Title: MAGNETIC ACTUATOR FOR A CIRCUIT BREAKER ARRANGEMENT

Abstract: A magnetic actuator 10 for a circuit breaker arrangement comprises position lockers 34a, 34b for locking a coil 14 in grooves 26a, 26b of the core 12 of the magnetic actuator 10. The position lockers 34a, 34b have a locking part 38 protruding away from the core 12 and over the coil 14 remote from the grooves 26a, 26b.
Magnetic actuator for a circuit breaker arrangement

Field of the invention

The invention relates to a magnetic actuator for a circuit breaker arrangement, a method of assembling a magnetic actuator, the usage of a magnetic actuator and a circuit breaker arrangement.

Background of the invention

For the operation of a circuit breaker, especially a medium voltage vacuum circuit breaker, it may be necessary to generate a high force to press a first moving electrical contact to a second corresponding fixed electrical contact. The force may be generated by a magnetic actuator. Therefore, the magnetic actuator comprises a coil for generating an electrical field, a core for forming this field and a movable plate which is attracted by the core. When attracted by the core, the movable plate generates the force used for actuating the circuit breaker.

In an open position, the movable plate may be away from the core such that a gap (which may be filled by air) is formed. It may now happen, that the coil moves towards the movable plate and intrudes into the air gap, which may lower or even prevent the operating ability of the device. Normally, the intrusion into the gap may be avoided by one or more grooves in the coil-facing sides of the core and the flanks of the core, so that a locking piece can be interposed
into these grooves. The locking piece or locking part may be a stopper or stopping means for the movement of the coil towards the gap.

EP1843375A1 shows an electromagnetic actuator for a medium voltage circuit breaker with an actuator having an electromagnet exhibiting a magnet core with a rectangular profile, and a round upper yoke corresponding to the electromagnet.

US2008272659 A1 shows an electromagnetic force driving actuator and a circuit breaker using the same.

Summary of the invention

The design with grooves and locking pieces may reduce the usable space for the coil, thus reducing the potential efficiency of the device. If the coil space is to be kept constant, the height of the core and the flanks may have to be increased, thus increasing the undesired stray flux of the magnet, and also increasing the overall dimensions of the device. Further, such grooves may increase the magnetic resistance in the core and the flanks. In this case, the grooves may disturb the distribution of the magnetic flux close to the air gap, jeopardising the flux concentration. Both actions may result in a reduced holding force.

It is an object of the invention to provide a compact and efficient magnetic actuator, with high operation ability.

This objective is achieved by the subject-matter of the independent claims. Further exemplary embodiments are evident from the dependent claims.
An aspect of the invention relates to a magnetic actuator for a circuit breaker arrangement.

According to an embodiment of the invention, the magnetic actuator comprises a coil and a core with a groove for accommodating a section of the coil and a movable plate being attracted by the core, when a magnetic field is generated by the coil in the core, for example when current passes through the coil. The movable plate may actuate the circuit breaker arrangement, when attracted by the core. This may mean that electrical contacts of the circuit breaker arrangement are opened or closed, when it is actuated.

According to an embodiment of the invention, the magnetic actuator comprises a position locker for locking the coil in the groove. This may mean that the coil cannot leave the groove even when being attracted by the moving plate. The position locker may have a locking part protruding away from the core and over the coil.

According to an embodiment of the invention the locking part protrudes over a section of the coil not accommodated in the groove, for example a section remote from the groove. When the groove comprises several parts, the locking part may be remote from all parts of the groove.

In other words, the locking part may extend over the coil at a position other than the position the groove is situated at. The position locker being remote may mean that the protruding part is not situated over the groove or is not covering a part of the groove, when one is looking onto the core in a direction of the movement of the coil.

The protruding part may be a lug holding or catching the coil, such that the coil may not leave the groove.
According to an embodiment of the invention, the movement of the movable plate may be guided by an axis that may be attached to the core.

According to an embodiment of the invention, the core may comprise a central part and at least one flank. As a rule, the core has two flanks, a first flank and a second flank, the second flank being opposite to the first flank with respect to the central part. The flank(s) and the central part may be connected by a beam from which the flank(s) and the central part protrude in a comb-like manner. The beam may be formed of parts integrally formed with the flank(s) and the central part.

The groove may be limited by a side of the flank facing the core, a side of the central part facing the flank and a part of the beam. For example, the groove may have a rectangular cross-section.

According to an embodiment of the invention, the position locker is connected to the core with a connection means, for example a screw and a screw thread, also used for connecting the position locker to a further member of the circuit breaker arrangement. This further member may be a housing of the magnetic actuator or a connection cable. The screw thread may already be present in the core and the position locker may have a hole fitting over the hole of the screw thread.

According to an embodiment of the invention, the position locker has a connection part for connecting the position locker to the core.

According to an embodiment of the invention, the connection part and the locking part are orthogonal with respect to each other. This may mean that the connection part and the locking part form an angle of 85° to 95° with respect to each other.
According to an embodiment of the invention, the position locker is L-shaped. For example, the locking part may form a first leg of the L and the connection part may form a second leg of the L.

According to an embodiment of the invention, the position locker is made of a plate-like material, for example sheet plate. The position locker may be made of a strip of sheet plate.

According to an embodiment of the invention, the position locker is integrally formed. This may be understood such that the connection part and the locking are not assembled from different parts but are one single piece.

According to an embodiment of the invention, the position locker is made of steel or a non-magnetic material, for example non-magnetic stainless steel.

According to an embodiment of the invention, the position locker is a first position locker situated at a first side of the core and the magnetic actuator comprises a second position locker situated at a second side of the core, the second side being opposite to the first side. As a rule, the magnetic actuator may have two positions lockers.

The first and second sides may be sides of the central part of the core. Normally, the central part of the core has a rectangular cross-section and the first and second sides are facing in a direction orthogonal to the extension of the beam forming the comb-like structure of the core. Two other sides of the central part form sides of the groove. The first and second sides of the core mentioned above are therefore not sides of the core limiting the groove.

According to an embodiment of the invention, the first and second position lockers may be equally formed or manufactured.
A further aspect of the invention relates to a method of assembling or manufacturing a magnetic actuator for a circuit breaker arrangement.

According to an embodiment of the invention, the method comprises the steps: putting a coil into a groove of a core of the magnetic actuator, such that a section of the coil is accommodated in the groove; pushing a position locker between the coil and the core, such that a locking part of the position locker protrudes away from the core and over the coil remote from the groove.

According to an embodiment of the invention, the method comprises the further step of: attaching or screwing a connection part of the position locker to the core, such that the coil is prevented from leaving the groove by the locking part.

According to an embodiment of the invention, the method comprises the further steps of: pushing a second position locker between the coil and the core at a position opposite to the (first) position locker; attaching the second position locker to the core.

It has to be understood that features of the method as described in the above and in the following may be features of the magnetic actuator as described in the above and in the following and vice versa.

A further aspect of the invention relates to the usage of a magnetic actuator as described in the above and in the following in a medium voltage vacuum circuit breaker. A medium voltage may be a voltage between 1kV and 52kV.

A further aspect of the invention relates to a circuit breaker arrangement.

According to an embodiment of the invention, the circuit breaker arrangement, comprising at least one magnetic actuator as described in the above and in the following. The circuit breaker arrangement comprises a first electrical contact
and a second electrical contact. The magnetic actuator may be mechanically connected to the first and second contacts, such that the movable plate actuates the circuit breaker by connecting or disconnecting the first and second contacts when moving.

These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

Brief description of the drawings

Below, embodiments of the present invention are described in more detail with reference to the attached drawings.

Fig. 1 shows a perspective view of a magnetic actuator according to an embodiment of the invention.

Fig. 2 shows a perspective view of a magnetic actuator according to an embodiment of the invention.

Fig. 3 shows a flow diagram for a method of assembling a magnetic actuator according to an embodiment of the invention.

Fig. 4 shows a schematic drawing of a circuit breaker arrangement according to an embodiment of the invention.

The reference symbols used in the drawings, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided with the same reference symbols in the figures.
Detailed description of embodiments

Fig. 1 shows a perspective view of an (electro) magnetic actuator 10 comprising an electromagnet 12 with a coil 14 and a core 16. The core 16 of the magnetic actuator 10 comprises a core element or central part 18, two permanent magnets 20, and two flanks 22a and 22b. The lower part of the first flank 22a, the first permanent magnet 20, the lower part of the central part 18, the second permanent magnet 20, and the lower part of the second flank 22b form a beam 24, such that the core has a comb-like structure.

Between the fingers of the comb (i.e., the upper parts of the central part 18 and the flanks 22a, 22b) two grooves 26a, 28b are formed. The first (second) groove 26a (26b) is limited by the inner side of the upper part of the flank 22a (22b) and a side of the upper part of the central part 18 facing the side of the flank 22a (22b).

In the first and second grooves 26a, 26b a first and second section 28a, 28b of the coil 14 is accommodated. Other sections of the coil 14 protruded over sides of the core in a direction orthogonal to the extension of the beam 24.

An axis 30 for guiding a movable plate 32 extends through a hole in the central part 18 of the core 16. Due to the axis 30, the movable plate 32 can only move towards the core 16 and away from the core 16. When an electrical current runs through the coil 14, a magnetic field is generated in the coil 16 which will attract the moving plate 32. The movable plate 32 may be moved back into the open position by a spring not shown in Fig. 1.

Fig. 2 shows a further embodiment of a magnetic actuator 10. In Fig. 2, the moving plate 32 is not shown, so that the grooves 26a, 26b and the sections 28a, 28b of the coil 14 are easier to be seen. In Fig. 2, two position lockers 34a, 34b are shown.
The first (second) position locker 34a (36b) is situated between the central part 18 of the core 12 and a section 36a (36b) of the coil 14 that is not accommodated in one of the grooves 26a, 26b. L-shaped coil position lockers 36a, 36b are used to hold the coil 14 in position.

In the following the functionality of the position lockers 34a, 34b will be explained with respect to the position locker 34a. For holding the coil 14, a first leg 38 or locking part 38 of the position locker 34a is protruding over the section 34a of the coil 14.

With a second leg of connection part 40, the position locker 34a is screwed to the core 12, using a screw 42 that is already present for use in a further purpose. Because of this, the position locker 36a has a hole 44 through which the screw 42 may be screwed into a screw thread in the central part 18 of core 12.

The position locker 34a extends between the core 12 and the coil 14. The position locker 34a is bent about 90° around the coil 14, or the bobbin of the coil, if present, to hold it in position.

In that way, the coil space between the central part 18 of the core 12 and the flanks 22a, 22b is only reduced very marginally. In the area of the winding heads where the position lockers 34a, 34b are installed, i.e. outside the core area of the magnetic actuator 10, the coil 14 may be bended downwards (in the sense of the figures) to compensate for the thickness of the locking part 38 of the position lockers 34a, 34b, so that the coil space in the critical area between the central part 18 of the core 12 and the flanks 22a, 22b will not be reduced at all.
The position lockers 34a, 34b may be made of a thin, however strong material, like steel. It may be further advantageous to make the position lockers 34a, 34b of a non-magnetic material, like certain types of stainless steel.

It may be preferable to use (exactly) two position lockers 34a, 34b, one at each side of the core 12. One position locker 34a may not hold the coil 14 reliably in a place, and more than two position lockers may be difficult to assemble.

Fig. 3 shows a flow diagram for a method of assembling the magnetic actuator 10.

In step S10, the coil 14 is put into the grooves 26a, 26b of the core of the magnetic actuator 10, such that the sections 28a, 28b of the coil 14 are accommodated in the grooves 26a, 26b.

In step S12, the position locker 34a is pushed between the central part 18 of the core 12 and the section 34a of the coil 14. This is done, such that the locking part 38 of the position locker 34a protrudes away from the core 12 and over the coil 14 remote from the grooves 26a, 26b.

In step S14, the connection part 40 of the position locker 34a is screwed to the core 12 with the screw 42. Simultaneously, a further part of the magnetic actuator 10 may be screwed to the magnetic actuator 10 with the same screw 42 in this step.

In step S16, steps S12 and S14 may be repeated for the position locker 36b. It has to be understood that the two position lockers may also be pushed into the magnetic actuator 10 in a first step, and screwed to the magnetic actuator 10 in a second step.
Fig. 4 shows a schematic drawing of a circuit breaker arrangement 50. The circuit breaker arrangement 50 comprises two electrical contacts 52a, 52b that may be electrically connected to lines of a medium voltage grid. Further the electrical contacts 52a, 52b may be arranged inside a vacuum. i.e. the circuit breaker 50 may be a medium voltage vacuum circuit breaker.

The circuit breaker 50 comprises a magnetic actuator 10 that is mechanical connected to the contacts 52a, 52b, such that the movable plate 32 actuates the circuit breaker 50 by connecting or disconnecting the contacts 52a, 52b when moving. The circuit breaker 50 may further comprise a spring 54 for generating a force opposite to the movement of the movable plate 32 generated by the activated magnetic field of the magnetic actuator.

While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art and practising the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference symbols in the claims should not be construed as limiting the scope.
List of reference symbols

10 magnetic actuator
12 electromagnet
14 coil
16 core
18 central part
20 permanent magnet
22a, 22b flank
24 beam
26a, 26b groove
28a, 28b section of coil
30 axis
32 moving plate
34a, 34b position locker
36a, 36b section of coil
38 locking part
40 connection part
42 screw
44 hole
50 circuit breaker
52a, 52b electrical contacts
54 spring
Patent Claims

1. A magnetic actuator (10) for a circuit breaker arrangement (50), the magnetic actuator (10) comprising:
 a coil (14);
 a core (12) with a groove (26a, 26b) for accommodating a section (28a, 28b) of the coil (14);
 a movable plate (32) being attracted by the core (12), when a magnetic field is generated by the coil (14), the movable plate (32) actuating the circuit breaker arrangement (50) when being attracted by the core (12);
 and a position locker (34a, 34b) for locking the coil (14) in the groove (26a, 26b);
 characterized in that the position locker (34a, 34b) has a locking part (38) protruding away from the core (12) and over a section (36a, 36b) of the coil (14) not accommodated in the groove (26a, 26b).

2. The magnetic actuator (10) according to claim 1,
 wherein the position locker (34a, 34b) is connected to the core (12) with a connection means (42) also used for connecting the position locker (34a, 34b) to a further member of the circuit breaker arrangement (50).

3. The magnetic actuator (10) according to claim 1 or 2,
 wherein the position locker (34a, 34b) has a connection part (40) for connecting the position locker (34a, 34b) to the core,
 wherein the connection part (40) and the locking part (38) are orthogonal with respect to each other.

4. The magnetic actuator (10) according to one of the preceding claims,
 wherein the position locker (34a, 34b) is L-shaped.
5. The magnetic actuator (10) according to one of the preceding claims, wherein the position locker (34a, 34b) is made of a plate-like material.

6. The magnetic actuator (10) according to one of the preceding claims, wherein the position locker (34a, 34b) is integrally formed.

7. The magnetic actuator (10) according to one of the preceding claims, wherein the position locker (34a, 34b) is made of a non-magnetic material.

8. The magnetic actuator (10) according to one of the preceding claims, wherein the position locker is a first position locker (34a) situated at a first side of the core (12), wherein the magnetic actuator (10) comprises a second position locker (34b) situated at a second side of the core (12).

9. A method of assembling a magnetic actuator (10) for a circuit breaker arrangement (50), the method comprising the steps: putting a coil (14) into a groove (26a, 26b) of a core (12) of the magnetic actuator (10), such that a section (28a, 28b) of the coil (14) is accommodated in the groove (26a, 26b); pushing a position locker (34a, 34b) between the coil (14) and the core (12), such that a locking part (38) of the position locker (34a, 34b) protrudes away from the core (12) and over the coil (14) at a section of the coil (14) not accommodated in the groove (26a, 26b); attaching a connection part (40) of the position locker (34a, 34b) to the core (12), such that the coil (14) is being prevented from leaving the groove by the locking part (38).

10. The usage of a magnetic actuator (10) according to one of the claims 1 to 8 in a medium voltage vacuum circuit breaker (50).
11. A circuit breaker arrangement (50) comprising at least one magnetic actuator (10) according to one of the claims 1 to 8, the circuit breaker arrangement (50) comprising a first electrical contact (52a) and a second electrical contact (52b); wherein the magnetic actuator (10) is mechanical connected to the first and second electrical contacts, such that the movable plate (32) actuates the circuit breaker arrangement (50) by connecting or disconnecting the first and second contacts when moving.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01H50/16 H01H51/22
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 98/22965 AI (SI EMENS ELECTROMECH COMPONENTS [US]) 28 May 1998 (1998-05-28) figure 1</td>
<td>1-6,9</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 843 375 AI (ABB TECHNOLOGY AG [CH]) 10 October 2007 (2007-10-10) abstract</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search: 28 November 2011

Date of mailing of the international search report: 05/12/2011

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Socher, Gunther

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1244946 A 16-02-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69709161 D 24-01-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69709161 T 2 14-08-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0939965 Al 08-09-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20000057193 A 15-09-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5781089 A 14-07-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5990770 A 23-11-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9822965 Al 28-05-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007233934 Al 11-10-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0710042 A2 02-08-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101410923 A 15-04-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1843375 Al 10-10-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2005456 Al 24-12-2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2369372 T 3 30-11-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2008143300 A 10-05-2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009039989 Al 12-02-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007113006 Al 11-10-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10232661 Al 12-02-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1383144 Al 21-01-2004</td>
<td></td>
</tr>
</tbody>
</table>