
US 20090217041A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0217041 A1

Ramzan et al. (43) Pub. Date: Aug. 27, 2009

(54) PROVISIONAL SIGNATURE SCHEMES Related U.S. Application Data
(62) Division of application No. 1 1/215.550, filed on Aug.

(76) Inventors: Zulfikar Ramzan, San Mateo, CA 29, 2005.
(US); Craig Gentry, Mountain Publication Classification
View, CA (US); David Molnar,
Berkeley, CA (US) (51) Int. Cl.

H04L 9/32 (2006.01)
(52) U.S. Cl. .. 713/168 Correspondence Address:

BLAKELY SOKOLOFF TAYLOR & ZAFMAN (S7) ABSTRACT
LLP A method and apparatus for implementing portions of a pro
1279 OAKMEAD PARKWAY visional signature scheme are disclosed. In one embodiment,
SUNNYVALE, CA 94085-4040 (US) the method comprises creating a provisional signature by

performing an operation on a message and completing the
(21) Appl. No.: 12/389.287 provisional signature to create a final signature on the mes

sage. Such a scheme may be used for server assisted signature
schemes, designated confirmer signature Schemes and blind

(22) Filed: Feb. 19, 2009 signature schemes.

The Blinder picks a random value r and computes X = C(M,r)

The Blinder sends X to signer and performs zero-knowledge
proof of knowledge of an r and M such that X = C(M,r)

If and only if the proof succeeds, signer signs X and returns Sig(x)

The provisional signature on M is Sig(X) = Sig(C(M,r))

Patent Application Publication Aug. 27, 2009 Sheet 1 of 10 US 2009/0217041 A1

Create a provisional signature by performing - 101
an operation on a message.

--
Complete the provisional signature to create - 102

a final signature on the message.

Assign a value to each leaf node of a tree described
by the tree structure data corresponding to the

quantized coefficients

Figure 1

Verifier

Figure 2

Patent Application Publication Aug. 27, 2009 Sheet 2 of 10 US 2009/0217041 A1

Processor

301

Communications

303

Figure 3

Patent Application Publication Aug. 27, 2009 Sheet 3 of 10 US 2009/0217041 A1

MASS MAN STATC
STORAGE PROCESSOR

MEMORY MEMORY MEMORY

BUS

-

EXTERNAL CURSOR HARD
NETWORK DISPLAY KEYBOARD CONTROL COPY
NTERFACE DEVICE DEVICE

Figure 4

Patent Application Publication Aug. 27, 2009 Sheet 4 of 10 US 2009/0217041 A1

A security parameter k and a number of signatures S is specified. - 501

A random 160-bit elliptic curve is produced,
together with a generator point g. 502

--
Two seeds S1 and S2 are chosen uniformly at random. / 503

A sequence of values xi, 1 <= i <= S, is generated as successive 504
outputs of a $PRGS seeded with the random seeds.

A sequence of values C, 1 <= i <= S is generated as successive 505
outputs of a PRG seeded with the random seeds2.

506
A sequence of values his 1 <= i <= S is Calculated.

A key pair for a standard Secure signature 507
scheme (SK, PK) is computed.

508
1S Computed. A sequence of S signatures

The seeds S1 and S2 are selected by signer.
The values h; and Sigi are given to the server.

The public key PK is published as the signer's public key,
todether with d and the address of the server.

509

Figure 5

Patent Application Publication Aug. 27, 2009 Sheet 5 of 10 US 2009/0217041 A1

601 The signer generates value x by using secret seed s1 /

--
The signer generates value C by using secret seed s2

The signer finds value r, such thatg"h = gh - 603

The signer outputs r as the provisional signature of mi 604

Figure 6

The server is given the index i of the
provisional signature ri, and m

The server looks up and returns h; and Sigi = Sigci h),
where j =gh

The final signature is (Sig(C, h)), him, r.) / 704

Figure 7

Patent Application Publication Aug. 27, 2009 Sheet 6 of 10 US 2009/0217041 A1

/ 801
The verifier computes j =g"h

The verifier checks whether Vpk(Sig(ji, h;)) = 1

803
The verifier accepts if and only if the check passes

Figure 8

7- 802

The signer creates a key pair (PKs, SKs)
for a standard secure digital signature scheme

The designated confirmer Creates a key pair (PK, SK)
for a semantically secure public-key encryption scheme

Figure 9

The provisional signatures is (M, S, Ek(r)), where E is a L-1003
semantically secure public-key encryption scheme

Figure 10

Patent Application Publication Aug. 27, 2009 Sheet 7 of 10 US 2009/0217041 A1

The designated confirmer performs a zero-knowledge proof of
knowledge of a value r such that comm = (C(M,r))

Figure 11

Parse the purported signature as (M.S. Epk (r)) - 1201

1202
Decrypt EPK, (r)) to recoverr /

- 1203 The designated confirmer performs a zero-knowledge proof of
knowledge of an r and an Misuch that Ver(S) = 1,

C(M', r) = S, D(E(r)) = r) and M'= M

Figure 12

The designated confirmer decrypts Epk(r) to obtain r - 1301

The designated confirmer outputs (M,r,S)
as the final signature on M - 1302

Figure 13

Patent Application Publication Aug. 27, 2009 Sheet 8 of 10 US 2009/0217041 A1

The verifier computes comm = C(M,r) 1 1401

–
- 1402

The verifier checks that S is a valid signature on comm under PK, -/

/ 1403 The verifier accepts if and only if the check passes

Figure 14

The signer creates a key pair PKs, SKs / 1501
for a standard Secure digital signature Scheme

Figure 15

The Blinder sends X to signer and performs zero-knowledge
proof of knowledge of an r and M such that X = C(M,r)

-

H
/ 1603

If and only if the proof succeeds, signer signs X and returns Sig(X)

The provisional signature on M is Sig(X) = Sig(C(M,r))

Figure 16

Patent Application Publication Aug. 27, 2009 Sheet 9 of 10 US 2009/0217041 A1

1701 The Blinder generates a new random value r' / O

The final signature on SMS is $(C(Sig(C(M,r)),r))$

Figure 17

The Blinder performs a ZK proof of knowledge to the Verifier of r
and r" such that S decommits to the value Sig(C(M,r),

Ver(Sig(C(M,r))) = 1, and C(M,r) decommits to M

Figure 18

For a fixed k, find the values x, in X,
where X=(ab: a = 2*, 0 <= d'< d, 1 <= b < 2')

The pre-Computed values are defined as (xg)

Figure 19

Patent Application Publication Aug. 27, 2009 Sheet 10 of 10 US 2009/0217041 A1

Compute a Merkle tree on the values (xg) - 2001

The output consists of the values h; corresponding to the nodes of
the Merkle tree, with ho as the roof

Figure 20

Given the values (x,g,h....., h;), check that the h; form a
valid Merkle authentication path for (x, g)

Figure 21

Given pre-Computed values (y1, g'),..., / 22O1
(yn, g”) with authentication paths for each value,

and a claimed (x, g), verify pre-Computed values

Check sum of y = x 2202

Check that sum of g = g”

–
/- 2204 Accept if and only if all checks pass -

Figure 22

US 2009/021 7041 A1

PROVISIONAL SIGNATURE SCHEMES

PRIORITY

0001. This is a divisional of application Ser. No. 1 1/215,
550, filed on Aug. 29, 2005, entitled “Provisional Signature
Schemes, and assigned to the corporate assignee of the
present invention and incorporated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates to the field of cryptog
raphy; more particularly, the present invention relates to pro
visional signature schemes, including provisional signatures
to construct server assisted digital signatures, designated con
firmer signatures, and blind signature schemes.

BACKGROUND OF THE INVENTION

0003. In the area of general digital signatures, the most
common signature schemes are RSA and the U.S. Digital
Signature Algorithm overelliptic curves (ECDSA). The RSA
algorithm, with appropriate parameters, can be quite fast at
Verification, but generating signatures is slow. Further, signa
tures in RSA are at least one kilobyte in size, making them
unsuited for SIM cards or for product registration.
0004. A scheme for “online/offline' digital signatures was
proposed by Shamir and Tauman. See A. Shamir & Y. Tau
man, “Improved Online-Offline Signature Schemes.”
CRYPTO 2001. Their scheme made use of chameleon hash
functions and introduced the “Hash-Sign-Switch' paradigm
that may be used for efficient generation of provisional sig
natures. They did not, however, consider the application of
their scheme to the case of having a server assist in the
process.
0005. In server assisted digital signatures, it is desirable to
reduce the computational and communication overhead
required for a signature by employing a separate server. This
is known as Server Assisted Signatures (SAS). Naturally, one
can imagine a number of alternate scenarios wherein efficient
digital signatures are desired and some third party is avail
able. The issue of reducing signer communication and com
putation is of immediate practical interest because it allows
for more efficient energy usage and, therefore, longer lifetime
for mobile devices. Many previously proposed SAS schemes
have been found insecure, while others require the signer to
communicate a large amount of data per signature or require
the server to store a large amount of State per client.
0006 An example application for SAS is product registra

tion. A signer may wish to dispense an authorization key for
a piece of software or for a newly purchased phone. The
verifier comprises the software itself, which is assumed to
have connectivity to the server. The authorization key consists
of a signature on the software itself plus a serial number. The
digital signature is further typed on a piece of paper or a label
shipped with the software.
0007 Another example application for SAS is UIM cards.
A UIM card is a Smart card containing a processor and a small
amount of storage. UIM cards allow the user to maintain a
single identity when moving from device to device, such as
from one phone to another or from a phone to a PC. In
addition, UIM cards are used in FirstPass SSL client authen
tication, which uses RSA to authenticate a user to a web site.
Current UIM cards require special purpose processors to
perform RSA digital signatures and may take up to half a
second for each signature. Furthermore, an RSA Secret key

Aug. 27, 2009

takes one kilobyte of space on the UIM card, and so the
number of keys on the card is limited to five.
0008 Previous solutions to the server-assisted signature
problem have several drawbacks. A scheme by Beguin and
Quisquater was shown to be insecure by Nguyen and Stem.
Therefore, it cannot be considered for practical use. For more
information, see P. Nguyen and J. Stem, “The Beguin
Quisquater Server-Aided RSA Protocol from Crypto’95 is
not Secure.” Asiacrypt 1998 and P. Beguin and J. J.
Quisquater, "Fast server-aided RSA signatures secure against
active attacks. CRYPTO 1995. A method by Jakobsson and
Wetzel appears secure, but is limited to use for only DSA and
ECDSA, because signatures are at least 320 bits in size. See
M. Jakobsson and S. Wetzel, “Secure Server-Aided Signature
Generation.” International Workshop on Practice and Theory
in Public Key Cryptography, 2001.
0009. A scheme by Bicacki and Bayal requires the server
to store five kilobytes per signer per signature. See Bicacki &
Bayal, “Server Assisted Signatures Revisited. RSA Cryp
tographers’ Track 2003. If there were, for example, 80 million
signers, each of whom produce 10 signatures per day, this
requires storing roughly 3.7terabytes per day. The scheme of
Goyal addresses this problem and requires 480 bits of server
storage per signature. See, V. Goyal, “More Efficient Server
Assisted Signatures. Cryptography Eprint Archive, 2004.
With 80 million signers, 10 signatures per day, this scheme
requires roughly 357 gigabytes per day.
0010 Worse, in both schemes, the amount of data the
server must store increases withoutbound. This is because the
data is kept in case the server is accused of cheating by some
signer. Therefore, the data must be kept until the server is sure
it cannot be accused of cheating, which in practice may be
months or years. Assuming a “statute of limitations' period of
one year, Goyal's scheme requires more than 127terabytes of
server storage. If any data is missing and a signature is chal
lenged, the server will be unable to prove it acted correctly.
0011. Another drawback of both the Goyal and the
Bicacki-Bayal Schemes is that the signer must send a public
key for a one-time signature to the server for each message.
With the suggested embodiment of Goyal's paper, this
requires 26 kilobytes of communication per signature. This
large communication makes the product registration applica
tion infeasible.
0012 Another type of signature is a designated confirmer
signature. In designated confirmer digital signatures, a signa
ture on a message cannot be verified without the assistance of
a special “designated confirmer. The signer selects the des
ignated confirmer when the signature is generated. The des
ignated confirmer can then take a signature and either confirm
that the signature is genuine, or disavow a signature that was
not actually created by the signer, but the confirmer cannot
generate any new signatures. Further, the confirmer can con
Vert a signature into a regular signature that can be verified by
anyone.
0013 An example application of using a designated con
firmer is the signing of electronic contracts. A job candidate
and a potential employer may negotiate an employment con
tract without being physically present in the same room. The
employer would prefer that the employee not use the contract
as a bargaining tool with other prospective employers. There
fore, the employer can sign using a designated confirmer
signature and designate a court of law as the confirmer. That
way, if a dispute arises, the signature can be verified, but the
signature cannot be verified in the meantime by other employ

US 2009/021 7041 A1

ers. After both parties have finalized the contract, the signa
ture can be converted to a regular signature.
0014) Another example application for use of a designated
confirmer is the verification of software patches. A software
Vendor may wish to restrict Software patches only to users
who have properly paid for software. One method of accom
plishing this restriction is to sign patches with a designated
confirmer signature scheme and provide confirmation only to
registered users. Unregistered users cannot verify the signa
ture and run the risk of installing compromised software
patches.
00.15 Most previous implementations of designated con
firmer digital signatures use special-purpose properties of
algorithms such as RSA. If these specific algorithms are
found insecure, then these schemes are also insecure. Gold
wasser and Waisbard showed how to convert several existing
signature schemes into designated confirmer signature
schemes. See, S. Goldwasser and E. Waisbard, “Transforma
tion of Digital Signature Schemes into Designated Confirmer
Signature Schemes. Theory of Cryptography Conference,
2004.
0016. Another type of signature is a blind signature. In
blind digital signatures, the signer signs a “blinded' versionX
of the message M. The blinded versionX is generated with the
aid of a blinding factor r. A blinder wishes to obtain a signa
ture on a message M without revealing M to the signer. This
is achieved by the blinded asking the signer to sign a message
X, which is the “blinded version' of M. After signing, the
signature can be “unblinded using the blinding factor to
obtain a signature on M. Without the blinding factor, it is
infeasible to linka signature on the blinded message X with a
signature on the un-blinded message M. From the signature
on X, the blinder can then recover a signature on M. The
signature on X as the “provisional signature.” and the signa
ture on M as the “final signature.”
0017. An example application of blind signatures is
unlinkable electronic cash tokens. Our goal is to enhance user
privacy by ensuring not even the bank can track different
transactions. The user creates a token for a certain denomi
nation and then blinds the token. The bank signs the blinded
token and returns it to the user, who unblinds to obtain the
bank's signature on a token. With the token and bank’s sig
nature on the token, the user can partake in a financial trans
action since a third party can verify the bank's signature. On
the other hand, because the bank signed the blinded token, it
cannot trace the token back to the user, hence providing
anonymity for the user. To avoid cheating users, a cut and
choose protocol may be used in which the user generates 100
or more tokens of the same denomination and the bank asks to
see 99 of them, chosen randomly, before signing the last
token.

SUMMARY OF THE INVENTION

0018. A method and apparatus for implementing portions
of a provisional signature Scheme are disclosed. In one
embodiment, the method comprises creating a provisional
signature by performing an operation on a message and com
pleting the provisional signature to create a final signature on
the message. Such a scheme may be used for server assisted
signature schemes, designated confirmer signature Schemes
and blind signature schemes.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. The present invention will be understood more fully
from the detailed description given below and from the

Aug. 27, 2009

accompanying drawings of various embodiments of the
invention, which, however, should not be taken to limit the
invention to the specific embodiments, but are for explanation
and understanding only.
0020 FIG. 1 is a flow diagram of one embodiment of a
provisional signature process.
0021 FIG. 2 is a flow diagram of one embodiment of a
verifier process;
0022 FIG. 3 illustrates of one embodiment of a signer,
server, or verifier component.
0023 FIG. 4 illustrates an exemplary computer system.
0024 FIG. 5 is a flow diagram of one embodiment of a
process for server assisted key generation.
0025 FIG. 6 is a flow diagram of one embodiment of a
process for provisional signing in a server assisted key gen
eration scheme.
0026 FIG. 7 is flow diagram of one embodiment of a
process for completing a provisional signature in a server
assisted signature scheme.
0027 FIG. 8 is a flow diagram of one embodiment of a
process for verifying a final signature in a server-assisted
signature scheme.
0028 FIG. 9 is a flow diagram of one embodiment of a
process generating keys for a designated confirmer signatures
scheme.
0029 FIG. 10 is a flow diagram of one embodiment of a
process for generating keys for a designated confirmer signa
ture scheme.
0030 FIG. 11 is a flow diagram of one embodiment of a
process for confirmation for a designated confirmer signature
scheme.
0031 FIG. 12 is a flow diagram of one embodiment of a
process for disavowal for a designated confirmer signature
scheme.
0032 FIG. 13 is a flow diagram of one embodiment of a
process for a designated confirmer signature scheme.
0033 FIG. 14 is a flow diagram of one embodiment of a
process for verification of final signature for a designated
confirmer signature scheme.
0034 FIG. 15 is a flow diagram of one embodiment of a
process for a key generation for blind signature scheme.
0035 FIG. 16 is a flow diagram of one embodiment of a
process for provisional generation for a blind signature
scheme.
0036 FIG. 17 is a flow diagram of one embodiment of a
process for completion of a blind signature.
0037 FIG. 18 is a flow diagram of one embodiment of a
process for verification of a blind signature.
0038 FIG. 19 is a flow diagram of one embodiment of a
process for pre-computating a chameleon hash function.
0039 FIG. 20 is a flow diagram of one embodiment of a
process for certifying pre-computed values for verification of
a chameleon hash function.
0040 FIG. 21 is a flow diagram of one embodiment of a
process for verifying pre-computed values for Verification of
a chameleon hash function.
0041 FIG. 22 is a flow diagram of one embodiment of a
process for checking a chameleon hash using pre-computed
values for verification of the chameleon hash function.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

0042 Provisional signature schemes are described. Spe
cifically, the signer produces “provisional signatures that are

US 2009/021 7041 A1

converted to “final signatures” by a third party server. These
final signatures can then be verified by a verifier. In one
embodiment, to compensate to the possibility that the third
party server could be compromised or malfunctioning, the
server cannot sign documents on its own but only convert
provisional signatures created by the signer. In one embodi
ment, the server performs little computation and stores only a
Small amount of data per signature, so that the server may
scale to handle a large number of signers.
0043. The provisional signature schemes include server
assisted signature schemes, designated confirmer signature
schemes, and blind signature Schemes. In one embodiment,
the server assisted signatures is used in product registration
and in reducing the computational load on a device. In one
embodiment, the designated confirmer signature schemes are
used for fair exchange of digital contracts. In one embodi
ment, the blind signature schemes are used to create anony
mous electronic cash.
0044) Embodiments of the present invention include
schemes for secure server assisted signatures that are efficient
with respect to the computation requirements of the signer,
server and verifier, as well as the bandwidth requirements of
the channels over which these parties communicate. In one
embodiment of the present invention, the scheme has a com
munication complexity of the signer of only 160 bits per
signature, which is an order of magnitude improvement over
previous SAS schemes.
0045. In one embodiment, the SAS method described
herein for use with UIM cards requires only 128 bits of space
for each secret key, and it allows fast signatures without use of
special purpose co-processors.
0046. In the following description, numerous details are
set forth to provide a more thorough explanation of the
present invention. It will be apparent, however, to one skilled
in the art, that the present invention may be practiced without
these specific details. In other instances, well-known struc
tures and devices are shown in block diagram form, rather
than in detail, in order to avoid obscuring the present inven
tion.
0047. Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym
bols, characters, terms, numbers, or the like.
0.048. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or “calculating or “deter
mining or “displaying or the like, refer to the action and
processes of a computer system, or similar electronic com

Aug. 27, 2009

puting device, that manipulates and transforms data repre
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other Such information storage,
transmission or display devices.
0049. The present invention also relates to apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, Such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, and each coupled to a computer sys
tem bus.
0050. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.
0051. A machine-readable medium includes any mecha
nism for storing or transmitting information in a form read
able by a machine (e.g., a computer). For example, a machine
readable medium includes read only memory (“ROM);
random access memory (RAM); magnetic disk storage
media; optical storage media; flash memory devices; electri
cal, optical, acoustical or other form of propagated signals
(e.g., carrier waves, infrared signals, digital signals, etc.); etc.

DEFINITIONS AND ASSUMPTIONS

0.052 For purposes herein, a function f(n) is negligible if
for any polynomial function q(n), there is a value no such that
for all n>no, it holds that f(n).<1/q(n). One example of Such a
negligible function is f(n)=1/2".
0053 Ifa and b are two integers with asb, a, b) denotes
the set of integers between a and b inclusive. That is, a,
b={ceZlascsb}.
0054 If S is a set of elements, and D is a sample-able
probability distribution on S, the process of picking an ele
ments from Saccording to the distribution D is denoted by

0055. It is known to one of ordinary skill in the art that the
security of many cryptographic techniques relies upon mak
ing certain computational intractability assumptions. For
example, one may try to prove that a cryptosystem is secure so
long as it is difficult to decompose a specific number into its
prime factors efficiently. The term “computational' is often
used to identify this class of cryptographic techniques. In one
embodiment, a set of assumptions relevant to proving the

US 2009/021 7041 A1

security of the embodiments of the present invention
described herein are described below.

The Discrete Logarithm Assumption
0056. The discrete logarithm assumption in a group G
states that given a generatorg of the group, and given a value
y-g, it is computationally difficult to obtain X. We will be
specifically interested in the group of rational points of an
elliptic curve. This constitutes a standard mathematical group
on which to define the discrete logarithm problem. For such
an elliptic curve group of order q, the best known approaches
for finding the discrete logarithm require time q.

Chameleon Hash Function

0057. A chameleon hash function is a function CH(m, r)
defined by a public key PK, and a secret key SK, generated
by a probabilistic polynomial time algorithm G(1). Given the
public key PK, it is easy to evaluate CH(m, r). Without the
secret key, it is hard to find a tuple (m, m', r, r") such that CH(m,
r)-CH(m", r). With the secret key, on the other hand, it is easy,
given m, m', and r, to find an r" such that CH(m, r)-CH(m", r").
0058. A specific family of chameleon hash functions is
defined for a group G of order q in which the discrete loga
rithm assumption holds as follows. The secret key SK, is a
uniform random value x in Z*, while the public key is the
value hg. Then defined such that CH(m, r) is CH(m,
r)gh. For a specific group instance, G is the group of points
on an appropriately chosen elliptic curve. By appropriate
choices of parameters, a chameleon hash with outputs 160
bits in length is obtained. Embodiments of the present inven
tion described herein include the use of this chameleon hash
function; however, it will be apparent to anyone with ordinary
skill in the art that another chameleon hash function could be
used.

Pseudo-Random Generator

0059 A pseudo-random generator G takes as input a short
random seed of S bits and outputs a string of kbits where k>s.
The output String is pseudo-random in the sense of being
indistinguishable from a random string.

Bit Commitment Scheme

0060 A bit commitment scheme C(M, r) satisfies the
property of being statistically hiding and computationally
binding. Statistically hiding means that no adversary, no mat
ter how powerful, can recover M from C(M, r) without knowl
edge ofr except with negligible probability. Computationally
binding means that the commitment C(M, r) cannot be
opened to a value M. zM by any probabilistic polynomial
time algorithm.

Overview

0061 FIG. 1 is a flow diagram of one embodiment of a
provisional signature process. The process may be performed
by processing logic that may comprise hardware (e.g., cir
cuitry, dedicated logic, etc.), Software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both.
0062 Referring to FIG. 1, the process begins by process
ing logic creating a provisional signature by performing an
operation on a message (processing block 101). Next, pro
cessing logic completes the provisional signature to create a

Aug. 27, 2009

final signature on the message (processing block 102). Both
processing blocks 101 and 102 may be performed using one
or 2 secret keys. After the final signature has been completed,
processing logic verifies the final signature (processing block
103).
0063 FIG. 2 is a flow diagram of one embodiment of a
Verifier process. Referring to FIG. 2, the signature generated
through the use of the provisional signature process described
herein is verified by inputting into the signature, the message
m and a public key into Verifier and receiving an indication
(e.g., yes/no) of whether the signature is valid.
0064. The provisional signature process described herein
may be applied to server assisted signature schemes, desig
nated confirmer schemes and blind signature schemes.
Embodiments of these schemes are described below.

An Example System for Server Assisted Signatures
0065. In one embodiment, a system for communicating
data between a signer, Verifier, and server provides server
assisted signatures. The signer generates provisional signa
tures and transmits the generated provisional signatures over
a communications network to averifier. The verifier transmits
a provisional signature over a communications network to a
server. Subsequently, the Verifier receives a final signature
from the server and verifies the resulting final signature. The
server converts the provisional signature to a final signature
and transmits the final signature over a communications net
work to the verifier.
0066 Each of the signer, verifier, and server comprise a
component having processing logic that may comprise hard
ware (e.g., circuitry, dedicated logic, etc.), software apparatus
(such as is run on a general purpose computer system or a
dedicated machine), or a combination of both. FIG. 3 illus
trates one embodiment of Such a component. Referring to
FIG. 3, component 300 includes a processor 301, memory
302 and a network interface 303. Processor 301 is coupled to
memory 302 and network interface 303.
0067. The signer includes processor logic 301 with pro
cessing logic to receive a message through an external net
work interface 303 and apply a method to create provisional
signatures to thereby obtain a provisional signature on the
message.
0068. The verifier includes processor 301 with processing
logic to receive a message and a final signature through an
external network interface 303 and to apply a method for
Verifying signatures to thereby obtain assurance that the mes
sage originated with the indicated signer.
0069. The server includes processor 301 with processing
logic to transmit to network 304 the output given by a method
for converting a provisional signature received through an
external network interface 303 as an input as part of a network
request into a final signature.
0070 FIG. 5 is a flow diagram of one embodiment of a
process for a key generation for a server assisted digital sig
nature technique. The process may be performed by process
ing logic that may comprise hardware (e.g., circuitry, dedi
cated logic, etc.), Software (such as is run on a general purpose
computer system or a dedicated machine), or a combination
of both. In one embodiment, key generation is performed by
the signer.
0071 Referring to FIG. 5, the process begins by process
ing logic specifying a security parameter k and a number of
signatures S (processing block 501). Next, processing logic
produces a random 160-bit elliptic curve, together with a

US 2009/021 7041 A1

generator point g (processing block 502). There are standard
techniques for selecting a generator. For example, one
approach is to pick a random element and see if it happens to
be a valid generator. In one embodiment, this curve and gen
erator are used for all entities in the system. For purposes
herein, and as a break with convention, a group of points over
an elliptic curve is notated as a multiplicative group; it will be
apparent to one of ordinary skill in the art how to transfer such
notation to the standard additive notation. Note that other
elliptic curves could be used (e.g., a 161-bit elliptic curve, as
well as a 1024-bit finite field. In general, the scheme could use
any algebraic group in which the discrete logarithm is hard,
and the generator g should come from that group.
0072 After the curve and generator are produced, process
ing block chooses uniformly two seeds S1 and S2 at random
(processing block 503). Next, processing logic generates a
sequence of values X, where 1 sisS as Successive outputs of
a PRG seeded with the random seeds (processing block 504)
and generates another sequence of values c. 1 sisS as suc
cessive outputs of a PRG seeded with the random seeds
(processing block 505). Once the two sequences are gener
ated, processing logic calculates a sequence of values hig".
where 1 sisS (processing block 506). Then, processing logic
computes a key pair for a standard signature scheme (SK, PK)
(processing block 507). The secret key SK is used to create a
sequence of S signatures Sig, Sig((gh, , h,)).
0073. Once the calculations have been completed, pro
cessing logic sends the seeds sands to the signer (process
ing block 508) and sends the values h, and Sig, to the server
(processing logic 509). Also, processing logic publishes the
public key PK as the signer's public key, together with g and
the address of the server.
0074 FIG. 6 is a flow diagram of one embodiment of a
process for generating a provisional signature for use in a
server assisted signature scheme. The process may be per
formed by processing logic that may comprise hardware (e.g.,
circuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both. In one embodiment, the processing
logic is a part of the signer.
0075 Referring to FIG. 6, the process begins by process
ing logic generating the value X, by using its secret seeds
(processing block 601) and generates the value c, by using its
secret seeds (processing block 602). Next, processing logic
finds an r, such that that g”h-gh, (processing block 603)
and outputs r, as the provisional signature of message m,
(processing block 604).
0076 FIG. 7 is a flow diagram of one embodiment of a
process for completing a provisional signature for a server
assisted signature Scheme. The process may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a com
bination of both. In one embodiment, the processing logic is
part of the server.
0077 Referring to FIG. 7, the process begins by process
ing logic receiving the index i of the provisional signaturer,
(processing block 701). Next, processing logic looks up and
returns the corresponding values of the sequence of signa
tures Sig, Sig((gh, , h,)) and h, (processing block 702) and
outputs the final signature (Sig (gh,h)), h, m, r) (process
ing block 703).
0078 FIG. 8 is a flow diagram of one embodiment of a
process for Verifying a final signature for a server assisted

Aug. 27, 2009

signature scheme. The process may be performed by process
ing logic that may comprise hardware (e.g., circuitry, dedi
cated logic, etc.), Software (such as is run on a general purpose
computer system or a dedicated machine), or a combination
of both. In one embodiment, the processing logic is part of the
verifier.
0079 Referring to FIG. 8, the process begins by process
ing logic computing g"h, (processing block 801) and Veri
fying the signatures by checking V(Sig (gh))=1 (process
ing block 802). Next, processing logic accepts the signature
as valid if and only if the checkpasses (processing block 803).
0080. Alternatively, the server assisted signature scheme
may be viewed a server-assisted one-time signature scheme
by using the "hash-sign-Switch paradigm' to transform any
underlying signature Scheme secure against existential forg
ery under chosen message attack. It is assumed that an exist
ing signature scheme (Gen, Sig, Ver) is secure against exis
tential forgery under adaptive chosen message attack and that
S signatures in total are to be signed.
10081) 1. Key Generation: First generate a key pair PK,
and SK for the underlying signature scheme. Then, using a
PRG with seeds, generate a sequence of chameleon hash key
pairs (SK, PK) for ifrom 1 to S. Finally, using PRG with
seeds S and Ss generate two sequences of pseudo-random
values V. . . . , V and w, ..., W. The variable c, is defined
such that c, -CH,(w, V)—i.e., the chameleon hash of (w, V.)
under the chameleon hash key PK. SK consists of the
seeds s, and sa, while SK consists of the values PK,',
Sig(c., PK'). The public key PK consists of PK, and the
address of the server.
I0082 2. ProvSign: On input (M, i) for the next value i.
compute SK, using S1, V, using S2, and W, using Ss. Then
computer, such that CH,(M. r.)-CH(v, w). Return r, as the
provisional signature on M. Mark the value i as used.
I0083. 3. Complete: On input (i,i), return PK, and Sig(c.
PK). The final signature is then (M. r. PK. Sig(c.,
PK)).
I0084. 4. Verify: On input (M. r. PK. Sig(c., PK),
accept the signature as valid if and only if Ver(Sig (CH,(M.
r).PK)=1
I0085. Note that the entire “secret key” for the Complete
operation, SK can be revealed without enabling an
adversary to forge final signatures. Therefore, a server in this
server-assisted signature scheme may be aggressively repli
cated. Furthermore, the server performs no computation, but
simply returns static, read-only values P, and Sig(c., PK).
I0086. In one embodiment, the system for communicating
data between signer, Verifier, and server for performing server
assisted digital signatures comprises a client component
capable of creating provisional signatures, a server compo
nent capable of completing provisional signatures to yield
final signatures, and a verifier component capable of Verify
ing final signatures.
I0087. In one embodiment, each of the signer, verifier and
the server of an implementation of a server assisted signature
scheme may be a hardware apparatus (e.g., circuitry, dedi
cated logic, etc.), software apparatus (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both, capable of performing processing
logic. Each of these components may be implemented as the
component shown in FIG. 3. The server-assisted signer uses
the external network interface to receive a request for a pro
visional signature and its processor, which is coupled to the
external network interface and the memory, to create the

US 2009/021 7041 A1

provisional signature and return the provisional signature via
the external network to the requesting party. The server
assisted signature verifier component uses its external net
work interface to receive a final signature. The server assisted
signature server component uses its external network inter
face to receive a provisional signature and its processor,
which is coupled to the external network interface and the
memory, to transmit to the network the completed final sig
nature for a server assisted signature scheme.
0088. In one embodiment of a server-assisted signature
scheme, the chameleon function CH(m, r) gh. In such a
case, the signor storage need only store the seeds, which is
128 bits in length, and a counter, which is 20 bits in length, to
represent the variable “i’ used in the description below. Thus,
the total signer storage is 148 bits, regardless of the number of
signatures. Note that most previous public-key signature
schemes, such as RSA, require much larger secret key sizes.
With respect to signor computation, the signer evaluates the
PRG a constant number of times to obtain X, and then per
forms O(loga) operations to compute the provisional signa
turer, where q is the order of the group G. The signer need
only communicater, which is 160 bits. The server includes
storage that, for each signature, stores h, and Sig. In this
embodiment, the valueh, is 160 bits, while by using an appro
priately short signature Scheme, Sig, can also be reduced to
320 bits or less. The server does not perform any on-line
computation. Instead, the server simply retrieves the pair (h.
Sig) and returns it to the verifier. As far as verifier computa
tion is concerned, the verifier must perform one elliptic curve
point multiplication, and one ordinary signature verification.

An Example of a Designated Confirmer Scheme

0089. The process of creating a provisional signature and
completing the provisional signature may be used for desig
nated confirmer Schemes. An example of Such a scheme is
given below.
0090 FIG. 9 is a flow diagram of one embodiment of a
process for generating a key for use in a designated confirmer
signatures scheme. The process may be performed by pro
cessing logic that may comprise hardware (e.g., circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a com
bination of both. In one embodiment, the processing logic is
part of a signer or designated confirmer.
0091 Referring to FIG. 9, the process begins by process
ing logic creating a key pair PKs, SKs for a standard secure
digital signature scheme (processing logic 901) and creating
a key pair PKSK for a semantically secure public-key
encryption scheme (processing block 902). This is done in a
manner well-known in the art.

0092 FIG. 10 is a flow diagram of one embodiment of a
process for generating a provisional signature for use with
designated confirmer signature schemes. The process may be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, etc.), software (such as is run
on a general purpose computer system or a dedicated
machine), or a combination of both. In one embodiment, the
processing logic is part of the signer.
0093. Referring to FIG. 10, the process begins by process
ing logic creating a commitment C(M, r) to the message M
(processing block 1001) and signing the commitment S-Sig
(C(M, r)) (processing block 1002). Next, processing logic

Aug. 27, 2009

outputs the provisional signature (M. S., E(r)), where E is a
semantically secure public-key encryption scheme (process
ing block 1003).
0094 FIG. 11 is a flow diagram of one embodiment of a
process for confirming a provisional signature in a designated
confirmer signature scheme. The process may be performed
by processing logic that may comprise hardware (e.g., cir
cuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both. In one embodiment, the processing
logic is part of the designated confirmer.
0.095 Referring to FIG. 11, the process begins by process
ing logic performing a Zero-knowledge proof of knowledge
of a value r, such that comm=C(Mr) where comm is a vari
able corresponding to the commitment corresponding to pro
visional signatures and M is the message that the signer has
allegedly signed (processing block 1101).
0096 FIG. 12 is a flow diagram of one embodiment of a
process for disavowing a provisional signature for designated
confirmer signatures Scheme. The process may be performed
by processing logic that may comprise hardware (e.g., cir
cuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both. In one embodiment, the processing
logic is part of the designated confirmer.
0097. Referring to FIG. 12, the process begins by parsing
the purported signature as (M.S.E, (r)) (processing block
1201). Then, processing logic decrypts (M.S.E, (r)) to
recover r (processing block 1202). Finally, processing logic
performs a Zero-knowledge proof of knowledge of an rand an
M" such that Ver(S)=1, C(M', r)=S, D(E(r))=r) and M'zM
(processing block 1203).
0098. In an alternative embodiment, processing logic
sends additional information to the verifier to convince the
Verifier (in Zero-knowledge) that the claims message con
firmer sends comm., S. and a Zero knowledge proof of knowl
edge of an r such that comm=C(Mr), where M is the message
that the signer has allegedly signed. To verify that M was
signed, the verifier checks the Zero knowledge proof, and
checks that S is a valid signature on comm.
(0099 FIG. 13 is a flow diagram of one embodiment of a
process for completing a provisional signature in a designated
confirmer signature scheme. The process may be performed
by processing logic that may comprise hardware (e.g., cir
cuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both. In one embodiment, the processing
logic is part of the designated confirmer.
0100 Referring to FIG. 13, the process begins by process
ing logic decrypting E(r) to obtain r (processing block
1301). Next, processing logic outputs (M. r. S) as the final
signature on M (processing block 1302).
0101 FIG. 14 is a flow diagram of one embodiment of a
process for Verifying a final signature in a designated con
firmer signature Scheme. The process may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a com
bination of both. In one embodiment, the processing logic is
part of the verifier.
0102 Referring to FIG. 14, the process begins by process
ing logic computes the variable comm equal to C(M, r) (pro
cessing block 1401) and checks that S is a valid signature
under PK, which is the public key of the signature scheme

US 2009/021 7041 A1

(processing block 1402). Then, processing logic accepts if
and only if the check passes (processing block 1403).
0103) In one embodiment, a system for communicating
data between signer, Verifier, and server for performing des
ignated confirmer digital signatures includes a client compo
nent capable of creating provisional signatures, a server com
ponent capable of completing provisional signatures to yield
final signatures, and a verifier component capable of Verify
ing final signatures.
0104. In one embodiment, each of the signer, verifier and
the server in one embodiment of an implementation of a
designated confirmer signature scheme may be a hardware
apparatus (e.g., circuitry, dedicated logic, etc.), Software
apparatus (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both,
capable of performing processing logic. Each of these com
ponents may be implemented as the component shown in
FIG. 3. The designated confirmer signer uses the external
network interface to receive a request for a provisional sig
nature and its processor, which is coupled to the external
network interface and the memory, to create the provisional
signature and return the provisional signature via the external
network to the requesting party. The designated confirmer
signature verifier component uses its external network inter
face to receive a final signature. The designated confirmer
signature server component uses its external network inter
face to receive a provisional signature and its processor,
which is coupled to the external network interface and the
memory, to transmit to the network the completed final sig
nature for a designated confirmer signature scheme.
Efficiently Realizing the Transformation
0105. Using the transformation described herein, the step
that may be the most difficult step to perform efficiently is the
disavow protocol and the resulting Zero-knowledge proof
because it simply relies on the fact that “this designated
confirmer signature is invalid' is an NP-statement that can be
proven in Zero knowledge.
0106 Interestingly, the possibility that the ciphertext con
tained in the designated confirmer signature is not well
formed can be eliminated by making some assumptions about
the underlying encryption scheme. For example, that a cryp
tosystem whose outputs is ciphertext-dense if all but a negli
gible fraction of bit-strings are valid ciphertexts. If the dis
avow protocol is run with a ciphertext-dense cryptosystem,
the bitstring is an invalid ciphertext does not need to be
proved.
0107. In one embodiment, a ciphertext-dense public-key
encryption scheme is constructed from any tradpdoor permu
tation family as follows. Let the public key bef:{0,1}->{0,
1} and the private key be the inverse f. To encrypt a single bit
b, pick X.re-{0,1}. The ciphertext is then (f(x), r, GL(x,
r)6Db), where GL is the Goldreich-Levin predicate. It is easy
to see that an adversary breaking the semantic security of the
scheme is a predictor for the Goldreich-Levin predicate, and
so would contradict the one-wayness off. Further, the symbol
“” means concatenation, every string of 2k+1 bits is a valid
ciphertext. Alternatively, an encryption scheme can be used
that provides randomness recovery. That is, given an encryp
tion E (m) which used randomness r, the decryption includes
the randomness r as well as m.

Efficient Instantiations Based on the N-th Residuousity
Assumption
0108 Essentially, Paillier encryption, which is well
known in the art, works as follows. The recipient chooses a

Aug. 27, 2009

composite modulus N, whose factorization it keeps secret.
The recipient also publishes a numbergeZ/NZ that generates
a "sufficiently large” group modulo N e.g., a group of
order Nd(N)/2. To encrypt m satisfying OsmsN, the sender
chooses a random reZ/NZ and sets the ciphertext c=r'g"
(mod N). To decrypt, the recipient essentially computes
m logic(mod N). Paillier encryption is semantically secure
assuming the decisional N-th residuosity problem is hard.
0109. In one embodiment, an efficient designated confirm
signature scheme is constructed using any underlying signa
ture scheme, in conjunction with semantically secure Paillier
encryption, as follows.
0110 1) Key Generation: The signer creates a key pair
(PKs, SKs) for any standard secure digital signature Scheme.
The designated confirmer generates a Paillier modulus Nand
a suitable generator g modulo N. It also generates a certifi
cate proving that N has the correct form. Finally, the desig
nated confirmer may also provide the description of a second
group G and a generator geG that has order N.
(0.111) 2) ProvSign(M):
0112 a) The signer creates a commitment to the message
m by generating a random heG and a random reZ/NZ.
computing c=gh"eG2.
0113 b) The signer creates S=Sig(c, h).
0114 c) The signer creates a Paillier encryption of reZ/NZ
by generating a random a eZ/NZ Setting r' r+aN, and setting
Ex(r)=g (mod N).
0115 d) The provisional signature is (m, S. c. h. Ex(r)).
0116 3) Confirm by Signer: The signer proves that its
designated confirmer signature is correctly constructed by
providing a Zero-knowledge proof of knowledge of an rand
ana such that E(r) g(g^)"(modN) and c/h."g". This can
be performed using standard techniques. Since the designated
confirmer can recover r(mod N) through Paillier decryption,
and sincer'(modN) completely reveals log2(c/h.") (since G.
has order N), the verifier is convinced by this Zero knowledge
proof of knowledge that the designated confirmer can
“extract a conventional signature (m, S, h, r) from the des
ignated confirmer signature. Notice that the proof of knowl
edge can be very efficiently implemented.
0117 4) Confirm by Designated Confirmer: To confirm,
the designated confirm simply provides the provisional sig
nature and a Zero knowledge proof of knowledge of r log
(c/h"). It can easily recover r from the Paillier ciphertext.
0118 5) Disavow: If the designated confirmer signature is
badly formed, either S is not a valid signature on (c., h)
(which is easily verifiable), or that c/h."zig-P'(r)). In other
words, if we set c'-c/h.", it must be the case that logic'zlog
(E(r)) (mod N). To prove that this inequality holds, the des
ignated confirmer first recovers d-log(EMr))(mod N) using
Paillier decryption. If x=d(N) and y=dd(N), then E(r)=g"
(mod N), but c'zg”. The designated confirmer can provide
a Zero knowledge proof of knowledge of these X and y using
fairly standard techniques. In particular, one can construct the
usual three-round Zero knowledge proof by 1) having the
confirmer choose values u,veZ/NZ and sending (A, B)=(E
(r)''g'', c'g''g'' to the verifier, 2) having the verifier randomly
choose a bit be {0, 1}, 3) having the confirmer send back
values u'v'ez/NZ such that E(r)''g''-c'g''g''-B if b=0 or
such that E(r)''g''A and c'g'zBifb=1. In the last step, the
confirmer can generate such (u'v') by generating a random
OzkeZ/NZ and settingu'u--bkx(mod N) and v=v-bky (mod
N).

US 2009/021 7041 A1

0119 The designated confirmer, since it decrypt the value
of r, converts the designated confirmer signature into an “ordi
nary signature that can be verified by anyone; this ordinary
signature consists of (m, S, h, r), and a verifier checks that S
is a valid signature on (c., h) for c=gh". However, to prove
the confirmer's security—i.e., to prove that malicious adver
saries that interact with the designated confirmer will be
unable to eventually usurp the role of the confirmer and gain
the ability to convert designated confirmer signatures into
signatures verifiable by everyone—a semantically secure ver
sion of Paillier encryption does not seem to be sufficient.
0120 However, it is a relatively simple matter to replace
the semantically secure version above with an IND-CCA2
secure version of Paillier encryption described by Camenisch
and Shoup. The Zero knowledge proofs are essentially the
same. The main difference is that, since the encryption
scheme is IND-CCA2 secure, the confirmer can securely
reveal the decryption of ciphertexts chosen by malicious
adversaries, and thus can securely extract an ordinary signa
ture from a designated confirmer signature as described
above.

An Example of a Blind Signature Scheme

0121 FIG. 15 is a flow diagram of one embodiment of a
process for generating a key for a blind signatures scheme.
The process may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, etc.), soft
ware (such as is run on a general purpose computer system or
a dedicated machine), or a combination of both. In one
embodiment, the processing logic is part of the signer.
0122 Referring to FIG. 15, the process begins by process
ing logic creating a key pair PKs, SKs for a standard secure
digital signature Scheme (processing block 1501).
0123 FIG. 16 is a flow diagram of one embodiment of a
process for generating a provisional signature for a blind
signature scheme. The process is performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, etc.), software (such as is run on a general purpose
computer system or a dedicated machine), or a combination
of both. In one embodiment, the processing logic is part of the
blinder or signer.
0.124 Referring to FIG.16, the process begins by process
ing logic picking a random value rand computes X=C(M. r.)
(processing block 1601). Next, processing logic sends X to
the signer and performs a Zero-knowledge proof of knowl
edge of an r and M such that X=C(Mr) (processing block
1602). If and only if the proof succeeds, then processing logic
signs X and returns SigCX) (processing block 1603) and out
puts the provisional signature on M as SigCX)=Sig(C(M, r))
(processing block 1604).
0.125 FIG. 17 is a flow diagram of one embodiment of a
process for completing provisional signature for a blind sig
nature scheme. The process may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, etc.), software (such as is run on a general purpose
computer system or a dedicated machine), or a combination
of both. In one embodiment, the processing logic is part of the
blinder.
0126 Referring to FIG. 17, the process begins by process
ing logic generating a new random value r (processing block
1701). Next, processing block begins by processing logic
outputting the final signature on Mas (C(Sig(C(M. r)), r))
(processing block 1702).

Aug. 27, 2009

I0127 FIG. 18 is a flow diagram of one embodiment of a
process for verifying a final signature for a blind signature
scheme. The process may be performed by processing logic
that may comprise hardware (e.g., circuitry, dedicated logic,
etc.), software (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both. In
one embodiment, the processing logic is part of the blinder or
a signer.
I0128 Referring to FIG. 18, the process begins by process
ing logic performing a ZK proof of knowledge to the Verifier
of r and r such that S decommits to the value Sig(C(M, r),
Ver(Sig(C(M, r)))=1, and C(M, r) decommits to M (process
ing block 1801).
I0129. The above interactive proof can be rendered non
interactive using random oracles via the “Fiat-Shamir heuris

99

0.130 FIG. 19 is a flow diagram of one embodiment of a
process for generating pre-computed values for verification
of a chameleon hash function. The process may be performed
by processing logic that may comprise hardware (e.g., cir
cuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine), or
a combination of both. In one embodiment, the processing
logic is part of the blinder or signer.
I0131 The problem may be set forth as given (G. g., y, x),
where G is a group of order q, where g, yeG, and Xel, q.
prove that gy in G. Suppose, for convenience, that d log
q(c,+1) e-kd for Some integerd, where c is the maxi
mum value the challenge c can take, and where k is the integer
parameter mentioned above.
I0132 Referring to FIG. 19, the process begins by process
ing logic, for a fixed k, finding the values XeX, where X={ab:
a=2', 0sd's d, 1sbs2 (processing block 1901). There
after, processing logic defines pre-computed values are
defined as (x, g) (processing block 1902).
0.133 FIG. 20 is a flow diagram of one embodiment of a
process for certifying pre-computed values for verification of
a chameleon hash function. The process may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a com
bination of both.
0.134 Referring to FIG. 20, the process begins by process
ing logic computing a Merkle tree on the values (X.g.) (pro
cessing block 2001). Next, processing logic outputs the out
put consists of the valuesh, corresponding to the nodes of the
Merkle tree, withho as the root (processing block 2002).
0.135 FIG. 21 is a flow diagram of one embodiment of a
process for verifying pre-computed values for Verification of
a chameleon hash function. The process may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a com
bination of both. In one embodiment, the processing logic is
the blinder or signer.
0.136 Referring to FIG. 21, processing logic gives the
values (X.g.h, ... , h,), and checks that the h, form a valid
authentication path for (x, g) (processing block 2101).
0.137 FIG. 22 is a flow diagram of one embodiment of a
process for checking a chameleon hash using pre-computed
values for verification of a chameleon hash function. The
process may be performed by processing logic that may com
prise hardware (e.g., circuitry, dedicated logic, etc.), Software

US 2009/021 7041 A1

(such as is run on a general purpose computer system or a
dedicated machine), or a combination of both.
0138 Referring to FIG.22, the process begins by process
ing logic giving pre-computed values (y1,.g'),.... (y, g”)
with authentication paths for each value, and a claimed (X,
g), and Verifies pre-computed values (processing block
2201). Next, processing logic checks Xy, X (processing
block 2202). Thereafter, processing logic checks that Xg'-g'
(processing block 2203). Processing logic accepts the chame
leon hash function if and only if all checks pass (processing
block 2204).
0.139. In one embodiment, the system for communicating
data between signer, Verifier, and server includes a client
component capable of creating provisional signatures, a
server component capable of completing provisional signa
tures to yield final signatures, and a verifier component
capable of Verifying final signatures.
0140. In one embodiment, each of the signer, verifier and
the server of an implementation of a blind signature scheme
may be a hardware apparatus (e.g., circuitry, dedicated logic,
etc.), software apparatus (Such as is run on a general purpose
computer system or a dedicated machine), or a combination
of both, capable of performing processing logic. Each of
these components may be implemented as the component
shown in FIG. 3. The designated confirmer signer uses the
external network interface to receive a request for a provi
sional signature and its processor, which is coupled to the
external network interface and the memory, to create the
provisional signature and return the provisional signature via
the external network to the requesting party. The blind signa
ture verifier component uses its external network interface to
receive a final signature. The blind signature server compo
nent uses its external network interface to receive a provi
sional signature and its processor, which is coupled to the
external network interface and the memory, to transmit to the
network the completed final signature for a blind signature
scheme.

An Exemplary Computer System

0141 FIG. 4 is a block diagram of an exemplary computer
system that may perform one or more of the operations
described herein. Referring to FIG. 4, the computer system
may comprise an exemplary client or server computer sys
tem. The computer system comprises a communication
mechanism or bus for communicating information, and a
processor coupled with a bus for processing information. The
processor includes a microprocessor, but is not limited to a
microprocessor, such as, for example, Pentium, PowerPC,
Alpha, etc.
0142. The system further comprises a random access
memory (RAM), or other dynamic storage device (referred to
as main memory) coupled to the bus for storing information
and instructions to be executed by the processor. Main
memory also may be used for storing temporary variables or
other intermediate information during execution of instruc
tions by the processor.
0143. The computer system also comprises a read only
memory (ROM) and/or other static storage device coupled to
the bus for storing static information and instructions for the
processor, and a data storage device. Such as a magnetic disk
or optical disk and its corresponding disk drive. The data
storage device is coupled to the bus for storing information
and instructions.

Aug. 27, 2009

0144. The computer system may further be coupled to a
display device, such as a cathode ray tube (CRT) or liquid
crystal display (LCD), coupled to the bus for displaying infor
mation to a computer user. An alphanumeric input device,
including alphanumeric and other keys, may also be coupled
to the bus for communicating information and command
selections to the processor. An additional user input device is
cursor control. Such as a mouse, trackball, trackpad, Stylus, or
cursor direction keys, coupled to the bus for communicating
direction information and command selections to the proces
Sor, and for controlling cursor movement on the display.
0145 Another device that may be coupled to the bus is a
hard copy device, which may be used for printing instruc
tions, data, or other information on a medium Such as paper,
film, or similar types of media. Furthermore, a Sound record
ing and playback device, such as a speaker and/or microphone
may optionally be coupled to the bus for audio interfacing
with the computer system. Another device that may be
coupled to the bus is a wired/wireless communication capa
bility to communication to a phone or handheld palm device.
0146 Note that any or all of the components of the system
and associated hardware may be used in the present invention.
However, it can be appreciated that other configurations of the
computer system may include Some or all of the devices.
0147 Whereas many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular embodi
ment shown and described by way of illustration is in no way
intended to be considered limiting.
0148 Whereas many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular embodi
ment shown and described by way of illustration is in no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims which in themselves recite only those
features regarded as essential to the invention.
We claim:
1. A method comprising:
creating a provisional signature by performing an opera

tion on a message, wherein creating a provisional signa
ture by performing an operation on a message comprises
Selecting a random value r,
computing a value X equal to the commitment C(M. r),
where M is the message,

sending the value X to the signer,
performing a Zero-knowledge proof of knowledge of the
random value r and the message M. Such that value X
equals to the commitment C(M.r),

signing the value Xand returning Sig(x) only if the proof
Succeeds, and

outputting the provisional signature on Mas Sig(X) Sig
(C(M, r)); and

completing the provisional signature to create a final sig
nature on the message.

2. The method defined in claim 1 wherein completing the
provisional signature to create a final signature on the mes
Sage comprises:

generating a second random value r"; and
outputting the final signature on the message Mas (C(Sig

US 2009/021 7041 A1
10

3. A method comprising:
generating a provisional signature by

Selecting a random value r,
computing a value X equal to the commitment C(M. r),
where M is the message,

sending the value X to the signer,
performing a Zero-knowledge proof of knowledge of the
random value r and the message M. Such that value X
equals to the commitment C(M.r),

signing the value Xand returning Sig(x) only if the proof
Succeeds, and

outputting the provisional signature on Mas SigCX) Sig
(C(M, r)); and

transmitting the provisional signature to a verifier via a
network.

4. An apparatus comprising:
a processor to generate a provisional signature by

Selecting a random value r,
computing a value X equal to the commitment C(M. r),
where M is the message,

sending the value X to the signer,
performing a Zero-knowledge proof of knowledge of the
random value r and the message M. Such that value X
equals to the commitment C(M.r),

Aug. 27, 2009

signing the value Xand returning Sig(x) only if the proof
Succeeds, and

outputting the provisional signature on Mas Sig(X) Sig
(C(M, r)); and

a network interface coupled to the processor to transmit the
provisional signature to a verifier via a network.

5. A method comprising:
receiving a provisional signature;
converting a provisional signature into a final signature by

generating a second random value r, and
outputting the final signature on the message M as

(C(Sig(C(M, r)), r)); and
sending the final signature to a network location.
6. An apparatus comprising:
a network interface to receive a provisional signature; and
a processor to convert the provisional signature into a final

signature by
generating a second random value r, and
outputting the final signature on the message M as

(C(Sig(C(M, r)), r")), wherein the network interface
sends the final signature to a network location.

c c c c c

