SYSTEM AND METHOD FOR MONITORING OVERHEAT OF A COMPRESSOR

Inventor: Daniel L. McSweeney, Sidney, OH (US)

Assignee: Emerson Climate Technologies, Inc., Sidney, OH (US)

Publication Classification

- Int. Cl. F25B 41/04 (2006.01)
- F25B 41/00 (2006.01)
- F25B 41/00 (2006.01)
- F25B 3/00 (2006.01)

U.S. Cl. 62/204; 62/228.1; 62/225; 62/56

ABSTRACT

A system and method for monitoring an overheating condition of a compressor are provided. A compressor connected to an evaporator. A suction sensor outputs a suction signal corresponding to a temperature of refrigerant entering the compressor. A control module is connected to the evaporator sensor and the suction sensor and determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheating condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold.

Diagram:

1. Start
2. Receive SLT
3. Receive Tavap
4. Calculate SSH
5. SSH > Threshold?
 a. Yes
 1. Scroll overheat condition - adjust or terminate compressor operation
 2. End
 b. No
 1. Continue
 2. End
Start

Receive SLT

Receive Tevap

Calculate SSH

SSH > Threshold?

Y

Scroll overheat condition – adjust or terminate compressor operation

N

End

Fig - 3
Fig - 5

DISCHARGE TEMP (°F) - DLT

Tcond

150°F
140°F
130°F
120°F
110°F
100°F
90°F
80°F

Tevap (°F)

95° AMBIENT, 20° SH
Max Envelope Of Compressor Speed-EXV Opening

Under Severe Flooback
- SSH = 0
- DSH < 10°
- Tevap = Heat Sink T (Suct-cooled)

Under Severe Overheat
- SSH > 50°
- DSH > 100°
- Tmotor > 200°

Fig - 6
SYSTEM AND METHOD FOR MONITORING OVERHEAT OF A COMPRESSOR

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/978,312, filed on Oct. 8, 2007. This application also claims the benefit of U.S. Provisional Application No. 60/978,258, filed on Oct. 8, 2007. The entire disclosures of each of the above applications are incorporated herein by reference.

FIELD

[0002] The present disclosure relates to compressors and more particularly to a system and method for monitoring an overheating condition of a compressor.

BACKGROUND

[0003] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

[0004] Compressors may be used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration system, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. In any of the foregoing applications, the compressor should provide consistent and adequate operation to ensure that the particular application (i.e., refrigeration, heat pump, HVAC, or chiller system) functions properly. A variable speed compressor may be used to vary compressor capacity according to refrigeration system load. Operating parameters of the compressor and of the refrigeration system may be used by protection, control, and diagnostic systems to ensure optimal operation of the compressor and refrigeration system components. For example, evaporator temperature and/or condenser temperature may be used to diagnose, protect, and control the compressor and other refrigeration system components.

SUMMARY

[0005] A system is provided comprising a compressor connected to an evaporator, a suction sensor that outputs a suction signal corresponding to a temperature of refrigerant entering the compressor, and a control module connected to the evaporator sensor and the suction sensor that determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheating condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold and that adjusts at least one of a speed of the compressor and an expansion valve associated with the compressor based on the monitoring.

[0006] In other features, the control module stops the compressor when the suction superheat is greater than the predetermined suction superheat threshold.

[0007] In other features, the predetermined suction superheat threshold is fifty degrees Fahrenheit.

[0008] In other features, the control module determines whether the suction superheat is within a predetermined suction superheat range, and upper limit of the predetermined suction superheat range corresponding with the predetermined suction superheat threshold.

[0009] In other features, the predetermined suction superheat range is between thirty degrees Fahrenheit and fifty degrees Fahrenheit and the predetermined suction superheat threshold is fifty degrees Fahrenheit.

[0010] In other features, the control module adjusts the speed of the compressor when the control module determines that the suction superheat is within the predetermined suction superheat range for a predetermined time period.

[0011] A method is provided comprising determining an evaporator temperature of an evaporator connected to a compressor, receiving a suction signal that corresponds to a temperature of refrigerant entering the compressor, calculating a suction superheat temperature based on the evaporator temperature and the suction signal, monitoring an overheating condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold and adjusting at least one of a speed of the compressor and an expansion valve associated with the compressor based on the monitoring.

[0012] In other features, the method includes stopping the compressor when the suction superheat is greater than the predetermined suction superheat threshold.

[0013] In other features, the predetermined suction superheat threshold is fifty degrees Fahrenheit.

[0014] In other features, the method includes determining whether the suction superheat is within a predetermined suction superheat range, an upper limit of the predetermined suction superheat range corresponding with the predetermined suction superheat threshold.

[0015] In other features, the predetermined suction superheat range is between thirty degrees Fahrenheit and fifty degrees Fahrenheit and the predetermined suction superheat threshold is fifty degrees Fahrenheit.

[0016] In other features, the method includes adjusting the speed of the compressor when the suction superheat is within the predetermined suction superheat range for a predetermined time period.

[0017] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

DRAWINGS

[0018] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.

[0019] FIG. 1 is a schematic view of refrigeration system.

[0020] FIG. 2 is a cross-section view of a compressor.

[0021] FIG. 3 is a flow chart illustrating steps for an algorithm according the present teachings.

[0022] FIG. 4 is a graph showing discharge super heat correlated with suction super heat and outdoor temperature.

[0023] FIG. 5 is a graph showing discharge line temperature correlated with evaporator temperature and condenser temperature.

[0024] FIG. 7 is a graph showing an operating envelope of a compressor.

DETAILED DESCRIPTION

[0025] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout
the drawings, corresponding reference numerals indicate like or corresponding parts and features.

[0026] As used herein, the terms module, control module, and controller refer to one or more of the following: An application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. As used herein, computer readable medium refers to any medium capable of storing data for a computer. Computer-readable medium includes, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.

[0027] With reference to FIG. 1, an exemplary refrigeration system 5 includes a compressor 10 that compresses refrigerant vapor. While a specific refrigeration system is shown in FIG. 1, the present teachings are applicable to any refrigeration system, including heat pump, HVAC, and chiller systems. Refrigerant vapor from compressor 10 is delivered to a condenser 12 where the refrigerant vapor is liquefied at high pressure, thereby rejecting heat to the outside air. The liquid refrigerant exiting condenser 12 is delivered to an evaporator 16 through an expansion valve 14. Expansion valve 14 may be a mechanical or electronic valve for controlling superheat of the refrigerant. The refrigerant passes through expansion valve 14 where a pressure drop causes the high pressure liquid refrigerant to achieve a lower pressure combination of liquid and vapor. As hot air moves across evaporator 16, the low pressure liquid turns into gas, thereby removing heat from evaporator 16. The low pressure gas is again delivered to compressor 10 where it is compressed to a high pressure gas, and delivered to condenser 12 to start the refrigeration cycle again.

[0028] Compressor 10 may be monitored and controlled by a control module 25. Control module 25 includes a computer readable medium for storing data including the software executed by a processor to monitor and control compressor 10 and to perform the algorithms of the present teachings.

[0029] As described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, suction superheat (SSH) may be used to monitor or predict an overheat condition of compressor 10. As described therein, an overheat condition is undesirable and may result in damage to compressor 10, a compressor component, or a refrigeration system component. A compressor floodback or overheat condition is undesirable and may cause damage to compressor 10 or other refrigeration system components. Suction superheat (SSH) and/or discharge super heat (DHS) may be correlated to a flood back or overheating condition of compressor 10 and may be monitored to detect and/or predict a flood back or overheating condition of compressor 10. DHS is the difference between the temperature of refrigerant vapor leaving the compressor, referred to as discharge line temperature (DLT) and the saturated condenser temperature (Tcond). Suction superheat (SSH) is the difference between the temperature of refrigerant vapor entering the compressor, referred to as suction line temperature (SLT) and saturated evaporator temperature (Tevap).

[0030] SSH and DHS may be correlated as shown in FIG. 4. The correlation between SSH and DHS may be particularly accurate for scroll type compressors, with outdoor ambient temperature being only a secondary effect. As shown in FIG. 4, correlations between DHS and SSH are shown for outdoor temperatures (ODT) of one-hundred fifteen degrees Fahrenheit, ninety-five degrees Fahrenheit, seventy-five degrees Fahrenheit, and fifty-five degrees Fahrenheit. The correlation shown in FIG. 4 is an example only and specific correlations for specific compressors may vary by compressor type, model, capacity, etc.

[0031] A flood back condition may occur when SSH is approaching zero degrees or when DHS is approaching twenty to forty degrees Fahrenheit. With respect to overheating, when SSH is between thirty degrees Fahrenheit and fifty degrees Fahrenheit, the onset of an overheating condition may occur. When SSH is greater than fifty degrees Fahrenheit or when DHS is greater than one-hundred degrees Fahrenheit, a severe overheating condition may be present.

[0032] In FIG. 4, typical SSH temperatures for exemplar refrigerant charge levels are shown. For example, as the percentage of refrigerant charge in refrigeration system 5 decreases, SSH typically increases.

[0033] With reference to FIG. 1, evaporator 16 may include an evaporator temperature sensor 40 that may sense an evaporator temperature. Alternatively, an evaporator pressure sensor may be used. Control module 25 receives evaporating temperature (Tevap) from evaporator temperature sensor 40.

[0034] A suction sensor 34 monitors a temperature of refrigerant entering compressor 10 (i.e., SLT). Alternatively, a combination suction temperature/pressure sensor may be used. In such case, control module 25 may receive SLT from the temperature portion of the sensor and Tevap from the pressure portion of the sensor, as Tevap may be derived or measured based on suction pressure. Further, Tevap may be derived from other system parameters, as disclosed in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference.

[0035] For example, Tevap may be derived as a function of Tcond and DLT, as described in commonly assigned U.S. application Ser. No. 11/059,646, U.S. Application Ser. No. 2005/0253560. For variable speed compressors, the correlation may also reflect compressor speed. In this way, Tevap may be derived as a function of Tcond, DLT and compressor speed.

[0036] As shown in FIG. 5, Tevap is shown correlated with DLT, for various Tcond levels. For this reason, compressor map data for different speeds may be used.

[0037] Tcond and Tevap may be calculated based on a single derivation.

[0038] In addition, iterative calculations may be made based on the following equations:

\[
\text{Tcond} = f(\text{compressor power, compressor speed, Tevap}) \quad \text{Equation 1}
\]

\[
\text{Tevap} = f(\text{Tcond, DLT, compressor speed}) \quad \text{Equation 2}
\]

[0040] Multiple iterations of these equations may be performed to achieve convergence. For example, three iterations may provide optimal convergence. As discussed above, more or less iteration, or no iterations, may be used.

[0041] Tevap and Tcond may also be determined by using compressor map data, for different speeds, based on DLT and compressor power, based on the following equations:

\[
\text{Tevap} = f(\text{compressor power, compressor speed, DLT}) \quad \text{Equation 3}
\]

\[
\text{Tcond} = f(\text{compressor power, compressor speed, DLT}) \quad \text{Equation 4}
\]
Control module 25 may calculate Tevap or receive Tevap data from the pressure portion of sensor 34. Control module 25 may then calculate SSH as a difference between SLT and Tevap.

As shown in FIG. 1, suction sensor 34 is external to compressor 10 and monitors a temperature of refrigerant as it is entering the suction inlet of compressor 10. Alternatively, a suction sensor internal to the compressor may be used. As shown in FIG. 2, a suction sensor 32 may be disposed within a shell of compressor 10. In such case, SLT may be communicated to control module 25 through an electrical connection via terminal box 24.

Control module 25 may monitor an overheat condition of compressor 10 by comparing SSH with a predetermined overheat threshold. As shown in FIG. 3, control module 25 receives SLT data in step 302. In step 304, control module 25 receives Tevap from evaporator temperature sensor 40. In step 306, control module 25 calculates SSH based on SLT and Tevap. Alternatively, Tevap may be estimated or derived based on other sensed parameters, as described above and in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference.

In step 308, control module compares SSH with a predetermined threshold to determine whether an overheat condition exists.

Control module 25 may determine that compressor 10 is operating within a normal temperature range when SSH is between zero and thirty degrees Fahrenheit. When SSH is between thirty degrees Fahrenheit and fifty degrees Fahrenheit, control module 25 may detect an overheat condition and take responsive measures. A SSH temperature above fifty degrees Fahrenheit may indicate that components of the compressor, including the compressor scrolls, bearings, etc., are at risk of being damaged.

Control module 25 may also determine whether SSH is greater than a predetermined threshold for a predetermined period of time. For example, control module 25 may determine when SSH is between thirty degrees and fifty degrees Fahrenheit or greater than fifty degrees Fahrenheit, for a predetermined period. For example, the predetermined period may be a number of minutes (e.g., one minute, two minutes, five minutes, etc.). A first predetermined period (e.g., five minutes) may be used for monitoring when SSH is between thirty degrees and fifty degrees Fahrenheit. A second predetermined period, shorter than the first predetermined period, (e.g., one minute or two minutes) may be used for monitoring when SSH is greater than fifty degrees Fahrenheit. It is understood that any time period may be used as appropriate.

As described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, in response to an overheat condition, control module 25 may adjust compressor operation and/or adjust expansion valve 14. In a severe overheat condition, control module 25 may stop operation of compressor 10. Control module 25 may also generate an alarm or notification that an overheat condition exists.

As shown in FIG. 6, a compressor operating envelope may provide maximum flood back and maximum SSH limits. In addition, a maximum scroll temperature limit (Tscroll) may be provided, in the case of a scroll compressor. In addition, a maximum motor temperature (Tmotor) may be provided. As shown in FIG. 6, compressor speed and expansion valve 14 may be adjusted based on SSH to ensure compressor operation within the compressor operating envelope. In this way, SSH may be maintained within an acceptable range as indicated by FIG. 6.

For example, at a SSH between thirty degrees Fahrenheit and fifty degrees Fahrenheit, control module 25 may reduce compressor speed or cause expansion valve 14 to open. At a SSH greater than fifty degrees Fahrenheit, control module 25 may stop operation of compressor 25.

What is claimed is:

1. A system comprising:
 a compressor connected to an evaporator;
 a suction sensor that outputs a suction signal corresponding to a temperature of refrigerant entering said compressor;
 a control module connected to said evaporator sensor and said suction sensor that determines an evaporator temperature, that calculates a suction superheat temperature based on said evaporator temperature and said suction signal, that monitors an overheat condition of said compressor by comparing said suction superheat with a predetermined suction superheat threshold, and that adjusts at least one of a speed of said compressor and an expansion valve associated with said compressor based on said monitoring.
 2. The system of claim 1 wherein said control module stops said compressor when said suction superheat is greater than said predetermined suction superheat threshold.
 3. The system of claim 1 wherein said predetermined suction superheat threshold is fifty degrees Fahrenheit.
 4. The system of claim 1 wherein said control module determines whether said suction superheat is within a predetermined suction superheat range, an upper limit of said predetermined suction superheat range corresponding with said predetermined suction superheat threshold.
 5. The system of claim 4 wherein said control module determines that said suction superheat is within said predetermined suction superheat range for a predetermined time period.
 6. A method comprising:
 determining an evaporator temperature of an evaporator connected to a compressor;
 receiving a suction signal that corresponds to a temperature of refrigerant entering said compressor;
 calculating a suction superheat temperature based on said evaporator temperature and said suction signal;
 monitoring an overheat condition of said compressor by comparing said suction superheat with a predetermined suction superheat threshold;
 adjusting at least one of a speed of said compressor and an expansion valve associated with said compressor based on said monitoring.
 7. The method of claim 6 further comprising stopping said compressor when said suction superheat is greater than said predetermined suction superheat threshold.
 8. The method of claim 7 wherein said predetermined suction superheat threshold is fifty degrees Fahrenheit.
10. The method of claim 7 further comprising determining whether said suction superheat is within a predetermined suction superheat range, an upper limit of said predetermined suction superheat range corresponding with said predetermined suction superheat threshold.

11. The method of claim 10 wherein said predetermined suction superheat range is between thirty degrees Fahrenheit and fifty degrees Fahrenheit and wherein said predetermined suction superheat threshold is fifty degrees Fahrenheit.

12. The method of claim 10 further comprising adjusting said speed of said compressor when said suction superheat is within said predetermined suction superheat range for a predetermined time period.

* * * * *