

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011233579 B2

(54) Title
Hydrocarbon gas processing

(51) International Patent Classification(s)
F25J 3/00 (2006.01)

(21) Application No: **2011233579** (22) Date of Filing: **2011.03.21**

(87) WIPO No: **WO11/123278**

(30) Priority Data

(31)	Number	(32)	Date	(33)	Country
	12/781,259		2010.05.17		US
	13/048,315		2011.03.15		US
	13/051,682		2011.03.18		US
	PCT/US2011/028872		2011.03.17		US
	PCT/US2010/035121		2010.05.17		US
	13/052,575		2011.03.21		US
	12/772,472		2010.05.03		US
	PCT/US2011/029034		2011.03.18		US
	12/750,862		2010.03.31		US
	13/052,348		2011.03.21		US
	PCT/US2011/029234		2011.03.21		US
	PCT/US2010/029331		2010.03.31		US
	PCT/US2010/033374		2010.05.03		US

(43) Publication Date: **2011.10.06**
(44) Accepted Journal Date: **2015.11.19**

(71) Applicant(s)
Ortloff Engineers, Ltd.;S.M.E. Products LP

(72) Inventor(s)
Johnke, Andrew F.;Lewis, W. Larry;Tyler, L. Don;Wilkinson, John D.;Lynch, Joe T.;Hudson, Hank M.;Cuellar, Kyle T.

(74) Agent / Attorney
Watermark Patent and Trade Marks Attorneys, Level 2 302 Burwood Road, HAWTHORN, VIC, 3122

(56) Related Art
US 2004/0079107
US 2005/0247078
US 2002/0166336
US 5568737
US 2006/0032269

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 October 2011 (06.10.2011)

(10) International Publication Number
WO 2011/123278 A1

(51) International Patent Classification:
F25J 3/00 (2006.01)

UCTS LP [US/US]; 6715 Thecall, Houston, TX 77066 (US).

(21) International Application Number:
PCT/US2011/029239

(72) Inventors; and

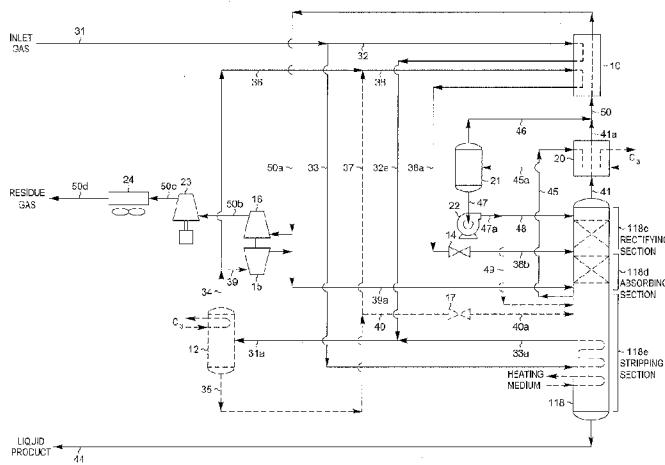
(75) Inventors/Applicants (for US only): JOHNKE, Andrew, F. [US/US]; 907 W. Main Street, Beresford, SD 57004 (US). LEWIS, W., Larry [US/US]; 5602 Court of Lions, Houston, TX 77069 (US). TYLER, L., Don [US/US]; 2200 Princeton Avenue, Midland, TX 79701 (US). WILKINSON, John, D. [US/US]; 4113 Tanforan Avenue, Midland, TX 79707 (US). LYNCH, Joe, T. [US/US]; 5510 Ashwood Court, Midland, TX 79707 (US). HUDSON, Hank, M. [US/US]; 2508 W. Sinclair Avenue, Midland, TX 79705 (US). CUELLAR, Kyle, T. [US/US]; 1611 Cottage Point, Katy, TX 77494 (US).

(22) International Filing Date:
21 March 2011 (21.03.2011)

(74) Agents: RUSSO, Alicia, A. et al.; Fitzpatrick, Cella, Harper & Scinto, 1290 Avenue of the Americas, New York, NY 10104-3800 (US).

(25) Filing Language:
English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,


(26) Publication Language:
English

(30) Priority Data:
PCT/US2010/029331 31 March 2010 (31.03.2010) US
12/750,862 31 March 2010 (31.03.2010) US
PCT/US2010/033374 3 May 2010 (03.05.2010) US
12/772,472 3 May 2010 (03.05.2010) US
PCT/US2010/035121 17 May 2010 (17.05.2010) US
12/781,259 17 May 2010 (17.05.2010) US
13/048,315 15 March 2011 (15.03.2011) US
PCT/US2011/028872 17 March 2011 (17.03.2011) US
PCT/US2011/029034 18 March 2011 (18.03.2011) US
13/051,682 18 March 2011 (18.03.2011) US
13/052,575 21 March 2011 (21.03.2011) US
PCT/US2011/029234 21 March 2011 (21.03.2011) US
13/052,348 21 March 2011 (21.03.2011) US

(71) Applicants (for all designated States except US): ORT-LOFF ENGINEERS, LTD. [US/US]; 415 West Wall, Suite 2000, Midland, TX 79701 (US). S.M.E. PROD-

[Continued on next page]

(54) Title: HYDROCARBON GAS PROCESSING

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

HYDROCARBON GAS PROCESSING

SPECIFICATION

BACKGROUND OF THE INVENTION

[0001] Ethylene, ethane, propylene, propane, and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Natural gas usually has a major proportion of methane and ethane, i.e., methane and ethane together comprise at least 50 mole percent of the gas. The gas also contains relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes, and the like, as well as hydrogen, nitrogen, carbon dioxide, and other gases.

[0002] The present invention is generally concerned with the recovery of ethylene, ethane, propylene, propane, and heavier hydrocarbons from such gas streams. A typical analysis of a gas stream to be processed in accordance with this invention would be, in approximate mole percent, 90.3% methane, 4.0% ethane and

other C₂ components, 1.7% propane and other C₃ components, 0.3% iso-butane, 0.5% normal butane, and 0.8% pentanes plus, with the balance made up of nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.

[0003] The historically cyclic fluctuations in the prices of both natural gas and its natural gas liquid (NGL) constituents have at times reduced the incremental value of ethane, ethylene, propane, propylene, and heavier components as liquid products. This has resulted in a demand for processes that can provide more efficient recoveries of these products, for processes that can provide efficient recoveries with lower capital investment, and for processes that can be easily adapted or adjusted to vary the recovery of a specific component over a broad range. Available processes for separating these materials include those based upon cooling and refrigeration of gas, oil absorption, and refrigerated oil absorption. Additionally, cryogenic processes have become popular because of the availability of economical equipment that produces power while simultaneously expanding and extracting heat from the gas being processed. Depending upon the pressure of the gas source, the richness (ethane, ethylene, and heavier hydrocarbons content) of the gas, and the desired end products, each of these processes or a combination thereof may be employed.

[0004] The cryogenic expansion process is now generally preferred for natural gas liquids recovery because it provides maximum simplicity with ease of startup, operating flexibility, good efficiency, safety, and good reliability. U.S. Patent Nos. 3,292,380; 4,061,481; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955; 4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,566,554; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; 6,578,379; 6,712,880; 6,915,662; 7,191,617; 7,219,513; reissue U.S. Patent No. 33,408; and co-pending

application nos. 11/430,412; 11/839,693; 11/971,491; 12/206,230; 12/689,616; 12/717,394; 12/750,862; 12/772,472; 12/781,259; 12/868,993; 12/869,007; 12/869,139; 12/979,563; 13/048,315; 13/051,682; and 13/052,348 describe relevant processes (although the description of the present invention in some cases is based on different processing conditions than those described in the cited U.S. Patents).

[0005] In a typical cryogenic expansion recovery process, a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system. As the gas is cooled, liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C₂+ components. Depending on the richness of the gas and the amount of liquids formed, the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from the expansion. The expanded stream, comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column. In the column, the expansion cooled stream(s) is (are) distilled to separate residual methane, nitrogen, and other volatile gases as overhead vapor from the desired C₂ components, C₃ components, and heavier hydrocarbon components as bottom liquid product, or to separate residual methane, C₂ components, nitrogen, and other volatile gases as overhead vapor from the desired C₃ components and heavier hydrocarbon components as bottom liquid product.

[0006] If the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be split into two streams. One portion of

the vapor is passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream. The pressure after expansion is essentially the same as the pressure at which the distillation column is operated. The combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.

[0007] The remaining portion of the vapor is cooled to substantial condensation by heat exchange with other process streams, e.g., the cold fractionation tower overhead. Some or all of the high-pressure liquid may be combined with this vapor portion prior to cooling. The resulting cooled stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will vaporize, resulting in cooling of the total stream. The flash expanded stream is then supplied as top feed to the demethanizer. Typically, the vapor portion of the flash expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas. Alternatively, the cooled and expanded stream may be supplied to a separator to provide vapor and liquid streams. The vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed.

[0008] In the ideal operation of such a separation process, the residue gas leaving the process will contain substantially all of the methane in the feed gas with essentially none of the heavier hydrocarbon components and the bottoms fraction leaving the demethanizer will contain substantially all of the heavier hydrocarbon components with essentially no methane or more volatile components. In practice, however, this ideal situation is not obtained because the conventional demethanizer is operated largely as a stripping column. The methane product of the process,

therefore, typically comprises vapors leaving the top fractionation stage of the column, together with vapors not subjected to any rectification step. Considerable losses of C₃ and C₄+ components occur because the top liquid feed contains substantial quantities of these components and heavier hydrocarbon components, resulting in corresponding equilibrium quantities of C₃ components, C₄ components, and heavier hydrocarbon components in the vapors leaving the top fractionation stage of the demethanizer. The loss of these desirable components could be significantly reduced if the rising vapors could be brought into contact with a significant quantity of liquid (reflux) capable of absorbing the C₃ components, C₄ components, and heavier hydrocarbon components from the vapors.

[0009] In recent years, the preferred processes for hydrocarbon separation use an upper absorber section to provide additional rectification of the rising vapors. One method of generating a reflux stream for the upper rectification section is to use a side draw of the vapors rising in a lower portion of the tower. Because of the relatively high concentration of C₂ components in the vapors lower in the tower, a significant quantity of liquid can be condensed in this side draw stream without elevating its pressure, often using only the refrigeration available in the cold vapor leaving the upper rectification section. This condensed liquid, which is predominantly liquid methane and ethane, can then be used to absorb C₃ components, C₄ components, and heavier hydrocarbon components from the vapors rising through the upper rectification section and thereby capture these valuable components in the bottom liquid product from the demethanizer. U.S. Patent No. 7,191,617 is an example of a process of this type.

[0010] The present invention employs a novel means of performing the various steps described above more efficiently and using fewer pieces of equipment.

This is accomplished by combining what heretofore have been individual equipment items into a common housing, thereby reducing the plot space required for the processing plant and reducing the capital cost of the facility. Surprisingly, applicants have found that the more compact arrangement also significantly reduces the power consumption required to achieve a given recovery level, thereby increasing the process efficiency and reducing the operating cost of the facility. In addition, the more compact arrangement also eliminates much of the piping used to interconnect the individual equipment items in traditional plant designs, further reducing capital cost and also eliminating the associated flanged piping connections. Since piping flanges are a potential leak source for hydrocarbons (which are volatile organic compounds, VOCs, that contribute to greenhouse gases and may also be precursors to atmospheric ozone formation), eliminating these flanges reduces the potential for atmospheric emissions that can damage the environment.

[0011] In accordance with the present invention, it has been found that C₃ and C₄₊ recoveries in excess of 99% can be obtained without the need for pumping of the reflux stream for the demethanizer with no loss in C₂ component recovery. The present invention provides the further advantage of being able to maintain in excess of 99% recovery of the C₃ and C₄₊ components as the recovery of C₂ components is adjusted from high to low values. In addition, the present invention makes possible essentially 100% separation of methane (or C₂ components) and lighter components from the C₂ components (or C₃ components) and heavier components at lower energy requirements compared to the prior art while maintaining the same recovery level. The present invention, although applicable at lower pressures and warmer temperatures, is particularly advantageous when processing feed gases in the range of

400 to 1500 psia [2,758 to 10,342 kPa(a)] or higher under conditions requiring NGL recovery column overhead temperatures of -50°F [-46°C] or colder.

[0012] For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:

[0013] FIG. 1 is a flow diagram of a prior art natural gas processing plant in accordance with United States Patent No. 7,191,617;

[0014] FIG. 2 is a flow diagram of a natural gas processing plant in accordance with the present invention; and

[0015] FIGS. 3 through 13 are flow diagrams illustrating alternative means of application of the present invention to a natural gas stream.

[0016] In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.

[0017] For convenience, process parameters are reported in both the traditional British units and in the units of the Système International d'Unités (SI). The molar flow rates given in the tables may be interpreted as either pound moles per

hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/Hr) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour.

DESCRIPTION OF THE PRIOR ART

[0018] FIG. 1 is a process flow diagram showing the design of a processing plant to recover C₂+ components from natural gas using prior art according to U.S. Pat. No. 7,191,617. In this simulation of the process, inlet gas enters the plant at 110°F [43°C] and 915 psia [6,307 kPa(a)] as stream 31. If the inlet gas contains a concentration of sulfur compounds which would prevent the product streams from meeting specifications, the sulfur compounds are removed by appropriate pretreatment of the feed gas (not illustrated). In addition, the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.

[0019] The feed stream 31 is divided into two portions, streams 32 and 33. Stream 32 is cooled to -32°F [-36°C] in heat exchanger 10 by heat exchange with cool residue gas stream 50a, while stream 33 is cooled to -18°F [-28°C] in heat exchanger 11 by heat exchange with demethanizer reboiler liquids at 50°F [10°C] (stream 43) and side reboiler liquids at -36°F [-38°C] (stream 42). Streams 32a and 33a recombine to form stream 31a, which enters separator 12 at -28°F [-33°C] and 893 psia [6,155 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 35). The separator liquid (stream 35) is expanded to the operating pressure (approximately 401 psia [2,765 kPa(a)]) of fractionation tower 18 by

expansion valve **17**, cooling stream **35a** to -52°F [-46°C] before it is supplied to fractionation tower **18** at a lower mid-column feed point.

[0020] The vapor (stream **34**) from separator **12** is divided into two streams, **38** and **39**. Stream **38**, containing about 32% of the total vapor, passes through heat exchanger **13** in heat exchange relation with cold residue gas stream **50** where it is cooled to substantial condensation. The resulting substantially condensed stream **38a** at -130°F [-90°C] is then flash expanded through expansion valve **14** to the operating pressure of fractionation tower **18**. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in FIG. 1, the expanded stream **38b** leaving expansion valve **14** reaches a temperature of -140°F [-96°C] and is supplied to fractionation tower **18** at an upper mid-column feed point.

[0021] The remaining 68% of the vapor from separator **12** (stream **39**) enters a work expansion machine **15** in which mechanical energy is extracted from this portion of the high pressure feed. The machine **15** expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream **39a** to a temperature of approximately -94°F [-70°C]. The typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item **16**) that can be used to re-compress the heated residue gas stream (stream **50b**), for example. The partially condensed expanded stream **39a** is thereafter supplied as feed to fractionation tower **18** at a lower mid-column feed point.

[0022] The demethanizer in tower **18** is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. As is often the case in natural gas processing

plants, the demethanizer tower consists of two sections: an upper absorbing (rectification) section **18a** that contains the trays and/or packing to provide the necessary contact between the vapor portion of expanded streams **38b** and **39a** rising upward and cold liquid falling downward to condense and absorb the C₂ components, C₃ components, and heavier components; and a lower stripping (demethanizing) section **18b** that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section **18b** also includes reboilers (such as the reboiler and the side reboiler described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product (stream **44**) of methane and lighter components. The liquid product stream **44** exits the bottom of the tower at 74°F [23°C], based on a typical specification of a methane to ethane ratio of 0.010:1 on a mass basis in the bottom product.

[0023] A portion of the distillation vapor (stream **45**) is withdrawn from the upper region of stripping section **18b**. This stream is then cooled from -109°F [-78°C] to -134°F [-92°C] and partially condensed (stream **45a**) in heat exchanger **20** by heat exchange with the cold demethanizer overhead stream **41** exiting the top of demethanizer **18** at -139°F [-95°C]. The cold demethanizer overhead stream is warmed slightly to -134°F [-92°C] (stream **41a**) as it cools and condenses at least a portion of stream **45**.

[0024] The operating pressure in reflux separator **21** (398 psia [2,748 kPa(a)]) is maintained slightly below the operating pressure of demethanizer **18**. This provides the driving force which causes distillation vapor stream **45** to flow through heat exchanger **20** and thence into the reflux separator **21** wherein the condensed liquid

(stream 47) is separated from any uncondensed vapor (stream 46). Stream 46 then combines with the warmed demethanizer overhead stream 41a from heat exchanger 20 to form cold residue gas stream 50 at -134°F [-92°C].

[0025] The liquid stream 47 from reflux separator 21 is pumped by pump 22 to a pressure slightly above the operating pressure of demethanizer 18, and stream 47a is then supplied as cold top column feed (reflux) to demethanizer 18. This cold liquid reflux absorbs and condenses the C₃ components and heavier components rising in the upper rectification region of absorbing section 18a of demethanizer 18.

[0026] The distillation vapor stream forming the tower overhead (stream 41) is warmed in heat exchanger 20 as it provides cooling to distillation stream 45 as described previously, then combines with stream 46 to form the cold residue gas stream 50. The residue gas passes countercurrently to the incoming feed gas in heat exchanger 13 where it is heated to -46°F [-44°C] (stream 50a) and in heat exchanger 10 where it is heated to 102°F [39°C] (stream 50b) as it provides cooling as previously described. The residue gas is then re-compressed in two stages. The first stage is compressor 16 driven by expansion machine 15. The second stage is compressor 23 driven by a supplemental power source which compresses the residue gas (stream 50d) to sales line pressure. After cooling to 110°F [43°C] in discharge cooler 24, residue gas stream 50e flows to the sales gas pipeline at 915 psia [6,307 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).

[0027] A summary of stream flow rates and energy consumption for the process illustrated in FIG. 1 is set forth in the following table:

Table I

(FIG. 1)

Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]

<u>Stream</u>	<u>Methane</u>	<u>Ethane</u>	<u>Propane</u>	<u>Butanes+</u>	<u>Total</u>
31	12,398	546	233	229	13,726
32	8,431	371	159	156	9,334
33	3,967	175	74	73	4,392
34	12,195	501	179	77	13,261
35	203	45	54	152	465
38	3,963	163	58	25	4,310
39	8,232	338	121	52	8,951
41	11,687	74	2	0	11,967
45	936	34	2	0	1,000
46	702	8	0	0	723
47	234	26	2	0	277
50	12,389	82	2	0	12,690
44	9	464	231	229	1,036

Recoveries*

Ethane	85.00%
Propane	99.11%
Butanes+	99.99%

Power

Residue Gas Compression	5,548 HP	[9,121 kW]
Reflux Pump	1 HP	[2 kW]
Totals	5,549 HP	[9,123 kW]

* (Based on un-rounded flow rates)

DESCRIPTION OF THE INVENTION

[0028] FIG. 2 illustrates a flow diagram of a process in accordance with the present invention. The feed gas composition and conditions considered in the process presented in FIG. 2 are the same as those in FIG. 1. Accordingly, the FIG. 2 process can be compared with that of the FIG. 1 process to illustrate the advantages of the present invention.

[0029] In the simulation of the FIG. 2 process, inlet gas enters the plant as stream 31 and is divided into two portions, streams 32 and 33. The first portion, stream 32, enters a heat exchange means in the upper region of feed cooling section 118a inside processing assembly 118. This heat exchange means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat exchange means is configured to provide

heat exchange between stream **32** flowing through one pass of the heat exchange means and a residue gas stream from condensing section **118b** inside processing assembly **118** that has been heated in a heat exchange means in the lower region of feed cooling section **118a**. Stream **32** is cooled while further heating the residue gas stream, with stream **32a** leaving the heat exchange means at -30°F [-35°C].

[0030] The second portion, stream **33**, enters a heat and mass transfer means in stripping section **118e** inside processing assembly **118**. This heat and mass transfer means may also be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat and mass transfer means is configured to provide heat exchange between stream **33** flowing through one pass of the heat and mass transfer means and a distillation liquid stream flowing downward from absorbing section **118d** inside processing assembly **118**, so that stream **33** is cooled while heating the distillation liquid stream, cooling stream **33a** to -42°F [-41°C] before it leaves the heat and mass transfer means. As the distillation liquid stream is heated, a portion of it is vaporized to form stripping vapors that rise upward as the remaining liquid continues flowing downward through the heat and mass transfer means. The heat and mass transfer means provides continuous contact between the stripping vapors and the distillation liquid stream so that it also functions to provide mass transfer between the vapor and liquid phases, stripping the liquid product stream **44** of methane and lighter components.

[0031] Streams **32a** and **33a** recombine to form stream **31a**, which enters separator section **118f** inside processing assembly **118** at -34°F [-37°C] and 900 psia [6,203 kPa(a)], whereupon the vapor (stream **34**) is separated from the condensed liquid (stream **35**). Separator section **118f** has an internal head or other means to

divide it from stripping section **118e**, so that the two sections inside processing assembly **118** can operate at different pressures.

[0032] The vapor (stream **34**) and the liquid (stream **35**) from separator section **118f** are each divided into two streams, streams **36** and **39** and streams **37** and **40**, respectively. Stream **36**, containing about 31% of the total vapor, is combined with stream **37**, containing about 50% of the total liquid, and the combined stream **38** enters a heat exchange means in the lower region of feed cooling section **118a** inside processing assembly **118**. This heat exchange means may likewise be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat exchange means is configured to provide heat exchange between stream **38** flowing through one pass of the heat exchange means and the residue gas stream from condensing section **118b**, so that stream **38** is cooled to substantial condensation while heating the residue gas stream.

[0033] The resulting substantially condensed stream **38a** at -128°F [-89°C] is then flash expanded through expansion valve **14** to the operating pressure (approximately 402 psia [2,772 kPa(a)]) of rectifying section **118c** (an absorbing means) and absorbing section **118d** (another absorbing means) inside processing assembly **118**. During expansion a portion of the stream may be vaporized, resulting in cooling of the total stream. In the process illustrated in FIG. 2, the expanded stream **38b** leaving expansion valve **14** reaches a temperature of -139°F [-95°C] and is supplied to processing assembly **118** between rectifying section **118c** and absorbing section **118d**.

[0034] The remaining 69% of the vapor from separator section **118f** (stream **39**) enters a work expansion machine **15** in which mechanical energy is extracted

from this portion of the high pressure feed. The machine **15** expands the vapor substantially isentropically to the operating pressure of absorbing section **118d**, with the work expansion cooling the expanded stream **39a** to a temperature of approximately -100°F [-73°C]. The partially condensed expanded stream **39a** is thereafter supplied as feed to the lower region of absorbing section **118d** inside processing assembly **118** to be contacted by the liquids supplied to the upper region of absorbing section **118d**. The remaining 50% of the liquid from separator section **118f** (stream **40**) is expanded to the operating pressure of stripping section **118e** inside processing assembly **118** by expansion valve **17**, cooling stream **40a** to -60°F [-51°C]. The heat and mass transfer means in stripping section **118e** is configured in upper and lower parts so that expanded liquid stream **40a** can be introduced to stripping section **118e** between the two parts.

[0035] A portion of the distillation vapor (first distillation vapor stream **45**) is withdrawn from the upper region of stripping section **118e** at -95°F [-71°C] and is directed to a heat exchange means in condensing section **118b** inside processing assembly **118**. This heat exchange means may likewise be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat exchange means is configured to provide heat exchange between first distillation vapor stream **45** flowing through one pass of the heat exchange means and a second distillation vapor stream arising from rectifying section **118c** inside processing assembly **118** so that the second distillation vapor stream is heated while it cools first distillation vapor stream **45**. Stream **45** is cooled to -134°F [-92°C] and at least partially condensed, and thereafter exits the heat exchange means and is separated into its respective vapor and liquid phases. The

vapor phase (if any) combines with the heated second distillation vapor stream exiting the heat exchange means to form the residue gas stream that provides cooling in feed cooling section **118a** as described previously. The liquid phase (stream **48**) is supplied as cold top column feed (reflux) to the upper region of rectifying section **118c** inside processing assembly **118** by gravity flow.

[0036] Rectifying section **118c** and absorbing section **118d** each contain an absorbing means consisting of a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The trays and/or packing in rectifying section **118c** and absorbing section **118d** provide the necessary contact between the vapors rising upward and cold liquid falling downward. The liquid portion of the expanded stream **39a** commingles with liquids falling downward from absorbing section **118d** and the combined liquid continues downward into stripping section **118e**. The stripping vapors arising from stripping section **118e** combine with the vapor portion of the expanded stream **39a** and rise upward through absorbing section **118d**, to be contacted with the cold liquid falling downward to condense and absorb most of the C₂ components, C₃ components, and heavier components from these vapors. The vapors arising from absorbing section **118d** combine with any vapor portion of the expanded stream **38b** and rise upward through rectifying section **118c**, to be contacted with the cold liquid (stream **48**) falling downward to condense and absorb most of the C₃ components and heavier components remaining in these vapors. The liquid portion of the expanded stream **38b** commingles with liquids falling downward from rectifying section **118c** and the combined liquid continues downward into absorbing section **118d**.

[0037] The distillation liquid flowing downward from the heat and mass transfer means in stripping section **118e** inside processing assembly **118** has been

stripped of methane and lighter components. The resulting liquid product (stream **44**) exits the lower region of stripping section **118e** and leaves processing assembly **118** at 74°F [23°C]. The second distillation vapor stream arising from rectifying section **118c** is warmed in condensing section **118b** as it provides cooling to stream **45** as described previously. The warmed second distillation vapor stream combines with any vapor separated from the cooled first distillation vapor stream **45** as described previously. The resulting residue gas stream is heated in feed cooling section **118a** as it provides cooling to streams **32** and **38** as described previously, whereupon residue gas stream **50** leaves processing assembly **118** at 104°F [40°C]. The residue gas stream is then re-compressed in two stages, compressor **16** driven by expansion machine **15** and compressor **23** driven by a supplemental power source. After cooling to 110°F [43°C] in discharge cooler **24**, residue gas stream **50c** flows to the sales gas pipeline at 915 psia [6,307 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).

[0038] A summary of stream flow rates and energy consumption for the process illustrated in FIG. 2 is set forth in the following table:

Table II

(FIG. 2)

Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]

<u>Stream</u>	<u>Methane</u>	<u>Ethane</u>	<u>Propane</u>	<u>Butanes+</u>	<u>Total</u>
31	12,398	546	233	229	13,726
32	8,679	382	163	160	9,608
33	3,719	164	70	69	4,118
34	12,150	492	171	69	13,190
35	248	54	62	160	536
36	3,791	153	53	21	4,115
37	124	27	31	80	268
38	3,915	180	84	101	4,383
39	8,359	339	118	48	9,075
40	124	27	31	80	268
45	635	34	2	0	700
48	302	30	2	0	357
49	0	0	0	0	0
50	12,389	82	2	0	12,688
44	9	464	231	229	1,038

Recoveries*

Ethane	85.03%
Propane	99.16%
Butanes+	99.98%

Power

Residue Gas Compression 5,274 HP [8,670 kW]

* (Based on un-rounded flow rates)

[0039] A comparison of Tables I and II shows that, compared to the prior art, the present invention maintains essentially the same ethane recovery (85.03% versus 85.00% for the prior art), slightly improves propane recovery from 99.11% to 99.16%, and maintains essentially the same butanes+ recovery (99.98% versus 99.99% for the prior art). However, further comparison of Tables I and II shows that the product yields were achieved using significantly less power than the prior art. In terms of the recovery efficiency (defined by the quantity of ethane recovered per unit of power), the present invention represents more than a 5% improvement over the prior art of the FIG. 1 process.

[0040] The improvement in recovery efficiency provided by the present invention over that of the prior art of the FIG. 1 process is primarily due to two factors. First, the compact arrangement of the heat exchange means in feed cooling section 118a and condensing section 118b and the heat and mass transfer means in stripping section 118e inside processing assembly 118 eliminates the pressure drop imposed by the interconnecting piping found in conventional processing plants. The result is that the residue gas flowing to compressor 16 is at higher pressure for the

present invention compared to the prior art, so that the residue gas entering compressor **23** is at significantly higher pressure, thereby reducing the power required by the present invention to restore the residue gas to pipeline pressure.

[0041] Second, using the heat and mass transfer means in stripping section **118e** to simultaneously heat the distillation liquid leaving absorbing section **118d** while allowing the resulting vapors to contact the liquid and strip its volatile components is more efficient than using a conventional distillation column with external reboilers. The volatile components are stripped out of the liquid continuously, reducing the concentration of the volatile components in the stripping vapors more quickly and thereby improving the stripping efficiency for the present invention.

[0042] The present invention offers two other advantages over the prior art in addition to the increase in processing efficiency. First, the compact arrangement of processing assembly **118** of the present invention replaces eight separate equipment items in the prior art (heat exchangers **10**, **11**, **13**, and **20**, separator **12**, reflux separator **21**, reflux pump **22**, and fractionation tower **18** in FIG. 1) with a single equipment item (processing assembly **118** in FIG. 2). This reduces the plot space requirements, eliminates the interconnecting piping, and eliminates the power consumed by the reflux pump, reducing the capital cost and operating cost of a process plant utilizing the present invention over that of the prior art. Second, elimination of the interconnecting piping means that a processing plant utilizing the present invention has far fewer flanged connections compared to the prior art, reducing the number of potential leak sources in the plant. Hydrocarbons are volatile organic compounds (VOCs), some of which are classified as greenhouse gases and some of which may be precursors to atmospheric ozone formation, which means the

present invention reduces the potential for atmospheric releases that can damage the environment.

Other Embodiments

[0043] Some circumstances may favor eliminating feed cooling section **118a** and condensing section **118b** from processing assembly **118**, and using one or more heat exchange means external to the processing assembly for feed cooling and reflux condensing, such as heat exchangers **10** and **20** shown in FIGS. 10 through 13. Such an arrangement allows processing assembly **118** to be smaller, which may reduce the overall plant cost and/or shorten the fabrication schedule in some cases. Note that in all cases exchangers **10** and **20** are representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. Each such heat exchanger may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. In some cases, it may be advantageous to combine the feed cooling and reflux condensing in a single multi-service heat exchanger. With heat exchanger **20** external to the processing assembly, reflux separator **21** and pump **22** will typically be needed to separate condensed liquid stream **47** and deliver at least a portion of it to rectifying section **118c** as reflux.

[0044] As described earlier for the embodiment of the present invention shown in FIG. 2, first distillation vapor stream **45** is partially condensed and the resulting condensate used to absorb valuable C₃ components and heavier components from the vapors rising through rectifying section **118c** of processing assembly **118**. However, the present invention is not limited to this embodiment. It may be

advantageous, for instance, to treat only a portion of these vapors in this manner, or to use only a portion of the condensate as an absorbent, in cases where other design considerations indicate portions of the vapors or the condensate should bypass rectifying section **118c** and/or absorbing section **118d** of processing assembly **118**. Some circumstances may favor total condensation, rather than partial condensation, of first distillation vapor stream **45** in condensing section **118b**. Other circumstances may favor that first distillation vapor stream **45** be a total vapor side draw from stripping section **118e** rather than a partial vapor side draw. It should also be noted that, depending on the composition of the feed gas stream, it may be advantageous to use external refrigeration to provide partial cooling of first distillation vapor stream **45** in condensing section **118b** (FIGS. 2 through 9) or heat exchanger **20** (FIGS. 10 through 13).

[0045] If the feed gas is leaner, the quantity of liquid separated in stream **35** may be small enough that the additional mass transfer zone in stripping section **118e** between expanded stream **39a** and expanded liquid stream **40a** shown in FIGS. 2, 4, 6, 8, 10, and 12 is not justified. In such cases, the heat and mass transfer means in stripping section **118e** may be configured as a single section, with expanded liquid stream **40a** introduced above the mass transfer means as shown in FIGS. 3, 5, 7, 9, 11, and 13. Some circumstances may favor combining the expanded liquid stream **40a** with expanded stream **39a** and thereafter supplying the combined stream to the lower region of absorbing section **118d** as a single feed. Some circumstances may favor supplying all of liquid stream **35** directly to stripping section **118e** via stream **40**, or combining all of liquid stream **35** with stream **36** via stream **37**. In the former case, there is no flow in stream **37** (as shown by the dashed lines in FIGS. 2 through 13) and only the vapor in stream **36** from separator section **118f** (FIGS. 2 through 5, 10,

and 11) or separator **12** (FIGS. 6 through 9, 12, and 13) flows to stream **38**. In the latter case, the expansion device for stream **40** (such as expansion valve **17**) is not needed (as shown by the dashed lines in FIGS. 3, 5, 7, 9, 11, and 13).

[0046] In some circumstances, it may be advantageous to use an external separator vessel to separate cooled feed stream **31a**, rather than including separator section **118f** in processing assembly **118**. As shown in FIGS. 6 through 9, 12, and 13, separator **12** can be used to separate cooled feed stream **31a** into vapor stream **34** and liquid stream **35**.

[0047] Some circumstances may favor using the cooled second portion (stream **33a** in FIGS. 2 through 13) in lieu of the first portion (stream **36**) of vapor stream **34** to form stream **38** flowing to the heat exchange means in the lower region of feed cooling section **118a** (FIGS. 2 through 9) or to heat exchanger **20** (FIGS. 10 through 13). In such cases, only the cooled first portion (stream **32a**) is supplied to separator section **118f** (FIGS. 2 through 5, 10, and 11) or separator **12** (FIGS. 6 through 9, 12, and 13), and all of the resulting vapor stream **34** is supplied to work expansion machine **15**.

[0048] Depending on the quantity of heavier hydrocarbons in the feed gas and the feed gas pressure, the cooled feed stream **31a** entering separator section **118f** in FIGS. 3, 5, and 11 or separator **12** in FIGS. 7, 9, and 13 may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar). In such cases, there is no liquid in streams **35** and **37** (as shown by the dashed lines), so only the vapor from separator section **118f** in stream **36** (FIGS. 3, 5, and 11) or the vapor from separator **12** in stream **36** (FIGS. 7, 9, and 13) flows to stream **38** to become the expanded substantially condensed stream **38b** supplied to processing assembly **118** between rectifying section **118c** and absorbing section **118d**. In such circumstances,

separator section **118f** in processing assembly **118** (FIGS. 3, 5, and 11) or separator **12** (FIGS. 7, 9, and 13) may not be required.

[0049] Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine **15**, or replacement with an alternate expansion device (such as an expansion valve), is feasible. Although individual stream expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the substantially condensed portion of the feed stream (stream **38a**).

[0050] In accordance with the present invention, the use of external refrigeration to supplement the cooling available to the inlet gas from the distillation vapor and liquid streams may be employed, particularly in the case of a rich inlet gas. In such cases, a heat and mass transfer means may be included in separator section **118f** (or a gas collecting means in such cases when the cooled feed stream **31a** contains no liquid) as shown by the dashed lines in FIGS. 2 through 5, 10, and 11, or a heat and mass transfer means may be included in separator **12** as shown by the dashed lines in FIGS. 6 through 9, 12, and 13. This heat and mass transfer means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat and mass transfer means is configured to provide heat exchange between a refrigerant stream (e.g., propane) flowing through one pass of the heat and mass transfer means and the vapor portion of stream **31a** flowing upward, so that the refrigerant further cools the vapor and condenses additional liquid, which falls downward to become part of the liquid removed in stream **35**. Alternatively, conventional gas chiller(s) could be used to cool

stream **32a**, stream **33a**, and/or stream **31a** with refrigerant before stream **31a** enters separator section **118f** (FIGS. 2 through 5, 10, and 11) or separator **12** (FIGS. 6 through 9, 12, and 13).

[0051] Depending on the temperature and richness of the feed gas and the amount of C₂ components to be recovered in liquid product stream **44**, there may not be sufficient heating available from stream **33** to cause the liquid leaving stripping section **118e** to meet the product specifications. In such cases, the heat and mass transfer means in stripping section **118e** may include provisions for providing supplemental heating with heating medium as shown by the dashed lines in FIGS. 2 through 13. Alternatively, another heat and mass transfer means can be included in the lower region of stripping section **118e** for providing supplemental heating, or stream **33** can be heated with heating medium before it is supplied to the heat and mass transfer means in stripping section **118e**.

[0052] Depending on the type of heat transfer devices selected for the heat exchange means in the upper and lower regions of feed cooling section **118a** and/or in condensing section **118b** in FIGS. 2 through 9, it may be possible to combine these heat exchange means in a single multi-pass and/or multi-service heat transfer device. In such cases, the multi-pass and/or multi-service heat transfer device will include appropriate means for distributing, segregating, and collecting stream **32**, stream **38**, stream **45**, any vapor separated from the cooled stream **45**, and the second distillation vapor stream in order to accomplish the desired cooling and heating.

[0053] Some circumstances may favor providing additional mass transfer in the upper region of stripping section **118e**. In such cases, a mass transfer means can be located below where expanded stream **39a** enters the lower region of absorbing

section 118d and above where cooled second portion 33a leaves the heat and mass transfer means in stripping section 118e.

[0054] A less preferred option for the FIGS. 2 through 5, 10, and 11 embodiments of the present invention is providing a separator vessel for cooled first portion 32a and a separator vessel for cooled second portion 33a, combining the vapor streams separated therein to form vapor stream 34, and combining the liquid streams separated therein to form liquid stream 35. Another less preferred option for the present invention is cooling stream 37 in a separate heat exchange means inside feed cooling section 118a in FIGS. 2 through 9 or a separate pass in heat exchanger 20 in FIGS. 10 through 13 (rather than combining stream 37 with stream 36 to form combined stream 38), expanding the cooled stream in a separate expansion device, and supplying the expanded stream to an intermediate region in absorbing section 118d.

[0055] In some circumstances, particularly when lower levels of C₂ component recovery are desirable, it may be advantageous to provide reflux for the upper region of stripping section 118e. In such cases, the liquid phase of cooled stream 45 leaving the heat exchange means in condensing section 118b (FIGS. 2 through 9) or liquid stream 47a from pump 22 (FIGS. 10 through 13) can be split into two portions, stream 48 and stream 49. Stream 48 is supplied to rectifying section 118c as its top feed, while stream 49 is supplied to the upper region of stripping section 118e so that it can partially rectify the distillation vapor in this section of processing assembly 118 before first distillation vapor stream 45 is withdrawn. In some cases, gravity flow of streams 48 and 49 may be adequate (FIGS. 2, 3, 6, and 7), while in other cases pumping of the liquid phase (stream 47) with reflux pump 22 may be desirable (FIGS. 4, 5, 8, and 9). The relative amount of the liquid phase that

is split between streams **48** and **49** will depend on several factors, including gas pressure, feed gas composition, the desired C₂ component recovery level, and the quantity of horsepower available. The optimum split generally cannot be predicted without evaluating the particular circumstances for a specific application of the present invention. Some circumstances may favor feeding all of the liquid phase as the top feed to rectifying section **118c** in stream **48** and none to the upper region of stripping section **118e** in stream **49**, as shown by the dashed lines for stream **49**.

[0056] It will be recognized that the relative amount of feed found in each branch of the split vapor feed will depend on several factors, including gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed above absorbing section **118d** may increase recovery while decreasing power recovered from the expander and thereby increasing the recompression horsepower requirements. Increasing feed below absorbing section **118d** reduces the horsepower consumption but may also reduce product recovery.

[0057] The present invention provides improved recovery of C₂ components, C₃ components, and heavier hydrocarbon components or of C₃ components and heavier hydrocarbon components per amount of utility consumption required to operate the process. An improvement in utility consumption required for operating the process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for supplemental heating, reduced energy requirements for tower reboiling, or a combination thereof.

[0058] While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various conditions, types of feed, or other requirements without departing from the spirit of the present invention as defined by the following claims.

WE CLAIM:

1. A process for the separation of a gas stream containing methane, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components or said C₃ components and heavier hydrocarbon components wherein

- (1) said gas stream is divided into first and second portions;
- (2) said first portion is cooled;
- (3) said second portion is cooled;
- (4) said cooled first portion is combined with said cooled second portion to form a cooled gas stream;
- (5) said cooled gas stream is divided into first and second streams;
- (6) said first stream is cooled to condense substantially all of said first stream and is thereafter expanded to lower pressure whereby said substantially condensed first stream is further cooled;
- (7) said expanded cooled first stream is supplied as a feed between first and second absorbing means housed in a single equipment item processing assembly, said first absorbing means being located above said second absorbing means;
- (8) said second stream is expanded to said lower pressure and is supplied as a bottom feed to said second absorbing means;
- (9) a distillation liquid stream is collected from a lower region of said second absorbing means and heated in a heat and mass transfer means housed in said processing

assembly, thereby to supply at least a portion of the cooling of step (3) while simultaneously stripping the more volatile components from said distillation liquid stream, and thereafter discharging said heated and stripped distillation liquid stream from said processing assembly as said relatively less volatile fraction;

(10) a first distillation vapor stream is collected from an upper region of said heat and mass transfer means and cooled sufficiently to condense at least a part of said first distillation vapor stream;

(11) said at least partially condensed first distillation vapor stream is supplied to a separating means and is separated therein, thereby forming a condensed stream and a residual vapor stream containing any uncondensed vapor remaining after said first distillation vapor stream is cooled;

(12) at least a portion of said condensed stream is supplied as a top feed to said first absorbing means;

(13) a second distillation vapor stream is collected from an upper region of said first absorbing means and heated;

(14) said heated second distillation vapor stream is combined with any said residual vapor stream to form a combined vapor stream;

(15) said combined vapor stream is heated, thereafter discharging said heated combined vapor stream as said volatile residue gas fraction;

(16) said heating of said second distillation vapor stream and said combined vapor stream is accomplished in one or more heat exchange means, thereby to supply at least a portion of the cooling of steps (2), (6), and (10); and

(17) the quantities and temperatures of said feed streams to said first and second absorbing means are effective to maintain the temperature of said upper region of said first absorbing means at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

2. A process according to claim 1 wherein

(a) said cooled first portion is combined with said cooled second portion to form a partially condensed gas stream;

(b) said partially condensed gas stream is supplied to an additional separating means and is separated therein to provide a vapor stream and at least one liquid stream;

(c) said vapor stream is divided into said first and second streams; and

(d) at least a portion of said at least one liquid stream is expanded to said lower pressure and is supplied as a feed to said processing assembly below said second absorbing means and above said heat and mass transfer means.

3. The process according to claim 2 wherein

(i) said first stream is combined with at least a portion of said at least one liquid stream to form a combined stream;

(ii) said combined stream is cooled to condense substantially all of said combined stream and is thereafter expanded to lower pressure whereby the substantially condensed combined stream is further cooled;

(iii) said expanded cooled combined stream is supplied as said feed between said first and second absorbing means;

(iv) any remaining portion of said at least one liquid stream is expanded to said lower pressure and is supplied as said feed to said processing assembly below said second absorbing means and above said heat and mass transfer means; and

(v) said heating of said second distillation vapor stream and said combined vapor stream is accomplished in one or more heat exchange means, thereby to supply at least a portion of the cooling of steps (2), (10), and (ii).

4. The process according to claim 2 wherein said additional separating means is housed in said processing assembly.

5. The process according to claim 3 wherein said additional separating means is housed in said processing assembly.

6. The process according to claim 2 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said expanded at least a portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

7. The process according to claim 3 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said expanded any remaining portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

8. The process according to claim 4 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said expanded at least a portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

9. The process according to claim 5 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said expanded any remaining portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

10. The process according to claim 1 wherein

(1) a gas collecting means is housed in said processing assembly;

(2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(3) said cooled gas stream is supplied to said gas collecting means and directed to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said further cooled gas stream is divided into said first and second streams.

11. The process according to claim 5, 6, 7, 8, 9, 2 or 3, wherein

(1) an additional heat and mass transfer means is included inside said additional separating means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(2) said vapor stream is directed to said additional heat and mass transfer means to be cooled by said external refrigeration medium to form additional condensate; and

(3) said additional condensate becomes a part of said at least one liquid stream separated therein.

12. The process according to claim 1, 4, 5, 6, 7, 8, 9, 10, 2 or 3, wherein

(1) said condensed stream is divided into at least first and second reflux streams;

(2) said first reflux stream is supplied as said top feed to said first absorbing means; and

(3) said second reflux stream is supplied as a feed to said processing assembly below said second absorbing means and above said heat and mass transfer means.

13. The process according to claim 11 wherein

(1) said condensed stream is divided into at least first and second reflux streams;

(2) said first reflux stream is supplied as said top feed to said first absorbing means; and

(3) said second reflux stream is supplied as a feed to said processing assembly below said second absorbing means and above said heat and mass transfer means.

14. The process according to claim 1, 4, 5, 6, 7, 8, 9, 10, 2 or 3 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

15. The process according to claim 11 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

16. The process according to claim 12 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

17. The process according to claim 13 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

18. An apparatus for the separation of a gas stream containing methane, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components or said C₃ components and heavier hydrocarbon components including

(1) first dividing means to divide said gas stream into first and second portions;

- (2) heat exchange means connected to said first dividing means to receive said first portion and cool said first portion;
- (3) heat and mass transfer means housed in a single equipment item processing assembly and connected to said first dividing means to receive said second portion and cool said second portion;
- (4) first combining means connected to said heat exchange means and said heat and mass transfer means to receive said cooled first portion and said cooled second portion and form a cooled gas stream;
- (5) second dividing means connected to said first combining means to receive said cooled gas stream and divide said cooled gas stream into first and second streams;
- (6) said heat exchange means being further connected to said second dividing means to receive said first stream and cool said first stream sufficiently to substantially condense said first stream;
- (7) first expansion means connected to said heat exchange means to receive said substantially condensed first stream and expand said substantially condensed first stream to lower pressure;
- (8) first and second absorbing means housed in said processing assembly and connected to said first expansion means to receive said expanded cooled first stream as a feed thereto between said first and second absorbing means, said first absorbing means being located above said second absorbing means;
- (9) second expansion means connected to said second dividing means to receive said second stream and expand said second stream to said lower pressure, said second

expansion means being further connected to said second absorbing means to supply said expanded second stream as a bottom feed thereto;

(10) liquid collecting means housed in said processing assembly and connected to said second absorbing means to receive a distillation liquid stream from a lower region of said second absorbing means;

(11) said heat and mass transfer means being further connected to said liquid collecting means to receive said distillation liquid stream and heat said distillation liquid stream, thereby to supply at least a portion of the cooling of step (3) while simultaneously stripping the more volatile components from said distillation liquid stream, and thereafter discharging said heated and stripped distillation liquid stream from said processing assembly as said relatively less volatile fraction;

(12) first vapor collecting means housed in said processing assembly and connected to said heat and mass transfer means to receive a first distillation vapor stream from an upper region of said heat and mass transfer means;

(13) said heat exchange means being further connected to said first vapor collecting means to receive said first distillation vapor stream and cool said first distillation vapor stream sufficiently to condense at least a part of said first distillation vapor stream;

(14) separating means connected to said heat exchange means to receive said at least partially condensed first distillation vapor stream and separate said at least partially condensed first distillation vapor stream into a condensed stream and a residual vapor stream containing any uncondensed vapor remaining after said first distillation vapor stream is cooled;

(15) said first absorbing means being further connected to said separating means to receive at least a portion of said condensed stream as a top feed thereto;

(16) second vapor collecting means housed in said processing assembly and connected to said first absorbing means to receive a second distillation vapor stream from an upper region of said first absorbing means;

(17) said heat exchange means being further connected to said second vapor collecting means to receive said second distillation vapor stream and heat said second distillation vapor stream, thereby to supply at least a portion of the cooling of step (13);

(18) second combining means connected to said heat exchange means and said separating means to receive said heated second distillation vapor stream and any said residual vapor stream and form a combined vapor stream;

(19) said heat exchange means being further connected to said second combining means to receive said combined vapor stream and heat said combined vapor stream, thereby to supply at least a portion of the cooling of steps (2) and (6), and thereafter discharging said heated combined vapor stream as said volatile residue gas fraction; and

(20) control means adapted to regulate the quantities and temperatures of said feed streams to said first and second absorbing means to maintain the temperature of said upper region of said first absorbing means at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

19. The apparatus according to claim 18 wherein

(a) said first combining means is adapted to receive said cooled first portion and said cooled second portion and form a partially condensed gas stream;

- (b) an additional separating means is connected to said first combining means to receive said partially condensed gas stream and separate said partially condensed gas stream into a vapor stream and at least one liquid stream;
- (c) said second dividing means is connected to said additional separating means to receive said vapor stream and divide said vapor stream into said first and second streams; and
- (d) a third expansion means is connected to said additional separating means to receive at least a portion of said at least one liquid stream and expand said at least a portion of said at least one liquid stream to said lower pressure, said third expansion means being further connected to said processing assembly to supply said expanded at least a portion of said at least one liquid stream as a feed thereto below said second absorbing means and above said heat and mass transfer means.

20. The apparatus according to claim 19 wherein

- (i) a third combining means is connected to said second dividing means and said additional separating means to receive said first stream and at least a portion of said at least one liquid stream and form a combined stream;
- (ii) said heat exchange means is further connected to said third combining means to receive said combined stream and cool said combined stream sufficiently to substantially condense said combined stream;
- (iii) said first expansion means is connected to said heat exchange means to receive said substantially condensed combined stream and expand said substantially condensed combined stream to lower pressure;

(iv) said first and second absorbing means are connected to said first expansion means to receive said expanded cooled combined stream as said feed thereto between said first and second absorbing means; and

(v) third expansion means is connected to said additional separating means to receive any remaining portion of said at least one liquid stream and expand said any remaining portion of said at least one liquid stream to said lower pressure, said third expansion means being further connected to said processing assembly to supply said expanded any remaining portion of said at least one liquid stream as said feed thereto below said second absorbing means and above said heat and mass transfer means.

21. The apparatus according to claim 19 wherein said additional separating means is housed in said processing assembly.

22. The apparatus according to claim 20 wherein said additional separating means is housed in said processing assembly.

23. The apparatus according to claim 19 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded at least a portion of said at least one liquid stream and direct said expanded at least a portion of said at least one liquid stream between said upper and lower regions of said heat and mass transfer means.

24. The apparatus according to claim 20 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded any remaining portion of said at least one liquid stream and direct said expanded any remaining portion of said at least one liquid stream between said upper and lower regions of said heat and mass transfer means.

25. The apparatus according to claim 21 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded at least a portion of said at least one liquid stream and direct said expanded at least a portion of said at least one liquid stream between said upper and lower regions of said heat and mass transfer means.

26. The apparatus according to claim 22 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded any remaining portion of said at least one liquid stream and direct said expanded any remaining portion of said at least one liquid stream between said upper and lower regions of said heat and mass transfer means.

27. The apparatus according to claim 18 wherein

(1) a gas collecting means is housed in said processing assembly;

(2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(3) said gas collecting means is connected to said first combining means to receive said cooled gas stream and direct said cooled gas stream to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said second dividing means is adapted to be connected to said gas collecting means to receive said further cooled gas stream and divide said further cooled gas stream into said first and second streams.

28. The apparatus according to claim 21, 22, 23, 24, 25, 26, 19 or 20, wherein

(1) an additional heat and mass transfer means is included inside said additional separating means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(2) said vapor stream is directed to said additional heat and mass transfer means to be cooled by said external refrigeration medium to form additional condensate; and

(3) said additional condensate becomes a part of said at least one liquid stream separated therein.

29. The apparatus according to claim 18 wherein

(1) a third dividing means is connected to said separating means to receive said condensed stream and divide said condensed stream into at least first and second reflux streams;

(2) said first absorbing means is adapted to be connected to said third dividing means to receive said first reflux stream as said top feed thereto; and

(3) said heat and mass transfer means is adapted to be connected to said third dividing means to receive said second reflux stream as a top feed thereto.

30. The apparatus according to claim 21, 22, 23, 24, 25, 26, 27, 19 or 20,

wherein

(1) a third dividing means is connected to said separating means to receive said condensed stream and divide said condensed stream into at least first and second reflux streams;

(2) said first absorbing means is adapted to be connected to said third dividing means to receive said first reflux stream as said top feed thereto; and

(3) said heat and mass transfer means is adapted to be connected to said third dividing means to receive said second reflux stream as a top feed thereto.

31. The apparatus according to claim 28 wherein

(1) a third dividing means is connected to said separating means to receive said condensed stream and divide said condensed stream into at least first and second reflux streams;

(2) said first absorbing means is adapted to be connected to said third dividing means to receive said first reflux stream as said top feed thereto; and

(3) said heat and mass transfer means is adapted to be connected to said third dividing means to receive said second reflux stream as a top feed thereto.

32. The apparatus according to claim 18, 21, 22, 23, 24, 25, 26, 27, 29, 19 or 20,

wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

33. The apparatus according to claim 28 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating

supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

34. The apparatus according to claim 30 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

35. The apparatus according to claim 31 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

1 / 13

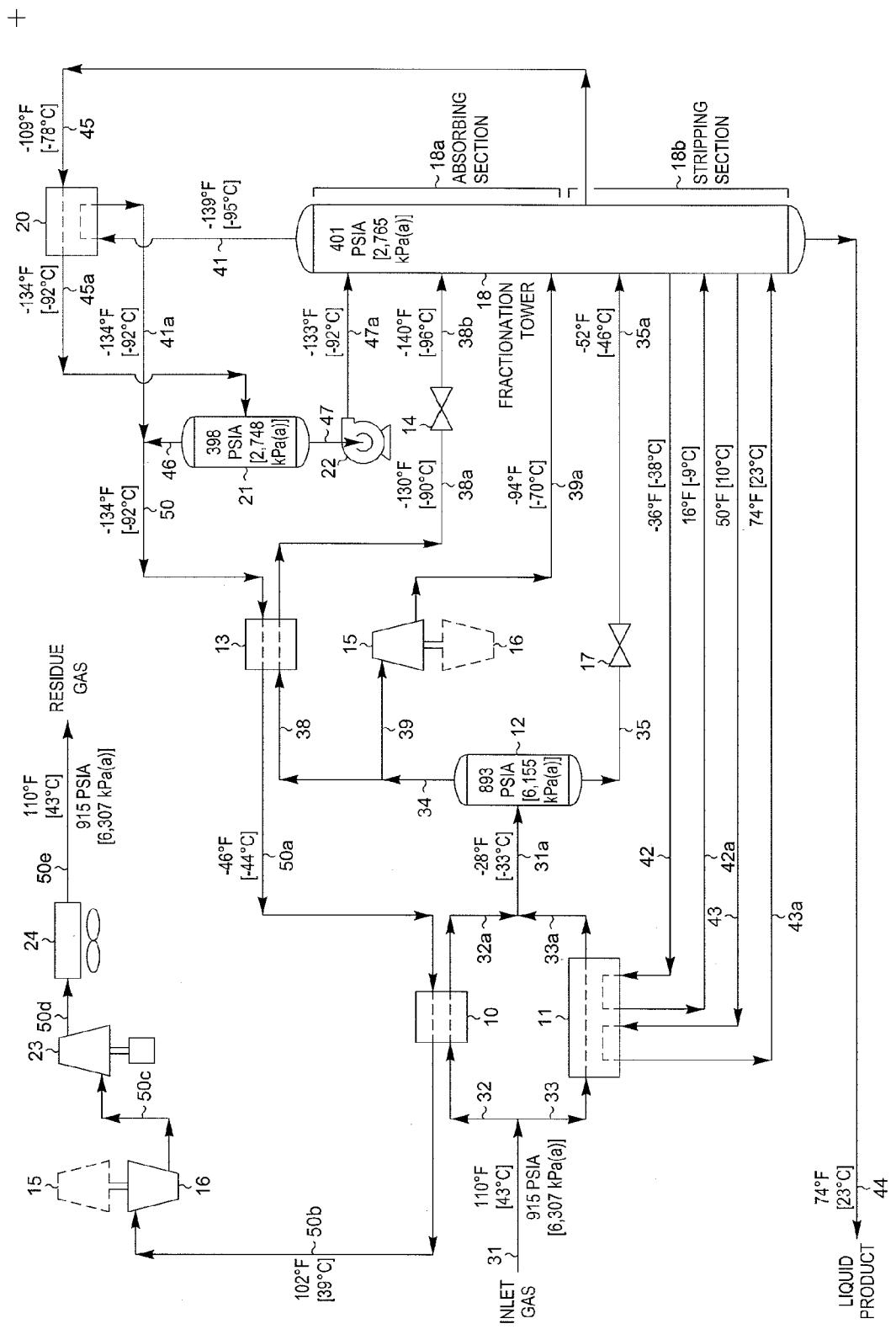


FIG. 1
(PRIOR ART)

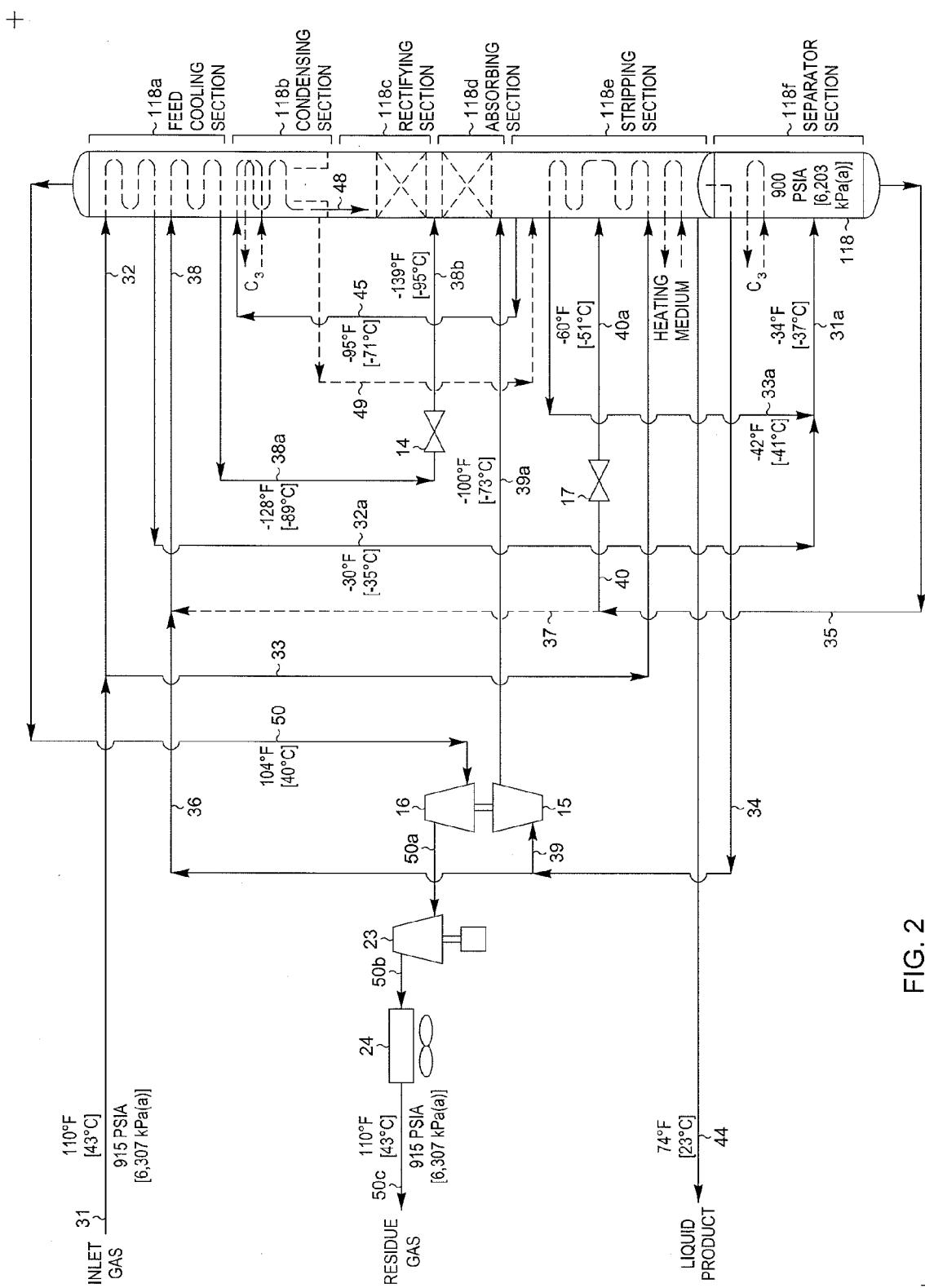


FIG. 2

3 / 13

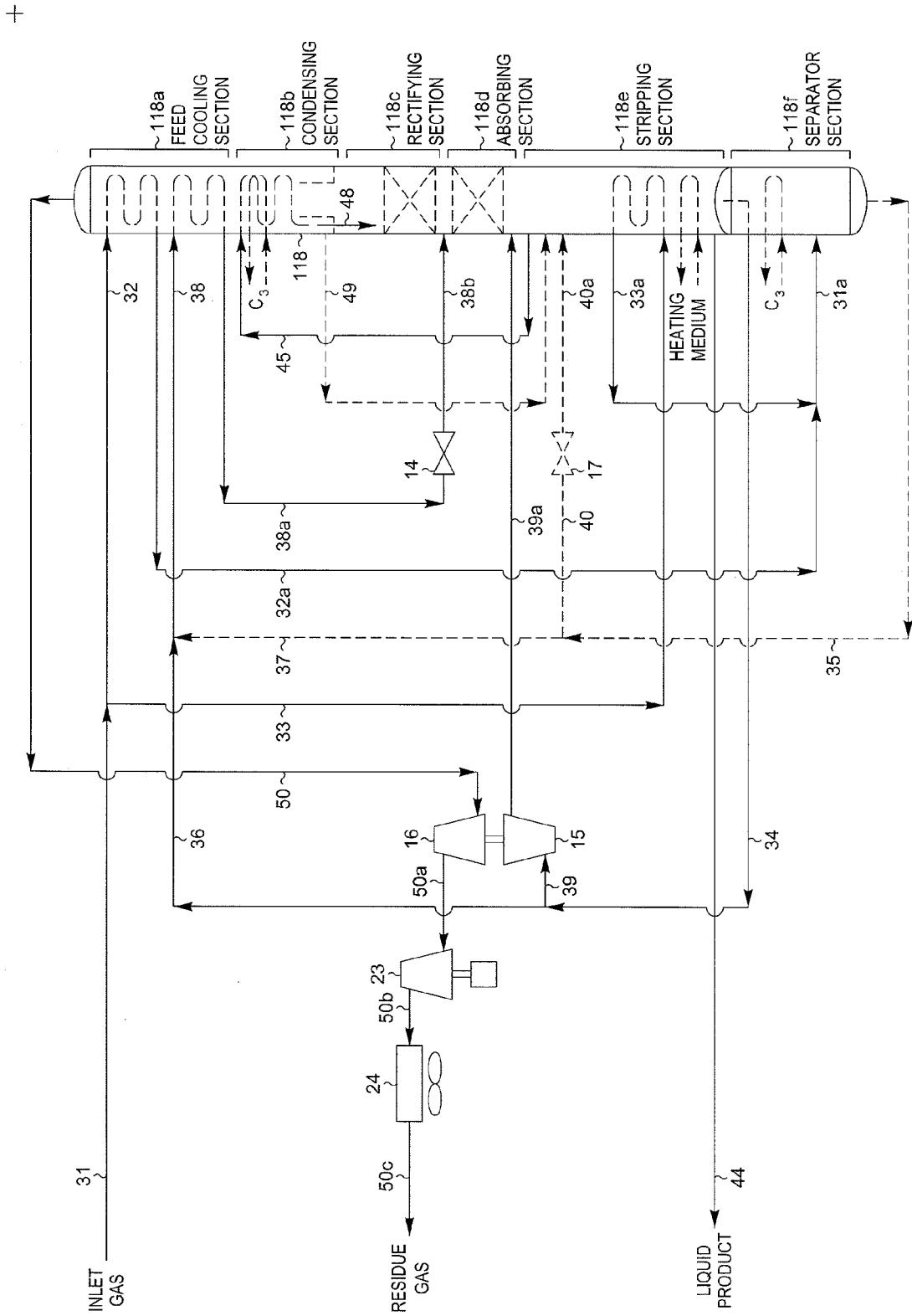


FIG. 3

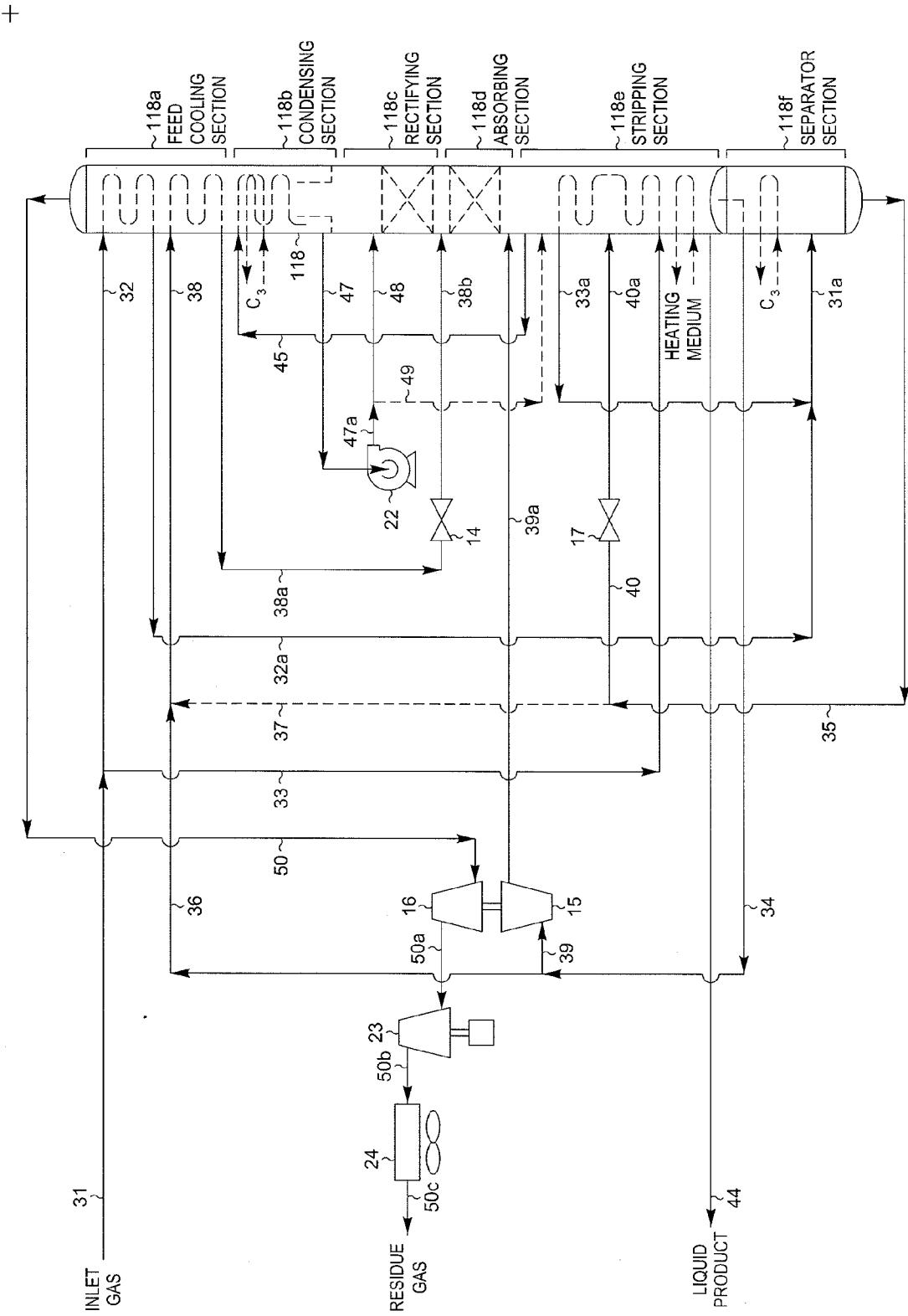


FIG. 4

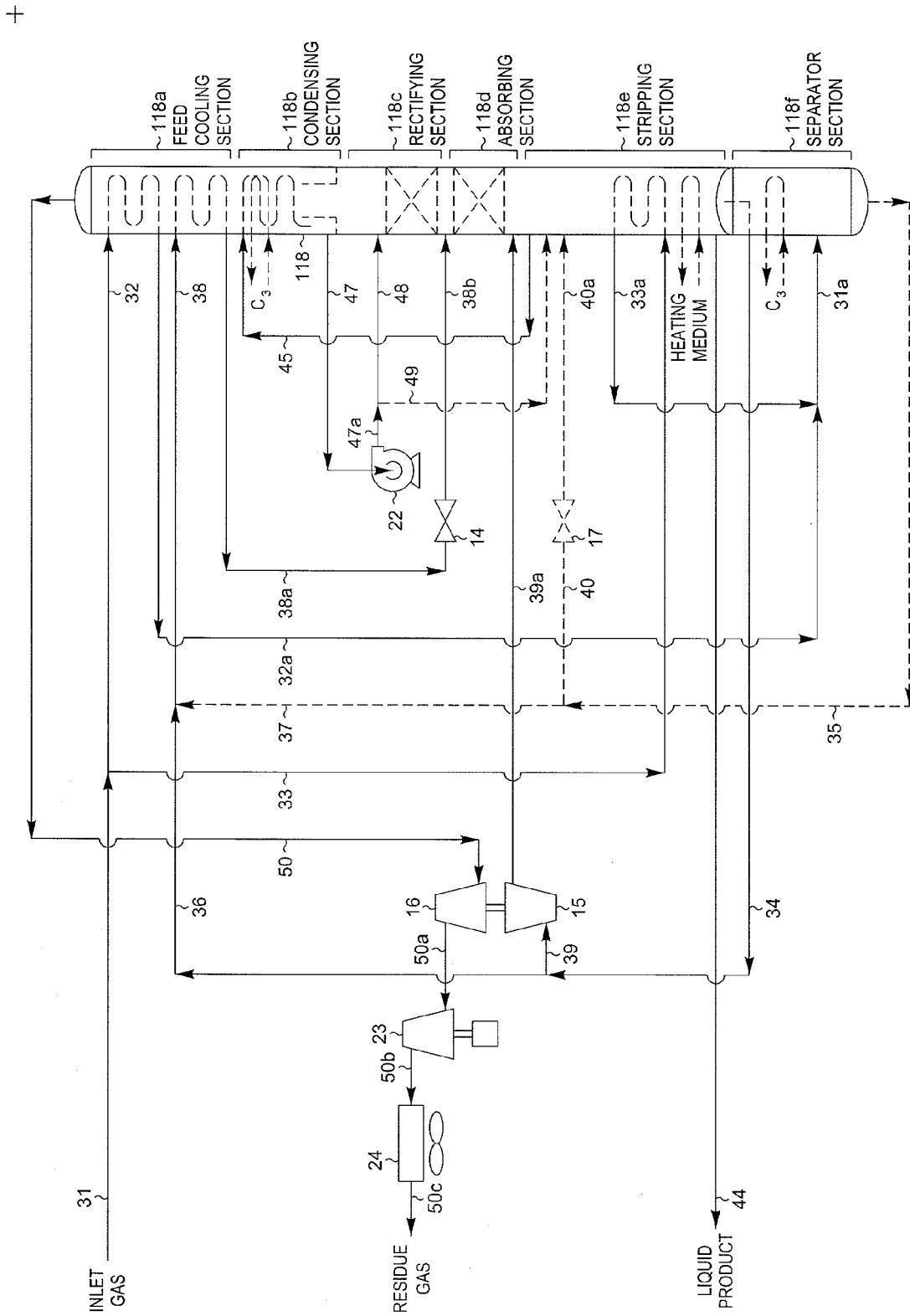


FIG. 5

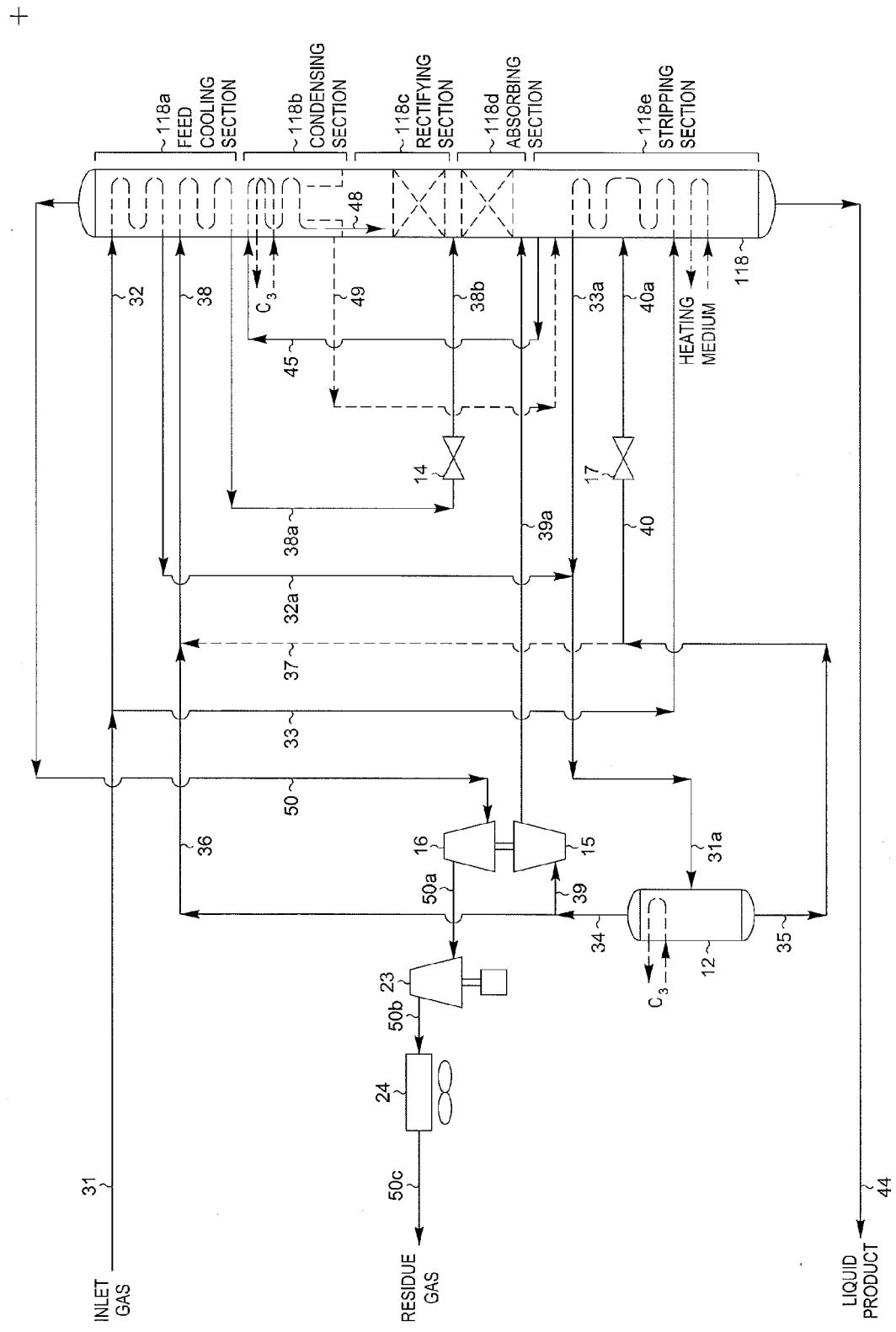


FIG. 6

7 / 13

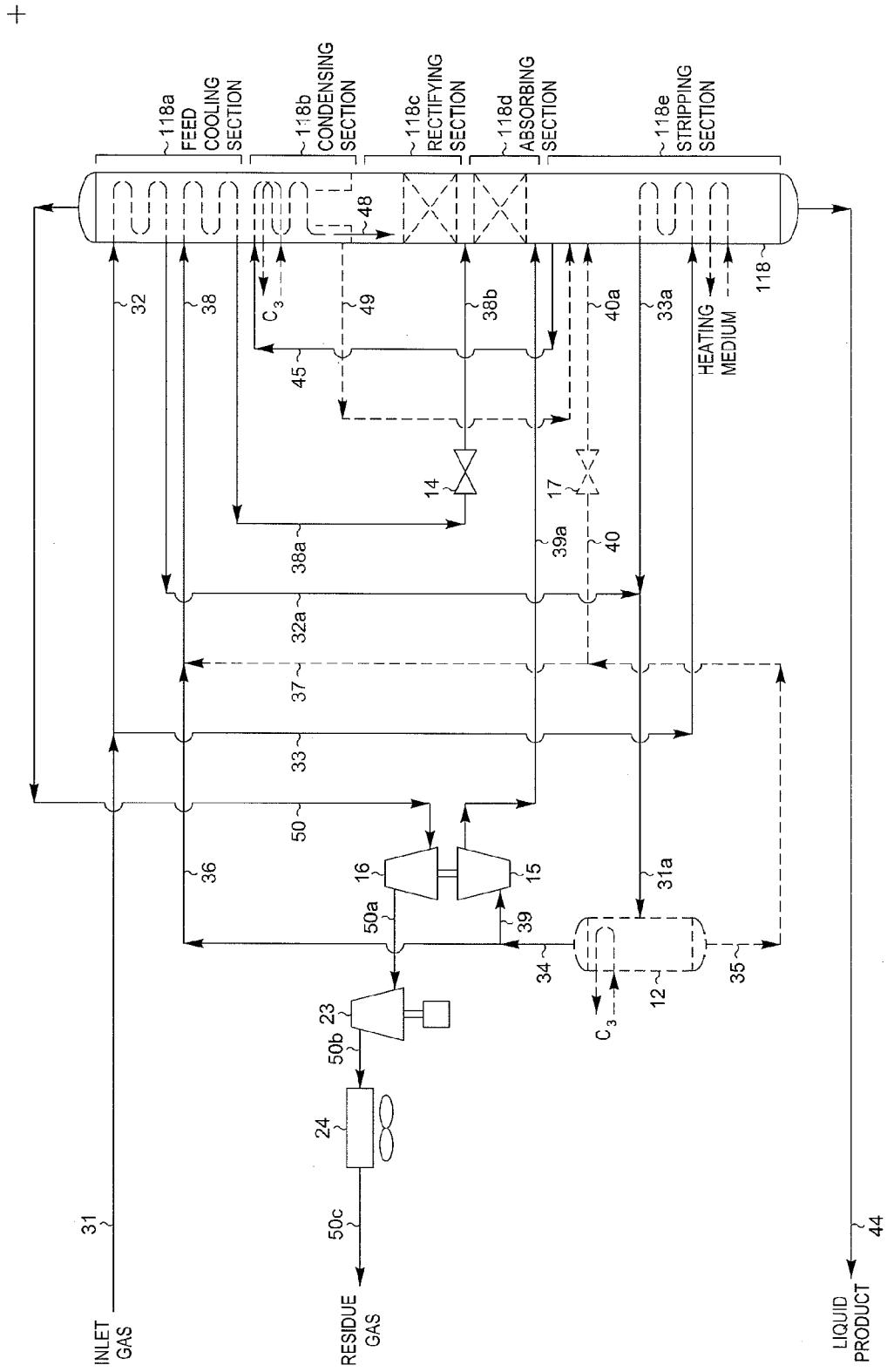


FIG. 7

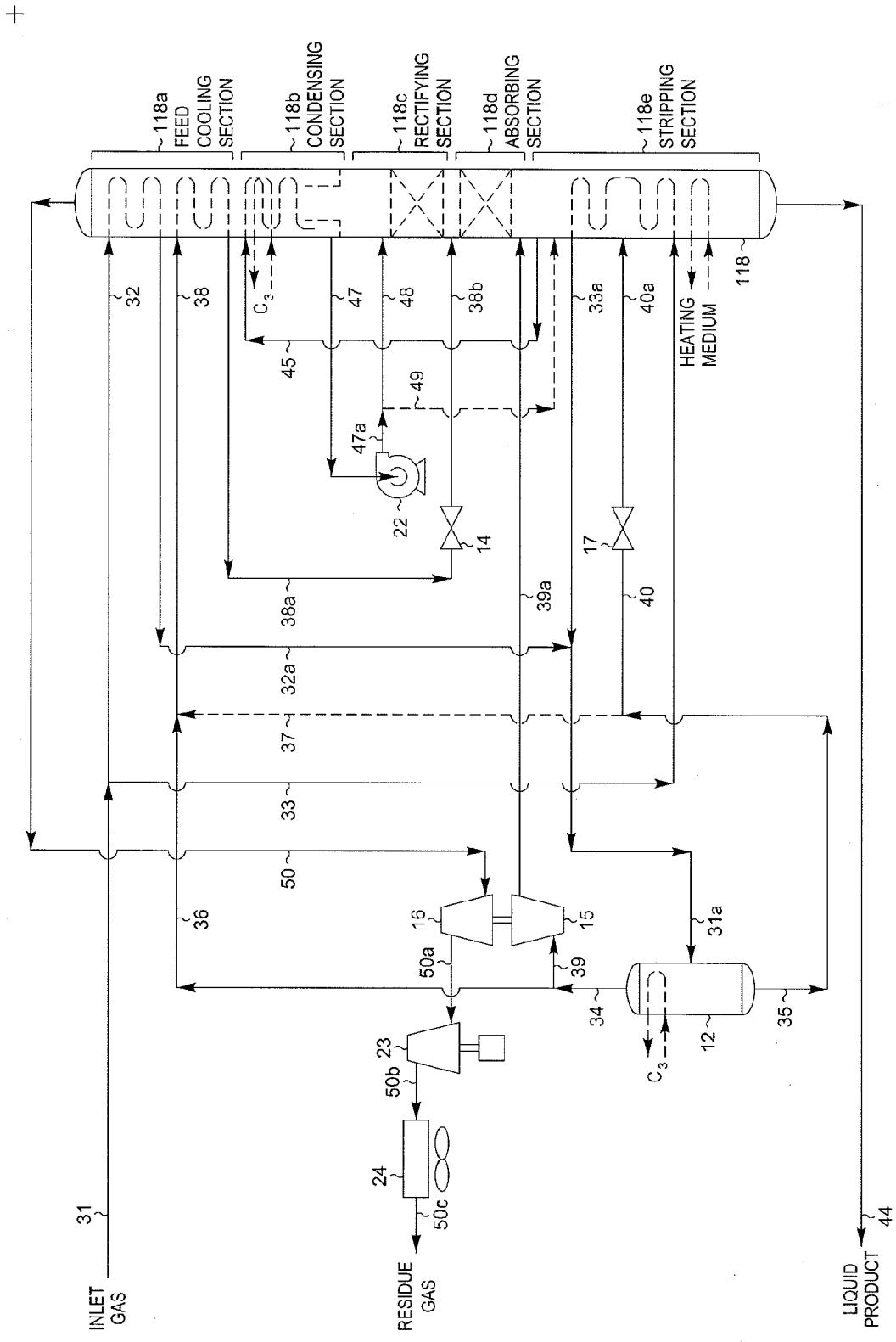


FIG. 8

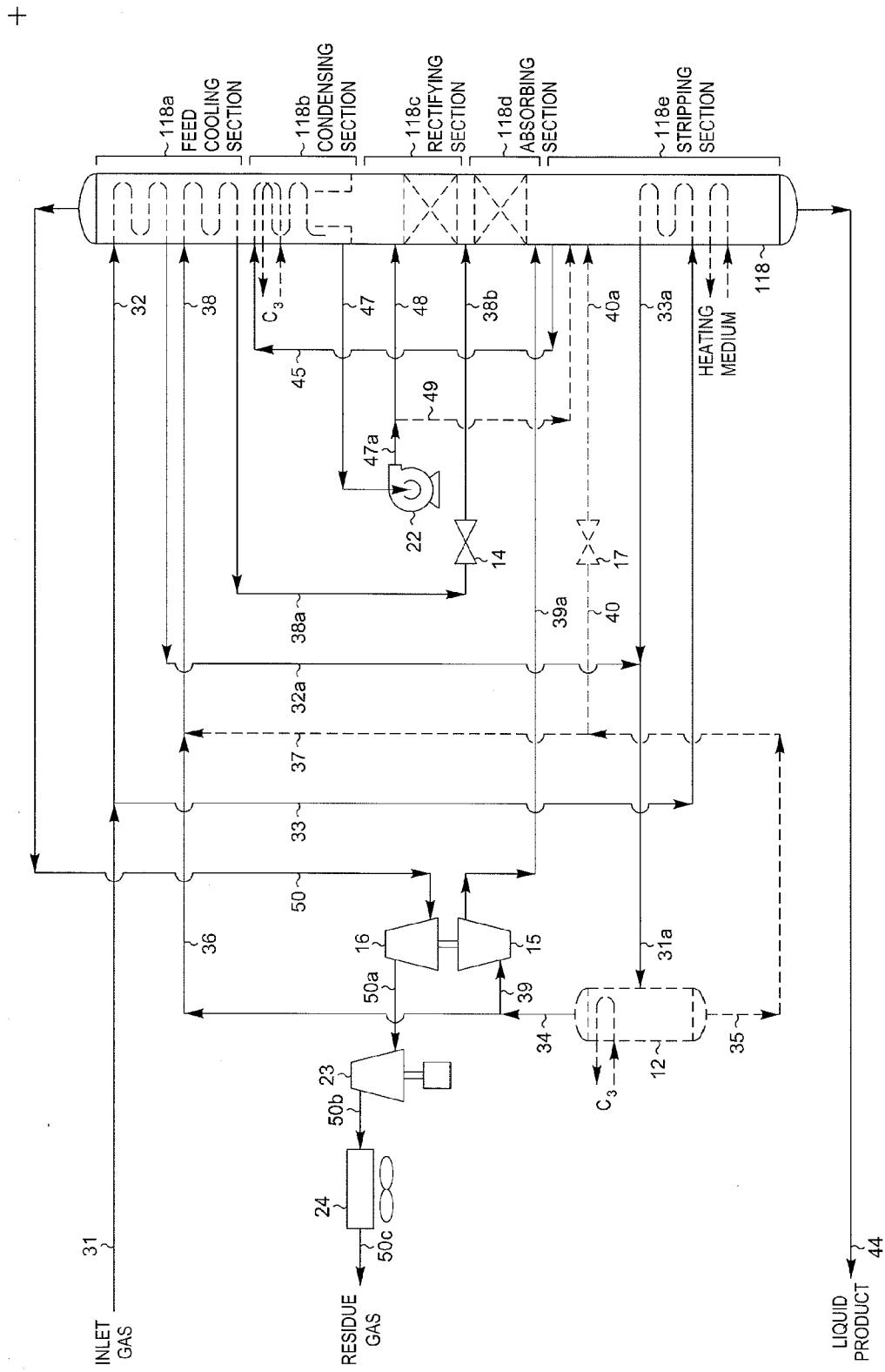


FIG. 9

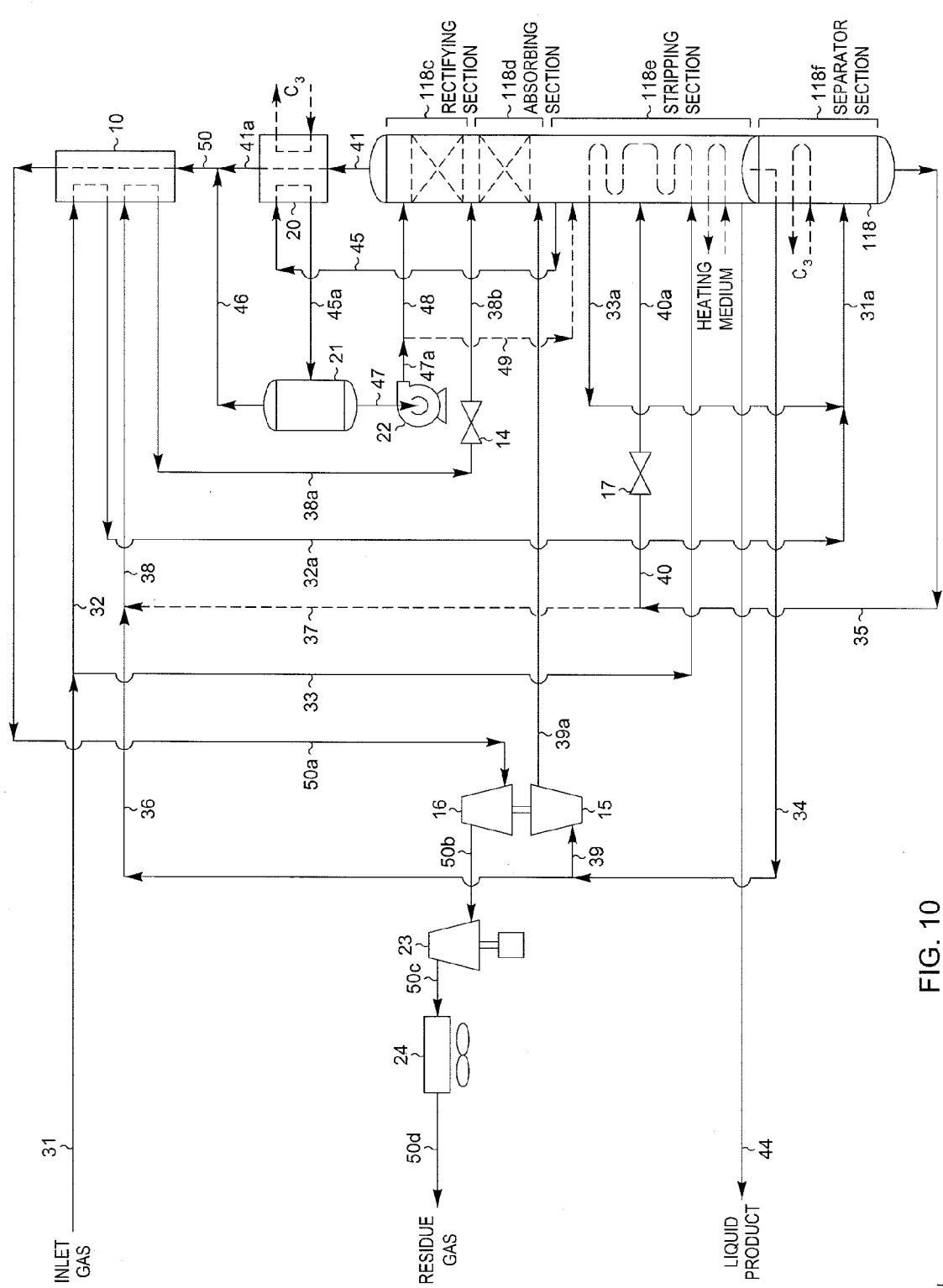


FIG. 10

11 / 13

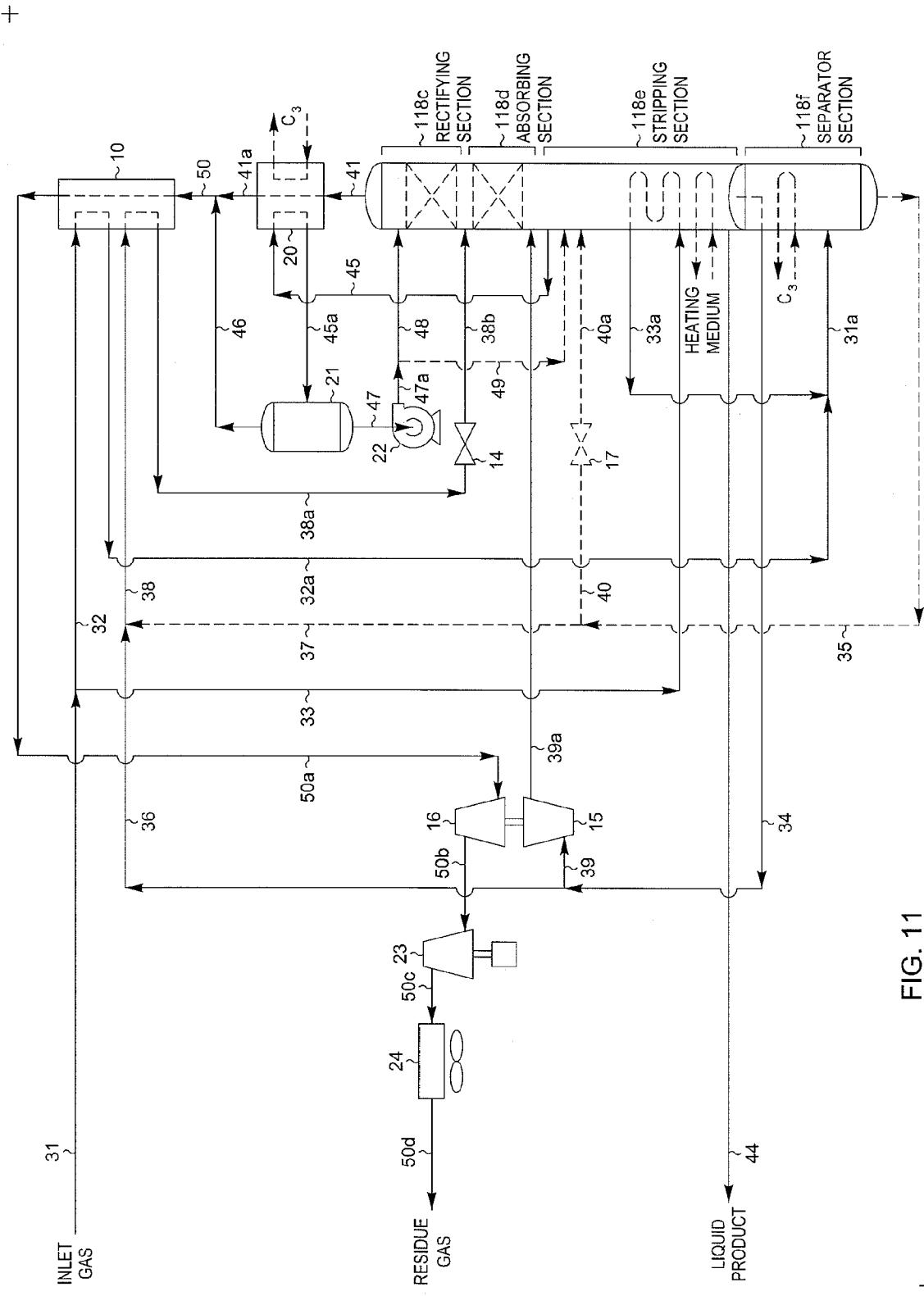


FIG. 11

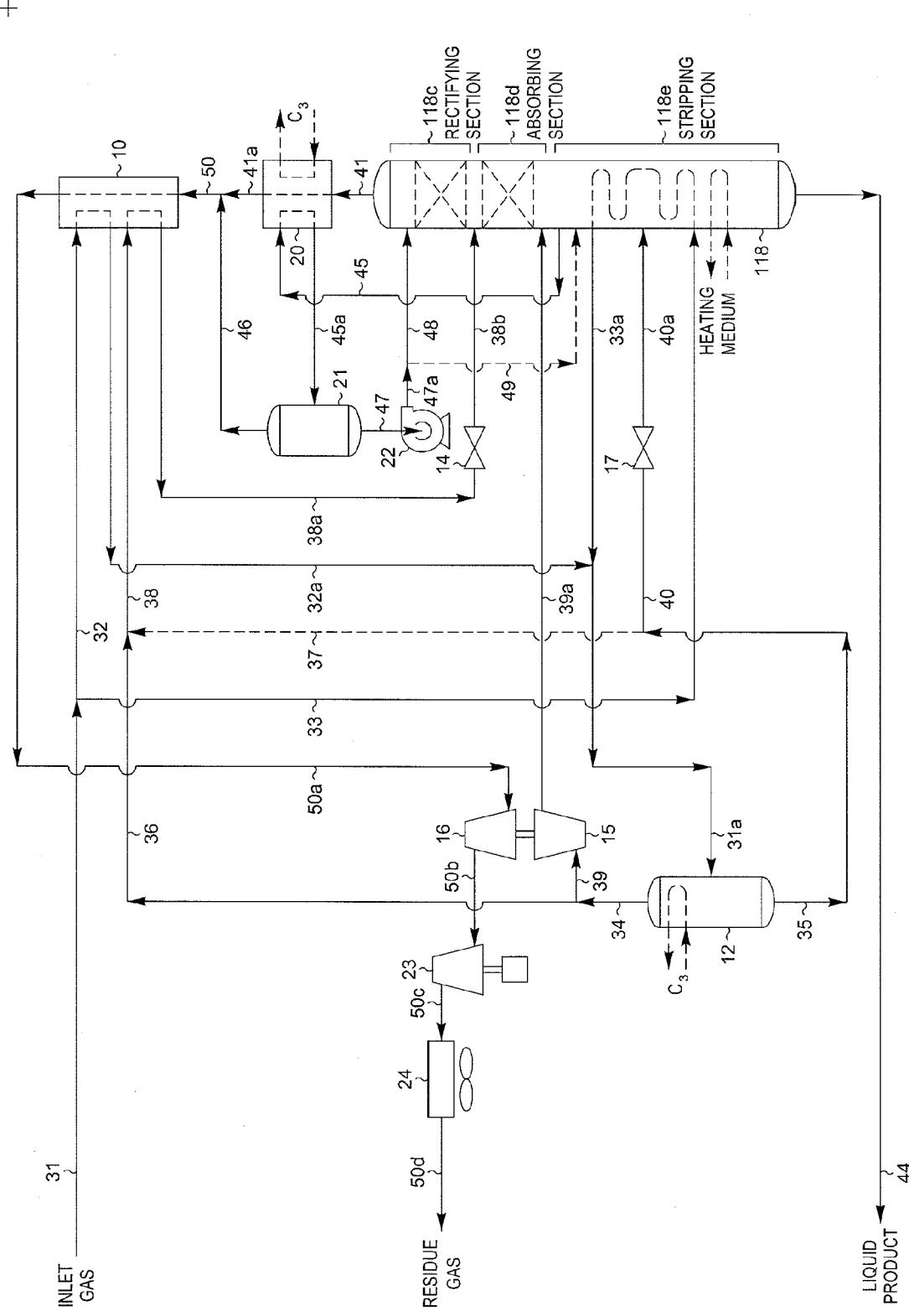


FIG. 12

13 / 13

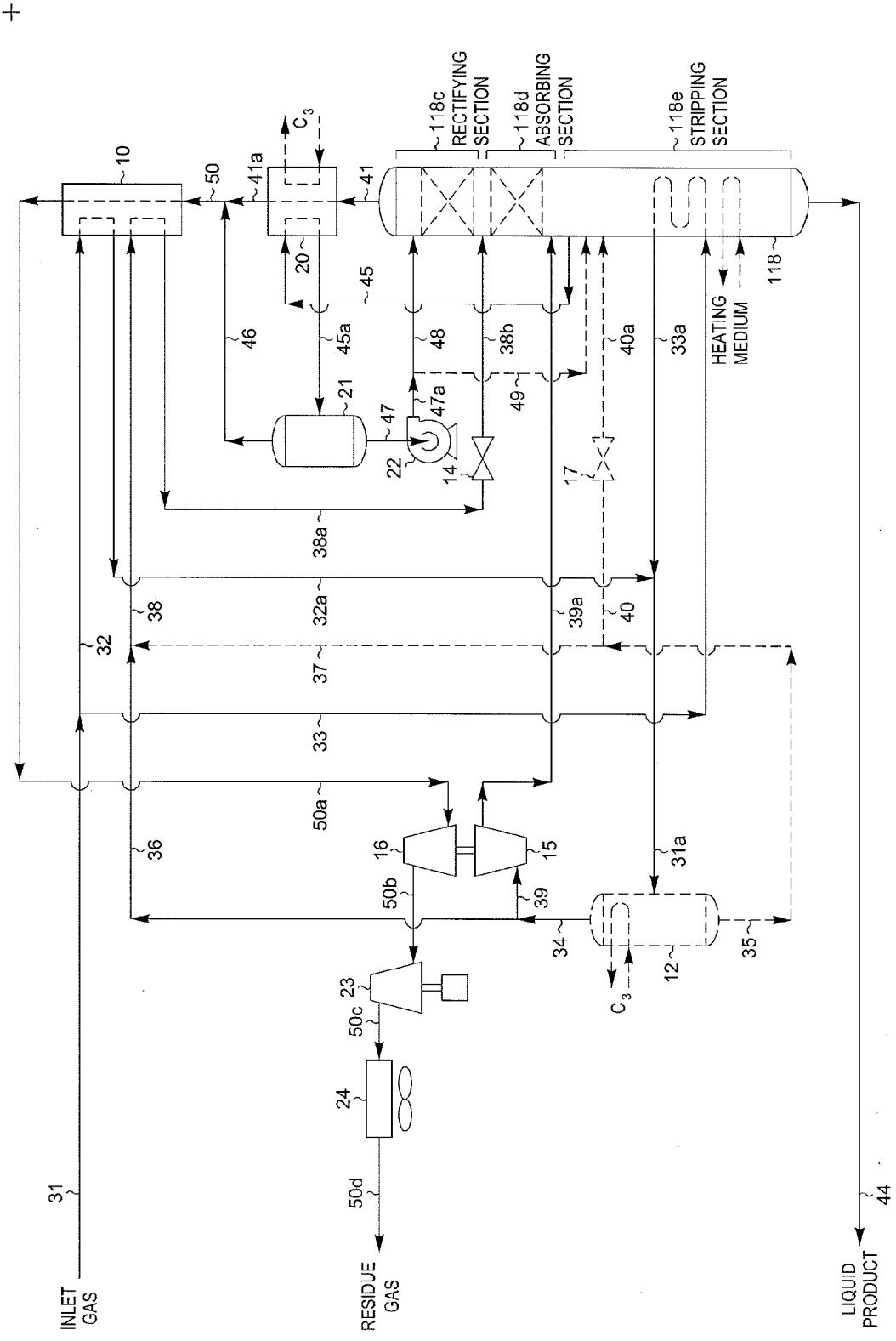


FIG. 13