用于经导管治疗瓣膜返流的系统和方法

摘要

本发明涉及用于在二尖瓣返流的经导管治疗中使用的装置，具体是用于横跨瓣膜植入的接合辅助装置；包括接合增强元件和用于植入的锚定件的系统；包括接合增强元件和下列各项中的一种或多种的系统；经中隔的管、锚定件传送导管、植入物传送导管、和夹具传送导管；以及用于接合元件横跨心脏瓣膜的经导管植入的方法。
1. 一种用于治疗心脏瓣膜的接合不良的植入物，所述心脏瓣膜具有瓣环以及具有开启构型和关闭构型的第一和第二瓣叶，所述植入物包括：

接合辅助体，所述接合辅助体具有被配置成朝向后瓣叶设置的第一接合表面、被配置成朝向前瓣叶设置的相反的第二表面；

至少一个被配置成从所述接合辅助体延伸的带，所述带包含具有至少一个曲线的预制形状的形状记忆材料，所述带能够从第一压缩构型移动至第二扩张构型，其中所述带被配置成所述带的第一表面和与所述带的所述第一表面相反的所述带的第二表面之间的天然瓣叶上提供压缩力，所述压缩力足以将所述接合辅助体固定在所述天然瓣环的附近。

2. 根据权利要求1所述的植入物，其中所述带包含镍钛合金。

3. 根据权利要求1所述的植入物，其中所述带是自扩张的。

4. 根据权利要求1所述的植入物，所述植入物还包括多个带。

5. 根据权利要求1所述的植入物，其中所述带被配置成接合左心室壁。

6. 根据权利要求1所述的植入物，其中所述带被配置成接合后瓣叶而不接合前瓣叶。

7. 根据权利要求1所述的植入物，其中所述带抵抗所述植入物的运动。

8. 根据权利要求1所述的植入物，所述植入物还包括至少一个孔眼，所述孔眼被配置成接受穿过其的所述键件的一部分。

9. 根据权利要求8所述的植入物，所述植入物还包括被配置成将所述键件定固至所述接合辅助体的夹具和小梳子。

10. 一种用于治疗心脏瓣膜的接合不良的植入物，所述植入物包括：

被配置成改善所述心脏瓣膜的功能的植入物主体，和至少一个被配置成从所述植入物主体延伸的带，所述带包含具有至少一个曲线的预制形状的形状记忆材料，所述带能够从第一压缩构型移动至第二扩张构型，其中所述带被配置成在第一表面和与所述带的所述第一表面相反的第二表面之间的天然瓣叶上提供压缩力，所述压缩力足以将所述植入物固定在所述天然瓣环的附近。

11. 一种用于治疗心脏瓣膜的接合不良的植入物，所述心脏瓣膜具有瓣环以及具有开启构型和关闭构型的第一和第二瓣叶，所述植入物包括：

接合辅助体，所述接合辅助体具有被配置成朝向后瓣叶设置的第一接合表面、被配置成朝向前瓣叶设置的相反的第二表面；

能够在第一目标位置处选择性地展开的第一键定件和与所述第一键定件耦合的第一轨道，

能够独立于所述第一键定件的展开而在心脏的第二位置处选择性地展开的第二键定件和与所述第二键定件耦合的第二轨道，

其中所述接合辅助体被配置成沿着所述第一轨道和所述第二轨道滑动至植入位置。

12. 根据权利要求11所述的植入物，其中所述接合辅助体被配置成当被折叠以适合在递送导管内时沿着所述第一轨道和所述第二轨道滑动。

13. 根据权利要求11所述的植入物，其中所述接合辅助体被配置成当退出递送导管后扩张时沿着所述第一轨道和所述第二轨道滑动。

14. 根据权利要求11所述的植入物，其中所述第一轨道是缝合线。

15. 根据权利要求11所述的植入物，其中所述第一轨道是导丝。
16. 根据权利要求11所述的植入物，其中当所述接合辅助体沿著所述第一轨道和所述第二轨道滑动时，心室锁定件展开并且相对于所述接合辅助体保持。

17. 根据权利要求16所述的植入物，其中当所述接合辅助体沿著所述第一轨道和所述第二轨道滑动时，所述心室锁定件穿越二尖瓣。

18. 根据权利要求11所述的植入物，所述植入物还包括被配置成将所述第一锁定件固定至所述接合辅助体的夹具和小拭子。

19. 根据权利要求18所述的植入物，所述植入物还包括被配置成将所述第二锁定件固定至所述接合辅助体的夹具和小拭子。

20. 根据权利要求11所述的植入物，其中所述第一轨道被配置成一旦将第一锁定件固定至所述接合辅助体即被移除。
用于经导管治疗瓣膜反流的系统和方法

对相关申请的引用

技术领域
本发明总体上提供通常用于治疗心脏瓣膜疾病和/或用于改变一个或多个体瓣膜特性的改进的医疗装置、系统和方法。本发明的实施方案包括用于治疗二尖瓣反流（mitral valve regurgitation）的植入物。

人类心脏通过静脉从器官和组织接收血液，左心室将血液通过肺部，在那里血液变为富含氧，并将含氧血液推送到心脏到达动脉，使得人体的器官系统能够提取氧气用于适当的功能。缺氧血液流回心脏，在那里其被再次泵送至肺部。

心脏包括四个腔室：右心房（RA）、右心室（RV）、左心房（LA）和左心室（LV）。在整个心动周期中，心脏的左侧和右侧的泵送作用一般同步发生。

心脏具有通常被配置成在心室周期中在正确的方向上选择性地传输血液的四个瓣膜。将心房与心室分开的瓣膜被称为房室（或AV）瓣。左心房与左心室之间的AV瓣是二尖瓣。右心房与右心室之间的AV瓣是三尖瓣。肺动静脉瓣将血流导向肺动脉，并从那里流向肺部：血液通过肺静脉返回左心房。主动脉瓣引导血流通过主动脉并从那里流向周边。通常在心室之间或心房之间没有直接连接。

机械心搏（mechanical heartbeat）由遍布心脏组织的电冲动（electrical impulse）触发。心脏瓣膜的开启和关闭可主要由于腔室之间的压力差而发生，这些压力由被动充盈或腔室收缩引起。例如，二尖瓣的开启和关闭可由于左心房与左心室之间的压力差而发生。

在心室充盈（舒张期）开始时，主动脉瓣和肺动脉瓣关闭，以防止从动脉进入心室的回流。此后不久，AV瓣开启以允许从心房进入相应心室的无阻碍流动。在心室收缩期（即，心室排空）开始后不久，三尖瓣和二尖瓣正常关闭，从而形成防止从心室回流进入相应心房的密封。

不幸的是，AV瓣有可能损坏或者可能以其他方式无法正常发挥功能，从而导致不适关闭。AV瓣是复杂的结构，通常包括瓣环、瓣叶、腱索和支持结构。各心房通过心房前庭与其瓣膜连接。二尖瓣具有两个瓣叶；三尖瓣的类似结构具有三个瓣叶，并且各瓣叶的相应表面彼此间的相对或接合有助于提供瓣膜的关闭或密封，从而防止血液在错误的方向上流动。在心室收缩期期间瓣叶不能密封被称为接合不良（malcoaptation），可使血液通过瓣膜反向流动（返流）。心脏瓣膜返流可对患者产生严重的后果，往往导致心脏衰竭，减少的血流量、较低的血压和/或减少的到达人体组织的氧流量。二尖瓣返流还可引起血液从左心房
相关领域描述

多种疗法已应用于治疗二尖瓣返流，并且还有其他疗法可能已被提出但尚未实际用于治疗患者。虽然已经发现几种已知的疗法对于某些患者有益，但是仍然希望有更多的选择。例如，可将药物学治疗（例如利尿剂和血管扩张剂）用于患有轻度二尖瓣返流的患者，以帮助减少回流左心房的血液量。然而，药物可能受困于患者依从性不足。相当数量的患者可能偶尔（或甚至经常）无法服药，尽管存在慢性和/或进行性恶化的二尖瓣返流的潜在严重性。二尖瓣返流的药理学治疗也可能不方便，往往是无效的（尤其是病情恶化时），并可伴有显著的副作用（例如低血压）。

多种手术疗法也被提出和/或应用于治疗二尖瓣返流。例如，心内直视手术（open-heart surgery）可更换或修复功能失调的二尖瓣。在瓣环成形术环修复（annuloplasty ring repair）中，任选地使用通过机械式手术瓣环成形术缝合环的缝合线来提供接合，二尖瓣后环可沿周边缩小尺寸。开放式手术还可寻求使瓣叶再成形和/或另外更改支持结构。无论如何，开放式二尖瓣手术通常是创伤性很大的治疗，其在患者在心肺机上全身麻醉下且胸部切开的情况下进行。并发症可能是常见的，并且鉴于心内直视手术的发病率（潜在死亡率），其机成为一个挑战—病情越重的患者可能越需要手术，但是越不能承受手术。成功的开放式二尖瓣手术结果也可能完全依赖于手术技能和经验。

鉴于心内直视手术的发病率和死亡率，创新者已寻求创伤性较小的手术疗法，使用机器人或通过内窥镜进行的操作过程往往仍然颇具创伤性，并且还可能费时、昂贵，且至少在某些情况下完全依赖于外科医生的技能。对这些有时体弱的患者施加更小的创伤将是可取的，如将会提供利用广布技能的相当数量的医生能够成功实施的治疗那样。为此，已提出一些据称创伤性较小的技术和方法。其中包括寻求从冠状窦内将二尖瓣环再成形的装置；通过系紧天然瓣环的上面或下面而试图将瓣环再成形的装置；使瓣叶融合（模仿Alfieri缝合）的装置；使左心室再成形的装置，等。

或许是最广为所知，已开发出多种二尖瓣替换植入物，这些植入物一般替换（或置换）天然瓣叶并且依靠手术植入结构来控制心脏腔室之间的血流路径。虽然这些不同的方法和工具已满足不同的接受程度，但是作为大多数或所有患有二尖瓣返流患者的理想疗法，迄今没有一项获得广泛认可。

由于已知的微创二尖瓣返流疗法和植入物的挑战和缺点，已经提出更进一步的替代疗法。一些替代性提议呼吁植入结构在整个心搏周期保持在瓣环内。这些提议中的一组包括保持植入在通过瓣膜开口在心房与心室之间延伸的系索或刚性杆上的圆柱形球囊等。另一组依赖于弓形环结构等，该结构往往与越过瓣膜延伸的支撑件或结构横梁（cross-member）结合，以便错定植入物。不幸的是，天然瓣叶与球囊或其他同轴体的整周之间的密封可能表现出挑战性，同时如果允许相互连接横梁的支撑件或错定件弯曲，则每次心搏期间天然瓣环周围的显著收缩可能会导致长期植入过程中的显著疲劳失效问题。此外，瓣膜组织的显著运动可使植入物的准确定位具有挑战性，而无论植入物是刚性的还是柔性的。

鉴于上述情况，期望提供改进的医疗装置、系统和方法。特别期望提供用于治疗二尖瓣返流和其他心脏瓣膜疾病，和/或用于改变一种或多种其他人体瓣膜特性的新的技术。仍然需要一种能够直接增强瓣叶接合（而非间接地通过瓣环或心室再成形），不会通过融合
或以其他方式破坏瓣环解剖结构，但可简单且可靠地配置，并且没有过多的成本或手术时间的装置。如果这些新的技术能够使用创伤性较小的方法来实施，不使心脏停停或依靠心肺机进行配置，并且不依赖于外科医生的特殊技能提供改进的瓣膜和/或心脏功能，则将是特别有益的。

[0018] 发明概述

[0019] 本发明总体上提供改进的医疗装置、系统、和方法。在一些实施方案中，本发明提供用于治疗二尖瓣返流和其他瓣膜疾病的新型的植入物、植入物系统，和方法。在一些实施方案中，植入物包括但不单是其中一瓣膜结构与瓣膜结构之间来回移动时保持在血液路径内的接合辅助体。接合辅助体可以横跨瓣膜口的宽度的一点、大范围或全部横向延伸，允许天然瓣叶中的至少一个和植入物主体之间的接合。在一些实施方案中，还公开了植入物，其中包括但不限于接合辅助体、心脏贴片(cardiac patch)、替换心脏瓣膜、瓣环成形术环、起搏器、传感器，或其他装置。至少一个带(例如，夹具)可以被配置成从植入物主体延伸。所述带可以由具有至少一个曲线的预制形状的形状记忆材料制成。所述带可以是可从第一压缩形状移动至第二扩张形状的。所述带可以被配置成提供力，如夹在人体结构如心内结构上的压缩力。在一些实施方案中，心内结构是单个天然瓣叶，并且在带的第一表面和带的第二表面相反的带的第二表面之间施加力。压缩力可以足以将所述植入物固定在所述瓣环的附近。

[0020] 在一些实施方案中，提供了用于治疗心脏瓣膜的接合不良的植入物。心脏瓣膜可以具有瓣环(annulus)以及具有开启构型和关闭构型的第一和第二瓣叶。植入物可以包括接合辅助体，所述接合辅助体具有被配置成朝向后瓣叶设置的第一接合表面、被配置成朝向前瓣叶设置的相反的第二表面。植入物可以包括至少一个被配置成从接合辅助体延伸的带。所述带可以包含具有至少一个、两个、或更多个离散曲线的预制形状的形状记忆材料。所述带可以是可从第一压缩形状移动至第二扩张形状的。所述带可以被配置成在第一表面和与带的第一表面相反的第二表面之间的天然瓣叶上提供压缩力。压缩力可以足以将植入物、如接合辅助体固定在所述天然瓣环的附近。所述带可以被配置成提供植入物的心室连接。带可以包含镍钛合金。所述带可以是自扩张的。植入物可以包括多个带。所述带可以被配置成接合左心室壁。所述带可以被配置成接合前瓣叶或后瓣叶。所述带可以抵抗所述植入物的运动。植入物可以包括至少一个被配置成接收穿过其的锚定件的一部分的孔眼。植入物可以被配置成将所述锚定件固定至所述接合辅助体的夹具和小抿子(pledget)。

[0021] 在一些实施方案中，提供了用于治疗心脏瓣膜的接合不良的植入物。心脏瓣膜可以具有瓣环以及具有开启构型和关闭构型的第一和第二瓣叶。植入物可以包括接合辅助体，所述接合辅助体具有被配置成朝向后瓣叶设置的第一接合表面、被配置成朝向前瓣叶设置的相反的第二表面。植入物可以包括能够在第一目标位置处选择性地展开(deployable)的第一锚定件。植入物可以包括与所述第一锚定件耦合的第一轨道。植入物可以包括能够独立于所述第一锚定件的展开而在心脏的第二位置处选择性地展开的第二锚定件。植入物可以包括与所述第二锚定件耦合的第二轨道。接合辅助体可以被配置成沿着第一轨道和第二轨道滑动至植入位置。接合辅助体可以被配置成当被折叠时适合于在传送导管内沿着第一轨道和第二轨道滑动。接合辅助体可以被配置当退出传送导管后扩张时沿着第一轨道和第二轨道滑动。第一轨道可以是缝合线。第二轨道可以是缝合线。当接合
辅助体沿着第一轨道和第二轨道滑动时，心室辅助件可以展开并且与接合辅助体相对保持。当接合辅助体沿着第一轨道和第二轨道滑动时，心室辅助件可以存储二尖瓣。植入物可以包括被配置成将第一接合件固定至接合辅助体的夹具和小手柄。植入物可以包括被配置成将第二接合件固定至接合辅助体的夹具和小手柄。第一轨道可以被配置成一旦将第一接合件固定至接合辅助体即被移除。第二轨道可以被配置成一旦将第二接合件固定至接合辅助体即被移除。

在一些实施方案中，用于治疗心脏瓣膜的接合不良的植入物包括具有第一接合表面、相反的第二表面的接合辅助体，每个表面以第一横向边缘为边界：第一接合件可以在瓣环上的第二瓣叶附近的心脏的第一目标位置处选择性地展开，并且可以与上边缘附近的接合辅助体连接；第二接合件能够独立于所述第一接合件的展开而在心室中的心脏的第二位置处选择性地展开，以使接合辅助体当与第二接合件和第二接合件二者连接时通过瓣膜从第一目标位置延伸至第二目标位置；并且其中第二接合件是能够接合左心室壁的心室接合件。

图1A-1F示意图地示出了如背景部分和下面所述、并且可以与本文所述的植入物和系统相互作用的一些心脏组织和二尖瓣。

图2A示出了简化的心脏横截面，示意图地示出了舒张期期间的二尖瓣功能。图2B示出了简化的心脏横截面，示意图地示出了收缩期期间的二尖瓣功能。

图3A-3B示出了简化的心脏横截面，示意图地示出了在二尖瓣叶接合不良背景下的收缩期期间的二尖瓣返流。

图4A示出了格式化的心脏横截面，示出了在功能性二尖瓣返流背景下下的二尖瓣接合不良。图4B示出了格式化的心脏横截面，示出了在退行性二尖瓣返流背景下的二尖瓣接合不良。

图5A示意性地示出了接合辅助装置的实施方案；图5B示意性地示出了图5A的接合辅助装置的顶部图；图5C-5D示意性地示出了图5A的接合辅助装置的侧视图。

图6A示意性地示出了在其折叠状态下的图5A的接合辅助装置；图6B示意性地示出了在展开时的图5A的接合辅助装置；图6C示意性地示出了具有连接支柱的展开的图5A的接合辅助装置；图6D示意性地示出了展开的图5A的接合辅助装置。

图7示意性地示出了经中隔膈管的实施方案。

图8示意性地示出了经中隔管段的实施方案。

图9A示意性地示出了植入物递送导管和图7的经中隔膈管的实施方案；图9B示意性地示出了接合辅助装置与植入物递送导管的连接；图9C示意性地示出了接合辅助装置在两个轨道上的前进。
[0034] 图10示性地示出了夹具传递导管的实施方案。
[0035] 图11A示性地示出了经中隔鞘管的插入；图11B示性地示出了第一倒锥形件的接合和锥头件的放置；图11C示性地示出了在两个轨道上展开和前进的接合辅助装置；图11D示性地示出了心室锥形件的接合；图11E示性地示出了夹具和小棉子的接合；图11F示性地示出了横跨二尖瓣展开的接合辅助装置。
[0036] 图12A示性地示出了最初在图10的夹具传递导管的次级管（hypotube）上加载的夹具和小棉子；图12B示性地示出了夹具与锥头件缝合线的接合；图12C示性地示出了压接在导向缝合线上的次级管；图12D示性地示出了导向缝合线的切割。
[0037] 图13示性地示出了接合辅助装置的实施方案。
[0038] 图14A示性地示出了经间隔导管的插入；图14B示性地示出了图13的折叠的接合辅助装置和锥头件的放置；图14C示性地示出了在导丝上展开和前进的接合辅助装置；图14D示性地示出了心室锥形件的接合。
[0039] 图15示性地示出了接合辅助装置的实施方案。
[0040] 图16示性地示出了接合辅助装置的实施方案。
[0041] 图17A示性地示出了接合辅助装置的实施方案；图17B示性地示出了接合辅助装置的实施方案的侧视图。
[0042] 图18A示性地示出了传递导管的实施方案；图18B示性地示出了横跨二尖瓣展开的图17A的接合辅助装置；图18C示性地示出了横跨二尖瓣展开的接合辅助装置的顶视图。
[0043] 详细描述
[0044] 在本文中所公开的是通常用于治疗二尖瓣返流和包括三尖瓣返流在内的其他瓣膜疾病的改进的医疗装迟，系统，和方法。尽管以下描述包括对具有两个瓣叶的瓣膜如二尖瓣中的前瓣叶的提及，应理解的是“前瓣叶”可以是指具有多个瓣叶的瓣膜中的一个或多个瓣叶。例如，主动脉瓣或三尖瓣通常具有3个瓣叶，因此“前”可以是指内侧瓣叶、外侧瓣叶、和后瓣叶中的一个或两个。本文所述的植入物总体上将包括接合辅助体（在本文中有称为瓣膜体），当瓣膜的瓣叶在开启的瓣膜构型（前瓣叶与瓣膜体分开）和关闭的瓣膜构型（前瓣叶与瓣膜体的相对的表面接合）之间来回移动时，接合辅助体通常沿着血流路径。瓣膜体将设置在天然瓣叶之间通过下列方式封件由天然瓣叶的接合不良导致的间隙：为天然瓣叶中的至少一个提供用于接合的表面，同时有效地替换瓣膜的在收缩期间将会堵塞的区域中的第二天然瓣叶，如果其功能正常。间隙可以是横向的（例如可以由扩张的左心室和/或二尖瓣环引起）和/或轴向的（例如当瓣膜应关闭时一个瓣叶脱垂或被流体压力推出瓣环以外的情形）。
[0045] 在其他用途中，本文所述的接合辅助装置、植入物和方法可以被配置用于通过形成天然二尖瓣叶中的至少一个可以在其内密封的人工接合区来治疗功能性和/或退行性二尖瓣返流（MR）。本发明的结构和方法将在很大程度上适合于此应用，尽管备选实施方案可以被配置用于心脏和/或身体的其它瓣膜，包括三尖瓣、外周脉管系统的瓣膜、下腔静脉等。
[0046] 参照图1A-1D，示出了心脏的四个腔室，左心房10、右心房12、左心室14、和右心室16。二尖瓣20设置在左心房10和左心室14之间。还示出了将右心房12和右心室16隔开的三尖瓣22、主动脉瓣24、和肺动脉瓣26。二尖瓣20由两个瓣叶前瓣叶30和后瓣叶32组成。在健
康的心脏中，两个瓣叶的边缘在收缩期期间在接合区34相对。

【0047】作为心骨骼的一部分，纤维环36提供了用于二尖瓣20的两个瓣叶30、32（被称为前瓣叶30和后瓣叶32）的连接。瓣叶30、32通过与瓣索40的连接而被轴向支持。瓣索40进而连接至左心室14的乳头肌42、44之一或二者。在健康的心脏中，瓣索40支持结构牵拉二尖瓣叶30、32，允许瓣叶30、32在舒张期期间容易开启但是抵抗在心室收缩期期间形成的高压。除了支持结构的牵拉作用之外，瓣叶30、32的形状和组织一致性也有助于促进有效的密封或接合。（在图1E中示意性地示出三维接合区（CZ）的侧向横截面46的情况下，前瓣叶和后瓣叶的前缘沿漏斗形的接合区34汇合在一起。）

【0048】前和后二尖瓣叶30、32形状不相似。前瓣叶30更牢固地连接至覆盖中心纤维束（心骨骼）的瓣环，并且比后瓣叶32稍硬，所述后瓣叶32连接至更易动的后二尖瓣环。封闭区域的大约80%是前瓣叶30，与合心（commisasure）50、52相邻，在瓣环36上或前，存在左（横向（lateral））56和右（间隔（septal））60纤维三角，其在二尖瓣环与主动脉的非冠状窝（non-coronary cusp）的基部融合的情况下形成（图1F）。纤维三角56、60构成了中心纤维束62的间隔和横向延伸。在一些实施方案中，由于为与一个或多个瓣环或心房键定件的稳定接合提供了牢固区域，纤维三角56、60可以具有优点。瓣叶30、32之间的接合区34不是简单的线，而是弯曲的漏斗形表面界面。第一50（横向或左）和第二52（间隔或右）连接是前瓣叶30与后瓣叶32在瓣环36直接的地方。如在图1C、1D、1F的心房的轴向视图中最清楚地看到的，接合区34的轴向横截面总体上显示出曲线Cl，其与瓣环的质心CA以及舒张期期间通过瓣膜的开口C0分开。此外，瓣叶边缘呈扇贝形，后瓣叶32比前瓣叶30更加如此。接合不良可以在这些A-P（前-后）段对A1/P1/A2/P2/A3/P3中的一个或多个之间，使得接合不良特性可以沿着接合区34的曲线变化。

【0049】现在参照图2A，心脏的正常工作的二尖瓣20在舒张期期间开启，以允许血液沿着流动路径FP从左心房10向左心室14流动，从而使左心室14充盈。图2B中所示，在收缩期期间，首先被动地之后主动地通过心室压力的增加，工作的二尖瓣20关闭并有效地使左心室14相对于左心房10密封，从而允许左心室14周围的心室组织的收缩推进血液通过整个脉管系统。

【0050】参照图3A-3B和4A-4B，存在二尖瓣20的瓣叶边缘不能充分地相对从而允许血液在收缩期从左心室14返流入左心房10的几种情况或疾病状态。无论特定患者的具体病因如何，瓣叶在心室收缩期期间不能密封被称为接合不良并且出现二尖瓣返流。

【0051】通常，接合不良可以由一个或两个瓣叶30、32的支持结构的过度牵拉或者支持结构的过度拉伸或撕裂所导致。其它较不常见的原因包括心脏瓣膜的感染、先天性畸形和创伤。如在图3A中所示，瓣膜功能障碍可以由被称为二尖瓣膜的瓣索40拉伸所致，并且在一些情况下，可以由被称为连枷状瓣叶64的瓣索40或乳头肌44的撕裂所致。或者如果瓣叶组织本身是多余的，则瓣膜可能脱垂，使得接合的后发在进入左心房10中更高的位置，心室收缩期66期间在左心房10中更高的位置开启瓣膜20。瓣叶30、32之一可以经历脱垂或成为连枷。这种状况有时被称为退行性二尖瓣返流。

【0052】如在图3B中所示，在过度牵拉的情况下，结构正常的瓣膜的瓣叶30、32可能因为瓣环36的扩大或形状变化，即所谓的瓣环扩张70，而无法正常工作。这种功能性二尖瓣返流通常由心肌衰竭和伴随的心室扩张导致。并且功能性二尖瓣返流所造成的过度容量负荷本身
可能会加剧心脏衰竭、心室和瓣环扩张，从而使二尖瓣反流恶化。

图4A-4B示出了在功能性二尖瓣反流（图4A）和退行性二尖瓣反流（图4B）中在收缩期期间的血液回流BF。图4A中瓣环36的增加的尺寸连同归因于左心室室内和头肌L、R、A、A的肥大的增加的牵拉阻止了前瓣叶30和后瓣叶32相对，从而阻止了接合。在图4B中，前房10的撕裂导致后瓣叶32向上到左心房10中的脱垂，这阻止了与前瓣叶30相对。在任何一种情形中，结果均是血液回流至左心房10中，这降低了左心室压缩的有效性。

图5A-5D示出了包括主体82的接合辅助装置80的实施方案的四个视图。主体82包
括朝向接合不良的天然瓣叶（在二尖瓣20的情况中，为后瓣叶32）设置的第一表面84，以及可以朝向前瓣叶30设置的第二表面86。第一和第二表面84、86可以被认为是接合表面。可以
将主体82的上边缘90弯曲以匹配瓣环36或相邻心房壁的大体形状。接合辅助装置80可以包括被配置成提供对接合辅助装置80的结构支持的框架88。在一些实施方案中，框架88是可折叠的以在如在本文中所描述的递送导管内适合。

接合辅助装置80可以包括一个或多个使装置稳定的锁定件，如心房锁定件和/或心室锁定件，并且锁定件任选地提供多余的固定。如在图5A中所示，植入物具有横向连接锁定件92，其可以有助于维持接合辅助装置80在心脏中展开的形状和位置。在一些实施方案中，将横向连接锁定件92放置在连接50、52的部位处的瓣叶30、32下。接合辅助装置80还可以还具有后锁定件94。在一些实施方案中，后锁定件94结合在后瓣叶32下的区域。如在图5A中所示，后锁定件92和后锁定件94可以各自包括具有偏心的带98，以使它们可以施加力并且靠在心脏的组织如心室。带98起锁定件的作用并且抵抗接合辅助装置80的运动，并且在一些实施方案中可以在不穿透心肌的情况下完成。带98相对解剖特征的定位可以提供接合辅助装置80的稳定性。带98可以包括生物惰性材料如，例如，铂/Ir、镍钛合金、和/或不锈钢。在一些实施方案中，带98包含包括NiTi。在一些实施方案中，带98具有预定的曲线。与所选择的形状组合的材料选择提供了弹簧载荷的锁定件92、94。带98在从框架88如向下的方向上延伸。带98弯曲并且之后向上延伸，形成大体上U形的构型。带98包括被配置成与组织邻接的圆形上表面。考虑了用于带98的其他形状。如在本文中所公开的，如在图6A中所示，接合辅助装置80在递送导管100的内部折叠。弹簧载荷的带98能够在递送导管内折叠。在离开导管时，弹簧载荷的带98迅速膨胀为预知的形状。在一些实施方案中，提供带98用于心室连接。带98允许接合辅助装置80与组织的非常快速的连接，因为带98不依赖于瓣环缝合线并且在一些实施方案中不需要打结。例如，带98的展开可以比接合螺旋锁定件更快。

在一些实施方案中，接合辅助装置80包括瓣环锁定件96。在一些实施方案中，如在图5A中所示，瓣环锁定件96可以是可径向扩张的支架状结构。类似于连合锁定件92，瓣环锁定件96可以被折叠以在本文所述的导管内部适合。在一些实施方案中，可以将瓣环锁定件96递送至二尖瓣20的部位。在一些实施方案中，瓣环锁定件92预期用于在二尖瓣环36中放置。瓣环锁定件96可以包括多个用于与周围组织的固定角的倒钩。在一些实施方案中，瓣环锁定件96可以被由径向力简单地固定在适当位置。如果包括瓣环锁定件96，则其可以覆盖有生物相容性材料如ePTFE或Dacron，以为了额外的稳定性而促进瓣环锁定件的内皮化和任选的慢性组织长入或包封。
织中。主体82可以包括一个或多个特征件如孔眼或系绳以与心房锚定件耦合。

[0058] 接合辅助装置80具有允许其穿越在左心房10和左心室14中的连接部位之间的二尖瓣20的几何形状，以为前瓣叶30提供用于接合的接合表面86，并且连接至左心房10或瓣环36，以使其前瓣叶32有效地密封。在移除或已经移除后瓣叶32的情况中，接合辅助装置80将后瓣叶32替换。

[0059] 可以放置不同尺寸的接合辅助装置80，尤其是不同尺寸的主体82，以便于天然前瓣叶30与接合表面86在适当形成的接合点相对，这阻止了左心室14收缩期间的血液流动。为了将此完成，提供了各种尺寸的接合辅助装置80，并且不同的尺寸被配置成适合不同的解剖结构。如在图5B的顶视图中看到的，存在作为连接间距离的尺寸A。这个距离可以，例如，在约20mm至约80mm的范围内，并且在一个实施方案中为约40mm，存在作为前-后直径的尺寸B。这个直径可以，例如，在约20mm至约60mm的范围内，并且在一个实施方案中为约35mm，存在作为前-后投影的尺寸C。取决于二尖瓣返流（MR），这个尺寸可以在，例如，约10mm至约30mm的范围内。对于退行性MR来说，这个尺寸可以，例如，在约10mm至约20mm的范围内。对于功能性MR来说，这个尺寸可以，例如，在约20mm至约30mm的范围内。如在图5D中所示，存在作为接合辅助装置80高度的尺寸D。这个尺寸可以，例如，在约20mm至约50mm的范围内，并且在一个实施方案中为约25mm。

[0060] 现在转向图6A-6D，示出了接合辅助装置80的实施方案。在一些实施方案中，可以看出，接合辅助装置80在递送导管100的内部折叠，包括瓣环锚定件66和连结锚定件92的结构的接合辅助装置80的框架88的支架状结构允许接合辅助装置80被折叠。

[0061] 在图6B-6C中所示的实施方案中，多个支柱102可以与接合辅助装置80连接。支柱102可以在任何数量的位置，例如上边缘90、瓣环锚定件94、连结锚定件92与接合辅助装置80连接，与本文所述的心室套筒（hub）连接。支柱102将接合辅助装置80与导管100和/或植入物引导器104连接。每个支柱102可以包括单个纵向元件或多倍以包括两个以上的链。单个支柱102可以包括镍钛合金丝的链、缝合线，或朝向植入物的上面成环的其他材料。这个环区域可以提供在覆盖材料中的障碍物周围的强化。在一些实施方案中，支柱102可以包括夹具、钳夹、粘合剂，或在支柱102和接合辅助装置80之间形成可释放连接的另外的机构。支柱102可以如示出的放置以使它们被相对均匀地分开，或者可以朝向接合辅助装置80的中心或横向边缘集中。支柱102可以是与可以展开至包括二尖瓣环36，左心房10，左心耳、纤维三角56中的一个，或左心室14的多个位置中的锚定件92、94、96连接的。

[0062] 如在图6A-6D中所示，接合辅助装置80的主体82可以通过递送导管100递送并且可以能够从较小的轮廓扩张成较大的轮廓，达到适用于在瓣膜的天然瓣叶30、32之间放置的尺寸。接合辅助装置80在其从递送导管100的尖端露出时扩张。在一些实施方案中，如由图6B中箭头所示的，将递送导管100后拉以露出接合辅助装置80。如在图6D中所示，例如通过释放支柱102，将露出的接合辅助装置80从递送导管100拆下。

[0063] 现在转向植入，可以通过微创或经导管技术使用递送系统106植入接合辅助装置180。接合辅助装置180可以基本上与本文所述的接合辅助装置80相似。递送系统106可以包括以下装置中的一个或多个：图7中所示的经中隔瓣管110、图8中所示的锚定件递送导管112、图9A-9B中所示的植入物递送导管114，和图10中所示的夹具递送导管116。如在图7中所示，递送系统106可以包括具有可以由聚合物或其他材料制成的轴120的经中隔瓣管110。
在一些实施方案中，轴120是编织线(braid)或盘管(coil)增强的聚合物轴。在一些实施方案中，轴120具有多个硬度计，如在第一位置的第一较小硬度计和在第二位置的远端或近端的第二较大硬度计。在一些实施方案中，经中隔膜管110是预成形的。轴120可以包括至少一个通透管(例如，两个或更多个通透管)。在一些实施方案中，经中隔膜管110包括可主动偏转的尖端122以促进向左心室14中的导航。可以通过多个机构控制可偏转尖端122，例如经由可操作地连接至可偏转尖端122并且连接至近端控制的牵线。

【0064】经中隔膜管110可以包括密封件124以适应多个仪器和在其中插入的导丝。密封件可以容纳包括锚定件递送导管112，植入物递送导管114，和夹具递送导管116的外径在内的直径。在一些实施方案中，所容纳的直径可以高达22Fr。经中隔膜管110可以包括内衬的内径126。内衬的内径126可以在约10至约22Fr的范围内，并且在一个实施方案中优选为16Fr。经中隔膜管110在截面130上具有足够的长度，从而跨度从接入口(例如，主体的外部)开始到达左心室14的尖端。接入口可以是经由腹股沟/股骨接入口。这个长度可以，例如，在约80cm至约120cm的范围内，并且在一个实施方案中为约100cm。经中隔膜管110可以包括无创伤尖端132。尖端132可以包括用于可视化的标记带134。如所示的，经中隔膜管110可以包括可操作地连接至在近端套筒140处的轴120的中心管腔的冲洗口136。系统还可以包括额外的口，包括冲洗口、灌注口和/或抽吸口，从系统中移除液体或空气并且允许液体如盐水或造影剂注入至插入部位。

【0065】现在参照图8，示出了锚定件递送导管112的外观。图8示出了锚定件递送导管112的实施方案。锚定件递送导管112可以由包括由聚合物的材料制成的轴142。在一些实施方案中，轴142是编织线或盘管增强的聚合物轴。在一些实施方案中，轴142具有多个硬度计，如在第一位置的第一较小硬度计和在第二位置的远端或近端的第二较大硬度计。锚定件递送导管112在截面162上具有足够的长度以跨度从接入口(例如，主体的外部)开始并且经过经中隔膜管110。这个长度可以，例如，在约90cm至约130cm的范围内，并且在一个实施方案中为约110cm。在其他实施方案中，锚定件递送导管112包括可主动偏转的尖端144以促进锚定件向锚定部位的导航。锚定件递送导管112被配置成将锚定件146展开。

【0066】锚定件递送导管112可以包括驱动轴150。驱动轴150被配置成与驱动延长部152连接以允许将扭矩传送至锚定件146。在一些实施方案中，驱动轴150是柔性的。在一些实施方案中，驱动轴150能够前进或撤回。锚定件递送导管112可以包括把手154。把手154可以包括旋钮156以实现锚定件146的扭矩或位置的简单操作。旋钮内部连接至驱动轴150，从而允许当旋转旋钮156时将扭矩传送至锚定件146。

【0067】锚定件146具有可以在约1至约6mm范围内的外径，并且在一个实施方案中优选为4mm。锚定件146可以是具有在约0.4至约1.5mm范围内的节距的螺旋，并且在一个实施方案中优选为0.8mm。锚定件146在一些实施方案中具有可以在约0.25至约0.75mm范围内的丝直径，并且在一个实施方案中优选为0.5mm。锚定件146可以与驱动延长部152连接。如示出的，驱动延长部152可以是锚定件螺旋的正方形延长部。然而，驱动延长部152可以是任何形状的，如三角形或六边形，其能够传送由驱动轴150提供的扭矩。锚定件146可以包括锚定件缝合线158。锚定件递送导管112可以包括一个或多个与锚定件146的近端和/或锚定件缝合线158连接的轨道160(例如，缝合线、导丝)。对于图8中所示的锚定件146，如三角锚定件来说，轨道160(例如，缝合线、导丝)有助于接合辅助装置180的随后的适当放置。对于一些方法来
说明书

现在参照图9A，示出了植入物递送导管114的外观。可以将植入物递送导管114插入至所示的经中隔鞘管110中。将密封件124的尺寸设置为适应植入物递送导管114。经中隔鞘管110允许将植入物递送导管114通过轴120的管腔引入至左心房10中。经中隔鞘管110可以包括具有至少一个管腔的可变刚性轴120，将管腔的尺寸设置为允许通过管腔植入物递送导管114，或者可以包括轴120的可偏转部分可以促进接合辅助装置180的对齐。

植入物递送导管114包括轴164。轴164可以是可变刚性轴，并且刚性沿着尺寸，例如沿着长度变化。轴164也可以包括至少一个通透管腔（例如，两个或更多个通透管腔）。轴164可以被配置用于沿着至少一个远端截面偏转的可偏转尖端166。可以通过多个机构控制可偏转尖端166，例如经由操作地连接至可偏转尖端166并使得连接至近端控制的牵引。

递送导管114也可以包括植入物导引器170。可以将植入物导引器170的尺寸设置为通过植入物递送导管114的轴164。植入物导引器170可以包括狭缝172。植入物递送导管114还可以包括适合在174以操作经中隔鞘管110和/或患者身体内的植入物递送导管114。把手174可以包括旋钮176以实现接合辅助装置180的位置的简单操作旋钮176内部连接至植入物导引器170，从而允许通过旋钮176将运动传送至植入物导引器170。在一些实施方案中，旋钮176可以利用植入物递送导管114操作接合辅助装置180的对接和脱离连接。把手174还可以包括一个或多个开口182，如冲洗口、灌注口和/或抽吸口，以从系统中移除空气并防止液体如盐水或造影剂注入到植入部位。

如在图9B中所示，接合辅助装置180插入至植入物递送导管114中。在图9B的顶视图中示出了接合辅助装置180。在一些实施方案中，接合辅助装置180在如图9B的中间视图中所示的箭头的方向上展开。接合辅助装置180可以与植入物导引器170连接。在一些实施方案中，接合辅助装置180的一部分在植入物递送导管114的可偏转尖端166周围在图9B的底视图中所示的箭头方向上折叠。接合辅助装置180可以与植入物导引器170和植入物递送导管114的可偏转尖端166连接。在图9C中所示，所连接的接合辅助装置180可以沿着一个或多个轨道184（例如，两个轨道184）滑动（例如，接合），所述轨道可以是与锚定件146连接的轨道160。轨道184可以穿过经中隔鞘管110从锚定件146延伸至接合辅助装置180。在图9C中所示，接合辅助装置180可以在两个轨道上进行。在一些实施方案中，轨道184通过接合辅助装置180的孔眼或其他孔延伸。轨道184可以通过植入物导引器114延伸（例如，被牵引）。轨道184可以有助于将接合辅助装置180朝向植入物递送导管114或朝向锚定件146导向。在一些实施方案中，轨道184是柔性导丝和/或缝合线。在一些实施方案中，将轨道184在箭头的方向上牵引以使接合辅助装置180和/或植入物递送导管114通过经中隔鞘管110前进。在一些实施方案中，例如，包括多个轨道160，如两个轨道160的系统有利地允许接合辅助装置的更大程度地受控的和对称的展开。

现在参照图10，示出了夹具递送导管116的外观。夹具递送导管116包括轴186。轴186可以是可变刚性轴，并且刚性沿着尺寸，例如沿着长度变化。轴186可以包括聚合物轴。在一些实施方案中，轴186是编织线或盘管增厚的聚合物轴。在一些实施方案中，轴186具有多个硬度计。轴186可以包括至少一个通透管腔（例如，两个或更多个通透管腔）。在一些实
施方案中，轴186包括可主动偏转的尖端190以促进多个夹具192和/或小拭子194向指定部位的导航。夹具192和小拭子194可以包含任何适合的材料，如缝合线、柔性材料、镀钛合金、金属、或塑料。在一个实施方案中，优选的材料是镀钛合金。可偏转尖端190可以被配置用于沿着至少一个远端截面偏转。可以通过多个机构控制可偏转尖端190，例如经由可操作地连接至可偏转尖端190并且连接至远端控制的牵线。

【0073】 夹具递送导管116具有足够的长度以完全通过具有为尖端偏转提供的额外长度的经中隔鞘管110。这个距离可以，例如，在约90cm至约130cm的范围内，并且在一个实施方案中为约110cm。递送导管还包括次级管196。可以将插入物次级管196的尺寸设置为通过夹具递送导管116的轴186。夹具递送导管116还可以包括把手200以操作经中隔鞘管110和/或患者身体内的夹具递送导管116，从而使夹具递送导管的次级管196转向。把手200也可以将夹具192和/或小拭子194展开至预期的部位。把手200还可以包括一个或多个口202，如冲洗口、灌注口和/或抽吸口，以从系统中移除空气并且允许液体如盐水或造影剂注入至植入部位。

【0074】 次级管196或其他细长构件通过夹具192和/或小拭子194延伸。在一些实施方案中，如示出的，首先在次级管196上加载夹具192和/或小拭子194。在一些实施方案中，使用与次级管196共轴并且具有比其更大的直径的次级管204以将夹具192和/或小拭子194从次级管196中推出。在一些实施方案中，使用具有比次级管196更大的直径的可偏转尖端190以将夹具192和/或小拭子194从次级管196中推出。可以使用其他结构以将夹具192和/或小拭子194推出（例如，推进线、钳夹）。

【0075】 夹具递送导管116可以包括小拭子194。小拭子194可以是如示出的大体环形的，或者可以是正方形或矩形椭圆形，或任何其他所需形式。小拭子194可以包含对本领域技术人员来说已知的多种适合材料中的任一个。在一些实例中，可以有利的是使用促进组织长入的材料，这增强了接合辅助装置180与患者组织的连接。在其他实施方案中，抑制组织长入或对组织长入惰性的材料可以是优选的，如ePTFE、VTFE、PTFE（聚四氟乙烯）、Teflon、聚丙烯、聚酯、聚对苯二甲酸乙二醇酯、或任何适合的材料。在一些实施方案中，可以在小拭子194上放置涂层以抑制或促进组织长入。一个或多个锁定件146可以在适合位置穿透小拭子194的材料，将小拭子194固定至下面的心脏组织。因此，在一些实施方案中，小拭子194可以包括容易穿刺的材料，如结构目、毡、或带状织物(webbing)。

【0076】 夹具递送导管116可以包括夹具192。在一个实施方案中，夹具192由形成线缆的缠绕的金属或合金（例如，NiTi 2-30）链制成。在一些实施方案中，缠绕八条链以形成夹具192。在一个实施方案中，链直径在约0.01至约0.010英寸的范围内，并且在一个实施方案中为约0.006英寸。

【0077】 现在参照图11A-11F，示出了一个方法的一个实施方案的植入步骤。如在图11A中所示，用于治疗MR的经中隔鞘方法通常将会包括获得经由经中隔鞘管110与左心房10的接入。例如，使用Seldinger技术，可以获得与股静脉的接入。从股静脉开始，之后可以通过经中隔鞘操作获得经由右心房12与左心房10的接入。可以采用各种常规的经中隔鞘插入技术和结构，因此各种成像，导丝前进，间隔穿透，造影剂注射或其它定位验证步骤无需在此详述。

【0078】 经中隔鞘管，如经中隔鞘管110和/或其他经中隔鞘管，可以具有在近端把手140向远端之间延伸的轴120的细长外部鞘管体，并且把手140具有用于使与上述相似的轴120的
远端段和/或可偏移端122转向的驱动器（未示出）。在鞘管体的远端附近的远端极和/或标记134可以有助于将鞘管定位在左心房内。在一些实施方案中，无转向能力的适当尺寸的可偏转端10110导向至左心房10中的位置中或者可以在不使用可偏转端110导向至左心房10中的情况下前进至左心房10中。备选地，可以通过可转向鞘管的管腔进行展开。无论如何，在一些实施方案中，将会优先地定位外部接入鞘管，从而提供经由鞘管管腔与左心房10a的接入。

【0079】现在参照图11B，将送件递送导管112可以穿过外部经中隔鞘管110前进至左心房10中。通过操作近端把手154并且通过连接把手的驱动器（未示出），将送件递送导管112的远端和/或可偏转端144在左心房10内移动，从而选择性地弯曲送件递送导管112的远端和/或可偏转端144，使送件递送导管112的远端与用于送件递送146的展开的候选位置对齐和/或接合。可以任选地在2D或3D心内、经胸、和/或经食道超声成像、多普勒血流特征、荧光镜检等X线成像、或另外的成像方式的引导下将送件递送导管112对齐。

【0080】在一些实施方案中，在送件递送导管112的远端的电极（未示出）任选地感测电磁标记信号并且还将它们传送到电磁标记系统66，从而帮助确定候选部位是否合适，如通过确定电磁标记信号包括在理想范围内（例如：在1:2的可接受的阈值内）的心房和心室分量（component）的检样，可以通过送件递送导管112引入造影剂或盐水。

【0081】如在图11B中所示，将送件递送146，例如第一三角送件递送并且与植入位置接合。将另一个送件递送，例如第二三角送件递送并与另一个植入位置接合。显示送件递送146的位置与如在较小的快照中所示的前瓣叶30和后瓣叶32有关。如在图11C中所示，在一些实施方案中，每个送件递送146包括至少一个轨道160（例如：缝合线、导丝），以使接合辅助装置180可以在轨道160上前进。如在图11C中箭头所示的，接合辅助装置180在一个或多个轨道160（例如，两个轨道）上前进，以这种方式，轨道160有助于接合辅助装置180的放置。如示出的，接合辅助装置180在后瓣叶32上前进。

【0082】如在图11D中所示，接合辅助装置180通过二尖瓣20延伸至左心室14中。在一些实施方案中，接合辅助装置180可以具有扩张并且接合以连接接合辅助装置180的心室送件递送208（例如：带，如本文所述的带或其他心室送件递送）。如在图11E中所示，在放置接合辅助装置180之后，可以通过一个或多个夹具192和/或一个或多个小扳手194将接合辅助装置180锁定在送件递送146（如三角送件递送）上。如在图11F中所示，将接合辅助装置180展开和/或锁定在送件递送146上之后，将递送系统106移除。

【0083】前述方法可以由医师进行。在一个实施方案中，制造商可以提供下列各项中的一个，一些或全部；接合辅助装置，例如接合辅助装置180、经中隔鞘管110、送件递送导管112、植入物递送导管114、和夹具递送导管116。在一些实施方案中，制造商提供含有之前描述装置中的一个或全部的试剂盒。

【0084】在一些实施方案中，制造商提供包括以下步骤中的一个或多个或者之前在附图中描述的任何步骤的系统的使用说明。步骤可以包括：获得经由经中隔鞘管110与左心房10的接入；获得经由Seldinger技术与股静脉的接入，通过经间隔操作，使用各种常规的经间隔接入技术和结构，获得经由右心房12与左心房10的接入。步骤可以包括：将经中隔鞘管110定位在左心房10内，将送件递送导管112通过经中隔鞘管110并且向左心房10中展开；使送件递送导管112的远端与用于送件递送146展开的候选位置对齐和/或接合；和确定候选
部位是否合适。步骤可以包括：递送和/或接合锚定件146，其可以是第一三角锚定件；将与锚定件146连接的轨道160展开；使接合辅助装置180在轨道160上前进；递送和/或接合第二锚定件146，气阀可以是第二三角锚定件；将与第二锚定件耦合的轨道160展开；使接合辅助装置180在第一锚定件146的轨道160和第二锚定件146的轨道160上前进；利用轨道160促进接合辅助装置180放置；将接合辅助装置180在后瓣叶32上定位。步骤可以包括：使接合辅助装置180通过二尖瓣20延伸至左心室14中；使接合辅助装置180的心室锚定件208扩张；通过夹具192和/或小拭子194将接合辅助装置180锁定在一个或多个锚定件146上；和移除递送系统106。这些说明可以是书写的，口述的，或暗示的。

0085 现在参照图12A-12D，示出了夹具192和小拭子194放置的方法。如在图12A中所示，在一些实施方案中，首先在次级管196上加载夹具192和小拭子194。导向缝合线210在环中从次级管196延伸。导向缝合线210可以接合锚定件缝合线158。如在图12A中所示，锚定件缝合线158与锚定件146连接。如图12B中向上的箭头示意的，次级管196撤回至夹具递送导管116中。如图12B中向下的箭头示意的，夹具递送导管116的远端尖端向下推进至夹具192上，夹具192紧贴小拭子194并且两个夹具192和小拭子194被夹具递送导管116向下按压。夹具192和小拭子194沿着锚定件缝合线158前进。夹具192对锚定件缝合线158的压缩力将夹具192锁定在锚定件缝合线158上，通过锁定夹具192，防止了小拭子194沿着锚定件缝合线158平移。在一些实施方案中，将次级管204向下按压向下在夹具192和小拭子194上，而不是夹具递送导管116的尖端上，或者还向下按压在夹具递送导管116的尖端上。

0086 如在图12C中所示，导向缝合线210能够从次级管196延伸。在一些实施方案中，将次级管196压接在导向缝合线210上。这种压接(crimping)允许在导向缝合线210上容易地引入夹具192和/或小拭子194。这种压接还确保了次级管196和锚定件146之间的适当连接。如在图12D中所示，在将夹具192和/或小拭子194锁定之后，可以将导向缝合线210切割并且通过夹具递送导管116撤回。

0087 前述方法可以由医师进行。在一个实施方案中，制造商可以提供下列各项中的一个、一些或全部：夹具192，小拭子194，次级管196，第二级管204，锚定件146，缝合线158，导向缝合线210，和夹具递送导管116。在一些实施方案中，制造商提供含有之前描述装置中的一些或全部的试剂盒。

0088 在一些实施方案中，制造商提供包括以下步骤中的一个或多个或者之前在附图中描述或固有的任何步骤的系统的使用说明。步骤可以包括：首先在次级管196上加载夹具192和/或小拭子194；使导向缝合线210从次级管196延伸；将导向缝合线210与锚定件缝合线158接合；将锚定件缝合线158与锚定件146连接；将次级管196撤回至夹具递送导管116中；将夹具递送导管116的远端尖端向下按压在夹具192上；使夹具192紧贴小拭子194；将夹具192和小拭子194二者向下按压；和夹具192和小拭子194沿着锚定件缝合线158前进。步骤可以包括：将次级管196压接在导向缝合线210上；在锁定夹具192之后切割导向缝合线210；和通过夹具递送导管116撤回导向缝合线210。这些说明可以是书写的，口述的，或暗示的。

0089 现在转向图13，示出了接合辅助装置280的实施方案。接合辅助装置280可以基本上与本文所述的接合辅助装置80，180相似。接合辅助装置280可以包括被配置成提供对接合辅助装置280的结构支持的框架282。在一些实施方案中，框架282是可折叠的以在如在本
中文所描述的递送导管内适合。在一些实施方案中，框架282限定了上边缘284。框架282可以包括被配置成接收固定件如锚定件146或其他三角锚定件的固定件孔眼286。孔眼286可以通过本领域中已知的任何机构整合至接合辅助装置280的表面中或与接合辅助装置280连接。孔眼286对应于接合辅助装置280的可以固定至前和后纤维三角56、60的区域。通常，三角56、60位于相对于它们的相应边缘50、52外侧或内侧大约1-10mm，并且比连接50、52靠前约1-10mm。在其他实施方案中，不同的锚定件排布可以将接合辅助装置280的上边缘284与锚定件如锚定件146连接。例如，上边缘284可以包括用于锚定件延伸的套筒（未示出）或将锚定件或套筒与上边缘284连接的系绳（未示出）。在一些实施方案中，系绳或套筒的内侧末端与孔眼286连接。

【0090】考虑了备选接合方式用于将接合辅助装置280与每个锚定件耦合，包括孔眼286和套筒（未示出），而且还包括其他连接方式如，例如，缝合线、钉、粘合剂或夹具。在备选的实施方案中，锚定件可以构成装置的整合部分。在一些实施方案中，在孔眼286内插入的两个锚定件是螺旋锚定件。存在许多可能的用于锚定工具的构造、锚定件的组成、和用于锚定工具的设计。

【0091】接合辅助装置280包括主体290。主体290包括朝向接合不良的天然瓣叶（在尖瓣20的情况下，为后瓣叶32）设置的第一表面292，以及可以朝向前瓣叶30设置的第二表面294。第一和第二表面292、294可以被认为是接合表面。接合辅助装置280可以具有允许其穿越在左心房10和/或左心室14中的连接部位之间的二尖瓣20的几何形状，以为前瓣叶30提供用于接合的接合表面294，并且连接至左心房10或瓣环36，以使其将后瓣叶32有效地密封。在移除或已经移除后瓣叶32的情况下，接合辅助装置280将后瓣叶32替换。

【0092】在一些实施方案中，在与瓣膜面垂直的纵向方向上远端经过或者相对于瓣膜面径向向内或向外经过之前，接合辅助装置280的接合表面292、294从上边缘284开始在上方并且径向向内经过。

【0093】在一些实施方案中，接合辅助装置280的第一表面292和第二表面294还包括包含ePTFE、聚氨酯泡沫、聚碳酯泡沫、生物组织如猪心包，或硅树脂的覆盖物。

【0094】示出了一种可能的框架282结构，并且框架282连接孔眼286。可以将其他框架元件结合至接合辅助装置280中，可以以任何数量的方式将框架282成形以辅助维持接合辅助装置280的所需形状和曲率。框架282可以由镍钛合金、不锈钢、聚合物，或其他适当材料制成，并且可以大程度地辅助维持接合辅助装置280的几何形状，允许选择任何广泛多样的最适合用于在心脏中长期植入和针对前瓣叶30的接合的覆盖材料。

【0095】接合辅助装置280可以包括一个或多个锚定件，如锚定件146，以使接合辅助装置280稳定。接合辅助装置280还可以具有心室锚定件296（例如，本文所述的带）。在一些实施方案中，心室锚定件296结合在后瓣叶32下的区域。心房和/或心室锚定件任选地提供多余的固定。锚定件可以包括多个用于与周围组织的急性固定的倒钩。在其他实施方案中，锚定件可以包括多个螺旋、夹具、鱼叉或倒钩形锚定件等，适用于旋入或接合二尖瓣20的瓣环36。心室的组织，和/或心房的其他组织，或者心房或心室锚定件可以通过使用经由细长锚定件耦合体传送的RF或其他能量进行焊接而连接至组织。

【0096】在一些实施方案中，可以包括系绳或其他连接工具形式的心室锚定件296，其从瓣膜20通过心室隔膜延伸至右心室16，或通过心尖进入心外膜或心包，其可以在组合的心内
膜/心外膜操作中从心脏外部进行固定。当使用螺旋锚定用时，其可以包括生物惰性材料，如铂/铱、镍钛合金、和/或不锈钢。

【0097】 现在参照图14A-14D，示出了方法的一个实施方案的植入步骤。如在图14A中所示，用于治疗MR的经间隔方法可以包括获得经由经中隔导管110与左心房10的接入。可以使用Seldinger技术获得与股动脉的接入。从股动脉开始，之后可以通过经间隔操作获得经由右心房12与左心房10的接入。可以采用各种常规的经间隔接入技术和结构，因此各种成像、导丝前进、间隔穿透、造影剂注射或其它定位验证步骤无需在此详述。

【0098】 现在参照图14A，任选地在2D或3D心内、经胸、和/或经食道超声成像、多普勒血流特征、荧光镜检或X射线成像、或另外的成像方式的引导下，示出了用于展开锚定件如锚定件146的非限制性候选位置。在一些实施方案中，使用导丝以使锚定件146前进至所需位置。在一些实施方案中，使用导丝放置后内侧三角锚定件146并且放置前外侧三角锚定件146。

【0099】 如在图14B中所示，将第一和第二三角锚定件146送入并接合。显示三角锚定件146的位置与如示出的前瓣叶30、后瓣叶32和和二尖瓣20有关。在一些实施方案中，每个三角锚定件146包括至少一个导丝或轨道160，以使接合辅助装置280可以在轨道160上前进。在一些实施方案中，轨道160通过接合辅助装置280的一部分并且通过经间隔导管110前进。在一些实施方案中，轨道160通过孔眼286延伸。

【0100】 在一些实施方案中，示出，接合辅助装置280在锚定送导管112的内部折叠。包括框架282的径向可扩张和/或可折叠结构，其在一些实施方案中可以是支架状的，允许将植入物折叠。在一些实施方案中，将接合辅助装置280折叠并且通过经间隔导管110在轨道160上送入。

【0101】如示出的，在送入和接收两个三角锚定件146之后，如由图14C中箭头示出的，使接合辅助装置280在两个轨道160上前进。以这种方式，轨道160有助于接合辅助装置280的放置。当在轨道160上递送接合辅助装置280时，接合辅助装置280离开植入物递送导管114，使得接合辅助装置280露出并且扩张。

【0102】接合辅助装置280可以通过植入物递送导管114递送并且可以能够从较小的轮廓扩展成较大的轮廓，达到适用于在瓣膜的天然瓣叶30、32之间放置的尺寸。如示出的，接合辅助装置280在其植入物递送导管114的尖端露出时扩张。在一些实施方案中，将植入物递送导管114拉回以露出接合辅助装置280。接合辅助装置280在后瓣叶32上前进。

【0103】如在图14D中所示，接合辅助装置280可以通过二尖瓣20延伸至左心室14中。在一些实施方案中，接合辅助装置280可以具有张力以将接合辅助装置280与心室组织连接的心室锚定件296。可以通过植入物递送导管114递送接合辅助装置280的心室锚定件296。如在图14D中所示，植入物递送导管114撤回至经间隔导管110中。接合辅助装置280的心室锚定件296被释放并且可以呈现如示出的弯曲形状。在放置接合辅助装置280之后，在一些实施方案中，如在图14D中所示，通过一个或多个夹具192和/或小推子194将接合辅助装置280锁定在锚定件146上。在将接合辅助装置280锁定在锚定件146上之后，移除导管递送系统106。在一些实施方案中，轨道160也被移除。

【0104】前述方法可以由医师进行。在一个实施方案中，制造商可以提供下列各项中的一个、一些或全部：接合辅助装置280、经中隔导管110、锚定件递送导管112、植入物递送导管114、和夹具递送导管116。在一些实施方案中，制造商提供含有之前描述装置中的一些或全
部的试剂盒。
【0105】在一些实施方案中，制造商提供包括以下步骤中的一个或多个或者之前在附图中描述或固有的任何步骤的系统的使用说明。步骤可以包括：获得经由经中隔膜管110与左心房10的接入；获得经由Seldinger技术与股静脉的接入；通过经间隔操作，使用各种常规的经间隔接入技术和结构，获得经由右心房12与左心房10的接入。步骤可以包括：将经中隔膜管110定位在左心房10内；将锁定件递送导管112通过经中隔膜管110并且向左心房10中展开；使锁定件递送导管112的远端与用于锁定件146展开的候选位置对齐和/或接合；和确定候选部位是否合适。步骤可以包括：将接合辅助装置280在植入物递送导管114的内部折叠；通过经中隔膜管110在轨道160上递送接合辅助装置280；使接合辅助装置280在其它植入物递送导管114时扩张；和撤回植入物递送导管114。步骤可以包括：递送和/或接合锁定件146，其可以是第一三角锁定件；将与每个锁定件146连接的轨道160展开；使接合辅助装置280在轨道160上前进；递送和/或接合第二锁定件146，其可以是第二三角锁定件；将与第二锁定件耦合的轨道160展开；使接合辅助装置180在递送和/或接合第二锁定件146的轨道160上前进；促进接合辅助装置180的放置；和将接合辅助装置180在后瓣叶32上定位。步骤可以包括：使接合辅助装置180通过二尖瓣20延伸至左心室14中；使接合辅助装置180的心室锁定件296扩展；通过一个或多个夹具192和/或小扳手194将接合辅助装置180锁定在锁定件146上；和移除导管递送系统106。这些说明可以是书面的、口述的、或暗示的。

【0106】现在转向图15，示出了接合辅助装置380的实施方案。接合辅助装置380可以基本上与本文所述的接合辅助装置80、180、280相似。接合辅助装置380可以包括被配置成提供对接合辅助装置380的结构支持的框架382。在一些实施方案中，框架382是可以折叠的以在递送导管，如植入物递送导管114内适合。在一些实施方案中，框架382限定了上边缘384。框架382可以包括被配置成接收锁定件146的锁定件孔眼386。在一些实施方案中，如在图15中所示，孔眼386被配置成接收连接锁定件390。如示出的，提供连接锁定件位置，如在接合辅助装置380的弓形主体部的外侧末端。在一些实施方案中，连接锁定件390与本文所述的锁定件146基本相似。孔眼386可以通过本领域中已知的任何机构整合至接合辅助装置380的表面中或与接合辅助装置380连接。孔眼386对应于接合辅助装置280的可以固定至横向连接50、52的区域。在其他实施方案中，不同的锁定件排布可以将接合辅助装置280的框架382与锁定件耦合。在其他实施方案中，不同的锁定件排布可以将接合辅助装置280的框架382和/或边缘与相应的解剖结构连接。在一些实施方案中，如示出的，连接锁定件390中的一个或多个是螺旋锁定件。例如，如之前描述的，存在许多可能的用于锁定件的构造，锁定件的组成，和设计。

【0107】接合辅助装置380包括主体392，其可以被配置成允许血液在心室腔中相对正常的循环。主体392可以是在前和后表面之间细长并且狭窄的，占据最小的空间并且允许血液从一侧向另一侧移动并且经过接合辅助装置380的两个侧面。

【0108】接合辅助装置380包括一个或多个心室锁定件394。心室锁定件和心室锁定件可以任选地提供多余的固定，心室锁定件可以包括多个用于与周围组织的急性固定的倒钩。在其他实施方案中，心室锁定件可以包括多个螺旋、夹具、鱼叉或倒钩形锁定件等，适用于接合心室的组织。如在图15中所示，心室锁定件可以包括两个靠在左心室14的壁上的带396。尽管示出了两个带396，但是在一些实施方案中，使用一个或多个带396(例如，一个、两个、三个等)。
个（三个、四个等），这种定位可以提供接合辅助装置380和/或接合辅助装置380的基部398的稳定性。当使用心室锁定件394时，其实可以包括生物惰性材料，如，例如铝/1r、镍钛合金、和/或不锈钢。在一些实施方案中，带396包含包括NiTi。在一些实施方案中，带396具有预定的曲线。与所选择的形状组合的材料选择提供了弹簧载荷的心室锁定件394。在一些实施方案中，如示出的，弹簧载荷的带396接合左心室14的组织。每个带396可以形成，例如，大体上U形的构型。带396起锁定件的作用并且抵抗接合辅助装置380的运动。带396可以一起形成大体上W形的构型。带396包括被配置成与组织邻接的圆形表面。在一些实施方案中，锁定件与组织邻接并且可以对组织施加力以使接合辅助装置380稳定，但是不穿透一个或多个组织层，例如心内膜或心肌。在一些实施方案中，锁定件包括一对具有偏向的臂，其在无应力构型下可以夹在心室壁的一部分上以使接合辅助装置稳定，如以相当于心室壁非创伤的方式，可以基于左心室14和带396可以邻接的左心室壁的尺寸确定带的尺寸和形状。带396可以与后瓣叶32的基部大体上平行。考虑了用于带396的其他形状。如在本文中所公开的，接合辅助装置380在递送导管，如植入物递送导管114的内部折叠。弹簧载荷的带396能够在递送导管内折叠。在离开导管时，弹簧载荷的带396迅速膨胀为预设的形状。在一些实施方案中，提供带396用于心室连接。带396允许接合辅助装置380与组织的非常快速的连接，因为带396不依赖于瓣环缝合线并且不需要打结。例如，带396的展开可以比接合螺旋锁定件更快。

【0109】现在转向图16，示出了接合辅助装置480的实施方案。接合辅助装置480可以基本上与本文所述的接合辅助装置80、180、280、380相似。接合辅助装置480可以包括被配置成提供对接合辅助装置480的结构支持的框架482。在一些实施方案中，框架482是可折叠的以在递送导管，如植入物递送导管114内适合。在一些实施方案中，框架482限定了上边缘484。框架482可以包括被配置成接收锁定件如锁定件146的锁定件孔眼486。在一些实施方案中，如在图16中所示，孔眼486被配置成接收锁定件490。如在图16中所示，提供了多个用于孔眼486的位置。在其他实施方案中，不同的锁定件排布可以将接合辅助装置480的边缘与相应的解剖结构连接。在一些实施方案中，如示出的，锁定件490是螺旋锁定件。存在许多可能的用于锁定器具的构造、锁定件的组成、和用于锁定器具的设计。在一些实施方案中，锁定件490可以与锁定件146基本相似或相同。

【0110】接合辅助装置480可以包括一个或多个心房锁定件490和心室锁定件494，并且锁定件任选地提供多余的固定。在一些实施方案中，心房锁定件490可以包括多个螺旋、夹具、鱼叉或倒钩形锁定件等，适用于接合心室的组织。如示出的，心房锁定件490可以通过后瓣叶延伸。如在图16中所示，心房锁定件494包括多个，例如三个弹簧载荷的夹具或带496，其被配置成接合于尖瓣20的至少一部分，例如位于带496和主体482之间的后瓣叶32的一部分。夹具或带可以具有偏向（例如，凭借其形状记忆性能），以使一个、两个、或更多个表面对人体结构如所示出的瓣叶施加足以将植入物锁定在适当位置的力，如压缩力。例如，夹具的第一部分可以针对如示出的瓣叶的第一表面施加力，并且夹具的第二部分可以针对瓣叶的第二表面施加力或在其上。瓣叶的第二侧面与瓣叶的第一侧面相反。尽管示出了三个带496，在一些实施方案中，可以使用任何数量的带496（例如，一个、两个、三个、四个等）。这种定位可以提供接合辅助装置480和/或植入物基部498的稳定性。这种定位可以不需要接合辅助装置与心室14或其它地方的额外锁定。当使用带496时，其可以包括，例如，生物惰性材
料，如铂/Ir、镍钛合金、和/或不锈钢。在一些实施方案中，带496包含包括NiTi。在一些实施方案中，带496具有预定的曲率。与所选择的形状组合的材料选择提供了弹簧载荷的心室锚定件496。如示出的，带496靠在后瓣叶上。在一些实施方案中，弹簧载荷的带496接合二尖瓣的其他组织。每个带496可以形成大体上S形的构型。带496起锚定件的作用并且抵抗接合辅助装置480的运动。带496包括被配置成与组织邻接的圆形表面。可以基于带496可以邻接的后瓣叶32的尺寸确定带496的尺寸和形状。带496可以与后瓣叶32的尖端大体上平行。考虑了用于带496的其他形状。如在本文中所公开的，接合辅助装置480在递送导管的内部折叠。弹簧载荷的带496能够在递送导管，如植入物递送导管114内折叠。在离开导管时，弹簧载荷的带496迅速膨胀为预定的形状。在一些实施方案中，提供带496用于心室连接。带496允许接合辅助装置480与组织的非常快速的连接，因为带496不依赖于瓣环缝合线并且不需要打结。例如，带496的展开可以比接合螺旋锚定件更快。

【0111】在备选的实施方案中，提供带500。带500延伸至后瓣叶32的基部并且与用锚定件490对齐。位于后瓣叶32上的锚定件490可以穿透瓣叶32并且与带500连接。备选地，位于带500上的锚定件490可以穿透来自相反方向的后瓣叶。在一些实施方案中，锚定件490可以接合于接合辅助装置480的上部左心房侧和位于左心室中的带500。这种构型可以提高接合辅助装置480的稳定性。每个带500可以形成大体上L形的构型。带500包括被配置成与后瓣叶32的心室侧邻接的圆形表面。可以基于带500可以邻接的后瓣叶32的尺寸确定带的尺寸和形状。带500可以与后瓣叶32的尖端大体上平行。考虑了用于带500的其他形状。如在本文中所公开的，接合辅助装置480在递送导管的内部折叠。弹簧载荷的带500能够在递送导管，如植入物递送导管114内折叠。在离开导管时，弹簧载荷的带500从第一压缩构型迅速转变为第二扩张构型的预定形状。在一些实施方案中，在压缩构型中，夹具或带500是线性的或基本线性的。在一些实施方案中，提供带500用于心室连接。带500允许接合辅助装置480与组织的非常快速的连接，因为带500不依赖于瓣环缝合线并且不需要打结。例如，带500的展开在一些情况下可以比接合螺旋锚定件更快。

【0112】在一些实施方案中，连同本文中的多个实施方案一起公开的夹具或带可以有利地与不限于在本文中所公开的接合辅助装置的广泛多样的心脏植入物一起使用。例如，可以将夹具或带可操作地连接至替换心脏瓣膜如二尖瓣或主动脉瓣，例如，用于锚定和稳定。在一些实施方案中，夹具或带可以施加力以夹住一个或多个天然瓣叶连接至其上，从而将替换心脏瓣膜锚定在瓣环中。

【0113】现在转向图17A-17B，示出了接合辅助装置580的实施方案。接合辅助装置580可以基本上与本文所述的接合辅助装置80、180、280、380、480相似。接合辅助装置580可以包括被配置成提供对接合辅助装置480的结构支持的框架582。在一些实施方案中，框架582是可折叠的以在递送导管，如植入物递送导管114内适合。在一些实施方案中，框架582限定了上边缘584。框架582可以包括被配置成接收锚定件如锚定件146的锚定件孔眼586。在一些实施方案中，如在图17中所示，孔眼586被配置成接收三角锚定件如锚定件146。在一些实施方案中，孔眼586对应于接合辅助装置580的可以固定至前和后纤维三角56、60的区域。在一些实施方案中，接合辅助装置580包括心室锚定件套简590。在一些实施方案中，套筒590为心室锚定件594提供连接结构。

【0114】接合辅助装置580包括主体592。主体592包括朝向接合不良的天然瓣叶(在二尖瓣
20的情况中，为后瓣叶32)设置的第一表面596，以及可以朝向前瓣叶30设置的第二表面
598。第一和第二表面596, 598可以被认为是接合表面。接合辅助装置580可以具有允许其穿
越在左心房10和左心室14中的连接部位之间的二尖瓣20的几何形状，为前瓣叶30提供用于
接合的接合表面598，并且连接至心房10或瓣环36，以使其将后瓣叶32有效地密封。在移
除或已经移除后瓣叶32的情况下，接合辅助装置580将后瓣叶32替换。
[0115] 在一些实施方案中，在与瓣膜面垂直的纵向方向上远端经过或者相对于瓣膜面径
向向内或向外经过之前，接合增强元件的接合表面598从上边缘开始在上方并且径向向内
经过。
[0116] 在一些实施方案中，接合辅助装置580的前表面598和后表面596还包括包含
ePTFE, 聚氨酯泡沫, 聚碳酸酯泡沫, 生物组织如猪心包, 或硅树脂的覆盖物。
[0117] 使用了一种可能的框架582，并且框架连接孔眼586。可以将其他框架元件结合至
接合辅助装置580中，可以以任何数量的方式将框架582成形以辅助维持接合辅助装置580
的所需形状和曲率。框架可以由镍钛合金，不锈钢，聚合物或其他适当材料制成，可以大程
度地辅助维持接合辅助装置580的几何形状，允许选择任何广泛多样的最适用于在心脏中
长期植入和针对前瓣叶30的接合的覆盖材料。
[0118] 接合辅助装置580可以包括一个或多个锁定件以使接合辅助装置580稳定，并且锁
定件任选地提供多余的固定。锁定件可以包括多个用于与周围组织的急性固定的倒钩。在
其他实施方案中，锁定件可以包括多个螺旋、夹具、鱼叉或倒钩形锁定件等，适用于旋入或
接合至二尖瓣20的瓣环、左心室14的组织、和/或左心房10的其他组织中。锁定件可以通过
使用经由细长锁定件耦合体递送的RF或其他能量进行焊接而连接至组织。
[0119] 现在参照图18A-18C，示出了方法的一个实施方案的植入步骤。如在图18A中所示，
递送导管600前进至左心房10中。递送导管600可以与植入物递送导管114基本相似。在一些
实施方案中，递送导管600可以通过外部经中隔瓣管110前进至左心房10中。图18A示出了递
送导管600的实施方案。递送导管600可以包括由例如聚合物制成的轴602。在一些实施方案
中，轴602是编织线或盘管增强的聚合物轴。在一些实施方案中，轴602具有多个硬度。在
其他实施方案中，递送导管600包括可自动偏转的尖端604以促进一个或多个锁定件594向
锁定部位的导航。例如，可偏转尖端604可以接近在后瓣叶下的部位。递送导管600可以包括
偏转旋钮606以控制可偏转尖端604。
[0120] 递送导管可以包括驱动轴610。驱动轴610在尖端具有特征件以与锁定件594接合
并且允许其向其传送扭矩。在一些实施方案中，驱动轴610是柔性。在一些实施方案中，驱动
轴610能够前进或撤回。递送导管600可以包括与驱动轴610连接的旋钮612。旋钮612内部连
接至驱动轴610，从而允许当旋转旋钮612时将扭矩传送至锁定件594。这实现了锁定件定位
和扭矩的简单操作。
[0121] 接合辅助装置580可以通过递送导管600递送并且可以能够从较小的轮廓扩张成
较大的轮廓，达到适用于在瓣膜的天然瓣叶30, 32之间放置的尺寸。接合辅助装置580在其
从递送导管600的尖端露出时扩张。在一些实施方案中，将递送导管600拉回以露出接合辅
助装置580。递送导管600还可以包括控制把手614，以操作接合辅助装置580。递送导管600
还可以包括控制把手614，以操作接合辅助装置580。递送导管600的对位和脱离连接，和/或促
进接合辅助装置580的放置。
[0122] 现在参照图18A，通过操作控制把手614并且通过接合偏转旋钮612的驱动器，递送
导管600的远端在左心房10内移动，从而选择性地弯曲递送导管600的可偏转尖端604和/或远端，可以递送导管600的可偏转尖端604和/或远端与用于锁定件594展开的候选位置对齐和/或接合。可以将递送导管600的可偏转尖端604和/或远端偏转以接近在后瓣叶32下的部位。在一些实施方案中，使递送导管600的远端与左心室14的壁对齐，以促进左心室套管590和/或心室锁定件594的放置。

[0123] 如在图18A中所示，如在本文中所描述的递送和接合三角锁定件146。接合辅助装置580通过二尖瓣20延伸至左心室14中。在一些实施方案中，接合辅助装置580可以具有心室套管590和/或心室锁定件594。如示出的心室锁定件594是螺旋锁定件，但是考虑了其他锁定件设计。在一些实施方案中，如示出的，心室锁定件594自左心室14延伸至左心房10。

[0124] 如在图18B-18C中所示，将接合辅助装置580锁定并且移除递送导管600。将接合表面598放置在前瓣叶30和后瓣叶32之间。将心室锁定件594和三角锁定件146固定。在一些实施方案中，如在图18C中所示，存在前外侧三角锁定件146和后内侧三角锁定件146。

[0125] 前述方法可以由医师进行。在一个实施方案中，制造商可以提供下列各项中的一个、一些或全部：接合辅助装置580、递送导管600、三角锁定件146和心室锁定件594。在一些实施方案中，制造商提供含有之前描述装置中的一些或全部的试剂盒。

[0126] 在一些实施方案中，制造商提供包括以下步骤中的一个或多个或者在附图中描述或固有的任何步骤的系统的使用说明。步骤可以包括：将递送导管600定位在左心房10内，使递送导管600的可偏转尖端604和/或远端与用于锁定件594展开的候选位置对齐和/或接合，和确定候选部位是否合适。步骤可以包括：递送和/或接合第一三角锁定件146；递送和/或接合第二三角锁定件146；接合接合辅助装置580的放置；和将接合辅助装置580在后瓣叶上定位。步骤可以包括：使接合辅助装置580通过二尖瓣20延伸至左心室14中；通过一个或多个夹具192和/或小按子194将接合辅助装置580锁定在三角锁定件146上，并移除递送导管递送系统。这些说明可以是书面的、口头的、或暗示的。

[0127] 预期的是，可以做出以上公开的实施方案的具体特征和方面的多个组合或子组合，并且其仍然落在本发明中的一个或多个内。此外，任何具体的特征、方面、方法、性质、特性、质量、属性、要素等的本文中的公开内容可以与实施方案一起用于在本文中给出的所有其他实施方案。因此，应理解的是，所公开的实施方案的各种特征和方面可以彼此组合或替换而形成所公开的发明的不同方式。因此，预期的是，在本文中公开的本发明的范围不应当受上述具体公开的实施方案限制。此外，尽管本发明可以接受各种修改和备用形式，其具体实例已经在附图中示出并且在本文中详细描述。然而，应当理解的是，本发明不受限于所公开的具体形式或方法。而相反地，本发明意在涵盖落在所描述的各种实施方案和所附权利要求的精神和范围内的所有修改、等价物，和替代方案。在本文中所公开的任何方法不需要按所述的顺序进行。在本文中所公开的方法包括由人员采取的某些行为；然而，它们也可以明示的或暗示的包括那些行为的任何第三方指示。例如，行为如“在二尖瓣附近插入接合辅助体”包括“指示在二尖瓣附近插入接合辅助体”。在本文中所公开的范围还包括任一种或全部重叠、子范围、以及它们的组合。语言如“高达”、“至少”、“大于”、“小于”、“之间”等包括所叙述的数字。如在本文中所使用的在数字前面的术语如“大约”、“约”和“基本上”包括所描述的数字，并且还表示与仍然发挥所需功能或实际所需结果的与所述量接近的量。例如，术语“大约”、“约”和“基本上”可以指在不超过所述量的10%范围内不不超过
所述量的小于5%范围内，不超过所述量的小于1%范围内，不超过所述量的小于0.1%范围内，不超过所述量的小于0.01%范围内的量。
图1E
图1F
图5A
图5D
图6A

图6B
图11B
图12D
图14A
图14B
图14C