

Office de la Propriété

Intellectuelle
du Canada

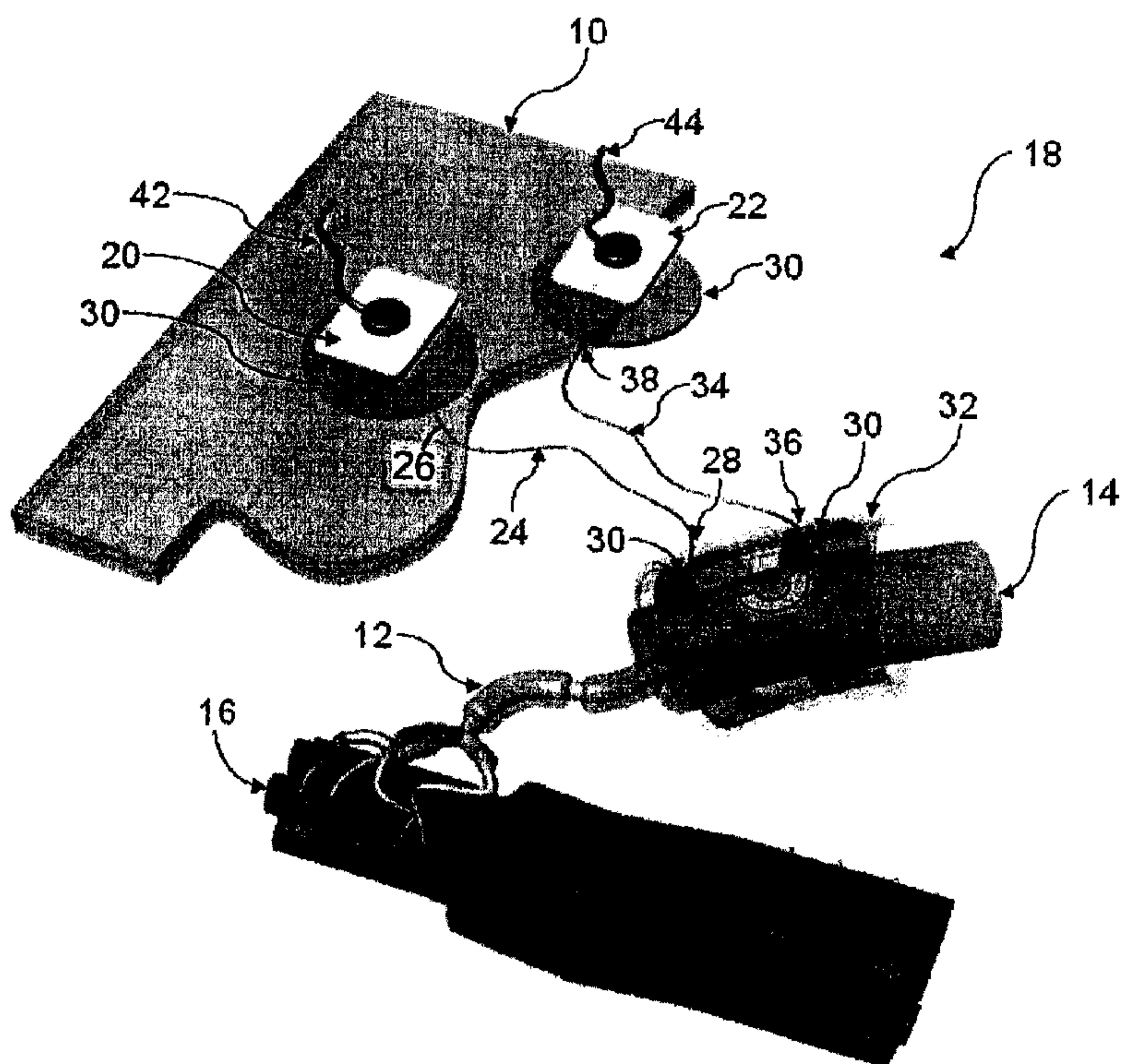
Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2553901 C 2015/01/20

(11)(21) **2 553 901**


(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2005/01/24
(87) Date publication PCT/PCT Publication Date: 2005/08/04
(45) Date de délivrance/Issue Date: 2015/01/20
(85) Entrée phase nationale/National Entry: 2006/07/14
(86) N° demande PCT/PCT Application No.: CA 2005/000074
(87) N° publication PCT/PCT Publication No.: 2005/070494
(30) Priorité/Priority: 2004/01/22 (US60/538,618)

(51) CI.Int./Int.Cl. **A61N 1/36** (2006.01),
A61N 1/20 (2006.01)
(72) **Inventeur/Inventor:**
PROCHAZKA, ARTHUR, CA
(73) **Propriétaire/Owner:**
REHABTRONICS INC., CA
(74) **Agent:** MCKAY-CAREY & COMPANY

(54) Titre : **PROCEDE D'ACHEMINEMENT DE COURANT ELECTRIQUE A DES TISSUS CORPORELS VIA DES CONDUCTEURS PASSIFS IMPLANTES**
(54) Title: **METHOD OF ROUTING ELECTRICAL CURRENT TO BODILY TISSUES VIA IMPLANTED PASSIVE CONDUCTORS**

(57) **Abrégé/Abstract:**

The invention provides an implant for electrically stimulating a target body tissue in a subject. The implant provides a conductive pathway for a portion of electrical current flowing between surface electrodes positioned on the subject's skin and transmits that

(57) Abrégé(suite)/Abstract(continued):

current to the target body tissue. The implant has an electrical conductor of sufficient length to extend from subcutaneous tissue located below a surface cathodic electrode to the target body tissue. The conductor has a pick-up end which forms an electrical termination having a sufficient surface area to allow a sufficient portion of the electrical current to flow through the conductor, in preference to flowing through body tissue between the surface electrodes, such that the target body tissue is stimulated. The conductor also has a stimulating end which forms an electrical termination for delivering the current to the target body tissue. A system and method incorporating the implant are also provided.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
4 August 2005 (04.08.2005)

PCT

(10) International Publication Number
WO 2005/070494 A1

(51) International Patent Classification⁷: A61N 1/36, 1/20

(21) International Application Number:

PCT/CA2005/000074

(22) International Filing Date: 24 January 2005 (24.01.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/538,618 22 January 2004 (22.01.2004) US

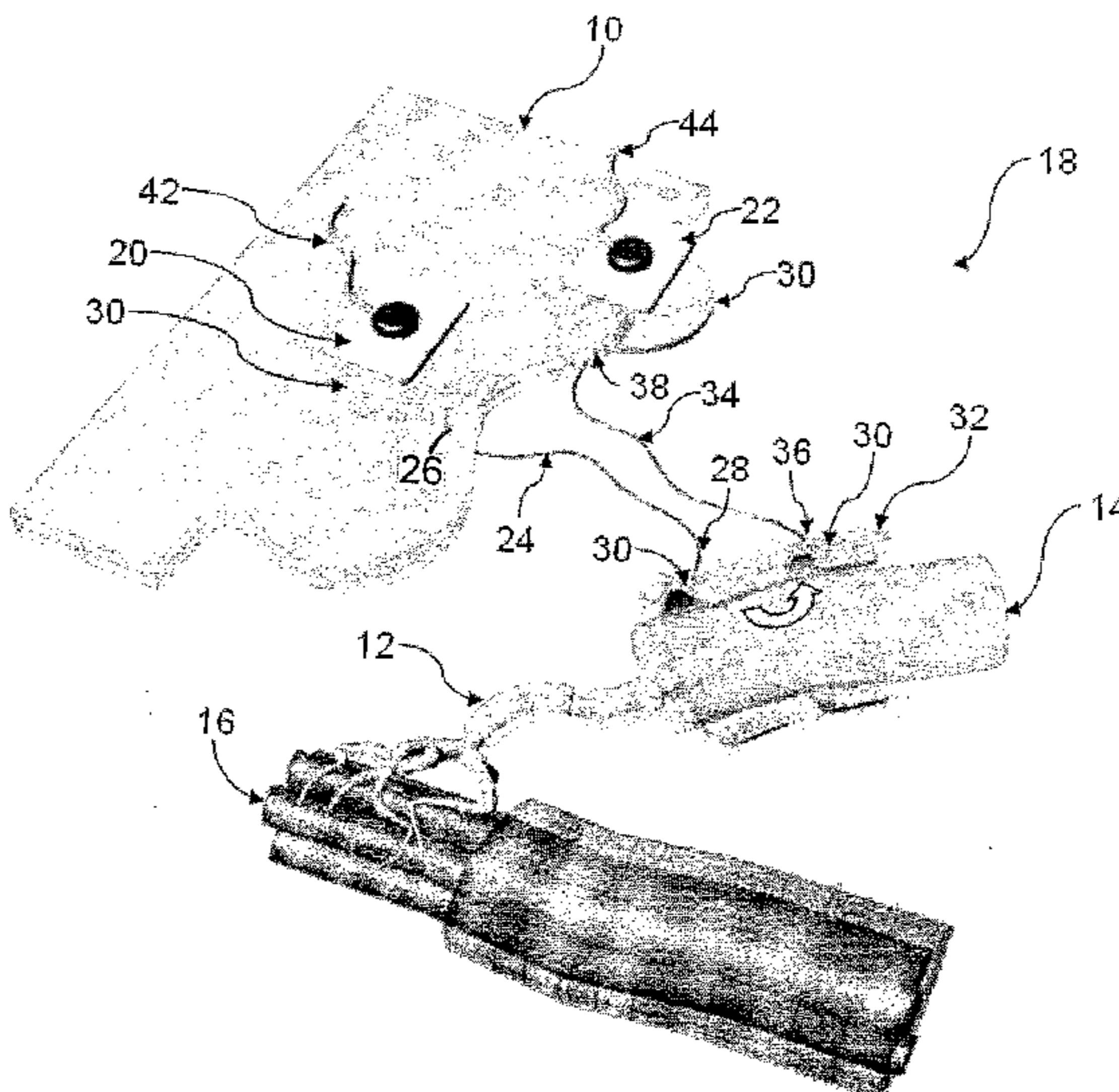
(71) Applicant (for all designated States except US): REHAB-TRONICS INC. [CA/CA]; 17731 - 103 Avenue, Edmonton, Alberta T5S 1N8 (CA).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PROCHAZKA, Arthur [AU/CA]; 9647 - 88 Avenue N.W., Edmonton, Alberta T6C 1M8 (CA).

(74) Agent: MCKAY-CAREY, Mary Jane; McKay-Carey & Company, 2590 Commerce Place, 10155 102 Street, Edmonton, Alberta T5J 4G8 (CA).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: METHOD OF ROUTING ELECTRICAL CURRENT TO BODILY TISSUES VIA IMPLANTED PASSIVE CONDUCTORS

(57) **Abstract:** The invention provides an implant for electrically stimulating a target body tissue in a subject. The implant provides a conductive pathway for a portion of electrical current flowing between surface electrodes positioned on the subject's skin and transmits that current to the target body tissue. The implant has an electrical conductor of sufficient length to extend from subcutaneous tissue located below a surface cathodic electrode to the target body tissue. The conductor has a pick-up end which forms an electrical termination having a sufficient surface area to allow a sufficient portion of the electrical current to flow through the conductor, in preference to flowing through body tissue between the surface electrodes, such that the target body tissue is stimulated. The conductor also has a stimulating end which forms an electrical termination for delivering the current to the target body tissue. A system and method incorporating the implant are also provided.

WO 2005/070494 A1

WO 2005/070494 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1 METHOD OF ROUTING ELECTRICAL CURRENT TO BODILY TISSUES VIA

2 IMPLANTED PASSIVE CONDUCTORS

3 FIELD OF THE INVENTION

4 The present invention relates to an implant, system and method for electrically
5 stimulating a target body tissue in a subject.

7 BACKGROUND OF THE INVENTION

8 Electrically-exitable bodily tissues such as nerves and muscles may be activated by
9 an electrical field applied between electrodes applied externally to the skin. Electric current
10 flows through the skin between a cathode electrode and an anode electrode, eliciting action
11 potentials in the nerves and muscles underlying the electrodes. This method has been used
12 for many years in different types of stimulators, including transcutaneous electrical nerve
13 stimulators (TENS) which relieve pain, therapeutic electrical stimulators which activate
14 muscles for exercise purposes (Vodovnik, 1981), functional electrical stimulators which
15 activate muscles for tasks of daily life (Kralj *et al.* (1989); United States Patent No. 5,330,516
16 to Nathan; United States Patent No. 5,562,707 to Prochazka *et al.*) and stimulators that
17 promote regeneration of damaged bones.

18 A disadvantage of stimulation through electrodes attached to the body surface is that
19 many non-targeted tissues may be co-activated along with the targeted tissues. This lack of
20 selectivity often causes unwanted sensations and/or unwanted movements. Furthermore,
21 tissues that lie deep within the body are difficult or impossible to stimulate adequately,
22 because most of the electrical current flowing between the electrodes flows through tissues
23 closer to the electrodes than the targeted tissues. Selectivity may be improved by implanting
24 wires within the body that route electrical current from a stimulator to the vicinity of the
25 targeted tissues. This method is used in cardiac pacemakers (Horch *et al.*, 2004), dorsal
26 column stimulators (Waltz, 1997), deep brain stimulators (Benabid *et al.*, (1987) and sacral
27 root stimulators (Brindley *et al.* (1982). Cuffs containing the uninsulated ends of the wires
28 may be placed around peripheral nerves to restrict most of the current to the vicinity of the
29 nerve and limiting the spread of current to surrounding tissues, thereby improving selectivity
30 (Haugland *et al.*, (1999). Generally when wires are implanted, the stimulators, complete with
31 an energy source, are also implanted (Strojnik *et al.*, 1987). Implanted stimulators are

1 expensive and often require a controller and/or power source external to the body. Batteries
2 within the implanted stimulators need periodic replacement, entailing surgery.

3 In a minority of cases, stimulating wires are implanted in bodily tissues and led
4 through the skin (percutaneously) to a connector attached to the surface of the body, to which
5 an external stimulator is attached (Peckham *et al.*, (1980). External stimulators are much less
6 expensive than implanted stimulators, but the percutaneous wires provide a conduit for
7 infection and therefore require daily cleaning and maintenance. This has generally limited the
8 use of percutaneous electrodes to short-term applications.

9 SUMMARY OF THE INVENTION

10 The present invention broadly provides an implant for electrically stimulating a target
11 body tissue in a subject, the implant, once implanted, providing a conductive pathway for at
12 least a portion of the electrical current flowing between surface cathodic and anodic
13 electrodes positioned in spaced relationship on the subject's skin and transmitting that portion
14 of the electrical current to the target body tissue, the implant comprising:

15 an electrical conductor of sufficient length to extend, once implanted, from
16 subcutaneous tissue located below the surface cathodic electrode to the target body tissue, the
17 electrical conductor having a pick-up end and a stimulating end and being insulated between
18 its ends, the pick-up end forming an electrical termination having a sufficient surface area to
19 allow a sufficient portion of the electrical current to flow through the conductor, in preference
20 to flowing through body tissue between the surface cathodic and anodic electrodes, such that
21 the target body tissue is stimulated, and the stimulating end forming an electrical termination
22 for delivering the portion of electrical current to the target body tissue.

23 In another aspect, the invention provides a system for electrically stimulating a target
24 body tissue in a subject comprising the above implant, together with

25 i) surface cathodic and anodic electrodes for making electrical contact with the
26 subject's skin, and which, when positioned in spaced relationship on the subject's skin, for
27 transmitting electrical current to the target body tissue; and

28 ii) a stimulator external to the subject's body, electrically connected to the surface
29 cathodic and anodic electrodes, the stimulator supplying direct, pulsatile, or alternating
30 current to the surface cathodic and anodic electrodes.

In yet another aspect, the invention provides a method for electrically stimulating a target body tissue in a subject comprising the steps of:

- a) providing the above implant;
 - b) implanting the implant entirely under the subject's skin, with the pick-up end positioned in subcutaneous tissue located below the surface cathodic electrode, and the stimulating end positioned proximate to the target body tissue;
 - c) positioning the surface cathodic and anodic electrodes in spaced relationship on the subject's skin, with the surface cathodic electrode positioned over the pick-up end of the electrical conductor so the portion of the current is transmitted through the conductor to the target body tissue, and so that the current flows through the target body tissue and returns to the anodic surface electrode through body tissues or through an implanted electrical return conductor extending between the target body tissue and subcutaneous tissue located below the surface anodic electrode; and
 - d) applying direct, pulsatile or alternating electrical current between the surface cathodic electrode and the surface anodic electrode to cause the portion of the electrical current to flow through the implant sufficient to stimulate the target body tissue.

As used herein and in the claims, the terms and phrases set out below have the following definitions.

“Body tissue” is meant to refer to a neural tissue (in the peripheral or central nervous system), a nerve, a muscle (skeletal, respiratory, or cardiac muscle) or an organ, for example, the brain, cochlea, optic nerve, heart, bladder, urethra, kidneys and bones.

“Electrical current” is meant to refer to resistive, capacitive, or inductive current.

“Subject” means an animal including a human.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic three-dimensional view of an embodiment of the invention having an implanted electrical conductor, surface cathodic and anodic electrodes, and an implanted electrical return conductor.

Figure 2 is a side elevation view, in section, of an embodiment of the invention having an implanted electrical conductor and surface cathodic and anodic electrodes.

Figure 3 is a side elevation view, in section, of an alternate embodiment of the invention having an implanted electrical conductor, surface cathodic and anodic electrodes, and an electrical return conductor.

Figure 4 is a side elevation view, in section, of an alternate embodiment of the invention having two implanted electrical conductors, two surface cathodic electrodes, an anodic electrode, and an electrical return conductor.

DETAILED DESCRIPTION OF THE INVENTION

The invention broadly provides an implant for electrically stimulating a target body tissue in a subject. Once implanted, the implant provides a conductive pathway for at least a portion of the electrical current flowing between surface cathodic and anodic electrodes positioned in spaced relationship on a subject' skin, and transmits that portion of electrical current to the target body tissue. In further aspects, the invention provides a system and method incorporating the implant for electrically stimulating a target body tissue in a subject.

The subject can be an animal including a human. The body tissue can be a neural tissue (in the peripheral or central nervous system), a nerve, a muscle (skeletal, respiratory, or cardiac muscle) or an organ, for example, the brain, cochlea, optic nerve, heart, bladder, urethra, kidneys and bones. The invention can be applied to treat various conditions in which stimulation of any of these body tissues is required. Such conditions can include movement disorders (e.g., Parkinson's disease, tremor, cerebral palsy), muscular disorders (e.g., muscular dystrophy), incontinence (e.g., urinary bladder disorders), urinary retention, pain (e.g., migraine headaches, neck and back pain, pain resulting from other medical conditions), epilepsy (e.g., generalized and partial seizure disorder), cerebrovascular disorders (e.g., strokes, aneurysms), sleep disorders (e.g., sleep apnea), autonomic disorders (e.g., gastrointestinal disorders, cardiovascular disorders), disorders of vision, hearing and balance, and neuropsychiatric disorders (e.g., depression). The invention may also be used for promoting bone growth (as required, for example, in the healing of a fracture), wound healing or tissue regeneration.

The invention is described with reference to the drawings in which like parts are labeled with the same numbers in Figures 1 to 4. The invention is shown generally in Figure 1 which schematically illustrates portions of a subject's body tissues, including skin 10, a

1 nerve 12 with its overlying nerve sheath 14, and a muscle 16. Figure 1 also illustrates an
2 implant indicated generally at 18, a surface cathodic electrode 20 and a surface anodic
3 electrode 22. The implant 18 is provided for electrically stimulating a target body tissue, such
4 as a nerve 12, in a subject. Once implanted, the implant 18 provides a conductive pathway
5 for at least a portion of the electrical current flowing between the surface cathodic and anodic
6 electrodes 20, 22.

7 When positioned in spaced relationship on the subject's skin 10, the surface cathodic
8 and anodic electrodes 20, 22 make electrical contact with the skin 10 and transmit electrical
9 current to the target body tissue. Surface cathodic and anodic electrodes 20, 22 can be
10 selected from a conductive plate or sheet, a conductive gel electrode, a conductive rubber or
11 polymer electrode that may be partially coated with an electrode paste or gel, or a moistened
12 absorbent pad electrode. Self-adhesive hydrogel electrodes of the type used to stimulate
13 muscles, with surface areas of 1 square centimeter or more are particularly effective. The
14 positions of the surface cathodic and anodic electrodes 20, 22 on the skin 10 may vary,
15 depending upon the location and nature of the target body tissue.

16 The implant 18 comprises an electrical conductor 24 of sufficient length to extend,
17 once implanted, from subcutaneous tissue located below the surface cathodic electrode 20 to
18 the target body tissue, for example nerve 12. The electrical conductor 24 can be formed from
19 a metal wire, carbon fibers, a conductive rubber or other conductive polymer, or a conductive
20 salt solution in rubber. Multistranded, Teflon[®]-insulated, stainless-steel wire conductors of
21 the type used in cardiac pacemaker leads have been found to be particularly effective. The
22 electrical conductor has a pick-up end 26 and a stimulating end 28, and is insulated between
23 its ends 26, 28. The electrical impedance of the interface between the ends 26, 28 of the
24 conductor 24 (when implanted) and the surrounding body tissue may be reduced by enlarging
25 the surface area of the ends 26, 28. For that purpose, one or both of the pick-up and
26 stimulating ends 26, 28 form electrical terminations 30 having sufficient surface areas for
27 reducing the electrical impedance of the interface between the pick-up and stimulating ends
28 26, 28 of the electrical conductor 24 and the surrounding body tissues. Preferably, the pick-
29 up end 26 forms a termination 30. The pick-up end 26 forms an electrical termination 30
30 which has a sufficient surface area to allow a sufficient portion of the electrical current to
31 flow through the electrical conductor 24, in preference to flowing through body tissue

1 between the surface cathodic and anodic electrodes 20, 22, such that the target body tissue is
2 stimulated. The stimulating end 28 also forms an electrical termination 30 for delivering the
3 portion of electrical current to the target body tissue (i.e., nerve 12).

4 Terminations 30 should have sufficient surface area for providing high conductivity
5 contact with body tissues, and lowering the electrical impedance between the body tissue and
6 the conductor. If the surface area is minimal, the amount of current flowing through a
7 conductor to the termination is reduced to an ineffective amount. The surface area required
8 may thus be determined by a knowledge of the electrical impedance of the interface between
9 the tissue and the terminations 30 at the receiving and stimulating ends 26, 28. Beneficial
10 results have been obtained by making the surface area of metal terminations 30 at the ends
11 26, 28 about 0.5 square centimeters. The electrical impedance of each interface between
12 tissue and terminations 30 at ends 26, 28 was then about 5 times the electrical impedance of
13 all the subcutaneous tissue between surface electrodes 20, 22. A typical value of tissue
14 impedance is 200 ohms. The impedance of the conductor itself is chosen to be very small, for
15 example 5 ohms. In the example just given, the sum of the two interface impedances of the
16 terminations 30 plus the conductor impedance was about 2000 ohms, that is to say about ten
17 times the tissue impedance. Thus about 10% of the current applied between surface
18 electrodes 20, 22 flows through conductor 24 to the target tissue. In the case of the target
19 tissue being a nerve 12 supplying a muscle 16, the amount of current between surface
20 electrodes 20, 22 required to produce a useful muscle contraction of the target muscle 16 then
21 remains below the threshold level of activation of nerve endings in the subcutaneous tissue
22 immediately between surface electrodes 20, 22. This is a beneficial relationship, because it
23 means that target muscles 16 can be activated with little or no local sensation under the
24 surface electrodes 20, 22.

25 Terminations 30 of various shapes, materials and spatial arrangements can be used;
26 for example, terminations 30 can provide an enlarged surface in the form of a coil, spiral,
27 cuff, rod, or a plate or sheet in the form of an oval or polygon. As an example, Figure 1
28 illustrates a termination 30 as a plate or sheet in the form of an oval at the pick-up end 26 of
29 the electrical conductor 24, and in the form of a cuff at the stimulating end 28. The cuff or a
30 portion thereof can encircle or partially encircle the entirety or part of the nerve sheath 14 of
31 the nerve 12. The cuff or a portion thereof can be positioned proximate to the nerve sheath

1 14, or the inner surface of the cuff or a portion thereof can directly contact the nerve sheath
2 14.

3 Beneficial results are obtained with stainless-steel plates or sheets in the form of an
4 oval which is about 0.5 square centimeter in area and 1 mm thick, or made of metal foil and
5 stainless-steel mesh and being about 0.5 square centimeter in surface area and 0.3 mm thick.
6 For terminations 30 of conductors with nerve cuffs, nerve cuffs made of metal foil or
7 stainless-steel mesh and being 0.5 to 1 square centimeter in surface area and 0.3 mm thick are
8 suitable. Further, silastic elastomer cuffs ranging from 5mm to 15mm in length, 4 mm to
9 6mm inside diameter, and 1mm thick are suitable.

10 Terminations 30 can be formed from uninsulated ends 26, 28 of the electrical
11 conductor 24, or from other conductive or capacitive materials. Terminations 30 can be
12 formed by coiling, spiraling or weaving long, uninsulated lengths of the pick-up or
13 stimulating ends 26, 28 to provide a sufficient surface. The surface area of the termination is
14 thus "enlarged" relative to the surface area of a shorter length of the electrical conductor 24.
15 This raises the effective surface area of the terminations 30 within a small space to provide
16 higher conductivity contact with body tissues, and to lower the electrical impedance between
17 the body tissue and the conductor 24 to allow current flow in the conductor in preference to in
18 the body tissue. Sufficient current flow is thereby provided in the conductor 24 to stimulate
19 the target tissue. Alternatively, prefabricated terminations 30 (for example, plates or sheets in
20 the form of ovals or polygons) can be attached directly to the pick-up and stimulating ends
21 26, 28. Further, terminations 30 can be coated or modified with conductive materials to
22 maximize the flow of electrical current through the target body tissue.

23 The spatial arrangement of the terminations 30 can be varied; for example, multiple
24 terminations 30 can also be applied to different parts of a body tissue (Grill *et al.*, 1996).
25 Advantageously, the terminations 30 themselves can be in the form of closely-spaced contacts
26 enclosed within an embracing cuff 32 placed around the nerve 12. The embracing cuff 32 can
27 be formed from conductive silicone rubber.

28 Electrical impedance may be further reduced by providing conductive or capacitive
29 coatings, or an oxide layer on the terminations 30. The coating can be selected from a
30 material whose structural or electrical properties improve the electrical conductance between
31 the tissue and the conductor, for example, by providing a complex surface into which tissue

1 can grow (for example, a polymer such as poly-diethoxy-thiophene, or suitable oxide layers
2 including tantalum and sintered iridium). In addition, the terminations 30 can have coatings
3 which provide an anti-inflammatory, anti-bacterial or tissue ingrowth effect. The coating can
4 be a substance selected from an anti-inflammatory agent, antibacterial agent, antibiotic, or a
5 tissue ingrowth promoter.

6 Optionally, performance of the invention can be improved by implanting an electrical
7 return conductor 34 of sufficient length to extend from the target body tissue to subcutaneous
8 tissue located below the surface anodic electrode 22. The electrical return conductor 34
9 provides a low-impedance conductive pathway from the target body tissue to the surface
10 anodic electrode 22, thereby concentrating the electric field through the target tissue. The
11 electrical return conductor 34 can be formed from a metal wire, carbon fibers, a conductive
12 rubber or other conductive polymer, or a conductive salt solution in rubber. The electrical
13 return conductor 34 has a collecting end 36 and a returning end 38, and is insulated between
14 its ends 36, 38. Both the collecting end 36 and the returning end 38 form electrical
15 terminations 30 (as described above) for reducing the electrical impedance of the interface
16 between the collecting end 36 and returning end 38 of the electrical return conductor 34 and
17 the surrounding body tissues. The collecting end 36 forms an electrical termination 30
18 (shown in Figure 1 in the form of a cuff), which has a sufficient surface area to allow a
19 portion of the electrical current delivered to the target body tissue to return through the
20 electrical return conductor 34 in preference to returning through body tissue. The returning
21 end 38 forms an electrical termination 30 (shown in Figure 1 as a plate or sheet in the form of
22 an oval) which returns the electrical current to the surface anodic electrode 22 via the
23 subcutaneous tissue and skin underlying the surface anodic electrode 22.

24 A power source 40 (shown in Figures 2-4) provides operating power to a stimulator
25 (not illustrated) which is external to the subject's body. The stimulator is electrically
26 connected to the surface cathodic and anodic electrodes 20, 22 to supply electrical current to
27 the surface cathodic and anodic electrodes 20, 22. The current can be resistive, capacitive, or
28 inductive current, depending on the net impedance encountered between the electrodes 20,
29 22. The stimulator can supply direct, pulsatile or alternating current between the surface
30 cathodic and anodic electrodes 20, 22 to cause the portion of the electrical current to flow
31 through the implant 18 sufficient to stimulate the target body tissue.

1 Exemplary pulse parameters of electrical current flowing between the surface cathodic
2 and anodic electrodes 20, 22 are as follows: biphasic current pulses, 30 pulses per second,
3 each phase 200 microseconds in duration, and a peak current per pulse ranging from 0.7 to 2
4 milliampere. Beneficial results can be obtained with rectangular, feedback-controlled current
5 pulse waveforms, although other waveforms and modes of control of current or voltage have
6 also been found to give satisfactory results. The inventor has discovered that between 10%
7 and 20% of the current flowing between the surface electrodes 20, 22 is propagated through
8 an implanted conductor 24, even when there is no electrical return conductor 34. The type of
9 current may be dependent upon the application for which the invention is intended; for
10 example, continuous current would be applied, rather than pulsatile current, when the target
11 body tissue is bone and promotion of bone growth is desired.

12 Although most of the electrical current flows through the body tissues in proximity to
13 the surface cathodic and anodic electrodes 20, 22, there is flow of electrical current through
14 the electrical conductor 24, nerve 12, and electrical return conductor 34. As shown in Figure
15 1, the surface cathodic electrode 20 is positioned over the pick-up end 26 of the electrical
16 conductor 24, so that a portion of the current is transmitted through the conductor 24 to the
17 target body tissue, and current flows through the target body tissue and returns to the anodic
18 surface electrode 22 through body tissues. This can also be achieved through the implanted
19 electrical return conductor 34 extending between the target body tissue and subcutaneous
20 tissue located below the surface anodic electrode 22.

21 The complete electrical path of the portion of the electrical current is as follows:
22 cathodic wire 42, surface cathodic electrode 20, skin 10, termination 30 (as a plate or sheet),
23 pick-up end 26, electrical conductor 24, stimulating end 28, termination 30 (in the form of a
24 cuff), nerve sheath 14, nerve 12, termination 30, collecting end 36, electrical return conductor
25 34, returning end 38, termination 30, skin 10, surface anodic electrode 22 and anodic wire 44.
26 The pulses of electrical current elicit action potentials are conducted along nerve 12 to muscle
27 16, causing it to contract.

28 As an example, Figure 2 illustrates the invention for use in the treatment of a
29 movement disorder requiring stimulation of the median nerve 46. The median nerve 46
30 innervates most of the flexor muscles in front of the forearm, most of the short muscles of the
31 thumb, and the short muscles of the hand. A subject's arm 48 is illustrated with the implant

1 18 implanted in the forearm. The electrical conductor 24 is illustrated with its pick-up end 26
2 forming a termination 30 (as a plate or sheet in the form of an oval) for receiving the
3 electrical current from the surface cathodic electrode 20. The stimulating end 28 forms a
4 termination 30 (in the form of a cuff) for delivering the electrical current to the median nerve
5 46. A surface anodic electrode 22 is positioned on the skin 10. A flow of electrical current
6 from the power source 40 is supplied via cathodic wire 42 into the skin 10 at the surface
7 cathodic electrode 20 and the surface anodic electrode 22 via anodic wire 44. The electrical
8 current flows through the termination 30, the pick-up end 26, the electrical conductor 24, the
9 stimulating end 28, a portion of the median nerve 46, the tissue between stimulating end 28
10 and surface anodic electrode 22 including the skin underlying electrode 22, the surface anodic
11 electrode 22, anodic wire 44 and the power source 40, thus completing the electrical circuit.
12 Some of the current flowing between the stimulating end 28 and the surface anodic electrode
13 22 passes through the target body tissue (in this example, median nerve 46), thereby causing
14 the muscle 16 of the arm 48 to be stimulated.

15 As a further example, Figure 3 again illustrates the invention for use in the treatment
16 of a movement disorder requiring stimulation of the median nerve 46. However, in addition
17 to the components shown in Figure 2, Figure 3 illustrates an electrical return conductor 34.
18 The electrical circuit is essentially the same as that described for Figure 2, with the exception
19 that after flowing through the stimulating end 28 and the median nerve 46, the electrical
20 current flows through termination 30, the collecting end 36, the electrical return conductor 34,
21 the returning end 38, termination 30, the surface anodic electrode 22, anodic wire 44 and the
22 power source 40, thus completing the electrical circuit. Advantageously, the electrical return
23 conductor 34 acts to collect electrical current flowing through the target body tissue (i.e.,
24 median nerve 46) from the electrical conductor 24 and provides a low impedance pathway
25 back to the surface anodic electrode 22, thereby concentrating the electric field through the
26 target body tissue (i.e., median nerve 46).

27 As yet a further example, Figure 4 illustrates a plurality of implants 18 for electrically
28 stimulating more than one target body tissue independently or in unison. Each implant 18 is
29 implanted entirely under the subject's skin 10 and is of a sufficient length to extend to a
30 different target body tissue. The presence of multiple implants 18 necessitates positioning of
31 a plurality of surface cathodic electrodes 20, and one or more surface anodic electrodes 22

1 appropriately relative to the implants 18 to stimulate the different target body tissues
2 independently or in unison. Figure 4 illustrates the invention for use in the treatment of a
3 movement disorder requiring stimulation of the median nerve 46 and the radial nerve 50. The
4 radial nerve 50 innervates extensor muscles on the back of the arm and forearm, the short
5 muscles of the thumb, and the extensor muscles of the index finger. Two separate surface
6 cathodic electrodes 20 are each electrically connected via two separate cathodic wires 42 to a
7 stimulator (not illustrated) operated by the power source 40. Electrical current is transmitted
8 to the two separate electrical conductors 24, one of which extends to the median nerve 46,
9 and the other to the radial nerve 50. An electrical return conductor 34 extends from the target
10 tissue (i.e., below the median nerve 46) to subcutaneous tissue located below one surface
11 anodic electrode 22.

12 The electrical path of the current is as follows: cathodic wire 42, the surface cathodic
13 electrodes 20, the skin 10, termination 30, the pick-up end 26, the electrical conductor 24, the
14 stimulating end 28, termination 30, the median nerve 46 and/or radial nerve 50, termination
15 30, collecting end 36, electrical return conductor 34, returning end 38, termination 30, surface
16 anodic electrode 22, anodic wire 44, and power source 40. The median nerve 46 and radial
17 nerve 50 can be stimulated either independently by pulsatile electrical current to provide
18 firstly, a flexion or upward position of the wrist and finger closing (via the median nerve 46),
19 then secondly, extension or downward position of the wrist and finger extension (via the
20 radial nerve 50). Alternatively, the median nerve 46 and radial nerve 50 can be stimulated
21 simultaneously for example, to straighten the hand (i.e., position the wrist horizontally).

22 The invention thus provides several advantages including a means of "remote"
23 stimulation, that is the surface cathodic and anodic electrodes 20, 22 do not have to be
24 positioned over target body tissues. Remote target body tissues, such as nerves 12, can be
25 stimulated from closely spaced surface cathodic and anodic electrodes 20, 22, by routing
26 current through separate electrical conductors 24 simultaneously to several remote target body
27 tissues.

28 Further, greater selectivity is provided in stimulating target body tissues. The
29 electrical conductor 24 extends to a specific target body tissue, or multiple electrical
30 conductors 24 can extend to multiple target body tissues. Stimulation is thus specific to the
31 target body tissues, and stimulation of non-target body tissues is avoided. As an electrical

1 conductor 24 of sufficient length is used to reach target body tissues, stimulation of target
2 body tissues which are positioned deep within the body or organs such as the muscles, brain,
3 cochlea, optic nerve, heart, bladder, urethra, kidneys and bones, can be achieved.

4 Stimulation is reproducible at will. The electrical conductor 24 is passive and can
5 remain permanently implanted with the pick-up end 26 under the skin 10 beneath the site at
6 which the surface cathodic electrode 20 would be placed, and the stimulating end 28
7 positioned proximate to the target body tissue. To the inventor's knowledge, difficulty has
8 been encountered in positioning surface electrodes accurately to obtain acceptable selectivity
9 of stimulation of body tissues. The inventor has discovered that surprisingly, the invention
10 requires far less accuracy in positioning of the surface cathodic and anodic electrodes 20, 22;
11 consequently, stimulation of body tissues is more accurately reproducible.

12 Further, the invention avoids problems inherent in other forms of stimulation. The
13 conductors (i.e., electrical conductor 24, electrical return conductor 34) do not emerge
14 through the skin, thus reducing the risk of infection which may arise with percutaneous
15 devices. There is no need to construct an implant housing its own stimulator, signal generator
16 or power source, or to provide radio-frequency or other telemetric command signals through
17 the skin.

18 As is known to those skilled in the art, the electric currents delivered by a pulse
19 generator to a plurality of electrodes 20, 22 may be independently controlled with the use of
20 an interleaved pulse train. This comprises a sequence of stimulus pulses of different
21 amplitudes, the pulses separated in time by a few milliseconds and delivered to each electrode
22 in turn, the sequence as a whole being repeated at a rate such as 30 times per second. The
23 amplitudes of the pulses flowing through each electrode may thereby be controlled
24 independently.

25 A plurality of surface electrodes 20, 22 may be fabricated on a single non-conductive
26 substrate to form an electrode array that may be conveniently attached to the skin 10 in one
27 manoeuvre. Similarly, the plurality of terminations 30 of implanted conductors 24 may be
28 fabricated on a substrate to form an array. By matching the physical layout of the surface
29 electrode array to that of the implanted terminations array, a good spatial correspondence of
30 surface and implanted conductors may be achieved in a convenient and reproducible manner.
31 Surface electrode arrays in which the conductivity of each element of the array may be

1 independently controlled could also be used to adjust the conductivity between the surface
 2 electrodes and the terminations in an implanted array.

3 It will be apparent to one skilled in the art that modifications may be made to the
 4 illustrated embodiment without departing from the invention as defined in the claims.

5 **REFERENCES**

6 Benabid, A. L., Pollak, P., Louveau, A., Henry, S. and De Rougemont, J. (1987) Combined
 7 (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for
 8 bilateral Parkinson disease. *Applied Neurophysiology* 50:344-346.

9 Brindley, G. S., Polkey, C. E. & Rushton, D. N. (1982) Sacral anterior root stimulators for
 10 bladder control in paraplegia. *Paraplegia* 20:365-381.

11 Grill, W.M., Jr. and Mortimer, J.T. (1996) Quantification of recruitment properties of
 12 multiple contact cuff electrodes. *IEEE Trans. Rehabil. Eng.* (4(2):49-62.

13 Haugland, M. & Sinkjaer, T. (1999) Interfacing the body's own sensing receptors into neural
 14 prosthesis devices. *Technology & Health Care* 7:393-399.

15 Horch, K.W. and Dhillon, G. S., ed. (2004) Neuroprosthetics. Theory and Practice. Vol. 2.
 16 World Scientific, New Jersey.

17 Kralj, A. R. & Bajd, T. (1989) Functional Electrical Stimulation: Standing and Walking after
 18 Spinal Cord Injury. CRC Press, Boca Raton, FL.

19 Peckham, P. H., Marsolais, E. B. and Mortimer, J. T. (1980) Restoration of key grip and
 20 release in the C6 tetraplegic patient through functional electrical stimulation. *J. Hand
 21 Surg.* 5:462-469.

22 Prochazka, A., Gauthier, M., Wieler, M. and Kenwell, Z. (1997) The bionic glove: an
 23 electrical stimulator garment that provides controlled grasp and hand opening in
 24 quadriplegia. *Arch. Phys. Med. Rehabil.* 78:608-614.

25 Strojnik, P., Acimovic, R., Vavken, E., Simic, V. and Stanic, U. (1987) Treatment of drop
 26 foot using an implantable peroneal underknee stimulator. *Scandanavian J. of Rehabil.
 27 Med.* 19:37-43.

28 Vodovnik, L. (1981) Therapeutic effects of functional electrical stimulation of extremities.
 29 *Medical and Biological Engineering & Computing* 19:470-478.

1 Waltz, J. M. (1997) Spinal cord stimulation: a quarter century of development and
2 investigation. A review of its development and effectiveness in 1,336 cases.
3 *Stereotactic & Functional Neurosurgery* 69:288-299.

4 **PATENT DOCUMENTS**

5 Nathan, R. H. (1994) Device for generating hand function. United States Patent No.
6 5,330,516, issued July 19, 1994.
7 Prochazka, A., Wieler, M., Kenwell, Z.R., Gauthier, M.J.A. (1996) Garment for applying
8 controlled electrical stimulation to restore motor function. United States Patent No.
9 5,562,707, issued October 8, 1996.
10 Prochazka, A. (2003) Method and apparatus for controlling a device or process with
11 vibrations generated by tooth clicks. International Patent Application Publication No.
12 WO 2004/034937, published October 16, 2003.

13 All publications mentioned in this specification are indicative of the level of skill in
14 the art to which this invention pertains. Although the foregoing invention has been described
15 in some detail by way of illustration and example, for purposes of clarity and understanding it
16 will be understood that certain changes and modifications may be made without departing
17 from the invention as defined by the following claims.

1 WHAT IS CLAIMED IS:

2 1. An implant for electrically stimulating a target body tissue in a subject, the implant,
3 once implanted, providing a conductive pathway for at least a portion of the electrical current
4 flowing between surface cathodic and anodic electrodes positioned in spaced relationship on,
5 and in electrical contact with, the subject's skin and transmitting the portion of the electrical
6 current to the target body tissue, the implant comprising:

7 a passive electrical conductor of sufficient length to extend, once implanted, from
8 subcutaneous tissue located below the surface cathodic electrode to the target body tissue, the
9 electrical conductor having a pick-up end and a stimulating end and being insulated between
10 its ends, the pick-up end forming an electrical termination having a sufficient surface area to
11 allow a portion of the electrical current to flow through the conductor, in preference to
12 flowing through body tissue between the surface cathodic and anodic electrodes, such that the
13 target body tissue is stimulated, and the stimulating end forming an electrical termination for
14 delivering the portion of the electrical current to the target body tissue.

15 2. The implant according to claim 1, wherein the implant further comprises:
16 an electrical return conductor of sufficient length to extend, once implanted, from the
17 target tissue to subcutaneous tissue located below the surface anodic electrode, the return
18 conductor having a collecting end and a returning end and being insulated between its ends,
19 the collecting end forming an electrical termination having a sufficient surface area to allow a
20 portion of the current delivered to the target body tissue to return through the return conductor
21 in preference to returning through body tissue, and the returning end forming an electrical
22 termination that returns the electrical current to the surface anodic electrode via the
23 subcutaneous tissue and skin underlying the surface anodic electrode.

24 3. The implant according to claim 1 or 2, wherein one or both of the conductor and the
25 return conductor is formed from a metal wire, carbon fibers, a conductive rubber or other
26 conductive polymer, or a conductive salt solution in rubber.

1 4. The implant according to claim 1, 2 or 3, wherein the terminations on one or both
2 ends of the conductor and return conductor provides an enlarged surface in the form of a coil,
3 a spiral, a cuff, a rod, or a plate or sheet in the form of an oval or polygon.

4 5. The implant according to claim 4, wherein one or more of the terminations are formed
5 from an uninsulated end of the conductor or the return conductor, or from other conductive or
6 capacitive materials.

7 6. The implant according to claim 5, further comprising a conductive or capacitive
8 coating, or oxide layer on one or more of the terminations.

9 7. The implant according to claim 5, further comprising a coating on one or more of the
10 terminations for providing an anti-inflammatory, an anti-bacterial or a tissue ingrowth effect,
11 the coating being a substance selected from the group consisting of an anti-inflammatory
12 agent, an antibacterial agent, an antibiotic, and a tissue ingrowth promoter.

13 8. A system for electrically stimulating a target body tissue in a subject, the system
14 comprising:

15 i) surface cathodic and anodic electrodes for making electrical contact with the
16 subject's skin, and which, when positioned in spaced relationship on the subject's skin, for
17 transmitting electrical current to the target body tissue;

18 ii) a stimulator adapted to be provided external to the subject's body, and being
19 electrically connected to the surface cathodic and anodic electrodes, the stimulator supplying
20 direct, pulsatile, or alternating current to the surface cathodic and anodic electrodes; and

21 iii) an implant for picking up a portion of the electrical current flowing between the
22 surface cathodic and anodic electrodes and transmitting the portion of the electrical current to
23 the target body tissue, the implant comprising a passive electrical conductor of sufficient
24 length to extend, once implanted, from subcutaneous tissue located below the surface

1 cathodic electrode to the target body tissue, the electrical conductor having a pick-up end and
2 a stimulating end and being insulated between its ends, the pick-up end forming an electrical
3 termination having a sufficient surface area to allow a portion of the electrical current being
4 applied to flow through the conductor, in preference to the electrical current flowing through
5 body tissue between the surface cathodic and anodic electrodes, such that the target body
6 tissue is stimulated, and the stimulating end forming an electrical termination for delivering
7 the portion of the electrical current to the target body tissue.

8 9. The system according to claim 8, further comprising:

9 an electrical return conductor of sufficient length to extend, once implanted, from the
10 target tissue to subcutaneous tissue located below the surface anodic electrode, the return
11 conductor having a collecting end and a returning end and being insulated between its ends,
12 the collecting end forming an electrical termination having a sufficient surface area to allow a
13 portion of the electrical current delivered to the target body tissue to return through the return
14 conductor in preference to returning through body tissue, and the returning end forming an
15 electrical termination to return the electrical current to the surface anodic electrode via the
16 subcutaneous tissue and skin underlying the surface anodic electrode.

17 10. The system according to claim 8 or 9, wherein the implant is one implant from a
18 plurality of implants, each of the plurality of implants being configured to electrically
19 stimulate target body tissue independently or in unison, each implant from the plurality of
20 implants being implanted entirely under the subject's skin and being of a sufficient length to
21 extend to a different target body tissue, and the surface cathodic electrode being one of a
22 plurality of surface cathodic electrodes and the surface cathodic electrode and the surface
23 anodic electrode being configured to be positioned relative to the plurality of implants to
24 stimulate the different target body tissues independently or in unison.

25 11. The system according to claim 8, 9 or 10, wherein one or both of the conductor and
26 the return conductor is formed from a metal wire, carbon fibers, a conductive rubber or other
27 conductive polymer, or a conductive salt solution in rubber.

1 12. The system according to claim 11, wherein the terminations on one or both of the
2 conductor and the return conductor provides an enlarged surface in the form of a coil, a spiral,
3 a cuff, a rod, or a plate or sheet in the form of an oval or polygon.

4 13. The system according to claim 8, 9, 10, 11 or 12, wherein the surface cathodic and
5 anodic electrodes comprise a conductive plate or sheet, a conductive gel electrode, a
6 conductive rubber or polymer electrode that may be partially coated with an electrode paste or
7 gel, or a moistened absorbent pad electrode.

8 14. The system according to claim 12, wherein the terminations are formed from
9 uninsulated ends of the conductor or the return conductor, or from other conductive or
10 capacitive materials.

11 15. The system according to claim 12, further comprising a conductive or capacitive
12 coating, or oxide layer on one or both of the terminations.

13 16. The system according to claim 12, further comprising a coating on one or both of the
14 terminations for providing an anti-inflammatory, an anti-bacterial or a tissue ingrowth effect,
15 the coating being a substance selected from the group consisting of an anti-inflammatory
16 agent, an antibacterial agent, an antibiotic, and a tissue ingrowth promoter.

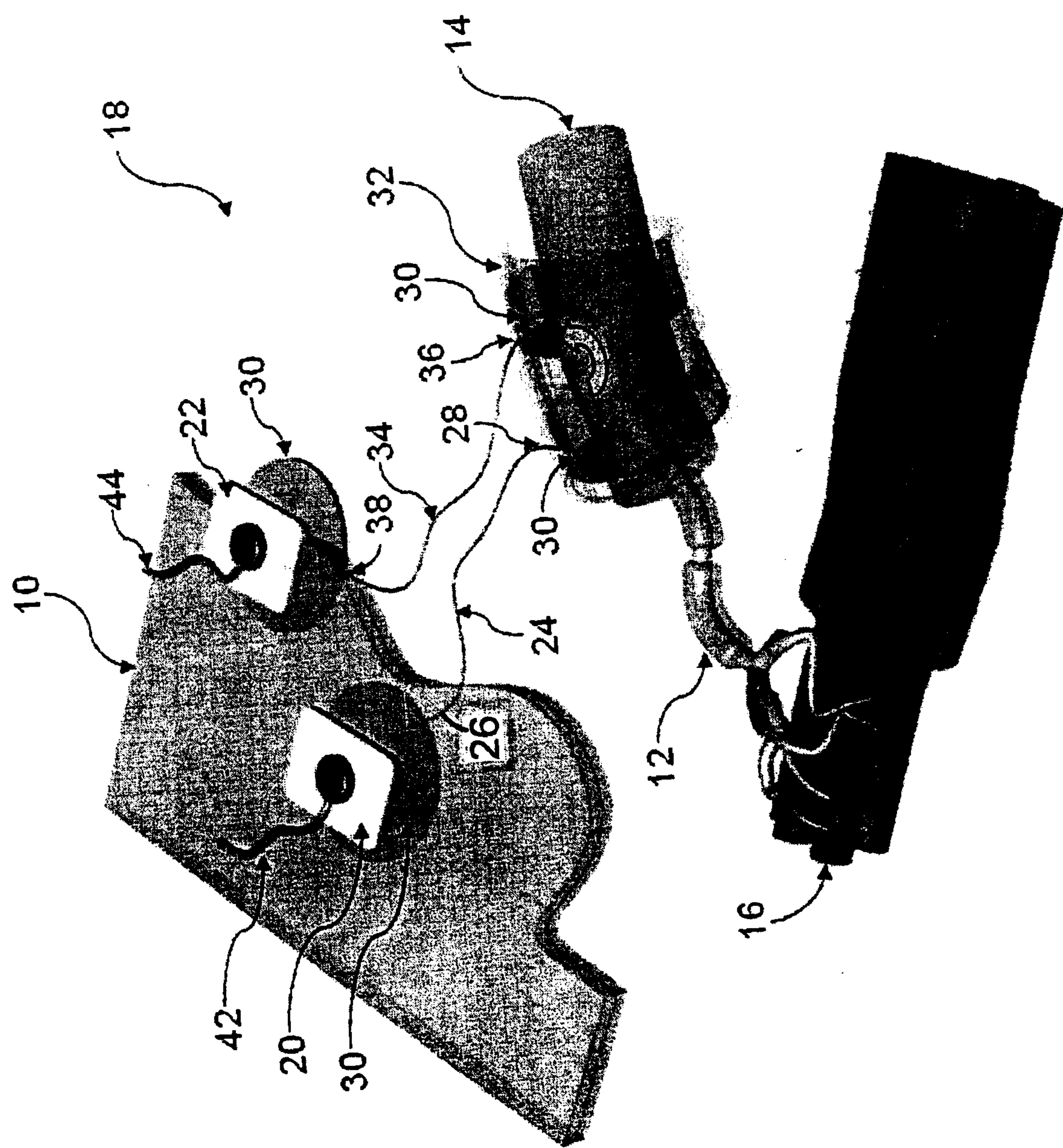


FIGURE 1

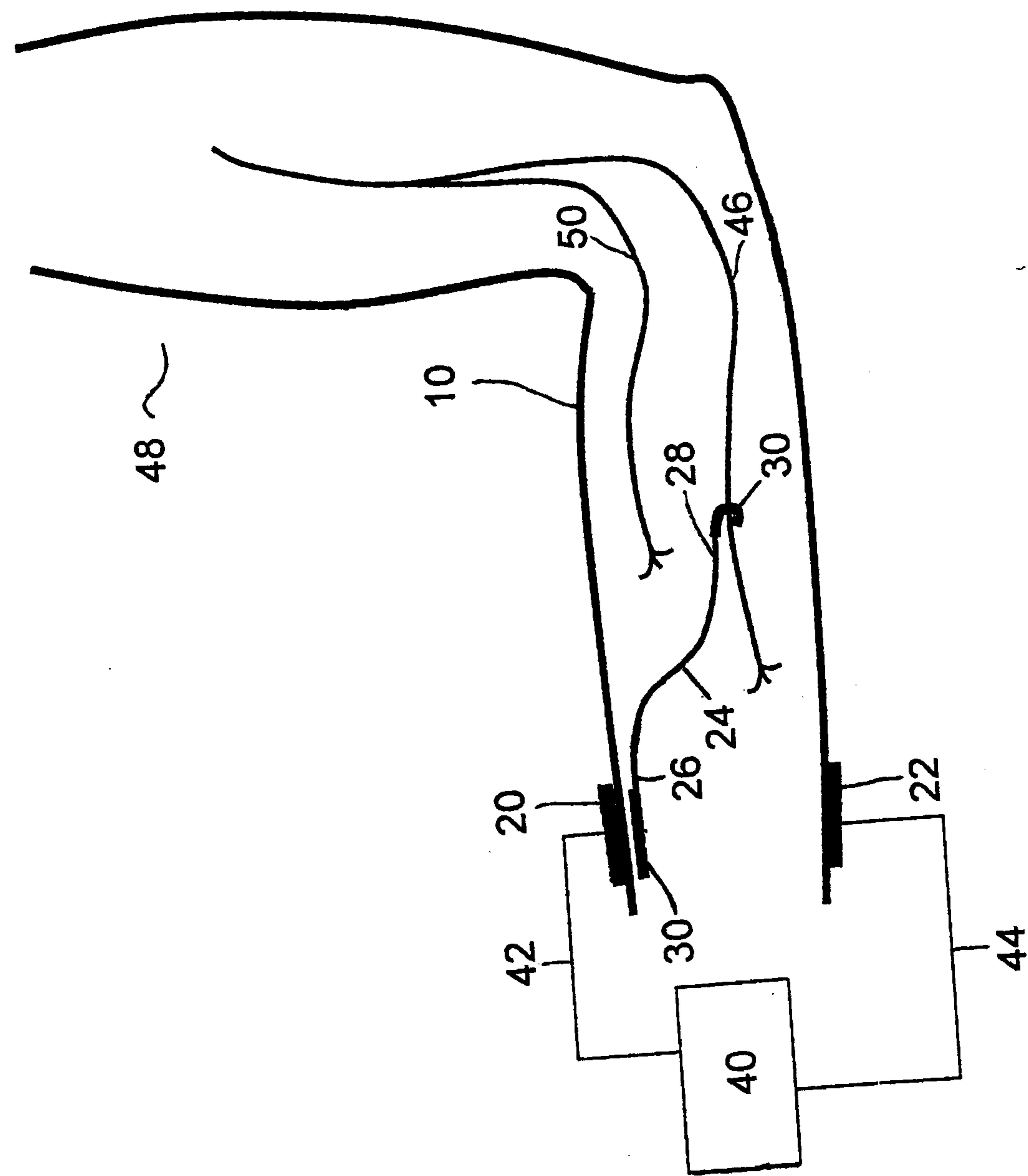


FIGURE 2

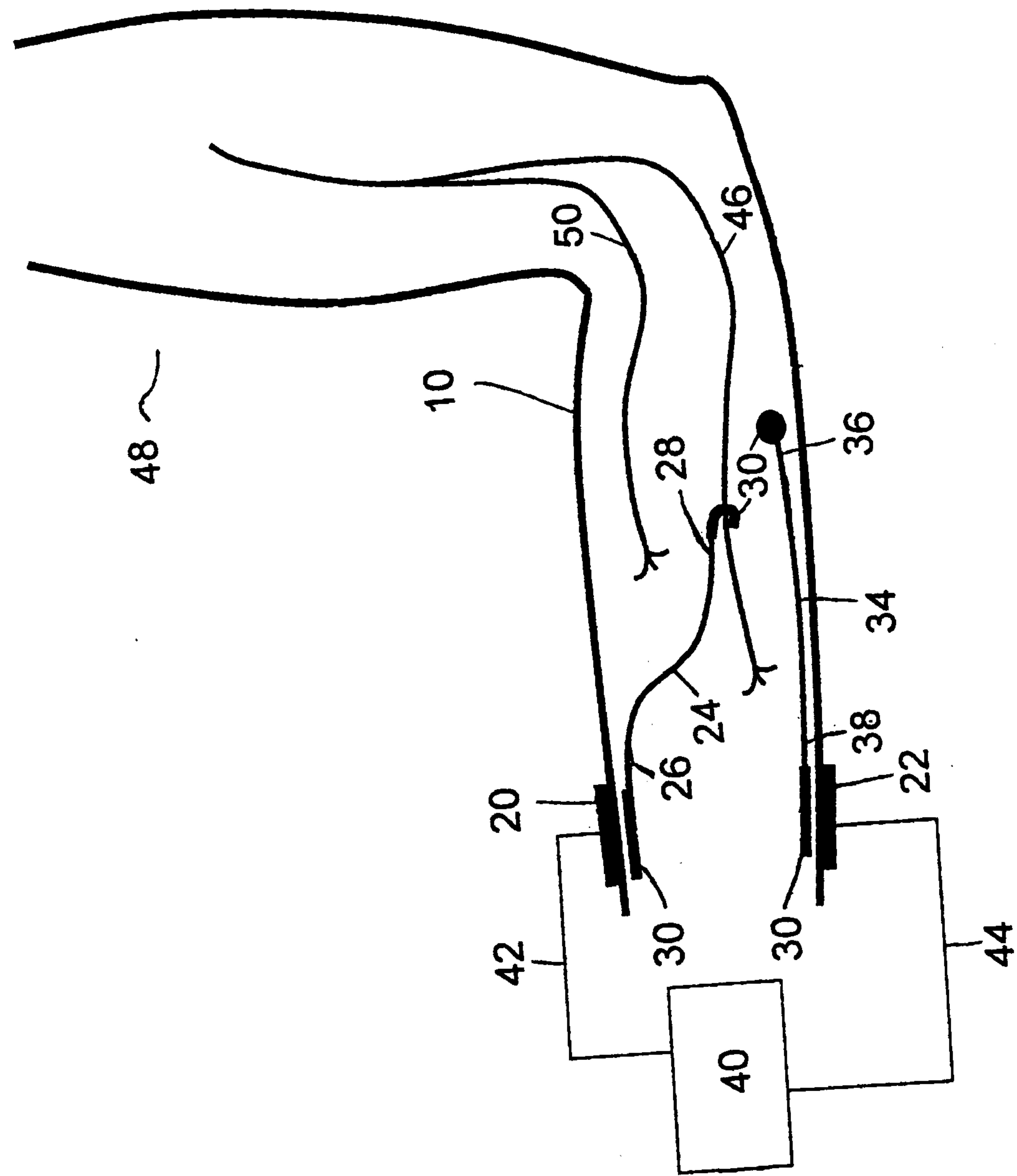


FIGURE 3

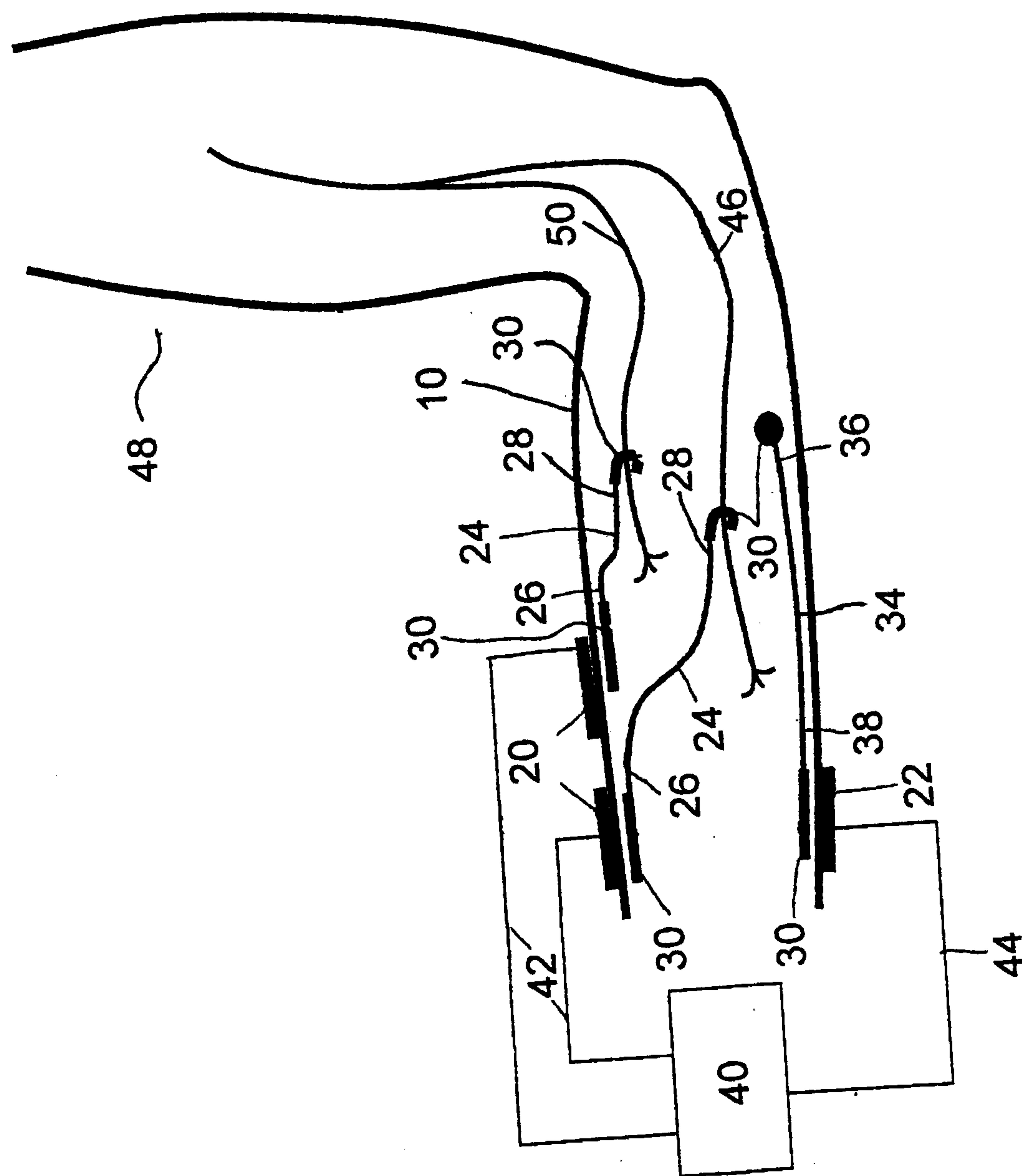
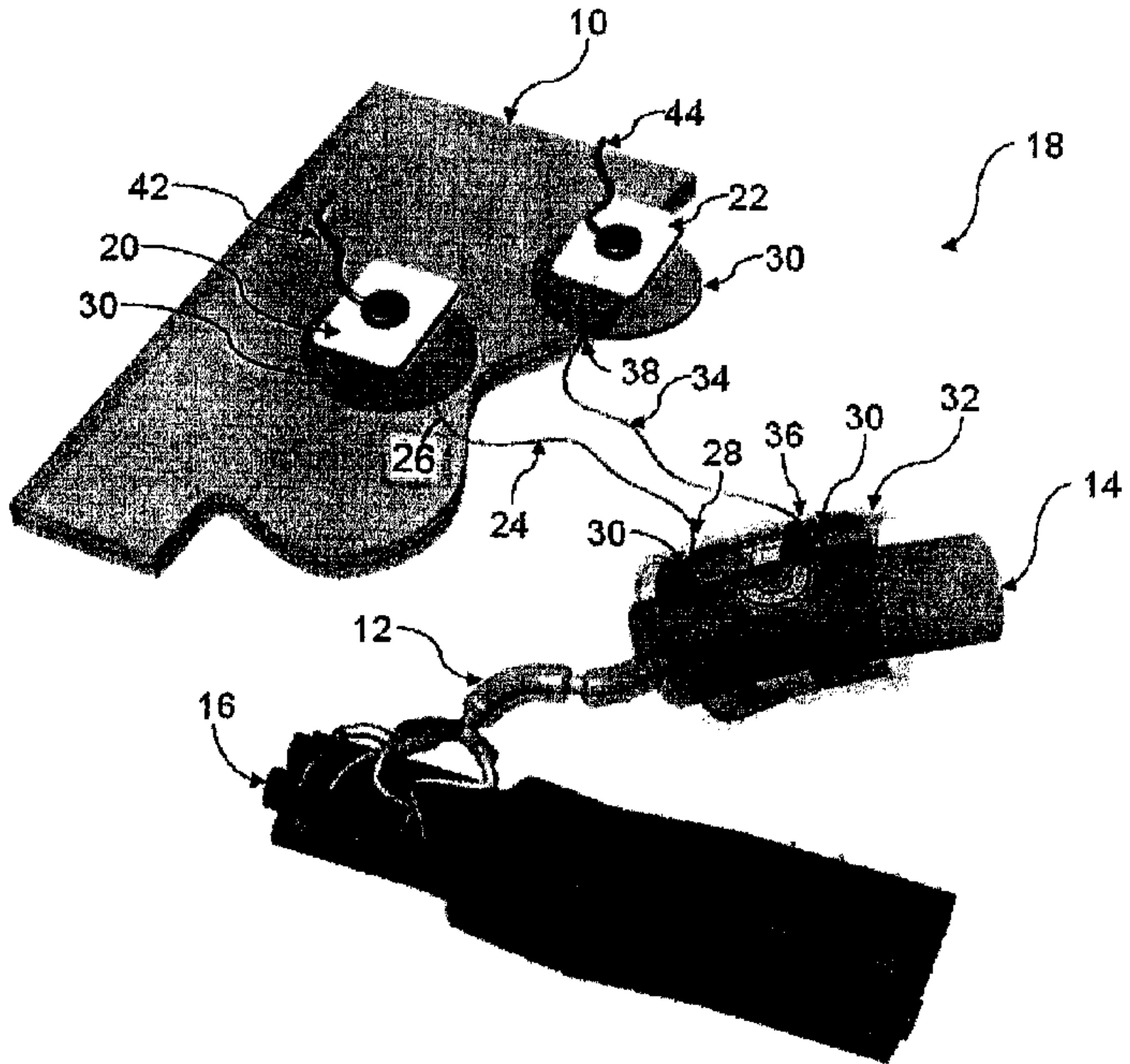



FIGURE 4

