based on the classification of each of the
individual classifiers. Each of the individual classifiers may be designed to use features
extracted from a limited region of the ESS spectrum. Each of the individual classifiers
may also be SVM classifiers embedded with error rejection. In particular, the training
algorithm of these SVM classifiers may be formulated to optimally determine the

decision boundary.

[0064] Figures 1A-1B illustrate an exemplary EES probe 100. The EES probe 100 is
used to collect the EES spectra data for analysis. The EES probe 100 is configured to be
positioned in optical contact with tissue under examination 104. As shown in Figure 1A,
the EES probe 100 includes an illuminating fiber 108 and a collecting fiber 112. The
light 116, provided by a light source 120, is directed at the tissue 104 by the illuminating
fiber 108. The light 116 undergoes multiple scattering 124 through a small volume of the
tissue being examined. The light 116 is then collected and transmitted by the colleting
fiber 112 to the analyzing spectrometer (the detector 128 that is coupled to a computer

and interface 132 as shown in Figure 1B. In one embodiment, the light source 120 is a

17
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pulsed Xenon-arc lamp broadband light source and the computer and interface 132 is a
portable laptop computer with custom ESS software and built-in spectrometer (e.g.,

S2000 by Ocean Optics, Inc.)

[0065] The resulting effective path length of the collected photons is generally
several times greater than the actual separation of the fiber tips. It will be appreciated
that the fiber probe examines only the site that is in optical contact with it and does not

image the tissue surface.

[0066] Figures 2A and 2B illustrate an exemplary integrated biopsy forceps 200. The
integrated biopsy forceps 200 incorporates an ESS probe 100 into bioposy forceps 204
The forceps 204 include a metal hypotube 208 that includes the optical fibers 108, 112.
The hypotube 208 is positioned in a central chamber extending the length of the

integrated biopsy forceps, and extends into the space between the jaws 212, 216.

[0067] The optical fibers 108, 112 in the integrated biopsy forceps 200 are smaller
than conventional optical fibers and closer together than conventional optical fibers. In
one embodiment, the separation between the illumination and collection fibers 108, 112
is about 250um from center-to-center, and each fiber 108, 112 having a diameter of about
200pm and a numerical aperture of about 0.22 in air. The diameter of the hypotube 208
was about 0.470mm. It will be appreciated, however, that the probe geometry may have

a different configuration than that described herein.

[0068] The probe 100 generates a spectrum that characterizes the wavelength
dependences of both scattering and absorption of the underlying tissue, without

separating these contributions. Figure 3 illustrates an exemplary spectrum for colon

18
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polyps. In the example shown in Figure 3, ESS measurements from 280 polyps from 115
patients were measured (98 corresponded to hyperplastic polyps, 85 to normal growths,
10 to inflammatory polyps, 83 to tubular adenomas, 1 to tubular villious adenoma, 2 to
adenocarcinoma and 1 to high-grade dysplasia). The data was grouped into non-
dysplastic (hyperplastic polyps, normal and inflammatory polyps) and dyplastic polyps
(tubular adenoma, tubular villious adenoma, adenocarcinoma and high-grade dysplasia).
In Figure 3, the average spectrum for the non-dysplastic and dysplastic measurements are

shown with their standard deviation.

[0069] Diagnostic algorithms that are based on pattern recognition methods include
(2) pre-processing and feature extraction/selection and (2) classification. These

algorithms then undergo (3) performance evaluation to gauge their accuracy.

[0070] In pre-processing, the data is prepared for analysis, and typically includes
standardization of the data set and/or noise reduction operations (e.g. smoothing of the
spectra). In feature extraction/selection, the most relevant information from the data set
is obtained in such a way that class separability is preserved or improved as much as
possible. This may involve transforming the data to a lower dimensional subspace or
selecting a subset of features from the data set based on certain criteria. Feature
extraction methods create new features based on transformations of combinations of the
original feature set, e.g. Principle Component Analysis (PCA). Feature selection selects
the best subset of the input feature set, usually based on some predefined class-

separability measure.
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[0071] In classification, a decision (e.g., normal vs. cancerous, progressions of the
disease, etc.) is made about the nature of the input pattern (e.g., the ESS spectra). The
importance of avoiding misclassified samples is clear, which in real settings is hard to
achieve. To this end, a methodology is described herein that is able to identify samples
that are at high risk of being misclassified. By identifying these “rejected” samples, they

can then be examined and diagnosed more accurately by other methods.

[0072] In performance evaluation, the accuracy of the decisions made by the
classifier is determined. The criteria used for evaluation are the sensitivities, specificities
and classification error attained with a particular classifier. In some cases the positive
and/or negative predictive value is of interest and is also used as an evaluation criteria.
When error-rejection is employed as an additional criterion, the percentage of samples

not classified, is considered in the performance evaluation.

[0073] Embodiments of the invention are directed to systems and methods that
perform feature selection using Sequential Floating Forward Selection (SFFS) in the field
of biomedical spectroscopy to pre-process the spectra data. SFFS is advantageous
because the physical meaning of the features is not lost in the transformation process.
The SFFS method is also advantageous because it performs on par with algorithms that
obtain optimal solutions, i.c. methods that search all possible subsets, yet demands lower

computational resources.

[0074] Scquential Floating Forward Selection (SFFS), shown in Figure 4,
sequentially includes the most significant feature at the forward step and, after this step,

excludes the least significant in a number of backwards steps as long as the resulting

20



WO 2010/111545 PCT/US2010/028741

subsets are better than the previously evaluated ones at that level. This avoids the
“nesting” of the feature subsets arising from pure Sequential Forward Search
methodologies. As shown in Figure 4, the significance of a feature is determined by the

metric J (g), chosen a priori. This is usually chosen to be some class separability

measure, ¢.g. the Bhattacharya distance or the classification error rate.

[0075]  Principal Component Analysis (PCA) is another method for feature extraction.
PCA reduces dimensionality by restricting attention to those directions along which the
variance of the data is greatest. These directions are obtained by selecting the
eigenvectors of the pooled data covariance matrix that correspond to the largest
eigenvalues. Dimensionality reduction is then achieved by applying the linear

transformation of the form:

Y= A'x (0.1)
where A is the transformation matrix whose columns contain the desired d eigenvectors
and x is the input vector. It is worth noting that although PCA finds components that are
useful for representing the data in lower dimensions, there is no guarantee that these
components are useful for discrimination between classes. PCA is an unsupervised linear
feature extraction method, i.e. no measure of class separability is incorporated while
finding the principal components. Also, since PCA reduces dimensionality by way of a
linear transformation, the physical meanings of the input vector’s features are effectively
lost.
[0076] An alternate method for feature selection is singular value decomposition

subset selection (SVDSS), shown in Figure 5. While SFFS is a supervised feature
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selection method, i.e. labeled samples are needed in the algorithm, SVDSS is an
unsupervised feature selection method. SVDSS selects the d features that best
approximate the first d principal components using heuristic algorithm based on the
singular value decomposition, as shown in Figure 5. Like PCA, while no class
separability criterion is used, the SVDSS algorithm exhibits good performance in

practical applications.

[0077] Histograms of the sclected features using SFFS and SVDSS are shown in

Figures 6A and 6B, respectively.

Table 1: Results for Feature Extraction/Selection Methods.

Method # of Features Sensitivity Specificity Error Rate
PCA 15 J417+.0757 7538 £.0528 2499 + .0364
SFFS 58 7217+.0785 7777 £.0425 2396 +.0323

SVDSS 17 7434+ .0706  .7608 £.0503  .2446 +.0351

While there is no clear gain in performance, the use of feature selection methods, like
SFFS and SVDSS, can help gain an intuition into what parts of the spectrum are more
relevant in terms of discriminating non-dysplastic from dysplastic polyps. As shown in
Figures 6A and 6B, the shorter wavelengths, 330-440nm, are particularly useful for this
task. These experiments led to the use of the 330-760nm rather than 370-800nm
previously used.

[0078]  Support vector machines (SVMs) were selected for classification. SVMs are

in their simplest forms binary linear classifiers where the decision boundary obtained is a
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hyperplane that has the maximum separating margin between the classes. Two important
properties of this hyperplane include: (1) the separating hyperplane with maximum
margin is unique, and (2) this hyperplane can be obtained by solving a quadratic

optimization problem.

[0079]  Let x, € R“, be an input vector and y, e {I,-1} its corresponding label for
i=1,...,/, where [ is the total number of training samples. We want to learn the linear
classifier of the form:

f(x)= sign(w"x+b) (10)

which provides maximum margin between the classes. Furthermore, we assume that the

classes are linearly separable, i.c. a hyperplane can be found which separates the classes

without error. If we denote w as the normal to the hyperplane and |b| / ||w|| the
perpendicular distance from the hyperplane to the origin, where |||| is the 2-norm, then the

training points must satisfy the following constraints:

wix, +b>+1 fory, =+1
, : (11)
wx, +b<-1 fory =-1
Training points satisfying the equalities in the constraints in (11) lie in two hyperplanes
that define the margin between classes, and it can be seen that this margin is 2/ ||w|| . Thus,
finding the hyperplane with maximum margin separation can be done by minimizing

||w||2 subject to the constraints in (11).

[0080] An extension of this problem for the case when the data is not separable was

presented. The constraints are relaxed to allow errors, and a penalty term was introduced
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in the cost function. This was accomplished by introducing the positive slack variables &,

i=1,...,I. The constraints are then modified as follows:

wix, +b>+1-¢&, fory, =+l

wix, +b<-1+¢& fory, =-1. (12)
£ 20 Vi
The new cost function is then
2
[wl™ +C>2¢ (13)

where C is a pre-defined constant that controls how much penalty is given to errors and is
usually selected using cross-validation methods. The summand in (13) can be viewed as
an upper bound on the number of training errors, noting that a training error here is

defined as patterns where the inequalities in (12) holds with &, > 0. Minimizing (13) with

constraints (12) constructs a separating hyperplane that minimizes the sum of deviations,
&, of training errors and maximizes the margin for samples correctly classified.

[0081]  Since this is a convex optimization problem with linear constraints, the
solution can be attained by solving the equivalent dual problem formulation. By setting
the derivatives of the Lagrangian function with respect to the variables w, b and &, to

zero and substituting back the following equivalent problem is obtained: maximize

1
Zai _EzaiajyiijiTXj (14)
i i

subject to

Zaiyi =0

0<q, <C

(15)
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From the derivative of the Lagrangian with respect to w an expression is obtained for
computing w in terms of the Lagrange multipliers «; :

w:Zal.yl.xl., for o, > 0. (16)
[0082] From this problem an interesting result can be obtained for the case where the
data is separable by a non-linear decision boundary. Noticing that the only way the data
appears in this formulation is in the form of the dot products x"x , the data could be
mapped to a higher, and possibly infinite dimensional, space using a kernel function

K (xl. )X ) This kernel function in the input space is equivalent to the dot product in that

high dimensional space. The only restriction is that this kernel function must satisfy

Mercer’s conditions. By replacing the dot product, x'x , with the kernel K (X X j)

everywhere in the training algorithm, the algorithm will find a linear decision boundary
in the high dimensional space that when mapped back to the input space will be non-
linear depending on the kernel. More importantly, this is accomplished by solving the

same convex training problem. The decision function is then obtained by:

f(x)=>ayK(x,x)+b, fora, >0. (17)
[0083] It will be appreciated that the SVM may use any type of kernel. Exemplary
kernels include linear kernels, polynomial 2™ degree kernels, polynomial 3™ degree
kernels, polynomial 4t degree kernels, RBF kernels and the like. The application of
different kernels, and thus decision boundaries, to the problem of classifying ESS spectra
from non-dysplastic and dysplastic polyps is a classification problem that is not only
linearly non-separable but also nonlinearly non-separable. Thus, the radial basis function

(RBF) kernel may be advantageous over the linear kernel and the polynomial kernels.
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SUPPORT VECTOR MACHINES WITH EMBEDDED ERROR-REJECTION
[0084] Embodiments of the invention are directed to a SVM training problem with
embedded error-rejection that remain a convex optimization problem. This enables
retention of the global solution present in the original SVM formulation. In addition, a
convex optimization problem facilitates the development of a dual algorithm where there

is no duality gap.

[0085] The training problem for SVM with embedded error rejection involves finding

a decision region defined by a pair of parallel hyperplanes

wx—-bte=0 (18)
where samples lying in between them would be rejected and, in keeping with the original
SVM training problem, the samples correctly classified should be separated with

maximum margin. In other words, the classifier has the following decision function

+1, ifwix—b>¢
fx)={ -1,  ifw'x-b<-¢ (19)
0, if-e<w/x—b<eg

where, w is the normal to the hyperplane, |b|/||w]| is the perpendicular distance of the
hyperplane to the origin, and 2&/|[w| is the distance between the parallel hyperplanes that
define the rejection region. By constraining 0 < & <1, the rejection region lies inside the

margin 2/||w].

[0086] A new functional, 4, (fl., g) is introduced, which is defined as:
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(e, )
h, (fl_,g): max| w¢ + (wr — wc)g+ wo—w, (20)

weé + (2wr -w, - we)£+ wo—w,
with 0 <w_<w <w,, where w, is the cost assigned to samples correctly classified but
with 0 <& <1- ¢, i.e. correctly classified samples lying inside the margin, w, is the
reject cost assigned to samples that satisfy 1 - &< & <1+ &, the rejected samples lying
inside the rejection region, and w, is the cost of misclassified samples satisfying
l+e<é <w, . & >0 arethe deviations from the training errors. Figure 7A shows the
behavior of the function 4, (fl.,g).

[0087] To find the optimal decision region that maximizes the margin while
accounting for the tradeoff between rejecting and misclassifying samples the following

training problem is posed for a SVM with embedded error-rejection:

min lew +CY h(¢.¢)

w.b,& e D

st. y(Wx +b)21-¢ 1)
£>0
0<e<l

where y, = {-1,1} is the label of the training sample x,, and C > 0 is the cost assigned to

the errors. Thus, the solution of this problem constructs two separating hyperplanes of

width 2¢/||w|| between them, that minimizes the sum of deviations, &, of training errors

weighted by w,, w,, and w, while maximizing the margin, 2/|w], for samples correctly
classified. In addition, the solution is global since a convex optimization problem with

linear constrains is solved given that the functional /4, (é,g) is a convex function.
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[0088]  The fact that A, (fl., g) is a piecewise convex function allows formulation of

the following equivalent problem of the one presented in (21):

) 1
min —w'w+ Zzi

W.b.& 5.z, -
sty (WTXZ. —~ b)z 1-¢&
z,2Cwg,
ziZC[wréJr(wr—wc)erwc—Wr] (22)
z, > C[w@fi +(2wr —w.—w, )Je+w, — we]
£20

0<e<l.

[0089] The goal now is to obtain the dual formulation of problem in (22) (primal

formulation), allowing for construction of nonlinear decision boundaries using the kernel

function K (x X, ) Nonlinear rejection regions are obtained by solving the dual of the

problem presented in (22). First, the Karush-Kuhn-Tucker (KKT) conditions of problem
(22) were derived. These consist of the feasibility, optimality and complementary
slackness conditions. Feasibility conditions are the constraints stated in (22). The

Lagrangian is given by:

L=1/2w'w+Yz-Yaywx +>ayb+>a-Dal
e+ e - S, iZﬂan:ei ¥ Z}fnC(wr —w)e
+ZiﬂriC(wc - W) Zﬂei;l. + Zﬂe,-iCWeé + Zﬂe;c(zwr W, w, e
+Z BeC(w,—w,)- Z pé. | |

(23)
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Differentiating the Lagrangian with respect to the primal variables, w,b,¢,¢,z,, the

following optimality conditions are obtained:
JL
—=w-) ayx =0
aw Z lyl I
JL
—=) ay =0
o 2

%:_al‘—i_cwcﬂci—i_cwrﬂri+Cweﬂei_/1i:O

Z_I; - C(Wr - WC)ZZ_:IB’”Z- +C(2wr —w, - we)zi:ﬁel_ =0

a—L:1—,80_—,81’_—,86.:0.
aZ I I I

I

Finally, the complementary slackness conditions are given by:

ai[yi(wai—b)»lJrfiJ:O

,Bcl_[zl_ —chfl_] =0
,Brl_[zl_ —C(wrfl_ +(wr —wc)£+ w, —Wr):|:0
,Bel_[zl_ —C(wefl_ +(2wr -w, —we)£+ WC—WE):|:0

Hs =0

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(1)

(32)

(33)

To formulate the dual problem the Lagrangian (23) is maximized with respect to the dual

variables, a,,fc,, fr,, fe,.u,, subject to the constraints that the gradient of the Lagrangian

with respect to the primal variables, w,b,¢ ,¢,z,, vanishes (Eq. (24)- (28)). After some

manipulations the following dual problem is obtained:

29



WO 2010/111545 PCT/US2010/028741

1
, max Zj:ai —~ Ezi:gaiajyiijij + C(wc —w, )Zi:,Brl. + C(wc —w, )Zi:,Bel.
s.t. Zaiyl_ =0

pe, + B, + Pe. =1 (34)
C(wr — wc)z,Brl. + C(2wr -W, = we)z,Bel. =0

0<a, <Cwpfc,+Cwpr,+Cw,pe,

B, pr,,pe, > 0.

The above problem is a concave optimization problem and since the primal is convex too,

no duality gap exists for the optimal primal and dual solutions. The data only appears in

the dual problem (34) in the form of the dot product xl_ij , thus nonlinear decision

regions will be obtained if a kernel K (x »X j) 1s used instead. The width of the rejection

region is determined by the weights 0 <w, <w, <w,.

[0090] The value of the primal variables w,b,& from the optimal dual variables is

computed in order to obtain the decision function

+1, ifZal.yl.K(xl.,x)— b>¢g

fx)=1 -1, if Z%%K (xl.,x)— b<-¢ . (35)

0, if-e< Zal.yl.K(xl.,x)— b<eg

The value of w is obtained from the optimality condition in Eq.(24) as follows:

w:Zaiyl_xl_, a,>0. (36)

Noting that for a sample x; whose corresponding dual variable «; has values
0< a: < Cw, the primal variable f; =0 since x, = Cw_—a, >0, the complementary

slackness condition in Eq. (29) is used to obtain the value of b as follows:
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b= ;ajyjK(xj,xl.)»yi, O<a,<Cw  (37)

It is better numerically to compute b as the average of all the points i that satisfy the

above condition. The width of the decision region, &, can be obtained in a similar way by
observing that for Cw_<a, <Cw,, & =1-¢ andfor Cw <a, <Cw,, £ =1+¢. Again

using Eq. (29), ¢ is computed as:

g:yl_[ZajyjK(xj,xi)» b}, Cw <a,<Cw, (38)
j

g:—yl(ZajyjK(xj,xi)»bJ, Cw <a,<Cw,  (39)
j

As with the computation of b, ¢ is obtained with the average of all points i/ that satisfy
these two conditions.

[0091] One advantage of formulating the SVM with an embedded error-rejection
training algorithm as a convex optimization problem is the fact that there is no duality
gap between the primal and dual solution. One such dual training algorithm is Sequential
Minimal Optimization (SMO). This algorithm solves the large quadratic programming
optimization problem required by SVM training by breaking it into a series of smaller
problems. The smallest possible problem involves two Lagrange multipliers. At each
step, two Lagrange multipliers are chosen and jointly optimized. Optimality is
determined by satisfying the KKT conditions. The SVM is then updated to reflect the
optimal values. The main advantage of this algorithm lies in that these smaller problems
can be solved analytically, avoiding numerical quadratic programming optimization as an

inner loop.

31



WO 2010/111545 PCT/US2010/028741

[0092] A training algorithm for SVMs with error-rejection based on extensions of
SMO (SMOER) is disclosed, noting that this problem is now posed as a convex
optimization problem by the introduction of the functional in (20). This is advantages
because the KKT conditions are sufficient and necessary for optimality, in addition to a

global solution and no duality gap.

[0093] Assume ¢ is kept constant in (21). Then, the dual of (21) for a fixed &

becomes:

1 .
max Zj:ai — Ezi:;aiajyiij;rxj + rgllgCZl:hc (fl_,g)— al

s.t. Zal_yl_ =0 (40)

The term g(al.,g), where
g(ai,g): r?glCth (fl.,g)— al, (41)

is the concave conjugate of 4, (fl.,g). Furthermore, minimizing g(ai,g) with respect to

& results in the expression:

0, 0<a, <Cw,
g(a.e)={Cw (1-e)-a,(1-2) Cw. <a,<Cw. , (42)
Cw, (1 + g)+ C (Wc -w Xl - g)— a, (1 + g) Cw <a, <Cw,

or similarly

0,
g(ai,g): min| Cw, (1 — g)— a, (1 — g), . (43)

Cw, (1 + g)+ C (wc -w, )(l - g)— a, (1 + g),

32



WO 2010/111545 PCT/US2010/028741

Figure 7B illustrates the behavior of g(ai,g). Finally, by substituting g(al., g) back in

(40) the following dual problem is obtained:

nlo!?x Zj:ai — %Zj:;aiajyiijij + Zj:g(ai,g)
st. Day =0 (44)
OZS a, <Cw,

[0094] The dual problem as stated in (44) is the starting point for the development of
the SMO algorithm to train SVM with embedded error-rejection. At every step, the SMO
chooses two Lagrange multipliers to jointly optimize, finds the optimal values for these
multipliers, and updates the SVM to reflect the new optimal values. This is advantageous
because the solving for two Lagrange multipliers can be done analytically, avoiding any
numerical QP optimizations. Optimization of the dual variables for the SVM with
embedded error-rejection includes three features: analytically solving for the two
Lagrange multipliers, a heuristic for choosing which multipliers to optimize, and a

method for computing the threshold b.

[0095]  As described above, the SMO selects two Lagrange multipliers to optimize
analytically. For simplicity, all variables that refer to the first and second multiplier will
have the subscript 1 and 2 respectively. Optimization of these two multipliers is done
within the equality and bound constraints in problem (44). The bound constraint causes
the multipliers to lie within a box, while the linear constraint causes the multipliers to lie

along the diagonal line,

a, +sa, =y, (45)
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where s =y,y, and y = ™ +sa?“ . The ends of the diagonal line segment when the
labels of @, and «, are not equal (y1 # yz) are expressed as:

L= rnax(O ad? - afld)

(46)
H:rmn(Cw Cw, + a2 — afld)

and for the case when the labels of &, and «, are equal (y1 = yz) as:

L= rnax(O a™ +ad? — Cwe)

(47)
H= rmn(Cw ol + agld)

The problem in (44) has to be formulated in terms of ¢, and «, in order to analytically

solve for these two dual variables. Using the expression in (45) from the linear constraint
and after some manipulations the following unconstrained piecewise concave objective

function is obtained:
%77% (y2 (E”ld —~ E”ld) nad” )a2 +g(ay, &)+ g(y —say,e)+const.  (48)

where E, = £ (xl.)— v, 1s the error on the ith training sample. Differentiating with

respect to @, and equating to zero results in

a,=al - kyz(E E)+ g(az,g) s—g(al,g)J (49)

using the fact that

a%g(y saz,g) —s—g(al,g) (50)

where n=2K (xl,x2 )— K (xl,x1 )— K (xz,xz) and noting that the function ai g(al., g) 18
ai

the subdifferential of g(ai,g) and is defined as:
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0, 0<a <Cw,
(@) l—(1=2) Cw <a <Cw . (51)
oa (l ) ( ) c ! g
! _(l_l,-g) Cw, <a,<Cw,

[0096] The expression in (49) does not provide the maximum of (48); it is the
maximum of one of nine possible parabolas corresponding to all the different
combinations between the intervals of g(az, 82) and g(}/ - saz,gl) in (42). Optimizing
for «, and «, at any given step involves finding the maximum of (48), which is a

piecewise concave function formed by the minimum of the set composed of the parabolas

for a given «,, as can be seen in Figure 8.

[0097] A method to optimize for the dual variables analytically way while avoiding
evaluating the function g(al., g) is disclosed. As described above, optimizing a pair of

dual variables involves finding the maximum of the piecewise concave function in (48).
By taking advantage of the problem’s structure, a procedure to obtain this maximum
while avoiding any function evaluation and thus minimizing the necessary computations,

1s disclosed.

[0098] The steps of for finding the maximum of (48) are shown in Figure 9. The goal

1s to evaluate (48) over the sequence of interval pairs of ¢, and «,, clipping the

maximum at the corresponding bound, until a maximum is reached. When the process

0 0 : I
starts the values of e g(az, g) and P g(al, g) are determined from the initial values
a, a,

of o, and «, (Step 1). These values can be 0, —(l — g) and —(l + g) for values of ¢, in

the intervals 0 <o, <Cw,, Cw, <, < Cw, and Cw, < a, < Cw, respectively, as seen in
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(51). Then, the maximum of (48), )", is obtained using (49) for ai g(az, 8) and
&,

e g(al, 8) as determined in Step 1 and clipped in order to satisfy the linear constraint
a,

new

of Eq. 51 (Step 2 and Step 3). The corresponding value of a;“" can then be calculated

using " =, + s(oz2 - a;“ew) (Step 4). Once o, is computed, the ascent direction is

new

obtained by sgn (052 — az) (Step 5). This will determine the upper bound on the

interval, e.g. for the case where Cw, < &) < Cw, the upper bound on ;™ for a positive

ascent direction will be Cw, while for a negative ascent direction the bound would be

new

Cw, . The next step (Step 6) is to verify that the values of ;" and «*" are within the

new

respective interval used to determine their values. The computed o, 1s the maximum of
0 0

the parabola produced by the values of o g(az, g) and e g(oz1 , g) for those
a, a,

particular intervals, and may or may not lie within them. In the case that these conditions

new

are satisfied then o) is the maximum (48) and the process stops. Otherwise, if either

a;” and o/ are outside their respective interval, these values are clipped to the upper

bound as determined by the ascent direction. If these last circumstances occur the value

of o™ and/or a;" would correspond to a corner of (48). Then, verification of whether
this corner is the maximum is performed; otherwise, the optimization process is

next

continued (Step 7). To accomplish this, ;" , the maximum of the parabola produced by

the next interval, is computed, clipped so that L < @)* < H and the new ascent direction

is obtained. If the new ascent direction changes then the maximum of (48) is at that
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corner and the process stops. Otherwise, the process continues with Step 6 until a

maximum is found.

[0099]  As described above, the SMO algorithm optimizes two Lagrange multipliers
at each step. One of these multipliers has previously violated the KKT conditions before
the step, i.e. SMO will always alter two Lagrange multipliers to move uphill in the
objective function in (48) while maintaining a feasible Lagrange multiplier vector. Thus,
at each step the overall objective function will increase until the algorithm converges

asymptotically.

[00100] Two separate heuristics are used to choose the first and second multiplier. The
choice of the first heuristic provides the outer loop of the algorithm. The outer loop first
iterates over all samples in the training set, determining whether a sample violates the
KKT conditions. Once a violated sample is found, a second multiplier is selected using
the second choice heuristic and both are jointly optimized while maintaining feasibility.
The SVM is updated using these two new values, and the outer loop resumes looking for
KKT violators. To speed up training, the outer loop does not always cycle through the
entire training set. After one pass through the training set, the outer loop iterates over
non-bound samples only. These are defined as multipliers whose value are neither 0 nor
C. The outer loop iterates over these samples until none of them violate the KKT
conditions. Then the outer loop over the entire training set again. For the rest of the
algorithm the outer loop alternates between these two until the entire set obeys the KKT

conditions, and at this point the algorithm terminates.
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[00101] The first choice heuristic is also used in the SMOER algorithm. In SMO, the
outer loop concentrates most of the time in the non-bound samples, which are the ones
most likely to violate KKT conditions. As the algorithm progresses, multipliers that are at
the bounds are likely to stay there, while non-bound multipliers will change as others are
optimized. In SMOER, the outer loop initially iterates over all samples, as in SMO, and
then iterates over the non-corner samples. Non-corner samples are defined as multipliers

whose values are neither 0, Cw_, Cw,, Cw,, and are the samples most likely to change as

the algorithm progresses. Like SMO, the outer loop alternates between iterating over all
the samples and the non-corner samples until the KKT conditions are met for all samples,

concentrating most of the time on the non-corner samples.

[00102] For selecting the second multiplier to optimize, SMOER uses the same
heuristics as SMO. The objective in this step is to maximize the size of the step taken

during joint optimization, which is approximated by the absolute value of the error

difference in (49),

E, — E,|. In the unusual circumstance that positive progress cannot be

made using the heuristic described above, a hierarchy of second choice heuristics are
used until positive progress is made when jointly optimizing a pair of multipliers. In that
case, then SMOER iterates through the non-corner samples, starting at a random point,
searching for a second multiplier that can make positive progress. If none of the non-
corner samples accomplish this, the SMOER iterates through the entire training set, again
starting at a random point, until a sample is found that makes positive progress. In the
extreme case where none of the samples make positive progress when paired with the
first multiplier, the first multiplier is skipped and SMOER continues with another chosen

first multiplier.
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[00103] A series of heuristics for selecting a pair of multipliers to optimize at a given
iteration using KKT conditions were described above. The KKT conditions also play a
role in the algorithm termination, as all samples must satisfy these conditions for SMO

and SMOER to terminate.

[00104] The KKT condition is derived based on the values of the Lagrange
multipliers. The following conditions are the result the optimality condition in (26), and
the complementary slackness condition in (29) and (33) that result from the optimization

problem in (22).
LIfa, =0, 4 =Cw, >0, &=0;
yl.(w’xl.—b)—IZO.
nIlf0<a <Cw, w=Cw,—a, >0, &=0;
yl.(w’xl.—b)—l:O.
. If o, =Cw,, =0, 0<&<l-g

v, (w’xl. - b)— 1=-¢
—(l - g)<yl. (w’xl. —b)— 1<0.

w. If Cw,.<a,<Cw,, ©,=0, &=1-¢g

¥, (w’xl. —b)— 1=—(1-¢).

v.ifa,=Cw, u=0, l-¢<é&<l+g

v, (w’xl. —b)— 1=-¢
—(1+&)<y, (w’xl. —b)— 1<—(1-¢).

vi.lf Cw, <a,<Cw,, u,=0, &=1+¢
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yl.(w’xl.—b)—lz—(lJrg).
vilL If ¢, =Cw,, u,=0, &>1+¢

, (w’xl. - b)—l =-£
¥y, (W’xl. - b)— 1<-(1+e).

[00105] Asthe SMOER algorithm iterates in the outer loop, the first choice heuristic
selects a sample that has violated the KKT conditions as the first in the possible pair of
multipliers that will be jointly optimized. The set of KKT violations checked in this step,

and resulting from the previously outlined conditions, are summarized in Figure 10.

[00106] Solving for the Lagrange multipliers does not determine the threshold b of the
SVM and must be computed separately. In SMO, b is re-computed after each step, so
that the KKT conditions are fulfilled for both optimized examples. The threshold is

obtained by:

b,=E,+y (afew - al)k(xl,xl.)Jr ¥, (a;“ew -a, )k(xl.,x2 )+ b, (52)
The threshold b, is valid when the new ¢; is not at the bounds, i.e. 0 <, < C, because it
forces the output of the SVM to be y, when the input is x,. When both new Lagrange
multipliers are not at a bound, b, and b, are equal. In the case when both new
multipliers are at a bound, then the interval between b, and b, are all thresholds that are

consistent with the KKT conditions and SMO chooses the threshold to be halfway
between b, and b, .

[00107] The SMOER algorithm computes and updates the threshold b in a similar

fashion. The only necessary modification in order to adapt how to compute the threshold
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in SMO to SMOER is by computing b,, using (52), for multipliers whose value lie within
0 and Cw, . In (37) it was seen that this range allowed for computing the threshold when

solving the dual problem. Thus, in SMOER the threshold is updated only when values of
the new Lagrange multipliers are within this range. As in SMO, when both new

multipliers have values of 0 and/or Cw_, the updated threshold is the value halfway

between b, and b,.

[00108] Using the convex formulation of SVM with embedded error-rejection solving
a sub-problem with a sample that violates the KKT conditions improves the overall
objective function and maintain feasibility. SMO and SMOER converge asymptotically

by solving a series of these problems.

[00109] At any given iteration the value of b is updated based on the current pair of

dual variables being optimized. In the case of SMOER this occurs is ¢, and/or a, lie
between 0 <, <Cw_, otherwise b is not updated. In SMO and SMOER, it is possible

that a o, whose values satisfy the KKT conditions might be mistakenly seen as violating
them, and vice versa. This is the result of using sub-optimal values of b to check whether
ornot a &, violates the KKT conditions. Thus it is possible to select a pair of dual

variables to optimize that do not violate the KKT conditions and progress is not made. In
this case, as a result of the choice heuristics, both SMO and SMOER continue looking for

a pair of variables that do make progress.

[00110] Training the SVM with embedded-error rejection posed in (21) involves

optimizing the primal variables w, b, &, ¢. Up to this point have been able to develop
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methods to optimize w, b, & for a fixed value of ¢. The variable w is optimized when
the solution to the dual variables, «,, is found with SMOER, while the threshold b is
obtained during that process. The variable & is analytically optimized when obtaining the

expression in (42). The last piece in the development of a training algorithm for SVM

with embedded error-rejection is optimizing & .

[00111] Recalling the problem stated in (40), using the expression in (42), and

assuming that ¢, is constant, & are obtain by solving:

min Zg(al.,g). (53)

0<e<]

To solve this problem, a subgradient method is used. This method utilizes the iteration
& = & — Ad, (54)
where A, is the step size at the k” iteration and d, is any subgradient of (53) at &,. The

subdifferential of the objective function in (53) is

ogla,,
> les) s

i
where
0, 0<a <Cw,

g(ai,g): -Cw, +a, Cw <a,<Cw .(56)
C(2wr - wc)— a, Cw <a <Cw,

9
oe

[00112] The following step size rule is used ensuring convergence of the method:

dlg, -5, |

A

(57)
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For values of 0 < a <1 this can be viewed as a diminishing step size rule. Furthermore,
by selecting ¢ =0 if d0/|d0| >0or¢ =1if d0/|d0| <0 1n the initial step, the

constraint 0 < & <1 is enforced.
[00113] The SVM with embedded error-rejection algorithm then consists of a series of

iterations where the dual variables «,, and thus the primal variables w, b, &, are

optimized followed by optimization of the primal variables ¢ . The algorithm starts with
some initial guess of ¢, provided by the user. The developed SMOER routine is then
called to optimize the dual variables with the initial values of &. Next, the values of ¢

are updated using the subgradient method and the previously optimized values of «;, .
The algorithm keeps alternating between optimizing ¢, and &, until the convergence of

&.

[00114] The stopping criteria considered for convergence is

|gk —gk+1| <tol, (58)
i.e. when the change in ¢ is less than a pre-determined tolerance.
[00115] There are cases where it might be of interest to assign training samples
different costs, not only to misclassification but also to rejections, based on the class they
belong to. This allows for handling applications where rejecting samples from one
particular class is more costly that the other. For example, in colorectal cancer screening,
it would be desirable to make a decision on non-dysplastic polyps based on ESS
measurements while avoiding rejecting these as much as possible (and thus taking
biopsies of them). Thus, a higher rejection cost could be assigned to these cases in the

training process. This type of class-dependent weighting can be incorporated in the
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convex optimization problem for training support vector machines with embedded error-

rejection by reformulating the problem as:

-
w,b,& .6 &

min %wTerC*;hc( l.,g*)+ CZZhC( l.,g’)

sty (W'x,+b)21-¢ (59)
£>0

0<e,e <1
where the superscripts +, - denote samples for which labels y, =1 and y, =1
respectively. Thus, the solution of this problem constructs two separating hyperplanes of

width (¢" +¢& )/”w” between them, that minimizes the sum of deviations, &, of training

errors weighted by w’,w’,w” and w_,w ,w  accordingly. By obtaining the

corresponding dual problem

1
max Zal_ — EZZaiajyl_ijiij +
t .

min € (6e" fag+C EhlGor ) al
'£20 i o
0<et, e <1

s.t. Zal_yl_ =0

0<a'™ <C"w

e

(60)

Non-linear decision regions can also be obtained as well as the SMOER training
algorithm described above can be used for training.

Examples

[00116] The support vector machines with embedded error-rejection described above
were tested. The first experiment applied the developed classifier to an artificial data

consisting of two classes, and visually illustrated how the orientation and width of the
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rejection region varies for different rejection costs, w, . Each class consists of 100
samples generated from a two-dimensional normal distribution with mean at [-1,0] for
one class and at [1,0] for the other. Both classes had a covariance equal to the identity
matrix. Results are shown in Figure 11 for the different kernels. In Figure 11, results for
a linear kernel are shown in the left column, a third degree polynomial in the center
column and a RBF kernel in the right column. In Figure 11, the rejection weight w, is

decreased from the first row to the third row.

[00117] In the second experiment, the SVM with embedded error-rejection was used
to classify the colon polyps dataset. The dimensionality of the data was reduced to 15
features using PCA. The SVMs were trained with embedded error-rejection with
different values of the rejection cost w, and a sensitivity/specificity vs. rejection rate plot
was generated. For comparison, results obtained by thresholding the outputs of a
standard SVM with linear kernel were also generated in the form of the
sensitivity/specificity vs. rejection rate plot. K-fold cross-validation was used, utilizing

the same 50 random samplings of the data.

[00118] The final experiment illustrates the results obtained using class-dependents
rejection weights w,,w; . For this example, again, the dimensionality of the data was
reduced to 15 features using PCA. SVM with embedded error-rejection with RBF kernel
was used. The rejection weights w,,w’ were varied independently to design classifiers

with rejection regions of different orientations and widths. Figure 12 illustrates the

statistics obtained as the rejection weights were varied.
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[00119] Results obtained by applying the developed convex formulation for SVM with
embedded error-rejection show that obtaining the orientation and width of the decision
region during the training process provides an improvement in performance over
thresholding the outputs of a standard SVM. The results obtained using SVM with
embedded error-rejection with linear kernel are comparable to or better than thresholding
the outputs of a standard SVM with linear kernel. Additionally, further improvement can
be obtained by using kernel functions to generate non-linear decision regions instead of
just a linear kernel. While using the 2™ and 3™ degree polynomial kernels did not provide
much improvement, the use of the RBF kernel had improved results. When using the
RBF kernel higher sensitivity and, in particular, specificities are obtained for the same
rejection rates when compared to values obtained by thresholding the outputs of a
standard SVM. The use non-linear kernels allow for better identifying the region where
misclassifications are more likely to occur, thus reducing the number of rejected samples
that could be correctly classified. Finally, using class-dependent rejection weights
permits designing classifiers that assign more cost to rejecting samples from one class.
Since the rejection weights for each class are varied independently, the error-rejection or
sensitivity/specificity-rejection curves now become two-dimensional surfaces.

Classifiers can be designed for different sensitivities and specificities holding the overall

rejection rate constant by varying the number of rejected samples from each class.

MULTIPLE CLASSIFIER SYSTEMS
[00120] Embodiments of the present invention are also directed to multiple classifier
systems. These multiple classifier systems improve the overall sensitivity and specificity

of the system. An exemplary multiple classifier system 1300 is shown in Figure 13. As
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shown in Figure 13, the multiple classifier system 1300 receives ESS spectrum data 1304
which includes different regions of spectra data 1308. A subset of the pattern features
1312 is identified as described above (e.g., feature selection using SFSS or SVDSS) for
training. The system 1300 includes multiple classifiers 1316. The multiple classifiers
1316 are designed to operate in parallel. Each classifier 1316 is trained on a region of the
ESS spectrum 1308. The final classification or diagnosis 1324 is obtained by combining

the outputs of the base classifiers 1316 using a combination rule 1320.

[00121] The combination rule 1320 fuses the outputs of the classifiers 1316. Two
exemplary combination rules that may be used are: majority voting and naive Bayes
combiner. The majority voting rule assigns a sample the class label that 50%+1 of the
base classifiers agree on. The naive Bayes combination rule is stated as follows: let x be
a sample vector belonging to one of the possible @, , £ =1,K ,c, classes. Also let L be

the number of base classifiers in the ensemble. A sample x is said to belong to class o,

if 4, (x) is maximum, where

yk(x)ocp(wk)lljp(yimk), 1)

and y, are the output labels from the base classifiers. For the practical application of the
binary classification problem, and assuming that if y, =1 the sample is non-dysplastic

and if y, =—1 the sample is dysplastic, the conditional probabilities can be estimated as:

P(yl. =—1l|lw, = —l): Sensitivity,
P(yl. =1llo, = —1): 1 — Sensitivity,
P(yl. =l|lo, = 1): Specificity,
P(yl. =-1|lo, = 1): 1-Specificity.
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[00122] P(wk) are the prior probabilities and can be estimated from the training data.

Thus, this combination rule uses the performance of each base classifier, in the form of

the sensitivity and specificity, to weight their decision.

[00123] In one embodiment, the classifiers 1316 are designed with error rejection as
well. For example, the classifiers 1316 may be SVM classifiers with embedded error

rejection as described above.

Example

[00124] Table 2 shows the classification results of a classifier designed using the
whole spectrum, 330-760nm, and a classifier using just the 330-400nm region. The error
rates for both classifiers was similar. Yet the errors were not necessarily committed on

the same samples as illustrated by the difference in sensitivity and specificity.

Table 2: Classification results using the whole spectrum (330-760nm) and using
the 330-400nm region. PCA and SVM with Linear Kernel were used.

Region # of Features Sensitivity Specificity Error Rate
330-760nm 15 7417+ .0757 7538 +.0528 2499 + .0364
330-400nm 10 7977+.0732 7300+ .0397 2490 +£.0276

[00125] Spectral regions were selected a priori in a heuristic fashion. Regions were
chosen based on the areas of the spectrum that were shown to be more informative by
using feature selection methods described above and based on where there was the most
difference in the average spectrum for the dysplastic and non-dysplastic samples. Some
regions were chosen to make sure that all areas of the spectrum were considered. The

selected regions spanned across the whole spectrum and overlap between them was
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allowed. The main intent was to promote diversity by focusing on different arecas of the
ESS spectrum. In total, twenty-two regions were considered. Features on each region
were obtained using PCA and the base classifier was a SVM. Two types of kernels were
used: linear and RBF kernels. All results were obtained using K-fold cross-validation

with the 50 randomly sampled sets described above.

[00126] Table 3 summarizes the performance of each individual classifier on each of
the regions and shows the number of features extracted for each region. Although not
shown, the standard deviation for the sensitivity, specificity and error rate were of around

.08, .06 and .04 respectively.
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Table 3: Performance of the SVM classifiers on each of the considered spectral

regions.
Liner Kernel RBF Kernel
. , Error , Error
Index Region PC’s Se Sp Rate PC’s Se Sp Rato

330-760nm 15 7417 77538 2499 15 7463 7731 2365
330-800nm 15 7183 7546 2566 15 7206 7736 2428
330-600nm 12 7697 7392 2513 16 7629 7628 2372
330-380nm 5 7316626 3032 10 .8000 .6508 3030
330-360nm 8 7903 .6469 3087 8 8000 .6423 3088
330-400nm 10 7977 7300 .2490 10 7914 7303 2508
360-400nm 6 7966 7156 2593 6 8046 7085 2618
530-600nm 7 6960 6913 .3073 7 6966 6938 3053
460-590nm 14 6994 .6826 3122 14 6966 6841 3120
10 360-600nm 12 7691 7305 2575 12 737 7433 2535
11 360-760nm 14 6989 .7621 2575 16 7206 7685 2464
12 360-800nm 13 6914 7721 2529 13 6920 7726 2524
13 500-600nm 9 6794 7003  .3062 9 6863 7105 2970
14 590-760nm 12 6160 .7131 3170 11 6166 7174 3138
15 590-700nm 9 6211 7462 2926 9 6240 7487 2899
16 590-800nm 15 6463 7072 3117 14 6423 7172 3060
17 700-760nm 6 5046 .6385 .4030 6 4817 6636 3927
18 700-800nm 7 5903 6690 3554 7 5909 6708 3540
19 460-700nm 14 6577 7110 3055 17 6594 7274 2936
20 500-760nm 7 6274 6946 3262 15 6377 7162 3081
21 500-700nm 16 6794 7438 2761 16 6829 7449 2743
22 400-760nm 11 6954 7321 2793 12 7000 7323 2777

O 00 ~1 N RN =

[00127] First, all combinations of size 3, 5, 7, 9 were selected from the twenty-two
possible classifiers. For each combination, the majority voting combination rule was
used to obtain the final decision. For each size (3, 5, 7, 9), the combination of regions
that resulted in the best average recognition rate (ARR, average between sensitivity and
specificity), error rate, sensitivity and specificity was selected. The results are shown in
Table 4. This was repeated with the naive Bayes combiner, yielding the results in Table

5.
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Table 4: Summary of results with Majority Voting combination rule.

Linear Kernel RBF Kernel

L ARR  Error Sen Spe ARR  Error Sen Spe

Reg | 3,721 3,715 35,6 1,7,15 13,721 1,721 1,56 2,11,18

Sen | .7966 7806  .8234  .7623 7994 7794 8251 7091
Spe | 7751 7846 7115 1897 J721 7846 7233 7944
Error | 2182 2166  .2538 2188 2195 2170 2451 2320

,3,7, 1,37, 345, 3,712, | 13,5, 13,7, 145, 1.2,

Reg | 1521 1521 67 1521 | 621 1821 6,10 15,18

5 Sen | .7760  .7760  .8183 7480 8091 7606  .8251  .7417
Spe | .7921  .7921 7044 7967 7644 7990 7069 8021
Error | 2129 2129 2604 2184 2218 2129 2565 2166

3,6, 1,36, 345, 3,711, | 13,7, 1,27, 134, 1.2,
Reg | 7,15, 7,15, 6,7, 12,15, | 10,13, 11,15, 5.6, 11,15,
19,21 19,21 8,10 18,21 15,21 18,21 7,9 17,18

Sen | .7806 7806  .8171 7349 7869 7480  .8223 7200
Spe | 7879 7879 7146 7954 J790 8031 7215 .8044
Error | 2143 2143 2536 2234 2186 2140 2473 2218

34,5, 136, 345, 1,2,3, 3,5, 12,6, 134, 123,
6,7, 7,10, 6,7, 7,12, 6,10, 7,11, 5,6, 7,11,
10,15, 15,18, §,10, 15,17, | 16,19, 13,15, 7.8, 15,17,
9 21,22 19,21 11,21 18,21 21,22 18,21 9,10 18,21

Reg

Sen | .8046 7703 8114  .7217 7851 7606  .8103 7314
Spe | .7551  .7885 7413 7954 JT777 7959 7297 8028
Error | 2296 2172 2370 2274 2200 2150 2453 2193
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Table 5: Summary of results with Naive Bayes combination rule.

Linear Kernel RBF Kernel

L ARR  Error Sen Spe ARR  Error Sen Spe

Reg | 3,721 1,7,17 6,7,15 3,17,21 | 1,7,21 1,7,17 6,7,13 13,17,18

Sen | .7480 .6720 7686 5920 | 7417 .6823 7737 4903
Spe | .8200 .8662 7697 8767 | 8279 8597 7682 8813
Error | .2023 1940 2306 2115 | .1988 .1952 2301 2398

3,57, 3,712, 3,56, 17,17, |1,7,10, 1,7,10, 13,5, 1,7,17,

Reg | 2120 1721 7.3 1821 | 1721 1721 610  18.19

5| Sen | 7577 7166 7771  .6869 | 7526 7526 7783  .6863
Spe | 8136  .8397 7759 8495 8262 8262 7944 8487
Error | .2037  .1984 2237 2009 | .1966 .1966 2106  .2016

3’4’6’ 3’6’7’ 3’5’6’ 3’7’9’ ]"3’5’ ]"3’7’ ]"2’4’ 2’3’7’
Reg 7,8, 12,17, 7.8, 15,17, 6,7, 17,18, 5,6, 15,17,
21,22 18,21 10,21 18,21 21,22 19,21 7,17 18,21

Sen | 7800 .7371 7823  .6960 | .7766 7331 .7834 7240
Spe | .7936  .8290 7859 8323 8013 8315 7674 8341
Error | 2106  .1995 2152 2099 | 2064 .1989 2276  .2000

3,5, 36,7, 345, 3,67, 1,2,3, 12,3, 134, 3,6,7,
6,7,10, 12,13, 6,7, 12,15, 5,6, 7,13, 5,6, 12,15,
15,19, 15,17, 8,10, 16,17, | 7,15, 15,17, 7,10, 16,17,
9 21 18,21 20,22 18,21 17,21 18,21 17,21 18,21

Reg

Sen | 7737 7411 7834 7320 | .7709 7526 .7846  .7320
Spe | .7951  .8215 7718 8228 8059 8215 7818 8264
Error | 2115 2034 2246  .2053 2050 1998 2173 2028

[00128] As scen in Table 3, the performance of the classifiers designed on each of the
considered regions were varied, with some like 3 (330-600nm), 6 (330-400nm), 7 (360-
400nm) and 10 (360-600nm) yielding particularly good results. This varied effectiveness
encourages their use in ensemble classifiers. From the results, combinations of different
regions provide an increase in classification performance when compared to just a single
classifier. Both combination rules evaluated managed to yield better results, with the

naive Bayes combiner seemingly working the best.
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ESS OPTICAL BIOPSY DIAGNOSTIC METHOD

[00129] Embodiments of the present invention are also directed to a method for
making decisions or diagnoses based on the ESS measurements. The method begins with
a dimensionality reduction step to handle the high dimensional measurements generated
by ESS. This step focuses on different, and often smaller, areas of the ESS spectrum.
The method continues by training each of the multiple classifiers on one of the smaller
arcas of the ESS spectrum. In one embodiment, the multiple classifiers are trained with
embedded error rejection. The method continues, during a diagnosis phase, by
classifying spectra data for a tissue sample by each of the multiple classifiers. Each
classifier analyzes the spectra data for the sample on which that classifier was trained. In
embodiments in which the multiple classifiers are trained with embedded error rejection,
the decision of the classifier can be positive, reject or negative {+1, 0, -1}; otherwise, the
decision will be positive or negative {+1, 0, -1}. The method then continues by
combining the classification of each of the classifiers to determine a final diagnosis of the

tissue sample.

[00130] With the inclusion of the reject option in thee base classifiers, because the

output of these classifiers is {—l, 0,1}, a modification to the combination rules is

required. Combining the decisions of the base classifiers is now a two-step process: first,
it is decided whether the sample is rejected; second, if the sample is not rejected, a
decision is made based on the classifiers that assigned a label, i.e. didn’t reject the
sample. A majority rule can be used to determine whether to reject a sample. A sample
is rejected if 50%+1 of the base classifiers withheld from assigning a label. For samples

that are not rejected, any given combination rule can be applied to those classifiers that

53



WO 2010/111545 PCT/US2010/028741

did not withhold from making a decision. Again, the majority voting and naive Bayes

combination rules can be used.

Example

[00131] All of the ESS spectral regions used above were again used in this example.
PCA was used to reduce dimensionality and the number of features used is the same as in
the previous section (summarized in Table 3). SVMs with embedded error-rejection, with
linear and RBF kernels, were trained on each region for different rejection rates by
varying the rejection cost. To build the multiple classifier system, classifiers at a
particular rejection rate were selected from each of the regions (specifically, rejection
rates of around .33 and .50 were used) for the base classifiers. In Tables 6 and 7 the
performance for the classifiers in each region, for .33 and .50 rejection rate respectively,

are summarized.

[00132] K-fold cross-validation with 50 randomly sampled sets was used. The
combination of regions that yielded the best average recognition rate (ARR, average
between sensitivity and specificity), error rate, sensitivity and specificity from all

possible ensembles of size L = {3,5, 7,9} that can be created were used. The standard

deviation for the sensitivities, specificities, error rates and rejection rates hovered around
.08, .06, .04 and .05 respectively. The results are summarized in Tables 8 and 9 for a base
classifier rejection rate of about .33 using majority voting and naive Bayes combiner
respectively. For base classifiers with rejection rate of about .50 the results are

summarized in Table 10, for majority voting, and Table 11, for naive Bayes combiner.
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Table 6: Performance of the classifiers with .33 rejection rate on each of the
considered spectral regions.

Liner Kernel RBF Kernel

Index Region Sen  Spe Emror Regj Sen  Spe Emror Regj

330-760nm | .7891 .8282 .1823 .3046 | .7990 .8526 .1624 3248
330-800nm | .7668 .8287 1883 3120 | .7830 .8542 .1668 .3407
330-600nm | .8277 8222 1747 3193 | 8317 8401 .1618 .3207
330-380nm | .8142 7151 2561 .2927 | .8004 7472 2379 .3301
330-360nm | .8292 7265 2442 3531 | .8142 7333 .2438 .3335
330-400nm | .8605 .7923 .1879 .2915 | .8633 .8007 .1806 .3370
360-400nm | .8633 .7735 .1990 3312 | .8587 7773 .1976 3177
530-600nm | .7487 .7464 2518 3465 |.7400 .7479 2541 3322
460-590nm | .7381 .7435 2582 2975 | 7388 7534 2508 .3248
10 360-600nm | .8389 8325 .1648 3634 | .8322 8298 .1693 .3262
11 360-760nm | .7712 8148 1977 3358 | 7971 8365 .1752 3372
12 360-800nm | .7585 .8234 .1957 3519 |.7530 .8206 .1993 .3287
13 500-600nm | .7427 7519 2500 .3283 |.7380 .7566 .2482 3352
14 590-760nm | .6619 7653 2682 .3039 | .6733 .7674 .2632 .3400
15 590-700nm | .6983 7937 2364 3205 |.7061 .7974 2313 3416
16 590-800nm | .7042 .7838 .2407 .3605 | .7093 7762 .2445 3281
17 700-760nm | .5530 .6470 3828 2888 |.5709 .6389 .3810 .3299
18 700-800nm | .6162 .6955 .3294 3676 | .6257 .6779 .3392 3184
19 460-700nm | .7135 .7580 2559 3122 |.7035 7882 2386 .3150
20 500-760nm | .6967 7535 2637 3412 | .7105 7676 .2497 .3411
21 500-700nm | .7176 .8153 2156 .3644 |.7156 .8107 .2196 .3432
22 400-760nm | .7777 7983 2067 .3681 | .7663 7935 2138 .3384

O 0~ N W) —
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Table 7: Performance of the classifiers with .50 rejection rate on each of the
considered spectral regions.

Liner Kernel RBF Kernel

Index Region Sen  Spe Emror Regj Sen  Spe Emror Regj

330-760nm | .8157 .8440 .1618 4772 | 8150 8862 .1334 .5131
330-800nm | .7996 8575 .1571 5000 | .8052 .8822 .1394 .5306
330-600nm | .8261 .8498 .1541 5002 | .8449 8666 .1381 .4940
330-380nm | .8296 7380 2337 4584 | 8129 7699 2167 .5019
330-360nm | .8600 .7455 2210 5370 | .8473 7580 .2157 .5041
330-400nm | .8726 .8279 1575 4846 | .8750 8258 .1584 4885
360-400nm | .8803 8111 .1675 5159 | .8899 .7890 .1790 .4919
530-600nm | .7646 7736 2288 5310 | .7626 .7643 .2353 4894
460-590nm | .7609 .7721 2305 4669 | .7692 7805 2227 .4837
10 360-600nm | .8697 .8533 .1401 4558 | .8812 .8665 .1265 .5260
11 360-760nm | .8080 .8477 1632 5333 | 8248 8625 .1472 4749
12 360-800nm | .7993 .8450 .1667 5533 |.7846 8470 .1701 .5193
13 500-600nm | .7587 .7926 2184 5030 |.7624 7863 .2209 .4927
14 590-760nm | .7006 .7883 2392 4828 | .7054 8052 .2255 .5023
15 590-700nm | .7372 8266 2019 4634 | 7587 8437 .1830 .5152
16 590-800nm | .7142 7976 2274 4533 | 7391 8128 .2089 .5145
17 700-760nm | .5326 .7092 3485 4805 | .5494 7073 .3435 .5023
18 700-800nm | .6130 .7167 3173 4646 | .6313 7044 3191 .4901
19 460-700nm | .7445 7833 2268 4779 | 7537 8356 .1895 .5129
20 500-760nm | .7287 .8002 2218 5204 | .7415 8042 2151 .5067
21 500-700nm | .7488 8531 .1791 5453 | .7415 8447 .1884 .5150
22 400-760nm | .7906 .8150 .1910 4487 | .7943 8280 .1809 .5104

O 0~ N W) —
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Table 8: Summary of results with Majority Voting combination rule and base
classifiers with .33 rejection rate.

Linear Kernel RBF Kernel
L ARR  Error Sen Spe ARR  Error Sen Spe

Reg | 3,7,10 6,10,21 6,7,10 1,10,12 | 3,7,10 3,6,21 6,7,10 1,2,11
Sen | .8738  .8486  .8831 8027 8629 8400 8832 7995
3 Spe | .8345 8459 8007 8527 8360 8507 .8052  .8593
Error | 1528 1526  .1750  .1615 1560 1520 1716 1576
Rej | 3308 2995 3156 3315 31522945 3177 3338

3,57, 3,7,10, 3,56, 3,7,10, | 3,6,7, 23,7, 3,6,)7, 26,11,
10,21 16,21 7,10 16,21 10,19 19,21 10,19 19,21
Sen | .8520  .8301  .8645 8301 8722 8268 8722 8004
Spe | .8392 8582  .8085 8582 8250 8585 8250 8615
Error | 1559 1505 .1747  .1505 1609 1511 1609  .1571
Rej | 3081 3041 2954 3041 2894 2828 2894 20952

Reg

3,56, 13,5, 345, 3,57, ,2,3, 1,23, 13,5, 126,
Reg | 7,10, 7,10, 6,7, 10,16, 6,7, 6,7, 6,7, 11,16,
1621 16,21 10,18 20,21 10,22 10,22 10,19 19,21
7 Sen | .8555  .8356  .8609 8101 8414 8414 8580 .8015
Spe | .8387  .8493 7960 8565 8523 8523 8327  .8600
Error | 1562 1546  .1845 1575 1503 1503 1595 (1576
Rej | 2869 2963 2685 3002 3019 3019 2802 .2890

,3,5, L35, 1,34, 23,5, 13,5, 13,5, 34,5, 34,7,
6,7, 6,7, 5,6, 7,8, 6,7, 6,7, 6,7, 11,13,
10,13, 10,13, 7,10, 10,16, | 10,13, 10,13, §,10, 15,16,
1621 16,21 13,16 18,21 16,19 16,19 11,16 17,21
Sen | .8440  .8440 8512 8172 8467 8467 8530 7852
Spe | .8437 8437 8207 8526 8466 8466  .8307  .8556
Error | 1557 1557  .1698 1580 1534 1534 1633 .1661
Rej | 2841 2841 2738 2841 2687 2687 2775 2628

Reg
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Table 9: Summary of results with Naive Bayes combination rule and base
classifiers with .33 rejection rate.

Linear Kernel RBF Kernel
L ARR  Error Sen Spe ARR  Error Sen Spe

Reg |3,7,10 3,722 6,7,10 2,721 |3,7,10 3,716 67,10 1,721
Sen | .8644 8308 8710 7724 8569 8267 8706  .7903
3 Spe | .8576  .8768 8204 8872 8514 8797 8221 8862
Error | 1399 1372 1646  .1483 1470 1368 1637  .1433
Rej | .3308 3181 3165 2959 3152 2823 3177 2938

3,6,7, 3,7,10, 3,6,7, 3,7,16, | 1,3,6, 23,7, 3,6,7, 3,7,16,
10,22 16,21 10,22 18,21 7,22 19,21 10,19 17,21
Sen | .8607  .8249 8607 7659 8512 8158 8668 7769
Spe | .8402 8673  .8402 8753 8535 8723 8358 8755
Error | 1536 1462 1536  .1597 1466 1452 1550 (1554
Rej | 3048 3041  .3048 2949 2945 2828 2899 2550

Reg

3,5,6, 36,7, 356, 3,67, ,2,3, 123, 35,6, 23,7,
Reg | 7,10, 10,16, 7.8, 10,16, 6,7, 6,7, 7,10, 13,16,
16,21 18,21 10,22 18,21 10,22 10,22 13,19 18,21
7 Sen | .8477  .8260  .8529 .8260 8417 8417 8510 .7900
Spe | .8556  .8674 8394 8674 8590 8590 .8398  .8700
Error | 1472 1455 1563 .1455 1458 1458 1569  .1548
Rej | 2869 2789 2972 2789 3019 3019 2759 2627

13,5, 3,56, 134, 236, 3,5, 1,23, 134, 23,5,
6,7, 7,10, 5,6, 7,10, 6,7, 6,7, 5,6, 7,13,
810, 16,18, 7,10, 15,16, | 10,13, 11,13, 7.8, 15,16,
16,21 21,22 13,16 18,21 1622 16,22 10,16 17,21
Sen | .8393 8284 8483 8140 8455 8316  .8482 7896
Spe | .8554 8616  .8328 .8650 8532 8613 8382 8679
Error | 1494 1487 1626  .1508 1493 1475 1588  .1565
Rej | 2848 2743 2738 2712 2729 2862 2761 2572

Reg
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Table 10: Summary of results with Majority Voting combination rule and base
classifiers with .50 rejection rate.

Linear Kernel RBF Kernel

L ARR  Error Sen Spe ARR  Error Sen Spe

Reg | 3,7,10 6,10,21 6,7,10 3,10,21 | 1,7,10 1,10,16 6,7,10 1,10,21

Sen | 8892 8702 9001 8564 | 8983 8651 9043 8612
3 | Spe | .8661 8807 8440  .8830 | .8764 8984 8442 8988
Error | 1256  .1216  .1391 1234 | 1154 1106 .1368  .1115

Rej | 4949 4818 5023 4950 | .5219 5237 5127 5196

36,7, 3,7,10, 3,6,7, 3,7,10, | 13,7, 13,7, L1,6,7, 129,

Reg 16,21 16,21 10,14 16,21 10,16 10,16 10,14 10,16

Sen | 8764 8625 8979 8625 8888 8888 9024  .8443
Spe | 8851 8935 8635 8935 8874 8874 8650  .9009
Error | 1165  .1148  .1245 1148 109 1109 1216 .1156
Rej | 5087 4996 4919 4996 | 5145 5145 5133 .5296

3’5’6’ 3’6’7’ ]"5’6’ 2’3’7’ ]"3’5’ ]"3’5’ 3’5’6’ ]"2’3’
Reg | 7,10, 10,11, 7.8, 10,16, | 7,10, 7,10, 7,10, 9,10,
16,21 16,21 10,14 20,21 11,16 11,16 11,14 16,21

7 | Sen | .8873 8780  .8926  .8556 | 8942 8942 8995  .8415
Spe | 8847 8919 8574 8936 | .8896 8896 8639 9032
Error | .1136  .1110 .1310  .1171 075 1075 1237 1146
Rej | 5034 5048 4970 5041 S117 5117 5067 5228

2,3,5, 235, 345, 1,2,3, ,3,5, 13,5, 3,56, 126,

6,7, 6,7, 6,7, 6,7, 6,7, 6,7, 7,8, 9,10,
10,16, 10,16, 10,11, 10,16, | 10,11, 10,11, 10,11, 11,16,
20,21 20,21 16,19 20,21 12,16 16,21 14,19 21,22

Reg

Sen | 8679 8679 8819 8556 | .8903 8870  .8904  .8439
Spe | 8887 8887 8616 8918 | .8884 8903 8692 9034
Error | 1386  .1386  .1308  .1181 1094 1088 1223 1141
Rej | 5085 5085 4968  .5005 5136 5073 5005 5147
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Table 11: Summary of results with Naive Bayes combination rule and base
classifiers with .50 rejection rate.

Linear Kernel RBF Kernel

L ARR  Error Sen Spe ARR  Error Sen Spe

Reg | 1,7,10 6,10,21 1,7,10 6,11,21 | 2,7,10 1,10,16 2,7,10 1,10,16

Sen | 8657  .8657  .8953 8172 | 8973 8585 9016  .8585
3 | Spe | .8902 8902 8488 9027 | .8817 9064 .8479  .9064
Error | .1160  .1160  .1372 1242 | 1122 .1073  .1351 .1073

Rej | 5273 5273 .5023 5227 | 5219 5237 5127 5237

3,6, 7, 36,7, 36,7, 3,717, | 13,7, 1,6,10, 16,7, 1,6,10,

Reg 11,16 11,16 10,14 18,21 10,16 16,18 10,14 16,18

Sen | 8855 8855 8995 7789 | .8888  .8603 9034 8603
Spe | 8869 8869 8688 8972 | 8894 9036 8662 9036
Error | .1126  .1126  .1205  .1407 | .1094 .1082 .1207  .1082
Rej | 5060  .5060 4919 5073 5145 5158 5133 5158

3’6’7’ 3’6’7’ ]"5’6’ 2’3’6’ ]"3’5’ ]"3’5’ 3’5’6’ ]"2’6’
Reg | 10,11, 10,11, 7.8, 10,16, | 7,10, 7,10, 7,10, 11,13,
16,21 16,21 10,14 20,21 11,16 11,16 11,14 16,18

7 | Sen | .8733 8733 8909 8440 | 8942 8942 8984 8348
Spe | 8948 8948 8646  .8963 8935 8935 8661  .9031
Error | .1109 1109  .1267  .1190 | .1047 .1047 .1227 1163
Rej | 5048 5048 4970 4950 | 5117 5117 5067 5120

2,35, 3,56, 235,  23,6. 3,5, 1,56, 3,56, 12,6,
6,7, 7,10, 6,7, 7,13, 6,7, 7,10, 7,8, 9,10,
10,16, 11,16, 8,10, 1e,18, | 10,11, 11,16, 10,11, 11,16,
20,21 18,21 11,14 21,22 12,16 18,21 14,19 21,22

Reg

Sen | 8675 8639 8788  .8333 8903 8802  .8915  .8439
Spe | 8902 8919 8708  .8943 8904 8959 8695  .9052
Error | .1160  .1158  .1251 1249 | 1081 1074 .1220  .1130
Rej | 5085  .5048 5101 5007 | 5136 5090 5005 5147

[00133] Using more base classifiers reduced the rejection rate without significantly
reducing the sensitivity and specificity. This is particularly true for the cases where base
classifiers with about .33 rejection rate were used, although it is also observable, in a

lesser fashion, for cases where .50 were used.

[00134] The improvement gained when using the integrated approach can really be

appreciated when compared against the classification results obtained using the standard
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approach. With the standard approach a sensitivity and specificity of .74 and .75 are
obtained while using the integrated approach yields a sensitivity, specificity and rejection
rate of .85, .85, .27 with base classifiers that have a rejection rate of around .33 and of

.89, .89, .51 with base classifiers that have a rejection rate of around .50.

Conclusion

[00135] Feature extraction and feature selection methods, specifically PCA, SFFS and
SVDSS, were evaluated in order to deal with the high dimensional nature of the ESS
data. While no significant improvement in classification performance was observed when
the different dimensionality reduction methods were applied to the test data, the use of
feature selection allowed for better understanding of what areas of the ESS spectrum
were more useful for classification purposes. It was seen that the shorter wavelengths
were better suited for this. This observation was later confirmed as classifiers were
designed on different regions of the spectrum, those designed on regions in the shorter
wavelengths had comparable, and in some cases better, performance when compared to
the use of the whole spectrum, as opposed to using the longer wavelengths where the

classification performance was not as good.

[00136] A major challenge that arises in this application is the inherent biological
variability present. This makes distinguishing pathologies, with high accuracy,
particularly difficult. Using the standard paradigm of dimensionality reduction and
classification on the ESS spectrum, with SVM with linear kernel, resulted in sensitivities
and specificity of ~.75. Moreover, using non-linear kernels didn’t improve this result
significantly, illustrating that indeed the dataset was neither linearly nor non-linearly

separable. To overcome these elements the use of an error-rejection framework was used.
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The classifier identifies the region where samples are more likely to be misclassified and
withholds from classifying, or reject, samples lying in this region. These samples can
then be examined by other methods. This particular framework was adopted since it is
well suited for the application of colon cancer screening. If the classifier does not make a
decision on a sample, either further optical measurements can be taken or a biopsy can be
taken and examined by a pathologist. In particular, the classifier is a support vector
machine with embedded error-rejection was developed. Both the orientation and the
width of the decision region, according to weights that reflect the tradeoff between
rejecting and misclassifying samples, are obtained during the training phase. The training
problem is formulated as a convex optimization problem a dual training algorithm, based
on sequential minimal optimization (SMO), as well as allowing the use of kernels to
obtain non-linear decision regions. Results showed that this approach yielded better
results than methods that reject samples by thresholding the outputs of standard
classifiers. Further improvements in the results were obtained by using non-linear
kernels. When compared to the standard classification paradigm, that yielded sensitivities
of ~.74 and specificities of ~.77 with a RBF kernel, using error-rejection a sensitivity of
~.80 and specificity of ~.85 with a ~.33 rejection rate, and a sensitivity of ~.82 and

specificity of ~.89 with a ~.50 rejection rate can be obtained also using a RBF kernel.

[00137] Another classification methodology that was employed to improve on the
performance was a multiple classifier system. The multiple classifier system makes a
final decision by combining the decision of several base classifiers. Each base classifier
is designed using features extracted from a different region of the ESS spectrum. The

regions used were chosen heuristically, using observations and intuition gathered from
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the results of the feature selection experiments. It is worth noting that regions like 330-
600nm, with sensitivity and specificity of ~.76, 330-400nm, with sensitivity of ~.8 and
specificity of ~.73, and 360-600nm, with sensitivity of ~.77 and specificity of ~.74,
showed a performance comparable, if not better, to using the whole spectrum, 330-
760nm, whose sensitivity was of ~.74 and specificity of ~.77. When using the ensemble
classifier sensitivities and specificities of ~.80 and ~.78, ~.81 and ~.76, ~.75 and ~.83,
and finally ~.78 and ~.80 could be obtained using different combinations of regions.
These results clearly show an overall improvement on the performance of any given

single classifier used as base classifiers.

[00138] Finally, error-rejection and multiple classifier systems were incorporated into
one unified framework. This was accomplished by integrating the developed SVM with
embedded error-rejection with the multiple classifiers system described above. Classifiers
with error-rejection were trained on the ESS spectral regions used earlier and then
combined to obtain the final decision. Again, improvement is sought over the .80
sensitivity, .85 specificity with .32 rejection rate, and the .82 sensitivity, .89 specificity
with .51 rejection rate obtained using error-rejection with the whole spectrum, 330-
760nm, or other well performing regions like 330-400nm with sensitivities, specificities
and rejection rates of .86, .80, .32 and .88, .83, .49, and 360-600nm with sensitivities,
specificities and rejection rates of .83, .83, .33 and .88, .87, .53. Using the unified
framework, different classifier ensembles with sensitivities, specificities and rejection
rates of .85, .85, .27 or .86, .86, .33 or .87, .84, .29 or .88, .81, .32 can be obtained by
base classifiers trained to have around .33 rejection rate. By using around .50 as the base

classifier rejection rate, ensembles with sensitivities, specificities and rejection rates of
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.89, .89, .51 or .90, .87, .49 or .86, 91, .52 or .88, .90, .51 or .87, .88, .46 can be obtained,
clearly showing improvement over single classifiers that use the whole spectrum or any

individual region.

AdaBoost

[00139] The AdaBoost algorithm is a method that attempts to “boost” the accuracy of
any given learning algorithm. Let x, € R?, be an input vector and y, € {l,—l} its
corresponding label for i =1,...,/, where / is the total number of training samples. The
goal is to construct a decision function composed of an ensemble of classifiers,

g, :X > {1} called base learners or weak learners, of the form:

fT(x)=iczg,(x)- (63)
[00140] The algorithm calls the base learner repeatedly over a series of rounds
t =1,...,T , while maintaining a distribution or set of weights over the training set. The
weights of incorrectly classified samples are increased so that the weak learner focuses
on the hard to classify samples. At each round ¢, the base learner g, (x) is applied to the
training set with the current weight distribution. Then the algorithm assigns a weight to

that hypothesis that intuitively measures the importance assigned to g, (X) . The details of

the AdaBoost training algorithm are shown in Figure 14.

[00141] The problem of the inclusion of an error-rejection option in multiple classifier
systems is a linear combination of the outputs of trained classifiers. The best error-reject
trade-off achievable by a linear combination of classifiers is always not worse that that of

the best single classifier. This trade-off is dependent not only in the reject threshold but
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also on the coefficients of the linear combination of classifiers. Thus, the problem of
training a multiple classifier system with reject option is one of finding the coefficients

and reject threshold given the error and rejection costs.

[00142] Embodiments of the present invention also apply error rejection to the
AdaBoost classifier. Advantage was taken of the similarity between the support vector
machine training problem and a formulation posed for introducing soft margins in
AdaBoost. This new training problem not only seeks to obtain the rejection threshold but
also to recompute the ensemble weights, thus forming the decision regions. Again, these

two depend on the rejection and error costs.

[00143] AdaBoost asymptotically achieves a hard margin, i.c. the algorithm
concentrates on the hard to learn pattern without allowing for errors. Thus, some sort of
regularization is desirable which would enable the algorithm to mistrust data and achieve
a soft margin, i.¢. some errors are allowed. Empirically it was observed that the more

different the hypotheses’ weights, b,, are the higher the complexity of the ensemble.
Thus, the norm of the weight vector ||b|| can be viewed as a complexity measure. If ||b||

has a high value, then some of the hypotheses are strongly emphasized. In order to

achieve a soft margin it would be desirable to for ||b|| to have a smaller value, as this

would mean that the emphasis on the hypotheses is more distributed. With this in mind

and by the introduction of the slack variables &,, the following optimization problem that

finds the values of b, in order to achieve sort margins is provided:

minimize
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bl +C3¢ (64)

with the following constraints

T
szyigz(xi)ZI_‘fi’ i=1,...1,
=1

E 20, i=1..,1, (65)
b, 20, t=1,.,T.

This problem is solved after the AdaBoost algorithm shown in Figure 3 is run to obtain 7
hypothesis g;,...,g;,.
[00144] The training problem incorporates an error-reject option that can be

formulated using functional /4, (fl. ,g), described above. The problem is to then minimize

RIS RANI} (66)

with constraints

T
Zblyl.gl(xl.)zl—fi, i=1,..,1,
t=1

£ 20, i=1,.,1 (67)
b,20, t=1,.,T,
0<e<l.

The decision function is then obtained as follows:

T
+1, if >'b,g,(x)2¢
t=1

fx)=4-1, if iblgl(x)é—g. (68)

T
0,1f-¢< Zblgl(x)< g
t=1

[00145] Thus, in order to achieve error-rejection in an ensemble classifier, the
ensemble weights and reject threshold are computed given the costs of rejecting and

misclassifying samples.
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[00146] Unless specifically stated otherwise, throughout the present disclosure, terms
such as "processing"”, "computing”, "calculating"”, "determining", or the like, may refer to
the actions and/or processes of a computer or computing system, or similar electronic
computing device, that manipulate and/or transform data represented as physical, such as
electronic, quantities within the computing system's registers and/or memories into other

data similarly represented as physical quantities within the computing system's memories,

registers or other such information storage, transmission or display devices.

[00147] Embodiments of the present invention may include an apparatus for
performing the operations therein. Such apparatus may be specially constructed for the
desired purposes, or it may comprise a general-purpose computer selectively activated or

reconfigured by a computer program stored in the computer.

[00148] Figure 15 shows a diagrammatic representation of a machine in the exemplary
form of a computer system 1500 within which a set of instructions, for causing the
machine to perform any one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client machine in server-client
network environment, or as a peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a server, personal computer (PC), a tablet PC, a set-
top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance,
a network router, switch or bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to be taken by that machine.

Further, while only a single machine is illustrated, the term "machine" shall also be taken
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to include any collection of machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of the methodologies discussed

herein.

[00149] The exemplary computer system 1500 includes a processor 1502 (e.g., a
central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory
1504 (e.g., read only memory (ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.)
and a static memory 1506 (e.g., flash memory, static random access memory (SRAM),

etc.), which communicate with each other via a bus 1508.

[00150] The computer system 1500 may further include a video display unit 1510
(e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system
1500 also includes an alphanumeric input device 1512 (e.g., a keyboard), a cursor control
device 1514 (e.g., a mouse), a disk drive unit 1516, a signal generation device 1520 (e.g.,

a speaker) and a network interface device 1522.

[00151] The disk drive unit 1516 includes a machine-readable medium 1524 on which
is stored one or more sets of instructions (e.g., software 1526) embodying any one or
more of the methodologies or functions described herein. The software 1526 may also
reside, completely or at least partially, within the main memory 1504 and/or within the

processor 1502 during execution of the software 1526 by the computer system 1500.

[00152] The software 1526 may further be transmitted or received over a network

1528 via the network interface device 1522.
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[00153] While the machine-readable medium 1524 is shown in an exemplary
embodiment to be a single medium, the term "machine-readable medium" should be
taken to include a single medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the one or more sets of
instructions. The term "machine-readable medium" shall also be taken to include any
medium that is capable of storing, encoding or carrying a set of instructions for execution
by the machine and that cause the machine to perform any one or more of the
methodologies of the present invention. The term "machine-readable medium" shall
accordingly be taken to include, but not be limited to, solid-state memories, optical and
magnetic media, and carrier waves. The term "machine-readable storage medium" shall
accordingly be taken to include, but not be limited to, solid-state memories and optical
and magnetic media (e.g., any type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories
(RAMSs) electrically programmable read-only memories (EPROMs), electrically erasable
and programmable read only memories (EEPROMS), magnetic or optical cards, or any
other type of media suitable for storing electronic instructions or data, and capable of

being coupled to a computer system bus).

[00154] The invention has been described through functional modules, which are

defined by executable instructions recorded on computer readable media which cause a
computer to perform method steps when executed. The modules have been segregated
by function for the sake of clarity. However, it should be understood that the modules

need not correspond to discreet blocks of code and the described functions can be carried
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out by the execution of various code portions stored on various media and executed at

various times.

[00155] It should be understood that processes and techniques described herein are not
inherently related to any particular apparatus and may be implemented by any suitable
combination of components. Further, various types of general purpose devices may be
used in accordance with the teachings described herein. It may also prove advantageous
to construct specialized apparatus to perform the method steps described herein. The
present invention has been described in relation to particular examples, which are
intended in all respects to be illustrative rather than restrictive. Those skilled in the art
will appreciate that many different combinations of hardware, software, and firmware

will be suitable for practicing the present invention.

[00156] Morcover, other implementations of the invention will be apparent to those
skilled in the art from consideration of the specification and practice of the invention
disclosed herein. Various aspects and/or components of the described embodiments may
be used singly or in any combination. It is intended that the specification and examples
be considered as exemplary only, with a true scope and spirit of the invention being

indicated by the following claims.
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CLAIMS
What is claimed is:
1. A method for classifying a tissue sample comprising:
training a classifier to determine a rejection region of biomedical spectra
data corresponding to tissue samples that are likely to be misclassified;
classifying the tissue sample if biomedical spectra data corresponding to
the tissue sample is not in the rejection region; and
withholding from classifying the tissue sample if the biomedical spectra

data corresponding to the tissue sample is in the rejection region.

2. The method of claim 1, further comprising performing a biopsy of the

tissue sample if the classification is withheld.

3. The method of claim 1, further comprising performing additional optical

measurements of the tissue sample if the classification is withheld.

4. The method of claim 1, wherein training the classifier comprises

formulating a training problem as a convex optimization problem dual training algorithm.

5. The method of claim 1, wherein the biomedical spectra data comprises

ESS data.
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6. The method of claim 1, wherein training the classifier comprises obtaining

the dual formation of:

.1
min —w'w+ Zzi

W.b.& 5.2, -
st y, (WTXZ_ — b)z 1-¢&
z,2Cwe
z, ZC[Wr§+(wr —wc)£+wc—wr]
z, ZC[Wefi +(2wr —w,—w, Je+ wc—we]
£20

0<e<l.

7. The method of claim 6, wherein the dual problem is:

max Zal_ — %ZZaiajyiijiij + C(wc — wr)z,Brl_ + C(wc — we)z,Bel_
i i i

a,.pc,,pr. . pe. ;
s.t. Zaiyl. =0
e, + B, + Pe. =1
Clw, — wc)z,Brl_ +C(2wr —w, - we)z,Bel_ =0
0<a, <Cwpc +Cw pr,+Cw fe,

pc,, pr,, Pe, 2 0.
8. The method of claim 1, wherein a decision function of the classifier
comprises:
+1, ifZaiyl.K(xl.,x)—b >

f(x)=1 -1, ifZal.yl.K(xi,x)—bS—g

0, if-e< Z%%K(pr)_ b<eg
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9. A machine readable storage medium comprising instructions executable

by a data processing machine to perform a method for classifying a tissue sample, the

method comprising:

training a classifier to determine a rejection region of biomedical spectra
data corresponding to tissue samples that are likely to be misclassified;

classifying the tissue sample if biomedical spectra data corresponding to

the tissue sample is not in the rejection region; and

withholding from classifying the tissue sample if the biomedical spectra

data corresponding to the tissue sample is in the rejection region.

10.  The machine readable storage medium of claim 9, wherein training the

classifier comprises formulating a training problem as a convex optimization problem

dual training algorithm.

11.  The machine readable storage medium of claim 9, wherein the biomedical

spectra data comprises ESS data.

12. A system configured to classify a tissue sample comprising:

means for training a classifier to determine a rejection region of
biomedical spectra data corresponding to tissue samples that are likely to be
misclassified; and

means for classifying the tissue sample if biomedical spectra data

corresponding to the tissue sample is not in the rejection region and withholding
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from classifying the tissue sample if the biomedical spectra data corresponding to

the tissue sample is in the rejection region.

13.  The system of claim 12, wherein biomedical spectra data comprises ESS

data.

14. A method for classifying a tissue sample comprising:
classifying a first region of biomedical spectra data using a first classifier;
classifying a second region of biomedical spectra data using a second
classifier, the first region being different than the second region; and
combining the classification of the first classifier with the classification of

the second classifier to determine a classification of the tissue sample.

15. The method of claim 14, wherein the biomedical spectra data comprises
ESS data.
16. The method of claim 14, wherein the classification of the first classifier

and the classification of the second classifier is selected from the group consisting of

positive, negative and rejected.

17. The method of claim 14, wherein the first region overlaps the second

region.
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18.  The method of claim 14, further comprising classifying a third region of
the biomedical spectra data using a third classifier and wherein the classification of the
third classifier is combined with the classification of the first classifier and the

classification of the second classifier to determine the classification of the tissue sample.

19. The method of claim 14, wherein classifying the first region comprises

withholding from classifying the first region.

20.  The method of claim 14, wherein classifying the second region comprises

withholding from classifying the second region.

21. The method of claim 14, wherein the first classifier and the second

classifier are support vector machines.

22. The method of claim 14, wherein the first classifier and the second

classifier are support vector machines embedded with error rejection.

23.  The method of claim 14, wherein combining the classification of the first

classifier with the classification of the second classifier comprises using a majority voting

rule.
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24.  The method of claim 14, wherein combining the classification of the first
classifier with the classification of the second classifier comprises using a naive Bayes

rule.

25. The method of claim 14,wherein the first classifier and the second
classifier are configured to classify the first and second regions using a decision function

wherein the decision function comprises:

+1, ifw'x—b>¢
fx)=4 -1, ifwx—b<—¢
0, if-e<w/x—b<eg

26. The method of claim 14,wherein the first classifier and the second
classifier are configured to classify the first and second regions using a decision function

wherein the decision function comprises:
+1, ifZaiyl.K(xl.,x)—b g

f(x): -1, if Z%%K (xl.,x)— b<—¢

0, if-e< Zal.yl.K(xl.,x)— b<eg

27. A machine readable storage medium comprising instructions executable
by a data processing machine to perform a method for classifying a tissue sample, the
method comprising:

classifying a first region of biomedical spectra data using a first classifier;
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classifying a second region of biomedical spectra data using a second
classifier, the first region being different than the second region; and
combining the classification of the first classifier with the classification of

the second classifier to determine a classification of the tissue sample.

28.  The machine readable storage medium of claim 27, wherein the

biomedical spectra data comprises ESS data.

29.  The machine readable storage medium of claim 27, wherein the
classification of the first classifier and the classification of the second classifier is

selected from the group consisting of positive, negative and rejected.

30.  The machine readable storage medium of claim 27, wherein the first

region overlaps the second region.

31.  The machine readable storage medium of claim 27, further comprising
classifying a third region of the biomedical spectra data using a third classifier and
wherein the classification of the third classifier is combined with the classification of the
first classifier and the classification of the second classifier to determine the classification

of the tissue sample.

32.  The machine readable storage medium of claim 27, wherein classifying

the first region comprises withholding from classifying the first region.
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33.  The machine readable storage medium of claim 27, wherein classifying

the second region comprises withholding from classifying the second region.

34.  The machine readable storage medium of claim 27, wherein the first

classifier and the second classifier are support vector machines.

35.  The machine readable storage medium of claim 27, wherein the first
classifier and the second classifier are support vector machines embedded with error

rejection.

36.  The machine readable storage medium of claim 27, wherein combining
the classification of the first classifier with the classification of the second classifier

comprises using a majority voting rule.

37.  The machine readable storage medium of claim 27, wherein combining
the classification of the first classifier with the classification of the second classifier

comprises using a naive Bayes rule.

38.  The machine readable storage medium of claim 27, wherein the first

classifier and the second classifier are configured to classify the first and second regions

using a decision function wherein the decision function comprises:
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S(x)=
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+1, ifw'x—b>¢
-1, ifwx—b<—¢

0, if-e<w/x—-b<eg

39.  The machine readable storage medium of claim 27, wherein the first

classifier and the second classifier are configured to classify the first and second regions

using a decision function wherein the decision function comprises:

S(x)=

+1, ifZal.yl.K(xl.,x)— b>¢
-1, ifZal.yl.K(xi,x)—bS—g

0, if-e< Z%%K(pr)_ b<eg

40. A system configured to classify a tissue sample comprising:

means for classifying a first region of biomedical spectra data;

means for classifying a second region of biomedical spectra data, the first

region being different than the second region; and

means for combining the classification of the first region with the

classification of the second region to determine a classification of the tissue

sample.

41.  The system of claim 40, wherein the biomedical spectra data comprises

ESS data.
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42.  The system of claim 40, wherein the first region overlaps the second

region.

43.  The system of claim 40, further comprising means for classifying a third
region of the biomedical spectra data and wherein the classification of the third region is
combined with the classification of the first region and the classification of the second

region to determine the classification of the tissue sample.

44. A system configured to classify a tissue sample comprising:
an optical probe configured to measure the biomedical spectra data; and
a classification system coupled to the optical probe comprising a support
vector machine with embedded error rejection to classify the biomedical spectra

data.

45.  The system of claim 44 wherein the optical probe is an integrated biopsy

forceps tool.

46.  The system of claim 45 wherein the integrated biopsy forceps tool

comprises an illuminating optical fiber to direct light at tissue to be imaged and a

collecting optical fiber to collect the light scattered in the tissue.

47.  The system of claim 44 wherein the biomedical spectra data is ESS data.
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48.  The system of claim 44 wherein the classification system comprises a
plurality of support vector machines with embedded error rejection to classify the

biomedical spectra data.

49.  The system of claim 48 wherein each of the plurality of support vector
machines with embedded error rejection is configured to classify a different region of the

spectra data.

50.  The system of claim 44 wherein the classification system combines the
outcome of each of the plurality of support vector machines with embedded error

rejection to make a final classification of the biomedical spectra data.

51.  The system of claim 44 wherein the support vector machine is configured
to classify the biomedical spectra data using a decision function wherein the decision

function comprises:

+1, ifw'x—b>¢
fx)=4 -1, ifwx—b<—¢
0, if-e<w/x—b<eg

52.  The system of claim 44 wherein the support vector machine is configured
to classify the biomedical spectra data using a decision function wherein the decision

function comprises:
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+1, ifZal.yl.K(xl.,x)— b>¢g

f(x): -1, if Z%%K (xl.,x)— b<—¢

0, if-e< Zal.yl.K(xl.,x)— b<eg
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SFFS Algorithm
Input:
Y={y|j=1..D}
Quiput:
Xo={x|j=1..kx€¥), k=01.D
InitiaBzation:
X, = k=0
Termination:

Stop when k equals the samber of desired features.

Step 1: clusion
. the most significant featares
xt =argmax J (X, +x)
xe¥-X, with respect to £
K =X +x k=k+1
Step 2: Condifional Exclusion
_ . the least significant
=argmex J (X, —x)
weX, features in X

if J[ X, ~{x7} 1> J (X, then

Xey=X,-x", k=k-1
go to Siep 2

go to Siep 1

else

FIGURE 4
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SFFS Algorithm:
Input:
y={1j=1..0}
Output:
X, =4 =Lk x €Y} E=01..D
Initialization:
X = 3, k=0
Termination:

Stop when k equals the number of desired features.
Step 1: Inclusion

x = argmaxJ(Xk +x)

xer-X,

the most significant features
with respect to X,

X =X +x;

Eel ’

k=k+1
Step 2: Conditional Exclusion

x = argmaxJ(Xk —x)

xeX,

it 7 (x,~ { Y7 (x,.,) then

X :kax’; k=k-1

k-1

{the least significant

features in X,

go to Step 2
else
go to Step 1
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Procedure to Analytically Optimize Two Lagrange Multipliers:

% @
Step 1: Determine the initial value of —— g(az, s) and — g(al, s) based on the interval where
oa, oa,

a, and a, lies.

- 1 @ % .
Step 2: Compute a,” =a, ——| ¥, (El —E, )+ fg(az, 52)7 K fg(al, £, )| with the values
n oa, oa,

@ % o
of — g(az, s) and — g(al, s) as determined in Step 1.
oa, oa,

Step3: Clip )" asto L<a)” <H.
Step 4: Compute o, = a, + s(ot2 - )
Step 5: Determine initial ascent direction as sgn (a;'"w -a, )
Step 6: Check that «,” and «” lies within the current interval:
1. If & and o lie within the current interval;
Then Stop, maximum has been found.
2. If & is greater than the upper bound;
Then a,” = upper bound and recompute @™ = &, +s (0:2 -a” )
3. If ¢ is greater than the upper bound;

Then o = upper bound and recompute &)™ = a, + s (0:l -a” )
next 1 a next a next .
Step 7: Compute a,” =a, ——| , (El - E2)+ fg(az ,52)7 s*g(o{2 s 51) with the
n oa, oa,

% %
values of — g(ot;'m s 5) and — g(al" - 5) determined by the subsequent intervals based on
oa, oa,
the ascent direction.

1. Clipa,™ asto L<a,” <H.
2. Determine the ascent direction sgn (a:m —a” )

If the ascent direction changes;
Then Stop, maximum has been found;

Else set &)” =),
compute a,” = @, + s(ot2 -a” ),
Go to Step 6.
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KKT Violations:

Let R =y, (w’x,. - b)— 1,

i.
ii.
iii.
iv.
V.
Vi.

Vii.

If ;>0 and R, >0

If a,<Cw, and R, <0

If Cw, <a; <Cw, and Ri;t—(l—g)

If Cw, <a;<Cw, and Ri¢—(l+g)

If @,=Cw, and R20 or R<-(1-¢)

If @,=Cw, and R>-(1-¢) or R <-(1+¢)
If a,=Cw, and RiZ—(l+g)
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AdaBoost Training Algorithm

Input: Training samples(xi,y,-) fori=1,...,1

Initialize: W, (X,-)= Yl fori=1,...,1

Dofor t=1,....T

1. Train base learner with respect to weighted sample set {X i Vis Wt} and obtain
hypothesis g, : X > {i 1}

2. Calculate the training error e, of g, :

o= ;zlw,(x,»z(gt(x,-);c ),

abortif ¢, =0 or e, 21/2— A, where A is a small constant.

3. Set
(1_ er)

e,

b, =log

t
4. Update weights W, :

Wen (Xi ) =W, (Xi )exp{— b,[(g, (Xi) =i )}/Zr
where Z, is a normalization constant, such that Zszl W (X,- ) =1.

Output: Final hypothesis
T

f(X)= thg,(x), where ¢ = T’
(=)

FIGURE 14
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