PCT WORLD INTELLECTUAL, PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/07101
GOGF 9/46 Al o
(43) International Publication Date: 10 February 2000 (10.02.00)
(21) International Application Number: PCT/US99/16540 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 21 July 1999 (21.07.99) SE).
(30) Priority Data: Published
09/127,167 29 July 1998 (29.07.98) uUs With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: UNISYS CORPORATION [US/US]; Township amendments.
Line and Union Meeting Roads, P.O. Box 500, Blue Bell,
PA 19424-0001 (US).

(72) Inventor: BURDEAU, Stephen, A.; 1008 Davids Run,
Phoenixville, PA 19640 (US).

(74) Agents: STARR, Mark, T. et al.; Unisys Corporation, Town-
ship Line and Union Meeting Roads, P.O. Box 500, Blue
Bell, PA 19424-0001 (US).

(54) Title: METHODS AND APPARATUS FOR PROCESSING ADMINISTRATIVE REQUESTS OF A DISTRIBUTED NETWORK
APPLICATION EXECUTING IN A CLUSTERED COMPUTING ENVIRONMENT

[CLUSTER SERVICE]
18 4
. 3 ;
I RESOURCE MONITOR(S)
ADMIN REQUESTS RESOURCE N~
RESOURCS OFFLINE prs "
; ONUNE -
RESOURCE DLL ORACLE RESOURCE DLL
S
“ @ (TUXRES DLL) 5 Zso (FSODBS.DLL)
1 oo, 2 s e e e M rm e ————— v P N pee——————— " P A
| TUXEDOSERVER | { TUXEDOADMIN | | PIPE | 1 tuxepoTusTEN | | ORACLE DATABASE !
| GROUP RESOURCE |{ | SERVERS RESOURCE | | SERVERRESOURCE | | 1 | 1
{___Twee __pi___mee i ree | p) TROOTE) P
ey e S 3 | 2
PIPE PIPE
SERVER API SERVER API
42 A A \ "
N L
PIPE SERVER TUXEDO TLISTEN 30
TUXEDO
ADMINAPI ¢ ¥
3 ADMINA%I
=~ TUXEDO
ADMIN SERVERS SERVER GROUPS TUXCONFIG

(57) Abstract

Administrative requests of a distributed network application executing in a clustered computing environment comprising a plurality
of nodes, wherein the application requires centralized administration via a master node, are routed from the nodes at which the requests
originate to the node that is acting as the master for the distributed network application.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

FR
GA

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

ITceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T)
™
TR
TT
UA
UG
us
uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 00/07101 PCT/US99/16540

METHODS AND APPARATUS FOR PROCESSING
ADMINISTRATIVE REQUESTS OF A DISTRIBUTED NETWORK
APPLICATION EXECUTING IN A CLUSTERED COMPUTING
ENVIRONMENT

Inventor:

Stephen Burdeau

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure as it appears
in the United States Patent & Trademark Office patent file or records, but otherwise

reserves all copyright rights whatsoever.

BACKGROUND

Field of the Invention

The present invention is directed to distributed network applications in a

clustered computing environment, and more particularly, to methods and apparatus for

10

15

20

25

30

WO 00/07101 PCT/US99/16540

processing administrative requests of the distributed application in such an

environment.

Description of the Prior Art

Distributed network applications often have the concept of a master machine
that performs administration for the entire distributed application. In this case,
administration includes bringing a component online, taking a component offline, or
checking the status of an individual component. Software architectures that permit
multiple computers to operate together in a cluster to improve overall availability,
such as the architecture of Microsoft® Cluster Server (MSCS), do not fit the
centralized administration model of such distributed network applications. With
MSCS, for example, a custom resource DLL on each node of a cluster must
implement administrative operations for that node, such as bringing a component
online, taking a component offline, or checking the status of a component. Thus,
when an administrative operation (e.g., offline, online, etc.) is to be performed on a
given node, MSCS invokes the resource DLL on that node to perform the operation.
This is contrary to the centralized administration model of many distributed network
applications which requires that all such operations be initiated and controlled by a
single, master node in the cluster -- i.e., if a node is to be brought online or offline, for
example, that operation would be initiated and performed by the master node for the
distributed application. As a more specific example, this problem arises, for example,
when a distributed application written for BEA Systems, Inc.’s Tuxedo® transaction
manager and messaging middleware is executed in a clustered computing
environment under the control of Microsoft’s Cluster Server (MSCS) software.

A. Tuxedo

In a Tuxedo environment, one or more Logical Machines can be grouped
together to define a Tuxedo Domain. A Logical Machine represents a Tuxedo server
machine and often corresponds to a physical computer system (i.e., one node of a
network), but this is not always the case - in some cases, more than one Logical

Machine can be defined on a single node.

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

Each Logical Machine contains Tuxedo Admin Servers, including a BBL
process, a Bridge process, and possibly a DBBL process. Each Logical Machine also
has a Tuxedo TListen process. The BBL process monitors and controls user-written
Sérvers. The Bridge process on one Logical Machine connects to the TListen process
on another Logical Machine. One of the Logical Machines in the Domain is
designated as the Master; the Master may also have a Backup configured. The DBBL
is run on the Logical Machine which is acting as the Master. The DBBL coordinates
and controls the various BBLs, i.e., it performs administration for the Domain,
including bringing a component online, taking a component offline, or checking the
status of an individual component.

The user-written Servers on a Logical Machine are grouped into one or more
Tuxedo Server Groups. If the Tuxedo Server Group supports transactions, transaction
states are logged to a TLOG. Each Logical Machine has its own distinct TLOG.
Other state and configuration information is stored in a binary TUXCONFIG file.
Each Logical Machine has its own copy of the TUXCONFIG, but the DBBL keeps
the various TUXCONFIG files synchronized.

B. Microsoft Cluster Server (MSCS)

In the current release of Microsoft® Windows NT®, Enterprise Edition, a
cluster refers to two connected systems (usually called nodes) that act as a highly
available system. These two systems have one or more physical disk drives on a
shared SCSI bus; each disk on the shared SCSI bus may be accessed by either system,
but only by one system at a time. If one of the systems in the cluster fails, the other
system gains control of the shared disk(s) and continues to provide service, picking up
where the failed system left off. Future releases of Windows NT are expected to
support clusters with more than two nodes.

MSCS is controlled by the Cluster Service which runs on each node of the
cluster. The Cluster Service spawns one or more Resource Monitors. A Resource
Monitor watches over one or more resources. A resource is any entity which can be
monitored and controlled by MSCS. The Resource Monitor calls entry points in a

Resource DLL (as defined in the MSCS Resource API) to monitor and control a

10

15

20

25

30

WO 00/07101 PCT/US99/16540

particular resource. In particular, a Resource Monitor calls entry points in the
Resource DLL at appropriate times to check the state of the resource, bring the
resource online, or take the resource offline. Note, therefore, that the Resource DLL
iniplements the action needed to bring the resource online or take the resource offline
- administrative operations that in a Tuxedo environment must be performed by the
Tuxedo master. Moving a resource from one node to the other occurs by taking the
resource offline on the first node and bringing the resource online on the second node.

MSCS includes a Resource DLL (clusres.dll) that defines several resource
types. Below is a list of relevant resource types supported by clusres.dll:

Physical Disk - controls a physical disk drive located on the shared SCSI bus.

IP Address - defines an IP address which can be dynamically allocated to one

node or the other.

Network Name - defines a symbolic name for an IP address resource.

Generic Service - controls any Wihdows NT service. _

Generic Application - controls well-behaved Windows NT console application

programs.
In addition, third party developers can create custom resource types by developing and
registering a Resource DLL that conforms to the Resource API.

MSCS resources can be grouped tbgether into a Resource Group. A Resource
Group is the basic unit of failover; that is, every resource in a particular group runs on
the same node at a given point in time. The resources within a Resource Group can
have dependencies that control the relative order of online and offline operations.

Typically, a Resource Group will contain one or more Physical Disk
resources, an IP Address resource, a Network Name resource, and one or more
additional resources representing a server application, such as Generic Service
resources, Generic Application resources, and/or custom resource types. A Resource
Group that has its own IP Address resource and Network Name resource is known as
a Virtual Server.

A Virtual Server appears to an external client running a TCP/IP client/server

type application as a distinctive server computer. In reality, there may be several

10

15

20

25

30

WO 00/07101 PCT/US99/16540

Virtual Servers running on a single node of an MSCS cluster, each with different IP
addresses. Furthermore, the Virtual Server can move from one node of the MSCS
cluster to the other, and this is transparent to the client (except for a momentary
intérruption or slow down in service).

Figure 1 illustrates an exemplary cluster comprising two nodes 10, 12 each
running a respective virtual server 14, 16. A Cluster Service 18 running on each node
controls the cluster, including, for example, initiating administrative requests to the
Resource Monitors (not shown) of each virtual server 14, 16. Each node 10, 12 is
connected to a plurality of disks 20 via a shared bus 24, such as, for example, a SCSI
bus. Each node 10, 12 is also connected via a respective network interface to a local
area network (LAN) 22.

Referring now to Figure 2, if the second node 12 of the cluster fails, MSCS
starts the failed Virtual Server 16 on the first node 10 of the cluster. This is a failover.
At this point, both Virtual Servers 14, 16 are running on the first node. Client
programs continue to run normally (with the exception of possibly degraded
performance). V

When the second node 12 of the cluster resumes normal operation, MSCS
takes the failed-over Virtual Server 16 offline on the first node 10. Then MSCS
brings this Virtual Server 16 back online on the second node 12. This is a failback.
At this point, the configuration shown in Figure 1 has resumed, in which each node is
running one Virtual Server.

C. Deploving a Distributed Network Application in a Clustered

Environment

A distributed network application, such as an application designed to run in
the Tuxedo environment, can be set-up to run in a clustered computing environment,
such as MSCS. For example, referring to Figure 1, a Tuxedo Domain with two
Logical Machines could be configured with the two MSCS Virtual Servers 14, 16.
During normal operations, one Virtual Server (and therefore one Logical Machine)
runs on each of the nodes 10, 12 of the cluster. As the foregoing illustrates, however,

a problem arises in that administrative requests are handled differently in the Tuxedo

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

and MSCS environments. In the Tuxedo architecture, administrative requests,
including bringing a component online or offline, are performed by a designated
master node. On the contrary, in the MSCS environment, administrative requests are
pefformed by the resource DLL on the node to which the operation is directed, not by

a designated master node. The present invention provides a solution to this problem.

SUMMARY OF THE INVENTION

The present invention is directed to methods and apparatus for enabling a
distributed network application that requires centralized administration via a master
node (e.g., Tuxedo-based applications) to be deployed in a clustered environment that
does not support such centralized administration (e.g., MSCS), so that the application
can take advantage of the increased availability achieved through clustering. More
particularly, the methods and apparatus of the present invention route administrative
requests (e.g., online, offline, etc.) of a distributed network application executing in a
clustered computing environment, from the node where the requests originate to the
node that is acting as the master for the distributed network application in that cluster.
For example, in one specific embodiment, the invention routes Tuxedo—baéed
administrative requests from an MSCS resource DLL to the master machine of a
Tuxedo application executing in an MSCS-controlled cluster.

In a preferred embodiment, routing of administrative requests is achieved by a
plurality of server programs, hereinafter referred to as Pipe Servers, that are installed
on each node of the cluster. The Pipe Server at a given node creates instances of a
named pipe through which client programs, including Pipe Servers on other nodes,
can pass messages comprising administrative requests to the node. The Pipe Server
forwards received messages to an administrative API of the distributed network
application.

Additional features and advantages of the present invention will become

evident hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

30

WO 00/07101 PCT/US99/16540

The foregoing summary, as well as the following detailed description of the
preferred embodiment, is better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the invention, there is Shown in
thé drawings an embodiment that is presently preferred, it being understood, however,
that the invention is not limited to the specific methods and instrumentalities
disclosed. In the drawings:

Figure 1 is a block diagram illustrating the operation of a prior art computer
cluster comprising two nodes;

Figure 2 is a block diagram illustrating a failover mode of operation of the
cluster of Figure 1;

Figures 3A and 3B comprise a flow diagram illustrating a preferred
embodiment of the method of the present invention;

Figure 4 is a block diagram illustrating both a preferred embodiment of
apparatus for carrying out the method of the present invention and an exemplary
application of the present invention in an environment comprising a distributed
network application written for the Tuxedo environment and deployed in a clustered
computing environment controlled by MSCS; and

Figures 5A and 5B comprise a flow diagram illustrating further details of the

operation of the present invention in the exemplary environment of Figure 4.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

L Overview
The present invention is directed to methods and apparatus for enabling a

distributed network application that requires centralized administration via a master
node to be deployed in a clustered environment that does not support such centralized
administration, so that the application can take advantage of the increased availability
achieved through clustering. More particularly, the methods and apparatus of the
present invention route administrative requests (e.g., online, offline, etc.) of a
distributed network application executing in a clustered computing environment, from

the node where the requests originate to the node that is acting as the master for the

10

15

20

25

30

WO 00/07101 PCT/US99/16540

distributed network application in that cluster. The present invention may take the
form of program code (i.e., instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium,
wherein, when the program code is loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing the invention. The
present invention may also be embodied in the form of program code that is
transmitted over some transmission medium, such as over electrical wiring or cabling,
through fiber optics, or via any other form of transmission, wherein, when the
program code is received and loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program code combines with the
processor to provide a unique apparatus that operates analogously to specific logic
circuits.

According to the present invention, administrative requests of a distributed
network application executing in a clustered computing environment comprising a
plurality of nodes, wherein the application requires centralized administration via a
master node, are routed from the nodes at which the requests originate to the node that
is écting as the master for the distributed network application. Replies that indicate
the success or failure of a request are then sent from the master node back to the node
from which the request originated. Routing of administrative requests is achieved by
a plurality of server programs, hereinafter referred to as Pipe Servers, that are installed
on each node of the cluster. The Pipe Server at a given node creates instances of a
named pipe through which client programs, including Pipe Servers on other nodes,
can pass messages comprising administrative requests to the node. The Pipe Server
forwards received messages to an administrative API of the distributed nefwork
application.

Figures 3A and 3B comprise a flow diagram illustrating a preferred
embodiment of the method of the present invention. As shown, at step 60, the
clustered environment issues an administrative request (e.g., a request to bring a

component of a distributed network application online, or to take it offline) at an

10

15

20

25

30

WO 00/07101 PCT/US99/16540

originating node. Next, at step 64, the component of the distributed network
application opens a named pipe to a Pipe Server executing on the originating node,
and passes the request message to the Pipe Server via the named pipe at step 66.

At step 68, the Pipe Server on the originating node determines whether the
originating node is designated as a master node for the distributed network
application. If so, then at step 70, the request is processed locally.

If at step 68 it is determined that the originating node is not the designated
master node, then at step 72 the Pipe Server determines the identity of the master
node. Then, at step 74, the Pipe Server on the originating node opens a named pipe
to the Pipe Server on the designated master node. At step 76, the request message is
forwarded to the Pipe Server on the master node via the named pipe.

At step 78, the Pipe Server on the master node receives the message via the
named pipe connection thereto. At step 80, the Pipe Server on the master node calls
the administrative API of the distributed network application to initiate processing of
the request contained in the message. At step 82 (Fig. 3B), the Pipe Server on the
master node obtains the result (e.g., success or failure) of the request processing from
the distributed network application and, at step 84, passes the reply back to the Pipe
Server of the originating node via the same named pipe. At step 88, the Pipe Server
on the originating node forwards the reply to the cluster environment on the

originating node to complete processing.

1. Exemplary Application

Figure 4 is a block diagram illustrating both a preferred embodiment of
apparatus for carrying out the method of the present invention and an exemplary
application of the present invention in an environment comprising a distributed
network application written for the Tuxedo environment (which requires centralized
administration via a master node) deployed in a clustered computing environment
controlled by MSCS (which does not support centralized administration) and
comprising a plurality of nodes. As described hereinafter in greater detail,

administrative requests of the Tuxedo application are routed from the resource DLLs

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

10

of the nodes at which the requests originate to the node that is acting as the master for
the Tuxedo application. It is understood, however, that the present invention is not
limited to use with Tuxedo-based applications and/or MSCS-controlled computer
clﬁsters, but rather may be employed in any system in which a distributed network
application requires centralized administration via a master node, but wherein the
clustered environment in which the application is deployed does not support such
centralized administration.

In accordance with the embodiment described hereinafter, each Logical
Machine of a Tuxedo-based distributed network application is mapped to a respective
MSCS Virtual Server. In this example, each Logical Machine controls an Oracle®
database. By way of additional background, a free add-on product included with the
database software available from Oracle Corporation -- Oracle® FailSafe -- provides
a Resource DLL that defines a custom resource type called Oracle Database. Oracle
Corporation also provides an administrative tool called Oracle FailSafe Manager to
create and manage Oracle resources for an MSCS environment.

Figure 4 illustrates the functional components of each Virtual Server/Logical
Machine of the exemplary configuration. As shown, for each Logical Machine, an
MSCS Resource Group is created, containing the following resources:

Physical Disk(s) 30 - one or more physical disks 30 on a shared SCSI bus (not

shown) - these disk(s) contain the TLOG, TUXCONFIG, and Oracle

database(s) used by the Tuxedo Logical Machine;

Oracle Resource(s) 32 - the resources created by the Oracle FailSafe Manager

for the Oracle database(s) used by the Tuxedo Logical Machine;

Tuxedo TListen 34;

Tuxedo Admin Servers 36; and

Tuxedo Server Group(s) 38 - there is one Tuxedo Server Group resource

instance for each Server Group configured for this Logical Machine in the

GROUPS section of the Tuxedo configuration.

The Resource Group for each logical machine has an IP Address on the local area

network (not shown), and a Network Name that matches the machine name used in

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

11

the MACHINES section of the Tuxedo configuration and the NLSADDR and
NADDR values specified for the in the NETWORK section. According with the
present invention, each Resource Group further comprises a Resource DLL 40 and a
Pipe Server 42, which together provide apparatus for carrying out the method of the
present invention. As described hereinafter, the Resource DLL 40 represents a
component of the Tuxedo distributed network application that provides an interface
between the cluster environment and other components of the Tuxedo application on
that node.

With this configuration, a Tuxedo Domain with, for example, two Logical
Machines, is configured with two MSCS Virtual Servers. During normal operations,
one Virtual Server (and therefore one Logical Machine) runs on each of the nodes of
the cluster. If the first node of the cluster fails, MSCS starts the failed Virtual Server
(and corresponding Logical Machine) on the second node of the cluster - a failover
situation. Both Virtual Servers (and both Logical Machines) then run on the second
node. Tuxedo client programs continue to run normally (with the exception of
possibly degraded. performance). When the first node of the cluster resumes normal
operation, MSCS takes the failed-over Virtual Server (and corresponding Logical
Machine) offline on the second node. Then MSCS brings this Virtual Server (and
corresponding Logical Machine) online on the first node. This is the failback
situation. After a failback, each node again runs one Virtual Server (and therefore one
Logical Machine). As described hereinafter, the method of the present invention
enables the administrative requests associated with this and other scenarios to be
routed from the originating node to the node that is acting as the master for the

Tuxedo Domain.

A. The Resource DLL 40

The Resource DLL 40 supports the following resource types: Tuxedo Server
Group; Tuxedo Admin Servers; Pipe Server, and Tuxedo TListen. Each resource type
is supported by a respective set of entry point functions 44, 46, 48, and 50, in the

Resource DLL 40. The Tuxedo Server Group resource type 44 is used to monitor and

10

15

20

25

30

WO 00/07101 PCT/US99/16540

12

control the operation of Tuxedo Server Groups 38. The Tuxedo Admin Servers
resource type is used to monitor and control the operation of Tuxedo Admin Servers
36. The Pipe Server resource type is used to monitor and control the operation of a
Pipe Server process 42. The Tuxedo TListen resource type is used to monitor and
control the operation of a Tuxedo TListen process 34.

The Resource DLL conforms to the specifications of the Microsoft Resource
API, which specifies the entry point functions that must be implemented for each
resource type (e.g., resource types 44, 46, 48, and 50) supported by a Resource DLL.
A Resource Monitor 26 calls these entry point functions to perform a given function
on a particular resource. The Resource API also specifies callback functions that are
implemented by the Resource Monitor 26 and are called from the Resource DLL. Of
the entry point functions that must be implemented by a Resource DLL, two are
examples of the types of administrative requests that a distributed network
application, such as a Tuxedo application, may require to be performed centrally by a
master node: (1) Online; and (2) Offline. There is one Online function and one
Offline function for each resource type. The purpose of Online is to bring a particular
instance of a resource online, and the purpose of Offline is to take the particular
instance of the resource offline. Of particular relevance to the present invention are
the Online and Offline functions for the Tuxedo Admin Servers Resource Type 46.
These functions have corresponding functions in the Tuxedo Admin API that must be
performed by the designated master of a Tuxedo application. Thus, while the
Resource API of the MSCS environment requires that a Resource DLL provide entry
point functions for handling Online and Offline requests at the node at which the
request originates, the Tuxedo Admin API requires that such requests be performed
centrally by the designated master node. This represents one particular example of the
problem for which the present invention provides a solution.

According to the present invention, the Resource DLL 40 does not interface
directly with the Tuxedo Admin API to control Tuxedo resources. Instead, the
Resource DLL uses a Pipe Server API (described hereinafter) to send requests to the

Pipe Server 42. The Pipe Server 42, in turn, uses the Tuxedo Admin API to monitor

10

15

20

25

30

WO 00/07101 PCT/US99/16540

13

and control Tuxedo resources. Thus, in a clustered computing environment that
comprises a plurality of nodes but that does not support centralized administration, the
Pipe Server 42 provides a means for routing administrative requests of a distributed
nefwork application from a node at which a request originates to a node that is
designated as the master for that application.

The reason why the Resource DLL 40 does not interface directly with the
Tuxedo Admin API on the same node, but instead interfaces with the Pipe Server 42
on that node, is because the Resource DLL 40 cannot act as a native client, whereas
the Pipe Server 42 can. A client program that performs Tuxedo Admin API calls must
be a native Tuxedo client. A native client is a client that runs on one of the machines
identified in the MACHINES section of the Tuxedo configuration. The Resource
DLL 40 runs under the process of a Resource Monitor (e.g., Resource Monitor 26),
and its computer name (as returned by the WIN32 API function GetComputerName)
matches the name of the cluster node on which it is running. The Tuxedo .
configuration, however, uses the Network Name of the corresponding Virtual Server
as the machine name. Therefore, the Resource DLL cannot act as a native client. On
the contrary, the Pipe Server 42 runs with an MSCS feature that causes the Network
Name (instead of the cluster node name) to be returned when GetComputerName is

called. Therefore, the Pipe Server 42 can act as a native client.

B. The Pipe Server 42

According to the preferred embodiment of the present invention, a named pipe
facility is used to pass messages between aclient process (e.g., the Resource DLL 40)
and the Pipe Server 42, and/or between the Pipe Servers 42 on two different nodes.
Thus, a named pipe can be used to provide two-way communication between
processes on the same computer or between processes on different computers across a
network. In the present embodiment, the named pipe facility of the Microsoft
Windows NT operating system is employed.

The Pipe Server 42 provides an Application Programming Interface (API) for

passing messages comprising administrative requests between processes via a named

10

15

20

25

30

WO 00/07101 v PCT/US99/16540
14

pipe. The Pipe Server API specifies the format of messages to be exchanged and
methods for performing the exchange.

1. Pipe Server API - Message Types

A message comprises a 32-bit request code, followed by the contents of the
particular request message. The request code identifies the type of request. For
handling Online and Offline requests, the Pipe Server API defines the following

request codes:

#define PIPE_REQ MIB 1
#define PIPE_REQ ADM ONLINE 2
#define PIPE_REQ ADM OFFLINE 3

PIPE REQ MIB is a message type that represents a generic form of Tuxedo
Admin request that accesses Management Information Bases (MIBs). MIBs are
accessed in order to perform Tuxedo programmed administration. If the request code
is PIPE_REQ_MIB, the request code word is immediately followed by a Tuxedo
FML32 buffer. FML32 is a type of fielded buffer. Fielded buffers contain attribute-
value pairs called fields. The attribute is the field’s identifier, and the associated value
represents the field’s data content. All of the data associated with a fielded buffer is
self-contained (i.e., there are no pointers to data outside the fielded buffer). This
means that fielded buffers can be transmitted between distinct processes, even
between processes running on different computers. Tuxedo provides the function
libraries needed to allocate, build, add data to, and extract data from FML32 buffers.
The Tuxedo Admin API defines the specific format of the FML32 request buffers
needed to perform MIB access requests. In the present embodiment, the
PIPE_REQ MIB request type supports any valid MIB Access request with a
TA_OPERATION of “GET” or “SET”. The “GETNEXT” operation is not supported
in the present embodiment, although it could be in other embodiments.

For all request codes other than PIPE_REQ MIB, such as
PIPE REQ _ADM_ONLINE and PIPE REQ _ADM_OFFLINE, the request message

comprises a data structure that includes the request code and any other information

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540
15

relevant to the particular type of request identified by the request code. For example,

the following C language type definition may be employed:

typedef struct pipe request t {
DWORD requestCode;
DWORD packetRevision;
DWORD cmdInputSize;
BOOL returnCmdOutput; ,
char cmd [MAX TUX CMD LEN+1];

char opts[MAX TUX OPTS LEN+1];

char groupNamg[MA?_GROﬁPNAME_LEN+1];
} PIPEREQ;
typedef PIPEREQ *LPPIPEREQ;

typedef const PIPEREQ *LPCPIPEREQ;

The requestCode field contains the particular request code identifying the
type of request message being sent. In the present embodiment, the
packetRevision field is reserved for future use and is simply set to zero. The
remaining fields are related to other functionality of the Pipe Server 42 that is not part
of the present invention.

A request code of PIPE_REQ ADM ONLINE represents a request to bring
the Tuxedo Admin Servers (corresponding to the Virtual Server on which the Pipe
Server is running) online for MSCS purposes. In this case, all other fields in the
request structure are set to zero. A request code of PIPE_REQ ADM OFFLINE
represents a request to take the Tuxedo Admin Servers (cofresponding to the Virtual
Server on which the Pipe Server is running) offline for MSCS purposes. Again, in
this case, all other fields in the request structure are set to zero.

The Pipe Server API also specifies the format of reply messages that are used
to indicate the results of a particular request. If the request code was
PIPE_REQ MIB, the reply message is a Tuxedo FML32 buffer. The Tuxedo Admin
API defines the specific format of the FML32 reply buffers returned when performing
MIB access requests. For all request codes other than PIPE_REQ MIB, the reply

message format may be defined by the following C type definitions:

typedef struct pipe reply t {

DWORD packetRevision;

DWORD cmdOutputSize;

int status; // See statuses below:
#define PIPE REP GOOD_STATUS . 0 // Success

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540

16
#define PIPE REP ERROR STATUS -1 // General error
#define PIPE REP MASTER UNAVAILABLE -2 // Tuxedo Master was
-7 - // unavailable, so
// unable to accurately
// determine
. // looks alive status.

#define PIPE REP_NO RESPONSE -3 // No reply was received
due to

// a broken pipe,

timeout, etc.

} PIPEREP;
typedef PIPEREP *LPPIPEREP;

typedef const PIPEREP *LPCPIPEREP;

The packetRevision field is reserved for possible future use, and in the
present embodiment, is always set to zero. The cmdOutputSize field relates to a
feature of the Pipe Server 42 that is not part of the present invention. The status
field holds a value indicative of the outcome of the request. The status field is set
to PIPE_REP_NO RESPONSE if no reply is returned from the pipe server due to a
broken pipe error or a timeout. For PIPE_REQ ADM ONLINE requests; the
status field is set to PIPE_REP_GOOD_STATUS if the Tuxedo Admin Servers
were brought online successfully, or PIPE_REP_ERROR STATUS for a failure.

For PIPE_REQ ADM OFFLINE requests, the status field is set to
PIPE_REP_GOOD_STATUS if the Tuxedo Admin Servers were taken offline
successfully, or PIPE_REP_ERROR_STATUS for a failure.
PIPE_REP _MASTER_UNAVAILABLE is status code that is used in connection with
features that are not part of the present invention.

2. Pipe Server API - Access Functions

As mentioned above, in the present embodiment, a Windows NT named pipe
is used to pass messages between a client process (e.g., the Resource DLL 40) and the
Pipe Server 42, or between two Pipe Servers 42 on different nodes. To request service
from a Pipe Server 42 on a given node, a client process, such as the Resource DLL 40,

or a Pipe Server 42 on another node, performs the steps shown in Listing 1:

(a) Call WIN32 CreateFile function to open the named pipe for both
read and write;
(b) Call WIN32 SetNamedPipeHandleState function to set the named

pipe to message mode (as opposed to byte stream mode) ;

10

15

20

25

30

WO 00/07101 PCT/US99/16540

17

(c) Call WIN32 WriteFile function to send the request buffer to the
server;

(d) Call WIN32 ReadFile function to read the reply buffer from the
server; and

(e) Call the WIN32 CloseHandle function to close the named pipe.

Listing 1.

Windows NT Overlapped I/0 may be used for steps (c) and (d) of Listing 1 to allow
for interruption.

The name of the named pipe used by a client on a given node to pass messages
to the Pipe Server 42 on that same node or a different node (client-side name) is of the
form:

\\serverComputerName\pipe\TUXPIPESER VER .serverComputerName,
where serverComputerName is the name of the computer (as returned by WIN32
GetComputerName function) on which the Pipe Server is running. In an MSCS
environment, this is the Network Name value of the MSCS Virtual Server on which
the Pipe Server 42 is running.

The name of a named pipe used by the Pipe Server 42 when creating the
named pipe instance (server-side name) is of the form:

\\pipe\TUXPIPESER VER .serverComputerName.

Note that the use of the period (.) instead of the computer name at the beginning of the
name is required when a server creates a named pipe. Therefore, the
serverComputerName portion of the named pipe name is specified in the last part of
the named pipe name to handle the case where more than one Virtual Server is
running on the same physical computer.

The Pipe Server 42 creates the named pipe using default security. The Pipe
Server 42 runs under the Windows NT domain account used to start the MSCS
service. This means that only clients using this same account (or an account with
administrator privilege for the server system) have the access rights needed to open
the named pipe. All other clients will get an ERROR_ACCESS DENIED error code
(5) returned when opening the client side of the pipe with the CreateFile function.

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540

18

In order to simplify the client side processing, access functions are provided
that encapsulate the functionality described in steps (a) through (e) above. Each of the
functions has an IntrPtr parameter. Since sending a request to the Pipe Server 42 and
awéiting aresponse can be a time consuming activity, the IntrPtr parameter is used to
control interrupting the operation. If IntrPtr is NULL, the requested operation is not

interruptible. If IntrPtr is not NULL, it points to a structure defined as follows:

// The structure type INTR is used to control interrupting long
running
// operations.
typedef struct interrupt t {
LPVOID workerPtr;
// workerPtr is the pointer for this worker thread, which is
required
// by the ClusWorkerCheckTerminate function, or NULL if
// ClusWorkerCheckTerminate should not be called.
time_t stopTime; :
// stopTime is the time (as returned by the "time" function)

when

// this operation should be interrupted, or 0 if there is no
time

// limit.
} INTR;

typedef INTR *LPINTR;

If the workerPtr field is not NULL, this is the pointer to the Worker
structure which is used when creating a worker thread with the Cluster Utility
function ClusWorkerCreate. The Cluster Utility functions are provided as part of
MSCS. The use of worker threads is described more fully hereinafter. When
workerPtr is not NULL, the access functions periodically call the Cluster Utility
function ClusWorkerCheckTerminate to determine if the worker thread has been
requested to terminate. If ClusWorkerCheckTerminate returns TRUE, the access
functions abort the operation in progress and return an error.

If the stopTime field is not zero, then it represents the deadline time for this
operation, in the same form returned by the C run-time time function (i.e., number of
seconds since 1970). When stopTime is non-zero, the access functions periodically
check to see if the deadline time has arrived. If so, the access functions abort the
operation and return an error.

Each of the functions has a numRetries parameter. If 0 is passed, the

requested operation is not retried automatically. If numRetries is non-zero and an

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

19

error occurs such that no response is received from the pipe server (e.g., unable to
open the pipe because the pipe server is not running), then the access funct_ions sleep
one second and automatically retry the same request up to the number of times
indicated by numRetries. If the request still fails after performing numRetries retries,
the access functions return an error.

Each of these functions also has a serverComputerName parameter. This
parameter is the name of the computer (as returned by WIN32 GetComputerName
function) on which the Pipe Server is running. In an MSCS environment, this is the
Network Name value of the MSCS Virtual Server on which the Pipe Server is
running. Unless otherwise specified, this parameter must be specified and cannot be
NULL.

The following access functions are used for the PIPE REQ _MIB,

PIPE REQ_ADM_ONLINE, and PIPE REQ ADM _OFFLINE message ;cypes
described above. Unless otherwise specified, each of the functions return the integer 0

on success or -1 if an error occurred.

getFromMib()
Purpose:
To retrieve one or more attribute values for a given object class from a Tuxedo
MIB.
Function Call:

int getFromMib (
LPINTR IntrPtr,
DWORD numRetries,
LPCSTR serverComputerName,
LPCSTR className,
FLDID32 keyAttr,
LPCVOID keyValue,

)
Parameters:

serverComputerName - This may be NULL, in which case the request is not

submitted to the Pipe Server; instead the request is run in the current process.

10

15

20

25

30

WO 00/07101 : PCT/US99/16540

20

className - A string used to identify the MIB class name.

keyAttr - A FLDID32 value representing the attribute to use as the “GET key”.
Set this to BADFLDID if there is no “GET key” (as is the case when the class is
T DOMAIN). |

keyValue - A void pointer to the “GET key” value; this value is ignored if
keyAttr is BADFLDID.

getAttrl - A FLDID32 value representing an attribute to retrieve.

getValuel - A void pointer to a buffer large enough to hold the attribute value
retrieved. |
There are a variable number of additional getAttrN and getValueN parameters. The

last getAttrN is denoted by a value of BADFLDID.

setiInMib()
Purpose:

To set one or more attribute values for a given object class in a Tuxedo MIB.

Function Call:

int setInMib(
LPINTR IntrPtr,
DWORD numRetries,
LPCSTR serverComputerName,
long flags,
LPCSTR className,
FLDID32 keyAttr,
LPCVOID keyValue,

i

Parameters:
serverComputerName - This may be NULL, in which case the request is not
submitted to the Pipe Server; instead the request is run in the current process.
className - A string used to identify the MIB class name.

flags - The TA_FLAGS values to use.

10

15

20

25

30

WO 00/07101 PCT/US99/16540

21

keyAttr - A FLDID32 value representing the attribute to use as the “SET key”.

Set this to BADFLDID if there is no “SET key” (as is the case when the class is
T_DOMAIN).

keyValue - A void pointer to the “SET key” value; this value is ignored if
keyAttr is BADFLDID.

setAttrl => A FLDID32 value representing an attribute to set.

setValuel => A void pointer to the attribute value to set.
There are a variable number of additional setAttrN and setValueN parameters. The

last setAttrN is denoted by a value of BADFLDID.

processSimpleRequestViaPipe()
Purpose:

To build a PIPEREQ structure and send it to the server computer identified for

processing. This function is used in the present embodiment for

PIPE REQ ADM ONLINE and PIPE_ REQ_ADM_OFFLINE requests.

Function Call:

int processSimpleRequestViaPipe (
LPINTR IntrPtr,
DWORD numRetries,
LPCSTR serverComputerName,
DWORD requestCode,
LPCSTR groupName,
BOOL logPipeNotFound,
BOOL logBrokenPipe
) ;

Parameters:

requestCode - the request code for the PIPEREQ structure. ‘

groupName - a groupName value for request types that are not part of the
present invention. This field is NULL for the PIPE REQ _ADM_ONLINE and
PIPE REQ_ADM_OFFLINE request types.

logPipeNotFound - a flag which is TRUE if pipe not found errors
(ERROR_FILE NOT_FOUND) should be logged.

10

15

20

25

WO 00/07101 , PCT/US99/16540
22 '

logBrokenPipe - a flag which is TRUE if broken pipe errors
(ERROR_BROKEN PIPE) should be logged.

Output:
This function returns one of the following values:
PIPE_REP_GOOD_STATUS - Success.
PIPE REP_ERROR_STATUS - General error.

PIPE REP. MASTER_UNAVAILABLE - Tuxedo Master was
unavailable, so unable to accurately determine status. This status code is used
with features that are not part of the present invention.

PIPE_REP NO RESPONSE - No reply was received

due to a broken pipe, timeout, etc.

3. Pipe Server Architecture
The Pipe Server is implemented as a WIN32 console application. At startup,

the following are passed as command line parameters:

TUXCONFIG Path - the full pathname of the TUXCONFIG file which
corresponds to the Tuxedo Logical Machine to be serviced. This parameter is
required.

Trace Level - the level of trace to activate for the server (0 for off, or 1 through
4 for increasing levels of trace detail). This parameter is optional; if omitted, tracing
is turned off.

Number of Pipe Instances - the number of pipe instances that will be created.
This parameter is optional; if omitted, the default value is 10. The maximum value
for this parameter is 63. Creation of named pipes is discussed below in greater detail.

Worker Thread Inactivity Timeout - the amount of time (in milliseconds) that
must elapse without any service requests to a particular worker thread before that
worker thread terminates. This parameter is optional; if omitted, the default value is

60000 (i.e., one minute). The use of work threads is described below in greater detail.

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540

23

A Pipe Server 42 can create multiple instances of a named pipe. Instances are
distinct copies of the named pipe with the same name. Each instance can be used
concurrently to maintain connections with different clients.

The main thread of the Pipe Server 42 creates a fixed number of pipe instances
as specified by the Number of Pipe Instances parameter. The main thread multiplexes
connection operations on the pipe instances by using overlapped 1/0 operations. With
overlapped I/O, the connection operation is initiated with a call to the WIN32
ConnectNamedPipe function. If the operation does not complete immediately, the
ConnectNamedPipe function returns a status of ERROR 10 PENDING; when the
connection completes, an event in an overlapped structure is signaled.

Each pipe instance is represented by the following C language structure:

typedef struct {

OVERLAPPED connectOverlap;

HANDLE hPipelnst;

CLUS_WORKER worker;

HANDLE workerActivateEvent;

BOOL volatile workerActive;

CRITICAL SECTION workerCriticalSection;

DWORD dwState;
#define CONNECTION PENDING_STATE 0
#define PROCESSING_STATE 1
#define RECONNECTING_ STATE 2

} PIPEINST, *LPPIPEINST;

OVERLAPPED, HANDLE, BOOL, CRITICAL SECTION, and DWORD are
data types defined by Win32. CLUS_WORKER is a data type defined by MSCS. The
fields of the PIPEINST structure are defined as follows:

connectOverlap - the overlapped structure required to perform
overlapped connections. This structure contains an event handle that is used to
indicate when an overlapped connection completes or a worker thread completes a
service request.

hPipelInst - the handle for this pipe instance.

worker - a worker structure used by the set of MSCS Cluster Utility

functions to control the worker thread.

10

15

20

25

30

WO 00/07101 PCT/US99/16540

24

workerActivateEvent - the event used to notify the worker thread when
there is a service request to process.

workerActive - a flag that indicates if the worker thread is currently
running.

workerCriticalSection - the Critical Section used to coordinate
starting and terminating a worker thread. Critical Section is an object defined by
Microsoft Windows NT.

dwState - the current state of the pipe instance.

CONNECTION PENDING_ STATE represents that a ConnectNamedPipe is in
progress. PROCESSING STATE represents that a connection has been established
with a client and the Pipe Server 42 is ready to process a request in a worker thread.
RECONNECTING STATE means that the request has been processed by the worker
thread and the Pipe Server 42 is ready to disconnect from the client and start a new
connection with a new client.

The Pipe Server 42 uses multi-threading to process each separate request that
is received via a named pipe that it creates. Each such thread is referred to herein as a
worker thread. In greater detail, after a client connects to a named pipe instance in the
main thread, the request is processed in a separate worker thread. This allows the
main thread to immediately resume servicing other pipe instances. Service requests
can take several seconds to complete. Therefore, performing service requests in the
main thread is not practical.

Each pipe instance has a corresponding worker thread. However, to optimize
system resources, a worker thread is not started until the first time that a request is
processed for a particular pipe instance. This means that if there are ten pipe
instances, and the concurrency level of service requests from clients never exceeds
six, the worker threads for the last four pipe instances are never started.

Once a worker thread is started, it loops waiting for additional service
requests. If no additional service requests occur for the particular pipe instance within
the timeout period defined by the parameter Worker Thread Inactivity Timeout, the

worker thread terminates. The worker thread is automatically restarted when needed.

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540

25

4, Main Thread and Worker Thread Processing

The main thread of the Pipe Server 42 performs the processing shown in

Listing 2:

1) Initialize serverActive flag to TRUE. (This flag is set to False

2)
3)

4)

5)

6)

7)

when a request to stop the Pipe Server 42 is made)

Process Pipe Server 42 command line parameters.

Allocate an array of PIPEINST structures (called Pipe) to

represent the pipe instances.

Allocate an array of handles (called hEvents). The number of

entries in the array is one greater than the number of pipe

instances.

Create an event used to control termination of the Pipe Server 42.

This event handle is stored in the last position of the hEvents

array. This event is signalled when a request to stop the Pipe

Server 42 is made.

For each pipe instance:

a)

b)
c)
d)

e)

£)

g)

Create an event for the connectOverlap structure (and store a
copy of handle in hEvents).

Create an event for worker activation.

Initialize critical section used for worker activation.
Create the pipe instance.

Call WIN32 function ConnectNamedPipe to start listening for
connections from clients.

If ConnectNamedPipe returned ERROR_ IO PENDING:

i) Change state to CONNECTION_ PENDING STATE.

Else if ConnectNamedPipe returned ERROR_PIPE CONNECTED:

i) Change state to PROCESSING STATE.

Loop while serverActive flag is TRUE:

a)

b)

c)

Call WIN32 function WaitForMultipleObjects waiting on.the
handles in the hEvents array. This waits for some work to do.
If the event signaled is the last event in hEvents, then the
Pipe Server 42 terminates. Otherwise, the particular event
signaled corresponds to a particular pipe instance.

If CONNECTION PENDING STATE:

10

15

20

25

30

35

WO 00/07101 PCT/US99/16540
26

i) Call WIN32 function GetOverlappedResult to get the results
of a completed overlapped ConnectNamedPipe operation.

ii)Change to PROCESSING_ STATE.

.d) If PROCESSING STATE:

i) Call WIN32 function ResetEvent for the event in the
connectOverlap structure. The worker thread will signal
this event when it has completed processing of the service
request.

ii)Call ActivateWorkerThread (described below) for this pipe
instance.

iii) Change to RECONNECTING STATE.

e) Else If RECONNECTING_STATE:

i) Call WIN32 function DisconnectNamedPipe.

ii)Call WIN32 function ConnectNamedPipe to start listening for
connections from clients.

iii) If ConnectNamedPipe returned ERROR_IO PENDING:

(1) Change state to CONNECTION_ PENDING_ STATE.

iv)Else if ConnectNamedPipe returned ERROR_PIPE CONNECTED:

(1) Change state to PROCESSING_STATE.

Listing 2.

The ActivateWorkerThread function starts a worker thread if it is not already
running, or activates the existing worker thread. The input parameter is a pointer to

the PIPEINST structure. The function performs the steps shown in Listing 3.

1) Call WIN32 function EnterCriticalSection for
workerCriticalSection.
2) If workerActive flag is TRUE:
a) Signal the workerActivateEvent.
b) Call WIN32 function LeaveCriticalSection for
workerCriticalSection.
3) Else:
a) Call LeaveCriticalSection for workerCriticalSection.
b) Call the Cluster Utility Function ClusWorkerTerminate to insure

that any previous worker thread is completely terminated.

10

WO 00/07101 PCT/US99/16540
27

¢) Call the Cluster Utility Function ClusWorkerCreate to create a
worker thread running function WorkerThreadFunction (described
below) .

.d) Set workerActive flag to TRUE.

€) Signal the workerActivateEvent.

Listing 3.

A TerminateWorkerThread function is called during server shutdown to force the
termination of a worker thread. The input parameter is a pointer to the PIPEINST
structure. The function performs the steps shown in listing 4, assuming that the

serverActive flag has already been set to FALSE.

10

15

20

25

30

35

WO 00/07101 ’ v PCT/US99/16540

28

1) Signal the workerActivateEvent to make sure that the worker thread

is not waiting.

2) call the Cluster Utility Function ClusWorkerTerminate.

Listing 4.

The WorkerThreadFunction is invoked in a new worker thread when the Cluster

Utility Function ClusWorkerCreate is called. The WorkerThreadFunction function

performs the steps shown in Listing 5.

Loop while serverActive flag is TRUE:

1) Call WIN32 function WaitForSingleObject waiting on

2)

3)

4)

5)

workerActivateEvent. The length of the timeout is the value given

by
If
a)

b)

c)

d)
If

a)

the server parameter Worker Thread Inactivity Timeout.

WaitForSingleObject timed out:

Call EnterCriticalSection for workerCriticalSection.

Call WaitForSingleObject again waiting on workerActivateEvent.

The length of the timeout is 0 to cause an immediate return.

If WaitForSingleObject timed out again:

i) Set workerActive flag to FALSE.

ii)Call LeaveCriticalSection for workerCriticalSection.

iii) Free FML32 buffers allocated for request and reply.

iv)Return from WorkerThreadFunction, which ends the worker
thread.

Call LeaveCriticalSection for workerCriticalSection.

serverActive flag is FALSE:

Return from WorkerThreadFunction, which ends the worker thread.

Read the request from the named pipe instance into a temporary

buffer.

If the request code is PIPE REQ MIB:

a) If not already allocated, allocate FML32 buffers for request
and reply.

b) Copy the temporary buffer (starting at the second word) into
the request FML32 buffer.

c) Process the MIB request (described below in greater detail).

10

15

20

25

30

WO 00/07101 PCT/US99/16540

29

d) Write the reply FML32 buffer to the named pipe instance.
e) Clear the FML32 request and reply buffers for reuse.
6)vElse
-a) Cast the temporary buffer as a PIPEREQ structure.
b) Process the request according to the requestCode field (more
detailed description below).
¢) Write the PIPEREP structure to the named pipe instance.
7) Read from the named pipe instance solely to wait for the client to
complete processing and close the client end of the pipe. When
the client closes the pipe, this read will receive an

ERROR_BROKEN PIPE error.

8) signal the event in the connectOverlap structure to indicate that

processing is completed.

Listing 5.

5. Error Logging

All error logs are written to the Tuxedo ULOG. The following conditions are
logged:
(a) any unexpected error returned from a WIN32 API function; (b) any unexpected
error returned from a Cluster API function; and (c) any unexpected error returned
from a Tuxedo Admin API function.
6. Detailed Operation

Figures SA-5B comprise a flow diagram providing a more detailed illustration
of the operation of the present invention in the exemplary application illustrated in
Figure 4. In particular, Figures 5A-5B illustrate the handling of an ONLINE request.

At step 100, the Resource Monitor 26 calls the ONLINE entry point function
for the Tuxedo Admin Servers Resource Type in the Resource DLL 40. The ONLINE
entry point function starts a new thread to process the request and returns .
ERROR_JO PENDING status to the Resource Monitor 26.

Next, at step 101, the Resource DLL 40 calls the
processSimpleRequestViaPipe() function passing it the PIPE REQ_ADM_ONLINE
request code. The processSimpleRequestViaPipe() function constructs the

appropriate request message (i.e., builds a PIPEREQ structure with a request code of

10

15

20

25

WO 00/07101 PCT/US99/16540
30

PIPE REQ ADM _ONLINE) and constructs the correct name of the named pipe for
the Pipe Server 42 on this node (i.e., the originating node). At step 102, the Resource
DLL 40 then performs the initial message exchange steps shown in Listing 1 above.

| At step 104, the main thread of the Pipe Server 42 receives the connection
from the Resource DLL 40 and activates a worker thread to process the request. The
worker thread recognizes the PIPE REQ _ADM_ONLINE request code and begins
processing the request. At step 106, the worker thread determines whether the current
node (i.e., the originating node) is the designated master for the Tuxedo application.
Specifically, the worker thread calls a getMasterlds() function (not shown) that
obtains the TA_MASTER attribute from the T_DOMAIN object of the Tuxedo
application. The TA MASTER attribute specifies the Logical Machine ID (LMID) of
the currently designated master for the Tuxedo application. Using the LMID of the
master, the Physical Machine ID (PMID) of the master can be obtained from the
TA _PMID attribute of the Tuxedo T MACHINE object. The worker thread then
calls a getLmid() function (not shown) that calls the Win32 function
GetComputerName to determine the Physical Machine ID (PMID) of the originating
node. It then obtains the TA_LMID attribute from the Tuxedo T MACHINE object
corresponding to the PMID. Because the request is an ONLINE request iﬁ this
example, the worker thread also verifies from the TA_STATE attribute of the
T_MACHINE object that the current state is INACTIVE.

If at step 106, it is determined from the LMIDs and PMIDs that the originating
node is the master node, then the PIPE REQ_ADM_ONLINE request is processed
locally at step 108. In such a case, the worker thread will first determine whether a
backup master node has been designated. If so, the Pipe Server sends a request to the
Pipe Server on the backup master, asking the backup master to redesignate itself as
the master. If this is successful, the worker thread then transfers the Online request
via the named pipe connection to the Pipe Server on the new master so that it can
process the request in order to bring the originating node (which, for example, may be

trying to restart after a failure) back on-line. If there is no backup master, then the

10

15

20

25

30

WO 00/07101 _ PCT/US99/16540
31

Pipe Server on the originating node calls the Tuxedo Admin API directly to bring the
Tuxedo Domain online on that node.

If at step 106, it is determined that the originating node is not the master node,
theh control passes to step 110. At step 110, the worker thread calls the Pipe Server
access function setinMIB() to create a PIPE_REQ_MIB message in which the FML32
buffer contains a request to set the TA_STATE attribute in the T MACHINE object
associated with the LMID of the originating node to ACTIVE (this is the way in
which an ONLINE request is made via the Tuxedo Admin API). The setinMIB()
function then constructs the correct name of the named pipe for the Pipe Sérver on the
master node and performs the initial message exchange steps (see Listing 1 above) to
transfer the message to the Pipe Server on the master node.

At step 112, the main thread of the Pipe Server 42 on the master node receives
the connection from the Pipe Server 42 on the originating node and activates its own
worker thread to process the PIPE_ REQ MIB request. At step 114, the worker thread
recognizes the PIPE_REQ_MIB request and makes appropriate calls to the Tuxedo
Admin API to have the request processed and to receive a reply. Specifically, in this
example, the worker thread calls the Tuxedo Admin API function tpinit() to connect
to the Tuxedo application, and then calls the Tuxedo Admin API function tpacall()
followed by tpgetreply() to submit the request for processing and to receive a reply,
respectively.

Next at step 116, the reply FML32 buffer (indicating success or failure) is
passed back to the originating node via the same named pipe connection. At step 118,
the setinMIB() function on the originating node reads the reply from the named pipe
and closes the pipe. At step 120, the worker thread on the originating node then
writes the reply PIPEREP message over the named pipe connection to the Resource
DLL 40 on the originating node. Finally, at step 122, the ONLINE entry point
function of the Resource DLL 40 invokes the appropriate callback function of the
Resource Monitor 26 to indicate the status of the ONLINE request. Processing of
other administrative requests that must be performed by the designated master node

for a Tuxedo application, such as an OFFLINE request, is similar to the above.

10

15

20

WO 00/07101 v PCT/US99/16540

32

“Microsoft,” “Windows,” and “Windows NT” are registered trademarks of
Microsoft Corporation. “BEA” and “TUXEDO?” are registered trademarks of BEA
Systems, Inc. “Oracle” is a registered trademark of the Oracle Corporation.

 Asthe foregoing illustrates, the present invention is directed to a method for
enabling a distributed network application that requires centralized administration via
a master node to be deployed in a clustered environment that does not support such
centralized administration, so that the application can take advantage of the increased
availability achieved through clustering. It is understood that changes may be made to
the embodiments described above without departing from the broad inventive
concepts thereof. For example, while the preferred form of connection between Pipe
Servers is a Windows NT named pipe, other forms of inter-process communication
can be employed. Additionally, as mentioned above, while a particular embodiment
is described wherein the invention is employed to enable a Tuxedo-based application
to run in an MSCS-controlled computer cluster, the present invention is not limited to
use with Tuxedo-based applications and/or MSCS-controlled computer clusters, but
rather may be employed in any system in which a distributed network application
requires centralized administration via a master node, but wherein the clustered
environment in which the application is deployed does not support such centralized
administration. Accordingly, the present invention is not limited to the particular
embodiments disclosed, but is intended to cover all modifications that are within the

spirit and scope of the invention as defined by the appended claims.

10

15

20

25

30

WO 00/07101 PCT/US99/16540

33
WHAT IS CLAIMED IS:

1. In a clustered computing environment comprising a plurality of nodes,
a rﬁethod for enabling a distributed network application that requires centralized
administration via a defined master node to execute on the nodes of the cluster, said
method comprising:

receiving an administrative request from the clustered computing environment
at an originating node thereof;

determining whether the originating node is a designated master node for the
distributed network application; and

routing the administrative request from the originating node to the designated

master node if the originating node is not the designated master node.

2. The method recited in claim 1 wherein said routing step comprises:

creating an instance of a named pfpe that provides a connection between the
originating node and the master node; and

passing the administrative request from the originating node to the master

node via the named pipe.

3. The method recited in claim 2, further comprising the step of sending a
reply to the administrative request from the master node back to the originating node

via the named pipe.

4. The method recited in claim 1, further comprising the steps of:

receiving the administrative request at the master node via the named pipe; and

calling an administrative application programming interface (API) 6f the
distributed network application to initiate processing of the request by the designated

master node.

10

15

20

25

30

WO 00/07101 v PCT/US99/16540

34

5. A server program embodied on a computer-readable medium for use in
a clustered computing environment compfising a plurality of nodes, the server
program comprising program code for enabling a distributed network application that
recjuires centralized administration via a defined master node to execute on the nodes
of the cluster, the program code of said server program, when executed on each node
of the cluster, causing any of said nodes to perform the following steps:

receiving an administrative request from the clustered computing environment
at that node, that node defining an originating node;

determining whether the originating node is a designated master node for the
distributed network application; and

routing the administrative request from the originating node to the designated

master node if the originating node is not the designated master node.

6. The server program recited in claim 5 wherein the program code causes
the node to perform said routing step by creating an instance of a named pipe that
provides a connection between the originating node and the master node, and passing

the administrative request from the originating node to the master node via the named

pipe.

7. The server program recited in claim 6, wherein the program code
further causes the master node to send a reply to the administrative request from the

master node back to the originating node via the named pipe.

8. In a clustered computing environment comprising a plurality of nodes
over which a distributed network application executes, wherein the distributed
network application requires centralized administration via a designated master node,
the improvement comprising a server program executing on each node that intercepts
administrative requests from the clustered computing environment at that node, and
that routes the administrative requests from the originating node to the designated

master node if the originating node is not the designated master node.

10

15

WO 00/07101 _ PCT/US99/16540

35

9. The clustered computing environment recited in claim 8, wherein the
server program determines whether the originating node is the designated master node

for the distributed network application before routing said administrative requests.

10. The clustered computing environment recited in claim 9, wherein the
server program routes the administrative requests to the designated master by creating
an instance of a named pipe that provides a connection between the originating node
and the master node, and then passing the administrative request from the briginating

node to the master node via the named pipe.

11. The clustered computing environment recited in claim 8, wherein the
server program further sends a reply to the administrative request from the master

node back to the originating node via the named pipe.

PCT/US99/16540

WO 00/07101

1/7

(44

(1y Joud)

L ainbi4

A

A%a)

2 H3AYH3S TVNLHIA

/

9l

NV

JOIAH3S H3LSNTO

8l

e

¢ 3dON

/NF

S

ve

0¢

Xsid

} HIAHES TVNLHIA

14!

/

JOIAH3S HALSNTO

gL~

]

/

ve

I 3AON

PCT/US99/16540

WO 00/07101

2/7

(My Jolid)

Z 2inbi4
44
< / <
2 P
NV
¢ HIAH3S I H3AH3S
TYNLHIA TYNLHIA
9] 14!
JOIAH3S H3ALSNT1O JOIAH3S HALSNTD
g1~ gL~
2 300N N\, 0 } 3dON
Msia

S

144

0¢

1£4

WO 00/07101

3/7

60 ORIGINATING NODE

CLUSTER ENVIRONMENT ISSUES
ADMINISTRATIVE REQUEST (E.G., ONLINE,
OFFLINE, ETC) AT ORIGINATING NODE

64 +

COMPONENT OF DISTRIBUTED NETWORK
APPLICATION OPENS NAMED PIPE TO
PIPE SERVER ON ORIGINATING NODE

66 +

REQUEST PASSED TO PIPE
SERVER
VIA NAMED PIPE

70

/

68

PROCESS
REQUEST
LOCALLY

MASTER
NODE ?

72

/

IDENTIFY MASTER
NODE

Y £

OPEN NAMED PIPE TO PIPE
SERVER ON MASTER NODE

+ /76

74

PCT/US99/16540

MASTER NODE
((IF DIFFERENT)

AN

TRANSFER REQUEST TO PIPE
SERVER ON MASTERNODE |——
VIA NAMED PIPE

RECEIVE REQUEST FROM
NAMED PIPE

Y

CALL ADMINISTRATIVE API OF
DISTRIBUTED NETWORK
APPLICATION TO PROCESS
REQUEST

Figure 3A

5

WO 00/07101 v PCT/US99/16540

4/7
ORIGINATING NODE MASTER NODE
| (IF DIFFERENT)
|
|
|
| 82
| I [
|
: OBTAIN REPLY FROM
, DISTRIBUTED
| NETWORK APPLICATION
86 |
RECEIVE REPLY FROM MASTER | PASS REPLY BACK TO
NODE PIPE SERVER - ——— ORIGINATING NODE
: VIA NAMED PIPE
¢ |
|
PASS REPLY TO CLUSTER [84
ENVIRONMENT ON :
ORIGINATING NODE |
|
L |
88 :
|

Figure 3B

PCT/US99/16540

WO 00/07101

5/7

g 81nbi4
o >
DIANOOXNL le—m| SANOHDHIAEIS | SHIAHIS NINAY
‘001 0a3axnL 1V NIy 0aaxnL -
‘Isvaviva odaxni +
3T0VHO IdY NINGY
< 0a3xn.
0¢)
N3LSIL 0a3XNL H3AHIS 3did
be /Nv
IdV HIAHIS IdY HIAHIS
| 3did 3did
ﬂnnnnnuunj_ ﬂuauuunuuj_ "..ium%lnul_ ﬁuuimwwlnj R
3dAL 30HNOS3Y AL 30HNO 1 Fo 3dAL _
“ 35YaYIvVa 319740 | I mm_ hm_w 1 oomwwm [308N0S3Y H3AHIS | | 30HNOS3H SHIANIS | | IOHNOSIH dnoHD | ,
P | r It 3did 11 _Nwavoaaxnt ! | waauasoaaxns |
llllll —— — . —— — — — e —— — —— —— — — —— v — — — — p— —— ——— v a—— o e)
/ 8y / 99 b 7
(11a°'sgaos3) 0 (170 s38xnL)
170 30HNOS3IY 3TDVHO 11a 304N0S3Y
/) ANIINO
i
* 9z ma%maommm ANr1440 w_%mzomm /ov
~ S1S3NOIH NIWaY
(s)doLINOW 30HNOS3H

3

=

81

JOIAH3S H3LSNTD

WO 00/07101 v PCT/US99/16540

ORIGINATING NODE MASTER NODE
100 (IF DIFFERENT)

™~
RESOURCE MONITOR AT ORIGINATING
NODE CALLS ONLINE ENTRY POINT
FUNCTION FOR TUXEDO ADMIN SERVERS
RESOURCE TYPE IN RESOURCE DLL

~ !

RESOURCE DLL CALLS PIPE SERVER
ACCESS FUNCTION
PROCESS SIMPLE REQUEST VIA PIPE 0
WHICH BUILDS
PIPE_REQ_ADM_ONLINE REQUEST

102 ~ ‘

REQUEST PASSED TO MAIN
THREAD OF
PIPE SERVER VIA NAMED PIPE

~ Y

MAIN THREAD OF PIPE SERVER
ACTIVATES A WORKER THREAD TO
PROCESS THE REQUEST

101

104

106

MASTER

108 NODE ?

PROCESS REQUEST
LOCALLY VIA
CALLS TO
TUXEDO ADMIN API

NO

112

/[

110

CALL PIPE SERVER ACCESS FUNCTION
SETINMIB() TO PASS PIPE_REQ MIB
MESSAGE TO PIPE SERVER OF MASTER
NODE VIA NAMED PIPE CONNECTION
THERETO

MAIN THREAD OF MASTER NODE
PIPE SERVER RECEIVES
CONNECTION FROM PIPE SERVER ON
ORIGINATING NODE AND ACTIVATES
WORKER THREAD

Y

WORKER THREAD RECOGNIZES
PIPE_REQ_MIB REQUEST AND
CALLS TUXEDO ADMIN API TO

SUBMIT REQUEST FOR PROCESSING
AND TO RECEIVE REPLY

\

Figure 5A "

WO 00/07101

7/7

ORIGINATING NODE

118

N

SETINMIB() FUNCTION READS REPLY FROM
NAMED PIPE AND CLOSES PIPE

PCT/US99/16540

MASTER NODE
(IF DIFFERENT)

116

/

120 +

WORKER THREAD WRITES REPLY TO
NAMED PIPE TO PASS REPLY
BACK TO ORIGINATING NODE

WORKER THREAD WRITES REPLY OVER
NAMED PIPE CONNECTION TO
RESOURCE DLL

Y

RESOURCE DLL ONLINE ENTRY POINT
FUNCTION INVOKES CALLBACK FUNCTION
OF RESOURCE MONITOR TO INDICATE
STATUS OF THE ONLINE REQUEST

\

122

Figure 5B

INTERNATIONAL SEARCH REPORT

Inte: onal Appiication No

PCT/US 99/16540

CLASSIFICATION OF SUBJECT MATTER
GO6F9/46

A.
IPC 7

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A GHORMLEY D P ET AL: "GLUNIX: A GLOBAL 1,5,8

ISSN: 0038-0644

LAYER UNIX FOR A NETWORK OF WORKSTATIONS"
SOFTWARE PRACTICE & EXPERIENCE,GB,JOHN
WILEY & SONS LTD. CHICHESTER,

vol. 28, no. 9, page 929-961 XP000765510

page 938, Tine 26 -page 942, line 15

5 November 1996 (1996-11-05)
column 3, line 39 - Tine 65
column 5, Tine 29 - 1ine 39

A EP 0 841 626 A (INTERNATIONAL COMPUTERS 2-4,6,7,
LIMITED) 13 May 1998 (1998-05-13) 10,11
the whole document

A US 5 572 711 A (BIANCHI RICHARD S ET AL) 1,5,8

D Further documents are listed in the continuation of box C.

Patent family members are iisted in annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E* earlier document but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the intemationat filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particuiar relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
ments, such combination being obvious to a person skilled
in the art.

'&" document member of the same patent tamily

Date of the actual completion of the intemationai search

14 December 1999

Date of mailing of the international search report

21/12/1999

Name and maifing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Michel, T

Form PCTASA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

inte .

onal Application No

iermation en patent (amily members PCT/US 99/16540
Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0841626 A 13-05-1998 us 5890159 A 30-03-1999

US 5572711 A 05-11-1996 us 5983012 A 09-11-1999
EP 0803101 A 29-10-1997
WO 9610224 A 04-04-1996
AU 679775 B 10-07-1997
AU 7428994 A 13-04-1995
CA 2132900 A 29-03-1995
EP 0646865 A 05-04-1995
JP 7182180 A 21-07-1995
us 5675771 A 07-10-1997
us 5566326 A 15-10-1996
us 5664098 A 02-09-1997

Form PCTASA/210 (patent tamily annex) (July 1892}

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

