发明名称

产生高分子量聚乙烯的方法

摘要

在用于产生具有经ASTM 4020测定至少3x10^5g/mol的分子量的聚乙烯的方法中，在聚合条件下将乙烯与催化剂组合物在至少一种烃中的浆料接触。催化剂组合物包含醇盐醚配体的4族金属配合物，而浆料包括约5至小于40ppm每升的有效增加所述至少一种烃的电导率的化合物。
1. 用于产生具有经 ASTM 4020 测定至少 3×10^5 g/mol 的分子量的聚乙烯的方法，所述方法包括：在聚合条件下，将乙烯与催化剂组合物在至少一种烃中的浆料接触，其中所述催化剂组合物包含酚盐醚配体的 4 族金属配合物而其中所述浆料包括 5 至小于 40 ppm 每升的有效增加所述至少一种烃的电导率的化合物。

2. 权利要求 1 的方法，其中所述浆料包括 20 至 30 ppm 每升的所述有效增加所述至少一种烃的电导率的化合物。

3. 权利要求 1 或 2 的方法，其中所述有效增加所述至少一种烃的电导率的化合物包括聚偏聚物，高分子多元胺和可溶于油的磺酸中的至少一种。

4. 前述权利要求中任一项的方法，其中所述至少一种烃包括 C_8 至 C_{12} 烃。

5. 前述权利要求任一项的方法，其中所述 4 族金属配合物布置在粒状载体上。

6. 权利要求 5 的方法，其中粒状载体具有小于 58 微米，优选小于 50 微米，更优选小于 30 微米，和最优选 4 至 20 微米的平均颗粒尺寸 d_{50}。

7. 权利要求 5 或 6 的方法，其中所述粒状载体包含无机氧化物，优选二氧化硅。

8. 前述权利要求中任一项的方法，其中所述 4 族金属配合物是二（酚盐）醚配体的配合物。

9. 前述权利要求中任一项的方法，其中所述 4 族金属配合物具有下述通式：

 ![Chemical Structure](V)

 其中从氧 (O) 至 M 的键中至少 2 个是共价的，而其它键是配位的。AR 可以是相同或不同于其它 AR 基团的芳族基团，其中各 AR 独立地选自任选经取代的芳基和任选经取代的杂芳基。B 是不计氢原子具有 3 至 50 个原子的桥连基团并且选自任选经取代的二价烃基和任选经取代的二价含杂原子的烃基。M 是选自 HF 和 Zr 的金属。各 L 独立地是与 M 形成共价、配位或离子键的部分；而 n' 是 1, 2, 3, 4 或 4。

10. 权利要求 8 或 9 的方法，其中所述二（酚盐）醚配体具有下述通式：

 ![Chemical Structure](II)

 其中 R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^{12}, R^{13}, R^{14}, R^{15}, R^{16}, R^{17}, R^{18} 和 R^{19} 各自独立地选自氢、卤素、和任选经取代的烃基，含杂原子的烃基，烷氧基，芳氧基，甲硅烷基，甲硼烷基，膦基，
氨基，烷基，芳基，硝基，及其组合；任选地两个或更多个 R 基团能够一起组合为环结构（例如，单环或多环结构），其中所述环结构具有 3 至 12 个环中的原子（不计氢原子）；而 B 是不计氢原子具有 3 至 50 个原子的桥连基团并且选自任选经取代的二价烃基和任选经取代的二价含杂原子的烃基。

11. 权利要求 8 至 10 中任一项的方法，其中所述二（酚盐）醚配体选自：

12. 前述权利要求中任一项的方法，其中所述 4 族金属是锆。

13. 聚乙烯粉末，其通过前述权利要求中任一项的方法而产生和其具有经 ASTM 4020 测定至少 $3 \times 10^5 \text{g/mol}$ 的分子量。
产生高分子量聚乙烯的方法

背景技术

术语“高分子量聚乙烯”一般地用来定义具有ASTM 4020测定至少3x10^5 g/mol分子量的聚乙烯，并且如本文所用期望包括很高分子量聚乙烯或VHMWPE（一般地表征为具有经ASTM 4020测定至少1x10^6 g/mol且小于3x10^6 g/mol分子量的聚乙烯）和超高分子量聚乙烯或UHMWPE（一般地表征为具有经ASTM 4020测定至少1x10^6 g/mol分子量的聚乙烯）。

高分子量聚乙烯是具有价值的工程塑料，其具有耐磨性、表面润滑性、耐化学性和冲击强度的独特组合。因此，固体压模形式的这些物质用于例如机械零件、衬垫、护板和矫形植入物。它们以烧结多孔形式用于例如过滤器、曝气装置和喷雾头。

目前，高分子量聚乙烯一般用齐格勒-纳塔催化剂来产生，参见例如EP186995，DE3833445，EP575840和美国专利号6,559,249。然而，这些催化剂具有可产生的聚合物的分子量和分子量分布方面的某些局限。因此，存在研究产生高分子量聚乙烯的催化剂系统的显著兴趣。

美国专利号7,157,352公开制备烯烃均聚物或共聚物的方法；在摩尔质量调节剂、混合催化剂，和增加烃（混合物）电导率且可溶于烃（混合物）中的物质或者与混合催化剂的各组分反应的物质存在下，在烃（混合物）中聚合至少一种烯烃。加入增加烃电导率的物质据称降低聚合物颗粒在反应器壁上形成聚结体和沉积物的倾向，而不会不加地点影响催化剂系统活性。然而，‘352专利中所用的混合催化剂是齐格勒-纳塔型催化剂，其通过将镁醇合物与钛（IV）卤化物和有机铝化合物反应获得。

美国专利号7,205,363公开聚合方法，其包括在反应器中于聚合条件下将下述物质接触：(a) 催化剂系统，特别是负载金属茂催化剂系统；(b) 单体，包含按单体总重量计至至少85wt%丙烯单体；和(c) 抗静电剂，其已与捕获剂预先接触；其中抗静电剂按引入反应
器中的单体的重量计以约 0.3 至 1.5ppm 存在。抗静电剂能够包括聚烯共聚物、高分子多元胺、可溶于油的磺酸或其他混合物，或含或不含溶剂。

发明概要

[0008] 相应地，本发明一方面在于使用产生具有经 ASTM 4020 测定至少 3×10^5g/mol 的分子量的聚乙烯的方法，该方法包括：在聚合条件下，将乙烯与催化剂组合物在至少一种烃中的浆料接触，其中所述催化剂组合物包含酸盐醚的配合物的 4 族金属配合物而其中所述浆料包括约 5 至小于 40ppm 每升的有效增加所述至少一种烃的电导率的化合物。

[0009] 方便地，浆料包括约 20 至约 30ppm 每升的所述有效增加所述至少一种烃的电导率的化合物。

[0010] 在一种实施方式中，所述有效增加所述至少一种烃的电导率的化合物包含聚烯共聚物、高分子多元胺和可溶于油的磺酸中的至少一种。

[0011] 方便地，将 4 族金属配合物布置在粒状载体上。一般地，粒状载体具有小于 58 微米，例如小于 50 微米，例如约 4 至约 20 微米的平均颗粒尺寸 d50。在一种实施方式中，粒状载体包含无机氧化物如二氧化硅。

[0012] 方便地，4 族金属配合物是二（酚盐）醚配合物的配合物，例如遵循下式的配体：

![配合物结构](image)

[0014] 其中从氧 (O) 至 M 的键中至少 2 个是共价的，而其它键是配位的；AR 是可以相同或不同于其它 AR 基团的芳族基团，其中各 AR 独立地选自任选经取代的芳基和任选经取代的杂芳基；B 是不计氢原子具有 3 至 50 个原子的缩连基团并且选自任选经取代的二价烃基和任选经取代的二价含杂原子的烃基，M 是选自 HF 和 Zr 的金属；L 独立地是与 M 形成共价、配位或离子键的部分；而 L’是 1, 2, 3 或 4。

[0015] 在一种实施方式中，二（酚盐）醚配合物遵循下式：

![二（酚盐）醚配合物](image)

[0016] 其中 R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{12}, R^{13}, R^{14}, R^{15}, R^{16}, R^{17}, R^{18} 和 R^{19} 各自独立地选自
叫做烷基，和任选经取代的烃基，含杂原子的烃基，烷氧基，芳氧基，甲硅烷基，甲硼烷基，膦基，氨基，烷硫基，芳硫基，硝基，及其组合；任选地两个或更多个R基团能够一起组合为环结构（例如，单环或多环结构），其中所述环结构具有3至12个环中的原子（不计氢原子）；

而B是不计氢原子具有3至50个原子的桥连基团并且选自任选经取代的二价烃基和任选经取代的二价含杂原子的烃基。

[0018] 发明详述

[0019] 本文描述的是用于产生具有经ASTM 4020测定至少3×10⁷g/mol的分子量的聚乙烯的方法；在催化剂组合物存在下聚合乙烯，所述催化剂组合物包含作为活性组分的分散于至少一种液态烃溶剂中的前盐鞣酸的4族金属配合物。在本发明方法中，以约5至小于40ppm溶剂体积的量，将有效增加液态烃溶剂的电导率的化合物加至浆料。据发现，这种控制量的抗静电剂的加入使得催化剂活性最大化，而不存在凝胶化问题。

[0020] 定义

[0021] 如本文所用，短语“由下式表示”并非意在限制而是以与通常使用“包含”相同的方式使用。术语“独立地选自”在本文中用于指出有关基团——例如，R¹，R²，R³，R⁴和R⁵——能够是相同或不同的（例如，R¹，R²，R³，R⁴和R⁵可以全部是取代的烷基，或R¹和R²可以是取代的烷基而R³可以是芳基等）。单数的使用包括复数的使用并且反之亦然（例如己烷溶剂包括各种己烷）。命名的R基团一般具有本领域所承认的对应具有该命名的R基团的结构。术语“化合物”和“配合物”一般可在本说明书中互换使用，但是本领域技术人员可以认识到某些化合物是配合物并且反之亦然。出于示例意图，本文定义代表性的某些基团。这些定义期望补充和说明但并不排除本领域技术人员已知的定义。

[0022] “任选的”或“任选地”意指随后描述的事件或环境可以发生或可以不发生，并且所述描述包括所述事件或环境发生的情况以及所述事件或环境不发生的情况。例如，短语“任选经取代的烃基”意指烃基部分可以或可以不被取代并且该描述包括未经取代的烃基和其中存在取代的烃基。

[0023] 术语“烷基”如本文所用是指支化的或未支化的饱和烃基团，其一般地但不一定地含有1至约50个碳原子，例如甲基，乙基，正丙基，异丙基，正丁基，异丁基，仲丁基，叔丁基，辛基，癸基等，以及环烷基比如环戊基，环己基等。一般地，尽管还是不一定地，本文烷基可以含有1至约20个碳原子。“取代的烷基”是指用一个或多个取代基取代的烷基（例如苄基或氯甲基），而术语“含杂原子的烷基”和“杂烷基”是指烷基，其中至少一个碳原子用杂原子替换（例如，-Cl₂OCH₃是杂烷基的实例）。

[0024] 术语“烯基”如本文所用是指支化的或未支化的烃基团，其一般地但不一定地含有2至约50个碳原子和至少一个双键，比如乙烯基，正丙烯基，异丙烯基，正丁烯基，异丁烯基，辛烯基，癸烯基等。一般地，尽管还是不一定地，本文烯基含有2至约20个碳原子。“取代的烯基”是指用一个或多个取代基取代的烯基，而术语“含杂原子的烯基”和“杂烯基”是指烯基，其中至少一个碳原子用杂原子替换。

[0025] 术语“炔基”如本文所用是指支化的或未支化的烃基团，其一般地但不一定地含有2至约50个碳原子和至少一个三键，比如乙炔基，正丙炔基，异丙炔基，正丁炔基，异丁炔基，辛炔基，癸炔基等。一般地，尽管还是不一定地，本文炔基可以具有2至约20个碳原子。“取代的炔基”是指用一个或多个取代基取代的炔基，而术语“含杂原子的炔基”和“杂炔
基”是指炔基，其中至少一个碳原子用杂原子替换。

0026 术语“芳基”以其通常含义使用，包括基本上在环周围数个键上离域的不饱和键。术语“芳基”如本文所用是指含有芳族环的基团。本文芳基包括这样的基团，其含有单芳族环或多芳族环，所述多芳基环是稠合在一起的、共价连接的或连接至共同基团比如甲基或亚甲基部分。更特定的芳基含有1个芳环或2或3个稠合或连接的芳族环，例如苯基、萘基、联苯基、芴基或菲基。在特别的实施方式中，芳基取代基包括1至约200个不是氢的原子，一般地1至约50个不是氢的原子，且特别地1至约20个不是氢的原子。在本文的某些实施方式中，多环部分是取代基，并且在所述实施方式中所述多环部分能够于适当原子处连接。例如，”芳基”能够是-1-萘基或2-萘基；”芴基”能够是1-芴基，2-芴基或9-芴基；而”菲基”能够是1-菲基，2-菲基，3-菲基，4-菲基或9-菲基。

0027 术语”烷氧基”如本文所用意指通过单个末端醚连接结合的烷基，即，”烷氧基”基团可以表示为-O-烷基，其中烷基如前述文所定义。术语”烷氧基”以相似方式使用，并且可以表示为-O-芳基，芳基如前述文所定义。术语”羟基”是指-OH。

0028 类似地，术语”烷基”如本文所用意指通过单个末端硅酸链连接结合的烷基，即”烷基”基团可以表示为-Si-烷基，其中烷基如前述文所定义。术语”烷基”以类似方式使用，并且可以表示为-Si-芳基，其中芳基如前述文所定义。术语”烷基”是指-SiH。

0029 术语”丙二烯基”在本文中以常规含义使用，其指具有结构-CH=CH-CH=的分子片段。”丙二烯基”基团可以是未经取代的或用一个或多个氟代取代基取代的。

0030 术语”芳基”如本文所用，除非另有指定，是指含有单芳族环或多芳族环的芳族取代基，所述多芳族环是稠合的、共价连接的或连接至共同基团比如甲基或亚甲基部分。更特定的芳基含有1个芳环或2或3个稠合或连接的芳族环，例如苯基、萘基、联苯基、芴基、菲基等。在特别的实施方式中，芳基取代基具有1至约200个碳原子，一般地1至约50个碳原子，特别地1至约20个碳原子。"取代的芳基"是指用一个或多个取代基取代的芳基部分，（例如甲苯基，均三甲苯基和全氟苯基），而术语“含杂原子的芳基”和“杂芳基”是指芳基，其中至少一个碳原子用杂原子替代；术语“杂芳基”包括例如各环，比如疋吨、吡啶、异噻唑、呋喃、噻唑、噻吩、噻嗪、噻唑、异噻唑、噻二唑、三唑等或这些环的苯并稠合类似物，比如吲哚、咔唑、苯并呋喃、苯并噻唑等）。在某些实施方式中本文，多环部分是取代基并且在所述实施方式中多环部分能够于适当原子处连接。例如，”萘基”能够是1-萘基或2-萘基；”芴基”能够是1-芴基，2-芴基或9-芴基；而”菲基”能够是1-菲基，2-菲基，3-菲基，4-菲基或9-菲基。

0031 术语”卤代”和”卤素”以常规含义使用，其指氯、溴、氟或碘取代基。

术语“杂芳基”是指芳基残基，芳族环中包括一个或多个杂原子。特定的杂芳基包括含有杂芳族环的基团，所述芳族族环是如硝基、吡啶、异噻嗪、吡唑、呋喃、噻唑、噻唑、噻唑、异噻唑、噻二唑、三唑，和这些环的苯并稠合类似物如唑啉、咔唑、苯并呋喃、苯并噻唑等。

更一般地，修饰语“杂”或“含杂原子的”以及“杂烷基”或“含杂原子的烃基”是指分子或分子片段，其中一个或多个碳原子用杂原子替换。因此，术语“杂烷基”是指含杂原子的烷基取代基。在术语“含杂原子的”引入一系列可能含杂原子的基团的情况下，期望该术语应用于所述基团的每一个成员。即，短语“含杂原子的烷基、烯基和炔基”应理解为“含杂原子的烷基，含杂原子的烯基和含杂原子的炔基”。

烃基”是指烃基残基，其含有 1 至约 50 个碳原子，特别是 1 至约 24 个碳原子，特别是 1 至约 16 个碳原子，包括支化的或未支化的、饱和的或不饱和的种类，如烷基、烯基、芳基等。术语“低碳烃基”意指 1 至 6 个碳原子，特别是 1 至 4 个碳原子的烃基。

如前述定义中的某些所指，在“取代的烃基”、“取代的芳基”、“取代的烷基”等的“取代的”是指在所述烃基、烷基、芳基或其它部分中，至少一个结合至碳原子的氢原子用一个或多多个取代基替换。所述取代基是如羟基、烷氧基、酰基、醚基、氯代、甲硅烷基等。在术语“取代的”出现在一系列可能取代的基团之前的情况下，期望该术语应用于所述基团的每一个成员。即，短语“取代的烷基、烯基和炔基”应理解为“取代的烷基、取代的烯基和取代的炔基”。类似地，“任选经取代的烷基、烯基和炔基”应理解为“任选经取代的烷基、任选经取代的烯基和任选经取代的炔基”。

术语“饱和的”是指在残基各原子之间不存在双键和三键，如乙基、环己基、吡咯烷基等。术语“不饱和的”是指在残基各原子之间存在一个或多个双键和三键，如乙烯基、烯丙基、炔化物、噻唑啉基、环己烯基、乙酰基等，尤其是包括烯基和炔基，以及其中双键离域的基团，如下文所定义的芳基和杂芳基。

二价烃基”、“二价烷基”、“二价芳基”等中的“二价”是指所述烃基、烷基、芳基或其它部分在两个点键合至原子、分子或部分，其中两个成键点是共价键。

如本文所用术语“甲硅烷基”是指-SiZ’Z”Z”残基，其中 Z”、Z’ 和 Z”各自独立地选自氢和任选经取代的烷基，烯基，炔基，含杂原子的烷基，含杂原子的烯基，含杂原子的炔基，芳基，杂芳基，烷氧基，芳氧基，氨基，甲硅烷基及其组合。

如本文所用术语“甲硅烷基”是指-SiZ’Z”Z”基团，其中 Z”、Z’ 和 Z”各自如前文所定义。

如本文所用，术语“磷”是指基团-PZ’Z”，其中 Z”和 Z’ 各自如前文所定义。如本文所用，术语“磷”是指基团-PZ’Z”Z”，其中 Z”、Z’ 和 Z”各自如前文所定义。术语“氨基”在本文中用于指基团-NZ’Z”Z”，其中 Z”和 Z’ 各自如前文所定义。术语“胺”在本文中用于指基团-NZ’Z”Z”，其中 Z”、Z’ 和 Z”各自如前文所定义。

如本文所用的其它缩写包括：“1Pr”是指异丙基；“tBu”是指叔丁基；“Me”是指甲基；“Et”是指乙基；“Ph”是指苯基；“Mes”是指均三甲苯基 (2,4,6-三甲基苯基)；“TFA”是指三氟乙酸盐；“THF”是指四氢呋喃；“Np”是指萘基；“Cbz”是指苄基；“Ant”是指氨酯；“H8-Ant”是指 1,2,3,4,5,6,7,8- 八氢葸基；“Bn”是指苄基；“Ac”是指 CH3CO；“EA”是指乙酸乙酯；“Ts”是指对甲苯磺酰氯或同义的对甲苯磺酰基；“THP”是指四氢呋喃；“dppe”是指 1,1’ - 二（二苯基膦基）二茂铁；“MOM”是指甲氧基甲基。
“聚乙烯”是指90%乙烯衍生单元，或95%乙烯衍生单元，或100%乙烯衍生单元构成的共聚合物。从这，聚乙烯是可以是具有其他单体单元的均聚物或共聚物，包括三聚物。比如分析本文描述的聚乙烯能够包括至少一种或多种其他烯烃和/或共聚单体。例如，在一种实施方式中，烯烃能够含有3至16个碳原子；在另一实施方式中含有3至12个碳原子；在又一实施方式中含有4至10个碳原子；而在又一实施方式中含有4至8个碳原子。示例性共聚单体包括但不限于，丙烯，1-丁烯，1-戊烯，1-己烯，1-庚烯，1-辛烯，4-甲基戊-1-烯，1-癸烯，1-十二碳烯，1-十六碳烯等。本文还可以使用多烯烃共聚单体比如1-己二烯，1-4-己二烯，环戊二烯，双环戊二烯，4-乙烯基环己-1-烯，1,5-环辛二烯，5-亚乙烯基-2-降冰片烯和5-乙烯基-2-降冰片烯。其它实施方式可以包括乙基丙烯酸酯或甲基丙烯酸酯。

“高分子量聚乙烯”是指重均分子量至约3x10^6g/mol的聚乙烯组合物，并且如本文所述，包括至少一种或多种其他烯烃和/或共聚单体。出于本说明书的意图，本文所提及的分子量按照Margolies公式来确定（“Margolies分子量”）。

“高分子量聚乙烯”是指重均分子量至约3x10^6g/mol且大于约1x10^6g/mol的聚乙烯组合物。在某些实施方式中，高分子量聚乙烯组合物的分子量为约2x10^6g/mol至小于约3x10^6g/mol。

“超高分子量聚乙烯”是指重均分子量至少约3x10^6g/mol的聚乙烯组合物。在某些实施方式中，超高分子量聚乙烯组合物的分子量为约3x10^6g/mol至约30x10^6g/mol，或约3x10^6g/mol至约20x10^6g/mol，或约3x10^6g/mol至约10x10^6g/mol，或约3x10^6g/mol至约6x10^6g/mol。

术语“双峰”是指聚合物的组合物例如聚乙烯具有“双峰分子量分布”。双峰组合物能够包括具有至少一种可鉴定的较高分子量的聚乙烯组合物和具有至少一种可鉴定的较低分子量的聚乙烯组合物，例如SEC曲线上的两个不同的峰（GPC色谱图）。具有超过2种不同分子量分布峰的物质将被认为是所用术语“双峰组合物”，但是该物质还可以称为“多峰”组合物，例如三峰组合物或甚至四峰组合物等。

“宽分子量分布”中的术语“宽”包括这样的情况，其中聚乙烯组合物包含较高和较低分子量组分的掺合物，但是其中在SEC曲线上不存在2个明显的峰（GPC色谱图），而只是单一的组合物更宽的单峰。

“超高分子量聚乙烯组合物”是指双峰（或多峰）组合物中具有至少约3x10^6g/mol的重均分子量的聚乙烯组合物。在某些实施方式中，超高分子量聚乙烯组合物具有约3x10^6g/mol至约20x10^6g/mol，或约3x10^6g/mol至约15x10^6g/mol，或约3x10^6g/mol至约10x10^6g/mol，或约3x10^6g/mol至约6x10^6g/mol的重均分子量。在组合物包括大于2种组分的情况下，例如三峰组合物，该多峰组合物可以具有大于1种超高分子量组分。

“高分子量聚乙烯组合物”是指双峰（或多峰）组合物中的重均分子量小于约3x10^6g/mol（例如小于约2.5x10^6g/mol，约2.25x10^6g/mol或约2.0x10^6g/mol）且大于约1x10^6g/mol的聚乙烯组合物。

配体

本发明方法中所用催化剂中采用的配体能够一般地定义为酚盐醚配体，更特别地为二（酚盐）醚配体。例如，适用于本发明方法中的配体可以通过下述通式表征：
[0052]

其中各配体具有至少两个氢原子，其能够在与金属原子或金属前体或碱的成键反应中除去，AR 是可以相同或不同于其它 AR 基团的芳族基团，其中一般地各 AR 独立地选自任选经取代的氨基或任选经取代的杂基基团；而 B 是具有 3 至 50 个原子 (不计氢原子) 的桥连基团。在一种优选的实施方式中，B 是由 3 至 20 个碳原子 (不包括氢原子) 的桥。

[0053] 一般地，上芳族环 “是羟基键合至的环或是其一部分的环。类似地，“下芳族环”是氢键合至的环或是其一部分的环。在某些实施方式中，AR-AR (也即，1 个上芳族环及其相应下芳族环形成的结构) 是双芳基种类，更特别是联苯基。

[0054] 在某些实施方式中，桥连基团 B 选自二价烃基和三价含杂原子的烃基 (包括例如约 3 至 20 个碳原子)，其可以任选经取代。在更特别的实施方式中，B 选自任选经取代的二价烃基，烯基，炔基，杂烷基，杂烯基，杂炔基，芳基，杂芳基和甲烷烷基。在这些实施方式的任意中，桥连基团能够用一个或多个下述基团取代；任选经取代的烃基或任选经取代的含杂原子的烃基，比如任选经取代的烷基，烯基，炔基，杂烷基，杂烯基，杂炔基，芳基或杂芳基。应指出，上述取代不包括在式 1 桥连基团 B 与氧原子之间的键。烃基或含杂原子的烃基中的两个或更多个能够联接形成环结构，该结构中具有 3 至 50 个原子 (不计氢原子)。在桥连基团包括一个或多个环结构的某些实施方式中，可能辨识出多于一个的扩展自氧原子的桥原子链，而在所述情况下能够方便将所述“桥”定义为氧原子之间的最短连接路径，而将“取代基”定义为键合于桥原子链的基团。在存在 2 种结合同样短的连接路径的情况下，所述桥能够定义为沿着任一路径。

[0055] 在其它实施方式中，B 能够由通式 -(Q"R^α_{z+2}+_z) - 代表，其中各 Q" 独立地是碳或硅，并且其中各 R^α 独立地选自氢和任选经取代的烃基或任选经取代的含杂原子的烃基。两个或更多个 R^α 基团可以联接形成环结构，该环结构中具有 3 至 50 个原子 (不计氢原子)。在这些实施方式中，z" 是 1 至 10 的整数，而特别 1 至 5 的整数，甚至特别 2 至 5 的整数，而 z 是 0, 1, 2。例如，在 z" 是 2 时，不存在 Q" 连接的 R^α 基团，这允许其中一个 Q" 多重键合至第二个 Q" 的那些情况。在更特定的实施方式中，R^α 选自硅，氢素，和任选经取代的烷基，烯基，炔基，杂烷基，杂烯基，杂炔基，芳基，杂芳基，烷氧基，芳氧基，甲烷烷基，甲烯烷基，甲硫烷基，膦基，氨基，烷基硫，芳基硫，及其组合，其中 B 中至少一个 R^α 基团不是氢。在上述提及的实施方式中的任意中，B 基团能够包括一个或多个手性中心。因此，例如，B 能够由式 -CHR^α-(CH₂)ₙCHR^β- 代表，其中 R^α 和 R^β 独立地选自任选经取代的烷基，杂烷基，芳基或杂芳基，R^α 和 R^β 能够排列为任意相对构型 (例如顺式 / 反式、反式 / 反式等)，并且其中该配体能够作为外消旋混合物或以对映体纯形式产生。

[0056] 在特别的实施方式中，桥连基团 B 包括扩展自氧原子的一个或多个桥原子的键，以及相邻地位于氧原子中的一个或两个的所述桥原子中的一个或多个键合至一个或多个取代基 (不计如上所述的连接至氧原子中的一个或两个或者沿链的邻接桥原子的键)，其中所述取代基独立地选自任选经取代的烷基，杂烷基，芳基和杂芳基。在更特别的实施方式
中，桥连基团B用多个取代基取代，所述取代基独立地选自任选经取代的烷基、杂烷基、芳基和杂芳基，从而使得与氧原子中的一个或两者相邻的各桥原子键合至少一个取代基，还是不计连接至氧原子或邻接桥原子的键。在所述实施方式中，取代基中的两个或更多个能够联接形成环结构，环结构中具有3至50个原子（不计氢原子）。

因此，在某些实施方式中，0-B—0片段能够通过下式之一表征：

其中各Q独立地选自碳和硅，各R独立地选自氢和任选经取代的烃基和含杂原子的烃基，条件是至少一个R取代基不是氢，其中所述R取代基任选地联接形成环结构，环结构中不计氢原子具有3至50个原子，而m'是0、1、2或3。在这些实施方式中的特定的0—B—0片段包括例如0-(CH₂)₃-O, 0-(CH₃)₄-O, 0-(CH₃)₂-CH₂-O, 0-(CH₃)₃-CH₂-O, 0-(CH₃)₄-O, 0-(CH₃)₅-CH₂-O, 0-(CH₃)₆-CH₂-O, 0-(CH₃)₇-CH₂-O, 0-(CH₃)₈-CH₂-O, 0-(CH₃)₉-CH₂-O, 0-(CH₃)₁₀-CH₂-O, 0-(CH₃)₁₁-CH₂-O, 0-(CH₃)₁₂-CH₂-O, 0-(CH₃)₁₃-CH₂-O, 0-(CH₃)₁₄-CH₂-O, 0-(CH₃)₁₅-CH₂-O, 0-(CH₃)₁₆-CH₂-O.

其它特定的桥连部分描述于本文的实施例配体和配伍物中。

在特别的实施方式中，配体能够通过下式表征：

其中R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶和R¹⁹各自独立地选自氢、卤素，和任选经取代的烃基，含杂原子的烃基，烷氧基，芳氧基，甲硅烷基，甲硼烷基，膦基，氨基，烷硫基，芳硫基，硝基，及其组合；任选地两个或更多个R基团能够一起组合为环结构（例如单环或多环结构），所述环结构具有3至12个环中的原子（不计氢原子）；而B是如前文所定义的桥连基团。

在更特定的实施方式中，R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸和R¹⁹独立地选自氢，卤素，和任选经取代的烃基，杂烃基，芳基，杂芳基，烷氧基，芳氧基，甲硅烷基，氨基，烷硫基和芳硫基。在某些实施方式中，R² 和 R¹² 中至少一个不是氢，而在其它实施方式中，R² 和 R¹² 均不是氢。
[0067] 在更特定的实施方式中，R^2 和 R^{12} 选自芳基和杂芳基 (例如苯基、取代的苯基、蒽基
咔唑基、均三甲苯基、3,5-(叔-Bu)2-苯基等) ; R^3、R^4、R^5、R^6、R^7、R^8、R^9、R^{13}、R^{14}、R^{15}、R^{16}、R^{17}、
R^{18} 和 R^{19} 如上文所定义; 而 B 是 :

![结构式]

[0069] 其中 Q、R^{60} 和 m' 如前文所定义。

[0070] 在又一特定的实施方式中，R^2 和 R^{12} 独立地选自下列通式的取代的或未经取代的
部分 :

![结构式]

[0072] 其中标记的断开键是至分子其余部分的连接点 ; R^4 和 R^{14} 各自是烷基 ; R^3、R^4、R^5、R^7、
R^8、R^{13}、R^{15}、R^{16}、R^{17}、R^{18} 和 R^{19} 是氢，而 B 选自 :

![结构式]

[0074] 示例结构仅出于示范目的的提供，不应视为具有限制性含义。例如，环中的一个或多个
可以用一个或多个选自例如 Me、iPr、Ph、Bn、tBu 等的取代基取代。

[0075] 在更特定的实施方式中，配体能够通过下式表征 :
在式 III 中，R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸ 和 R⁹ 各自独立地选自氢、卤素、和任选经取代的烷基、烯基、炔基、杂烷基、杂烯基、杂炔基、芳基、杂芳基、烷氧基、芳氧基、甲硅烷基、甲硼烷基、膦基、氨基、巯基、烷硫基和芳硫基、硝基，及其组合。剩余的取代基 B 如上文所定义。

在更特定的实施方式中，R² 选自芳基和杂芳基；R² 是烷基；R³、R⁵、R⁶、R⁷、R⁸、R⁹ 是氢；而 B 是：

其中 Q、R⁶₀ 和 m' 如前文所定义。

在另一特别的实施方式中，R² 选自下列通式的取代的或未经取代的部分：

R¹ 是烷基；R³、R⁵、R⁶、R⁷、R⁸、R⁹ 如上文所定义；而 B 选自：
[0085] 一种实施方式中，配体选自下述结构：

[0086] 通过援引将其全部内容并入本文。

[0089] 一旦形成所希望的配体，可以将其与金属原子、离子、化合物或其他金属前体化合物相组合。例如，在某些实施方式中，金属前体是活化的金属前体，这是指金属前体（描述如下）在与辅助配体组合或与其反应之前已与活化剂（描述如下）组合或与其反应。在某些应用中，将配体与金属化合物或前体相组合，而如果形成产品则所述组合的产品是不确定的。例如，可以同时地将配体与金属或金属前体化合物以及反应物、活化剂、捕获剂等加
入反应容器。另外，在加入金属前体之前或在加入金属前体之后，可以例如通过脱质子化反应或某些其它改性方法来改性配体。

[0091] 通常，金属前体化合物可以通过通式 M(L)n 表征，其中 M 是选自元素周期表第 4 族的金属，更特别地选自 Hf 和 Zr，特别是 Zr。L 自是独立地选自下述的配体：氰基，卤素，任选经取代的烷基，杂烷基，烯丙基，二烯，烯基，杂烯基，炔基，炔烃基，芳基，杂芳基，烷氧基，芳氧基，甲硼烷基，甲硅烷基，氨基，膦基，醚，硫醚，膦，胺，羧酸盐，烷硫基，芳硫基，1,3-丙二酮化物（1,3-dionate），草酸盐，碳酸盐，硝酸盐，硫酸盐，及其组合。任选地，两个或更多个 L 基团联接形成环结构。配体 L 中的一种或多种还可以离子键合至金属 M，并且例如，L 可以是非配位的或松散配位的或弱配位的阴离子（例如，L 可以选自与活化剂结合描述如下那些阴离子）；而任选地两个或更多 L 基团可以在环结构中连接在一起。（参见例如 Marks 等人，Chem. Rev. 2000, 100, 1391-1434，其中详述讨论了这些弱相互作用。）下标 n 是 1, 2, 3, 4, 5 或 6。金属前体可以是单体、二聚体或其更高的多聚体。

[0092] 适宜的铪和锆前体的特定实例包括但不限于：HfCl4，Hf(CHO)2，Hf(CH2)2Cl2，Hf(CH2)3Cl3，Hf(CHO)3Cl3，Hf(CHO)4，HfCl4，Hf(CHO)2Cl2，Hf(CHO)3Cl3，h

[0093] 配体与金属前体化合物的比率一般是约 0.1:1 至约 10:1，或约 0.5:1 至约 5:1，或约 0.75:1 至约 2.5:1，更特别地约 1:1。
体用氧作为连接至金属原子的结合原子。

[0097] 另外，在某些实施方式中，金属-配体配合物能够描述为具有这样的配体，其能够以至少2种近似C₃对称的配物异构体方式配位。近似C₃对称是指配体与金属配位，从而各配体部分占据金属中心周围的4个象限，以近似C₃对称的方式向配体L延伸；并且近似是指由于影响对称的数种因素可以不存在真正的对称，所述因素包括例如桥的影响。在这些实施方式中，金属周围的配体构象能够描述为λ或δ。能够形成至少2种异构配合物，其可以相互为对映或非对映。对于含有一个或多个手性中心的配体（例如，具有手性中心的取代的桥），能够形成非对映的金属配体配合物。通过特别的配体-金属前体组合形成的非对映的配合物能够作为非对映体的混合物使用，或者能够得以分离并用作非对映体纯的配合物。

[0100] 在用作聚合催化剂时，各种非对映体的配合物可以具有不同的聚合效能，例如导致形成具有双峰分子量和/或组成分布的聚合物产品。

[0101] 在一种实施方式中，本发明催化剂中所用的金属-配体配合物可以通过下式表示：

\[\text{Ln' - AR-O - M - O - AR} \]

[0102] 其中AR、M、L和n'各自如前文所定义；而虚线指出至金属原子的可能结合，条件是虚线中至少两个是共价键。

[0103] 在这方面，应注意Ln'指金属M键合至数量n'的如前文所定义的L基团。
还应注意，在一种优选的实施方式中，B 是约 3 至约 50 个碳原子（不包括氢原子）的桥，更优选是约 3 至约 20 个碳原子的桥。

更特别地，本文所用的金属 - 配体配合物能够通过下式表征：

其中 R^2、R^3、R^4、R^5、R^6、R^7、R^8、R^9、R^{12}、R^{13}、R^{14}、R^{15}、R^{16}、R^{17} 和 R^{18} 各自如前文对结构（II）所定义，而 M、L、n’、B 如前文所定义并且如针对结构（V）的进一步解释。虚线指出至金属原子的可能结合，条件是虚线中至少 2 个是共价键。

适宜的金属 - 配体配合物的特定实例包括：
金属-配体配合物的制备

金属-配体配合物能够通过本领域技术人员已知的技术形成，比如在提供配合的条件下将金属前体和配体组合。例如，本发明配合物能够根据下文所示的一般方案制备：

![方案13]

如方案13中所示，在导致除去至少2个离去基团配体L的条件下，将根据式II的配体与金属前体M(L)n相组合，所述条件在所述方案中示为与氢(H)组合。能够使用采用其它已知配和途径的其它方案，其中将离去基团配体与其它部分（例如Li, Na等）组合，所述方案包括例如其中将配体L与其它部分反应的反应（例如其中使用配体的碱金属盐并且通过盐消除进行配合反应）。

催化剂载体

将上述的金属-配体配合物负载于粒状载体上以获得本发明方法中所用的负载型催化。适宜的载体包括氧化铝，氧化铝粘土，沸石，氧化镁，聚苯乙烯，取代的聚苯乙烯等。通常优选无机氧化物载体，特别是二氧化硅载体。

尽管，载体的颗粒尺寸在本发明方法中并不是关键，常常希望确保载体的平均颗粒尺寸d50小于58微米和一般地小于50微米，例如小于30微米，比如约4至约20微米。从而，一般发现通过将载体的颗粒尺寸控制在上述范围内，从而催化剂活性得到改善。

此外，在某些情况下希望载体颗粒具有10^9(d_w)/d_10小于0.6的跨度。

在加载金属-配体配合物之前，一般将载体用活化剂（比如下述活化剂中的一种或多种），特别用有机铝化合物比如铝氯化物例如甲基铝氯化物（MAO），进行处理。所述处理能够包括在适宜温度比如约500℃至约900℃，例如约600℃，优选在非氧化环境例如氮环境中，煅烧载体。然后，可将该煅烧的产品与适宜溶剂例如甲苯溶液，向其加入活化物质来源，加热至约50℃。在除去溶剂并干燥之后，获得经处理的载体，其适于接受金属-配体配合物。

将金属-配体配合物加载于载体上一般这样实现：将固体分散在液态烃中，将所得浆料组合，在保护性无水氯气氛下涡流搅拌混合物约1至约3小时。

在一种实施方式中，金属-配体配合物沉积在载体上的含量为约1μmol/克负载型催化剂至约100μmol/克负载型催化剂。在又一实施方式中，含量为约2μmol/克负载型催化剂至约100μmol/克负载型催化剂，在又一实施方式中，含量为约4μmol/克负载型催化剂至约100μmol/克负载型催化剂。在又一实施方式中，金属-配体配合物沉积在载体上的含量是约1μmol/克负载型催化剂至约50μmol/克负载型催化剂。在又一实施方式中，含量是约2μmol/克负载型催化剂至约50μmol/克负载型催化剂，在又一实施方式中，含量是约4μmol/克负载型催化剂至约50μmol/克负载型催化剂。在其它实施方式中，金属-配体配合物沉积在载体上的含量是约1μmol/克负载型催化剂至约25μmol/克负载型催化剂，约2μmol/克负载型催化剂至约25μmol/克负载型催化剂，或者约4μmol/
克负载型催化剂至约 25 μmol/克负载型催化剂。在其它实施方式中，金属配体配合物沉定
在载体上的载量是约 1 μmol/克负载型催化剂至约 20 μmol/克负载型催化剂。约 2 μmol/克
负载型催化剂至约 20 μmol/克负载型催化剂，或者约 4 μmol/克负载型催化剂至约
20 μmol/克负载型催化剂。在又一实施方式中，金属-配体配合物沉定在载体上的载量是
约 1 μmol/克负载型催化剂至约 15 μmol/克负载型催化剂，约 2 μmol/克负载型催化剂
至约 10 μmol/克负载型催化剂，约 2 μmol/克负载型催化剂至约 10 μmol/克负载
型催化剂，或者约 3 μmol/克负载型催化剂至约 10 μmol/克负载型催化剂。在其它
实施方式中，金属-配体配合物沉定在载体上的载量是约 1 μmol/克负载型催化剂，约
2 μmol/克负载型催化剂至约 4 μmol/克负载型催化剂，约 10 μmol/克负载型催化剂，约
20 μmol/克负载型催化剂，约 30 μmol/克负载型催化剂，约 40 μmol/克负载型催化剂，约
50 μmol/克负载型催化剂或甚至约 100 μmol/克负载型催化剂。

[0122] 2 种不同的金属-配体配合物可以沉定在有机或无机载体上以形成 2 组分共负
载型催化剂。所述 2 组分催化剂特别地在于种子双峰超高分子量聚乙烯。在一种实施方
式中，2 种金属-配体配合物沉定在载体上的载量是约 1 μmol/克负载型催化剂至约
100 μmol/克负载型催化剂。在又一实施方式中，金属-配体配合物沉定在载体上的载量
是约 2 μmol/克负载型催化剂至约 100 μmol/克负载型催化剂，或在又一实施方式中，约
4 μmol/克负载型催化剂至约 10 μmol/克负载型催化剂。在一种实施方式中，2 种金属-
配体配合物沉定在载体上的载量是约 1 μmol/克负载型催化剂至约 50 μmol/克负载
型催化剂。在又一实施方式中，金属-配体配合物沉定在载体上的载量是约 2 μmol/克
负载型催化剂至约 50 μmol/克负载型催化剂；或在又一实施方式中，约 4 μmol/克负载
型催化剂至约 50 μmol/克负载型催化剂。在又一实施方式中，金属配体配合物沉定在载体上
的载量是约 1 μmol/克负载型催化剂至约 25 μmol/克负载型催化剂，约 2 μmol/克负载
型催化剂至约 25 μmol/克负载型催化剂，或者约 4 μmol/克负载型催化剂至约 25 μmol/克
负载型催化剂。在其它实施方式中，金属配体配合物沉定在载体上的载量是约 1 μmol/克
负载型催化剂至约 20 μmol/克负载型催化剂，约 2 μmol/克负载型催化剂至约 20 μmol/克
负载型催化剂，或者约 4 μmol/克负载型催化剂至约 20 μmol/克负载型催化剂。在其它
实施方式中，金属-配体配合物沉定在载体上的载量是约 1 μmol/克负载型催化剂，约
2 μmol/克负载型催化剂至约 10 μmol/克负载型催化剂，或者约 4 μmol/克负载型催化剂
至约 10 μmol/克负载型催化剂。在其它实施方式中，金属-配体配合物沉定在载体上的载
量是约 1 μmol/克负载型催化剂，约 2 μmol/克负载型催化剂至约 10 μmol/克负载型催化剂，或
者甚至约 4 μmol/克负载型催化剂至约 10 μmol/克负载型催化剂。在其它实施方式中，金
属-配体配合物沉定在载体上的载量是约 1 μmol/克负载型催化剂，约 2 μmol/克负载型
催化剂，约 4 μmol/克负载型催化剂，约 10 μmol/克负载型催化剂，约 20 μmol/克负载
型催化剂，约 30 μmol/克负载型催化剂，约 40 μmol/克负载型催化剂，约 50 μmol/克负载
型催化剂或甚至约 100 μmol/克负载型催化剂。

[0123] 在 2 种金属-配体配合物沉定在载体上的情况下，第一配合物与第二配合物的摩
尔比可以是约 1:1，或者另选地，负载的 2 组分配合物可以包括一种配合物相对另一种的摩
尔过量。例如，第一配合物与第二配合物的比率可以是约 1:2；约 1:3；约 1:5；约 1:10；约
1:20 或更多。在一种实施方式中，沉定在载体上的第一金属-配体配合物与第二金属-配
体配合物的比率是约1:1和1:10；而在又一实施方式中该比率是约1:1至约1:5。此外，比
率可以随着需要调节，并且可以由实验来确定以获得双峰组合物，其具有在高分子量组分与
低分子量聚乙烯组分之间的目标分裂。
[0124] 用于金属-配体配合物的活化剂
[0125] 在与一种或多种适宜活化剂相组合时，上述金属-配体配合物是活性的聚合催化
剂。广泛地，活化剂可以包含铝氧烷、路易斯酸、质子酸、相容的非干扰性活化剂和前述的组
合。下述参考文献中已教导将这些类型的活化剂与不同的组合物或金属配合物一起使用，
施方式中，优选离子型或成离子型活化剂。在其它实施方式中，优选铝氧烷活化剂。
[0126] 在一种实施方式中用作活化剂的适宜成离子化合物包含阳离子，其是能供给质子
的质子酸，以及亲性、相容、非干扰性的阴离子，A-。适宜的阴离子包括但不限于，构成单配
位配合物的那些，所述配合物包含带电金属或准金属核心。从机理上讲，阴离子与烯烃、
二烯烃和不饱和化合物或其中性路易斯碱如醚或氨的替代充分地不收定。适宜的金属
包括但不限于铝、金和铂。适宜的准金属包括但不限于硼、磷和铁。当然，含有构成配位配合
物的阴离子的化合物是熟知且众多的；所述配位配合物含单个金属或准金属原子，特别是人
阴离子部分中含单个硼原子的所述化合物是可商购的。
[0127] 特别地，所述活化剂可以由下述通式代表：
[0128] \[(\text{I} \cdot \text{H}) \cdot (\text{A}^{-})\]
[0129] 其中 I-是中性路易斯碱；(\text{I} \cdot \text{H})-是质子酸；A-是非干扰性的、相容的具有电荷
d-的阴离子，而 d 是 1 至 3 的整数。更特别地，A-对应式：(\text{M}^{2+} \cdot \text{Q})^{-}，其中 h 是 4 至 6 的整
数；\text{M}^{2-} 是选自元素周期表 13 族的元素；而 Q 独立地选自甲烷，二烷基乙酰胺，卤素，烷
氧基，芳氧基，烃基，和取代的烃基残基（包括卤素取代的烃基，比如全卤化的烃基残基），
所述 Q 具有或至 20 个碳。在更特定的实施方式中，d 是 1，即平衡离子具有单个负电荷且
相应于式 A-。
[0130] 包含硼或铝的活化剂能够由下述通式代表：
[0131] \[(\text{I} \cdot \text{H}) \cdot (\text{Q})^{-}\]
[0132] 其中 I- 如前述文所定义；J 是硼或铝，而 Q 是氟化的 C1-20 烃基。最特别地，J 独
立地选自氟化的芳基，比如五氟苯基（也即 C_{6}F_{5} 基团）或 3,5-二 (CF_{3})_{2}C_{6}H_{5} 基团。示例
性，但非限制性地，可以在制备本发明的经改良的催化剂中用作活化助催化剂的硼化合物
的实例是三取代的铵盐比如：四苯基硼酸三甲基铵，四苯基硼酸三乙基铵，四苯基硼酸三丙
基铵，四苯基硼酸三正丁基胺，四苯基硼酸三（叔丁基）胺，N,N-二甲基苯胺阳离子
四苯基硼酸盐，N,N-二乙基苯胺阳离子四苯基硼酸盐，N,N-二甲基苯胺阳离子四-(3,5-二
（三氟甲基）苯基) 硼酸盐，N,N-二甲基-（2,4,6-三甲基苯胺阳离子）四苯基硼酸盐，
四（五氟苯基）硼酸三甲基铵，四（五氟苯基）硼酸三乙基铵，四（五氟苯基）硼酸三丙
基铵，四（五氟苯基）硼酸三（正丁基）铵，四（五氟苯基）硼酸三（仲丁基）铵，N,N-二
甲基苯胺阳离子四（五氟苯基）硼酸盐，N,N-二乙基苯胺阳离子四（五氟苯基）硼酸盐，
N,N-二甲基-（2,4,6-三甲基苯胺阳离子）四（五氟苯基）硼酸盐，四-(2,3,4,6-四氟苯
基硼酸三甲基铵和 N,N-二甲基苯胺阳离子四-(2,3,4,6-四氟苯基) 硼酸盐；二烷基铵盐
比如：四（五氟苯基）硼酸二（异丙基）铵，和四（五氟苯基）硼酸二环己基铵，和三取代的锌盐比如：四（五氟苯基）硼酸三苯基鎓，四（五氟苯基）硼酸三（邻甲苯基）鎓，和四（五氟苯基）硼酸三（2,6-二甲基苯基）鎓；N,N-二甲基苯胺阳离子四（3,5-二（三氟甲基）苯基）硼酸盐：HNMe₂(C₁₈H₃₇)₂⁺B(C₆F₅)₃⁻；HNPh₂(C₁₈H₃₇)₂⁺B(C₆F₅)₃⁻和（四-nBu-Ph）NH(正己基)₂⁺B(C₆F₅)₃⁻和（四-nBu-Ph）NH(正癸基)₂⁺B(C₆F₅)₃⁻。特定的L*⁺-H⁺阳离子是N,N-二烷基苯胺阳离子，比如HNMe₂Ph⁺，取代的N,N-二烷基苯胺阳离子，比如（nBu-C₆H₄）NH(正-C₆H₃)₂⁺和（nBu-C₆H₄）NH(正-C₆H₃)₂⁺和HNMe₂(C₆H₄)₂⁺。阴离子的特定实例是四（3,5-二（三氟甲基）苯基）硼酸盐和四（五氟苯基）硼酸盐。在某些实施方式中，特定的活化剂是PhNMe₂H⁺B(C₆F₅)₃⁻。

[0133] 其它适宜的成离子型活化剂包含下式代表的阳离子氧化剂和非干扰性的、相容的阴离子的盐：

[0134] （0X⁺）ₙ(A⁺)ₙ。

[0135] 其中：0X⁺是具有电荷 +e⁺的阳离子氧化剂；e 是 1 至 3 的整数；而 A⁺ 和 d 如前文所定义。阳离子氧化剂的实例包括：二茂铁阳离子，烃基－取代的二茂铁阳离子，Ag⁺，或 Pb⁺2。A⁺的特定实施方式是关于质子酸的活化助催化剂预先定义的那些阴离子，特别是四（五氟苯基）硼酸盐。

[0136] 另一适宜的成离子型活化助催化剂包含化合物，其是下式代表的碳正离子或甲硅烷基阳离子与非干扰性的，相容的阴离子的盐：

[0137] C⁺⁺A⁻

[0138] 其中：C⁺⁺是 C₁-100 碳正离子或甲硅烷基阳离子，而 A⁻如前文所定义。优选的碳正离子是三苯基甲阳离子，即三苯基碳正离子。甲硅烷基阳离子可以通过式 Z⁺⁺Z⁺⁺Si⁺⁺ 阳离子表征，其中 Z⁺⁺、Z⁺⁺和 Z⁺⁺各自独立地选自氢，卤素，和任选烃基或取代的烃基，烯基，炔基，杂烷基，杂烯基，芳基，杂芳基，烷氧基，芳氧基，甲硅烷基，甲硅烷基基团，腈基，氨基，硫基，烷硫基，芳硫基，及其组合。在某些实施方式中，指定的活化剂是Ph₃C⁺⁺B(C₆F₅)₃⁻。

[0139] 其它适宜的活化助催化剂包含化合物，其是式（A⁺⁺）n（Z⁺⁺）j⁺⁺的代表的盐，其中 A⁺⁺是电荷 +na⁺的阳离子；Z⁺⁺是 1 至 50，特别 1 至 30 个原子（不计氢原子）的阴离子基团，还含有两个或更多个路易斯碱位点；j⁺⁺各自独立地选自 Z⁺⁺的至少一个路易斯碱位点配置的路易斯酸，并且任选地两个或更多个 j⁺⁺基团可以在具有多个路易斯酸官能度的部位中联接在一起；j 是 2 至 12 的数，和 a，b，c 和 d 是 1 至 3 的整数，条件是 a+b 等于 c+d。参见 WO 99/42467，将其通过援引并入本文。在其它实施方式中，这些活化助催化剂的阴离子部分可以通过下式表征（（C₆F₅）₃⁺⁺-LN-M⁺⁺（（C₆F₅）₃⁺⁺），其中 M⁺⁺是硼或铝而 LN 是联接基团，其特定选自氧化物、叠氮化物、二氯胺和咪唑阴离子。阴离子部分特别是季胺。参见例如，LaPointe，等人，J. Am. Chem. Soc. 2000, 122, 9560-9561，将其通过援引并入本文。

[0140] 此外，适宜的活化剂包括路易斯酸，比如选自三（芳基）硼烷，三（取代的芳基）硼烷，三（芳基）铝烷，三（取代的芳基）铝烷的那些，包括活化剂比如三（五氟苯基）硼烷。其它有用成离子型路易斯酸包括具有两个或更多个路易斯酸位点的那些，比如描述于 WO 99/06413 或 Piers，等人，“New Bifunctional Perfluoroaryl Boranes: Synthesis and Reactivity of the ortho–Phenylene-Bridged Diboranes 1,2-（B(C₆F₅)₂）₂C₆H₄（X=H,F）”，
J. Am. Chem. Soc., 1999, 121, 3244-3245 的那些，将其均通过援引并入本文。其它有用路易斯酸是本领域技术人员清楚的。通常，路易斯酸活化组属于成离子型活化组内（尽管能够发现该一般规则的例外），并且该组倾向于排除下文所列的 13 族试剂。可以使用成离子型活化组的组合。

可以使用用于聚合作用的其它一般活化剂或化合物。这些化合物可以某些情况下的活化剂，但是还可以在聚合系统中发挥其它功能，比如烷基化金属中心或捕获杂质。这些化合物属于“活化剂”定义，但是本文中并不认为是成离子型活化剂。这些化合物包括可以通过下式表征的 13 族试剂：$M^+ R_{n-1}^0\cdot D_p$，其中 G^+ 选自 B, Al, Ga, In 及其组合，p 是 0, 1 或 2, R^0 各自独立地选自氢，卤素，和任选经取代的烷基，烯基，炔基，杂烷基，杂烯基，芳基，杂芳基，及其组合；而 D 各自独立地选自卤素，氢，烷氧基，芳氧基，氨基，磺基，烷硫基，芳硫基，膦基及其组合。在其它实施方式中，13 族活化剂是低聚或高聚的铝氧烷化合物，比如甲基铝氧烷及其已知修饰物。参见例如，Barron, “Alkylalumoxanes, Synthesis, Structure and Reactivity”, 33-67 页,”Metalloocene-Based Polyelefins: Preparation, Properties and Technology”, J. Schiers 和 W. Kaminsky 编著, Wiley Series in Polymer Science, John Wiley & Sons Ltd., Chichester, England, 2000, 及其中所引的参考文献。在其它实施方式中，可以使用下述通式定义的二价金属试剂：$M^+ R_{n-1}^0\cdot D_p$，其中在该实施方式中 p 是 0 或 1 而 R_{n-1}^0 和 D_p 如前文所定义。M^+ 是金属且选自 Mg, Ca, Sr, Ba, Zn, Cd 及其组合。在其它实施方式中，可以使用通式 $M^+ R_{n-1}^0$ 定义的碱金属试剂，而在该实施方式中 R^0 如前文所定义。M^+ 是碱金属且选自 Li, Na, K, Rb, Cs 及其组合。额外地，在催化剂组合中可以使用铝和 / 或硅烷或将其加入聚合系统。硅烷可以通过下式 $SiR_{n-1}^0\cdot D_p$ 表征，其中 R^0 如上文所定义，q 是 1, 2, 3 或 4 而 D_p 如前文所定义，条件是至少一个 D 是氢。

活化剂或活化剂的组合可以负载于有机或无机载体上。适宜的载体包括二氧化硅，氧化铝，粘土，沸石，氯化镁，聚苯乙烯，取代的聚苯乙烯。活化剂可以与金属 - 配体配合物共同负载。适宜的载体更完整地描述于题为“催化剂载体”的上述部分。

特别采用的金属：活化剂的摩尔比（组合物或配合物用作催化剂）是 1:10,000 至 100:1，更特别是 1:5000 至 10:1，更特别 1:10 至 1:1。在本发明的一种实施方式中，使用上述化合物的混合物，特别是 13 族试剂和成离子型活化剂的组合。13 族试剂与成离子型活化剂的摩尔比特别是 1:10,000 至 1000:1，更特别是 1:5000 至 100:1，更特别是 1:100 至 100:1。在这又一种实施方式中，成离子型活化剂与 13 族试剂相组合。又一种实施方式是上述化合物和 5-30 当量的 13 族试剂的组合，所述化合物具有约 1 当量的任选经取代的 N,N- 二烷基苯胺阳离子四（五氟苯基）硼酸盐。在某些实施方式中，可以使用约 30 至 2000 当量的低聚或高聚铝氧烷活化剂，比如经修饰的铝氧烷（例如烷基铝氧烷）。

浆料相乙烯聚合

在与上述活化剂相组合的情况下，本发明的负载型金属 - 配体配合物催化剂特别良好地适用于乙烯的浆料相聚合中，所述聚合产生非常高和超高分子量聚乙烯或者包含至少一种 VHMPE 和 UHMWPE 组分的双峰聚合物组合物。

为了引起聚合，最初将负载型催化剂和活化剂在适宜溶剂中制浆，所述溶剂一般为具有约 4 至约 14 个碳原子的液态烃。此外，将有效增加烃溶剂电导率的化合物以约 5 至小于 40ppm 溶剂体积，比如约 20 至约 30ppm 溶剂体积的量加入浆料。一般地，该
抗静电剂包含聚砜共聚物、聚合多元胺和油可溶的磺酸中的至少一种。适宜的抗静电剂是 Octastat®2000 2500, 3000, 5000, 或 Statsafe®2500, 3000, 5000, 6000, 6633 或 Atmer®163。进一步地，浆料可以含有捕获剂，比如烷基镁化合物，其用量一般为约 0.5mmol 至约 6mmol 每升羟基溶剂。

[0147] 在聚合条件下，将所得催化剂 / 抗静电剂浆料与乙烯接触，所述聚合条件一般包括约 20℃ 至约 90℃ 例如约 65℃ 至约 85℃ 的温度，和约 4 巴至约 40 巴的压力，持续约 15 分钟至约 210 分钟的时间。一般以约 0% 和约 10% 乙烯进料体积的氨的量加入氢来控制所生产的聚乙烯的分子量。

[0148] 聚乙烯产品

[0149] 上述浆料聚合过程的产品是聚乙烯粉末，其具有经 ASTM 4020 测定的至少 3x10⁵g/mol，比如约 3x10⁵g/mol 至约 5x10⁵g/mol，或约 1x10⁶g/mol 至约 2x10⁵g/mol，或约 3x10⁶g/mol 至约 2x10⁵g/mol，或约 3x10⁵g/mol 至约 10x10⁵g/mol，或约 3x10⁵g/mol 至约 6x10⁵g/mol 的分子量。粉末可以具有单峰分子量分布或双峰分子量分布，在后一情况中具有约 3x10⁵g/mol 至约 3x10⁶g/mol 的分子量的第一部分粉末以及具有约 0.3x10⁶g/mol 至约 10x10⁵g/mol 的分子量的第二部分粉末。一般地，第二较低分子量级分的量为 0 至 40%。

[0150] 此外，本发明的聚乙烯粉末一般地具有约 10 至约 1500 μm，一般约 50 至约 1000 μm，常常约 60 至约 700 μm 的 450 平均颗粒尺寸。在这方面，本文提及的聚乙烯粉末颗粒尺寸测量通过根据 ISO 13320 的激光衍射方法进行。

[0151] 本发明聚乙烯粉末的堆密度一般是约 0.13 至约 0.5g/ml，一般约 0.2 至约 0.5g/ml，特别是约 0.2 至约 0.5g/ml。本文提及的聚乙烯粉末堆密度测量通过 DIN 53466 进行。

[0152] 此外，聚乙烯粉末一般地具有约 60 至约 85% 的结晶度和约 2 至约 30 的分子量分布 (Mw/Mn)。

[0153] 聚乙烯产品的用途

[0154] 本发明过程所产生的聚乙烯粉末能够用于目前对常规形式的 VHMWPE 和 UHMWPE 所预期的全部应用。从而，粉末能够模压或挤出挤压为用于例如机械零件、衬垫、护板和螺纹植骨中的成形制品。另选地，粉末能够铸模中于约 140℃和约 300℃的温度烧结直至单独聚合物颗粒的表面在它们的接触点融合形成多孔结构。

[0155] 本发明现有下述非限制性实施例进行更特别的描述。

[0156] 在各实施例中，在包含二氧化硅负载型 ZrCl₅ 二（酚醛）醚配合物的催化剂和三异丙基铝 (TIBA) 助催化剂存在下，通过乙烯的浆料相聚合产生 UHMWPE。二氧化硅负载型配合物根据下述程序产生。

[0157] 将已预先在真空下在 600℃烘烧 5 小时的二氧化硅 (500mg) 置于 8ml 闪烁小瓶中。将二氧化硅在甲苯 (3.5ml) 中制浆，将 PMAO-1P (Azko-Nobel) (2.333ml 的 1.5M 甲苯溶液) 加入溶流搅拌中的二氧化硅 / 甲苯浆料。在室温下，将反应混合物制浆 30 分钟，然后加热至 50℃。然后，连续流流搅拌并在 50℃加热，通过氢气流除去甲苯。在 2.5 小时之后获得无水物质。在不同的 8ml 小瓶，将上述制备重复 3 次。在真空下在 50℃将物质进一步干燥额外的 1 小时，得到 2.94g 的 PMAO-1P/ 二氧化硅负载活化剂。所得负载型催化剂具有 A1 载量为 4.98mmol A1 每克 PMAO-1P/ 二氧化硅。
然后，将经 PMAO-IP 处理的二氧化硅载体与具有下式的 ZrCl₂⋅(酚盐) 醌配合物的甲苯溶液制浆；

二（酚盐）醚配体按 WO 2005/108406 的描述合成，并且在 80-100℃在甲苯中与 Zr(CH₂Ph)₂Cl₂(ET) 配合，持续 1-3 小时。浓缩反应混合物，冷却至 -30℃过夜。在冷却之前，将所烷加入浓缩的甲苯反应混合物。获得配合物，是结晶物质，将其溶于甲苯得到浓度 4.0mM 的配合物溶液。在 8ml 小瓶中于浴流搅拌下，将所溶液 (3.0ml, 12.0 μmol) 加入 PMAO-IP/ 二氧化硅 (4.98mmol Al/g) (300mg) 在庚烷 (3.0ml) 中的浆液。将浆液充分振摇，在室温下涡流搅拌 2 小时，然后在室温下用针穿透隔膜通 N₂ 气进行干燥。这花费约 1.5 小时。在真空下干燥该黄色（稍带橙色）物质。所得负载型催化剂具有的 Al 载量为 4.98mmol Al 每克 PMAO-IP/ 二氧化硅且过渡金属载量为 40 μmol 每克最终催化剂。

实施例 1

在 3 升的反应器中进行乙烯聚合，所述反应器首先用氮气冲洗，然后用烃溶剂 (C₆ 至 C₁₂ 脂族烃的混合物) (1.5 升) 和烷基醚 (TEA 200mmol/l) 的混合物调制。在 15 至 30 分钟的调理时间之后，排空液体。然后，向反应器充入 2 升烃溶剂，在搅拌下 (750rpm) 加热至 80℃。在氢气流下，将 2ml 的 100 重量% 的三异丁基铝溶液 (TIBA; 8mmol) 加入反应器，在 7 巴的乙烯压力加压反应器。

在手套箱中，将上述 100mg 的负载型配合物（相当于 4 μmol 金属）称量入滴液漏斗并悬浮于 30ml 烃溶剂。然后，在氢气流下将滴液漏斗的内容物转移入金属筒，将筒密封并在 9 巴氢气加压。将催化剂悬浮液注射入反应器中，同时监测参数如温度、乙烯流量、乙烯压力。在注射之后，将筒用 40ml 烃溶剂冲洗。在 53 分钟之后必须终止反应。反应器中不存在自由流动粉末，但有一大块聚合物。

实施例 2

使用与实施例 1 相同的聚合条件，但在为了聚合填充反应器时，将 40 μl 抗静电剂，相当于 20ppm/升烃溶剂，加入纯化的烃溶剂。抗静电剂是 The Associated Octel Company Limited 提供的 Octastat®2000，是聚醚共聚物、高分子多元胺和可溶于油的磺酸在烃溶剂中的混合物。

在 126 分钟反应时间之后，关闭乙烯进料，将反应器冷却至室温，通气，用氮冲洗 1 小时，将聚合物浆料收集入桶。然后过滤聚合物，用异丙醇洗涤，在 80℃干燥过夜。获得收率 126g 的自由流动粉末，相当于 1260g/g 的催化剂活性。
[0167] 实施例 3
[0168] 使用与实施例 1 相同的聚合条件，但在聚合前填充反应器时，将 60μl Octastat®2000 抗静电剂，相当于 30rpm/升烃溶剂，加入纯化的烃溶剂。在 156 分钟反应时间之后，关闭乙烯进料，将反应器冷却至室温，通气，用氮冲洗 1 小时，将聚合物浆料收集入桶中。然后过滤聚合物，用异丙醇洗涤，在 80°C 干燥过夜。获得收率 200g 的自由流动粉末，相当于 4000g/kg 的催化剂活性。
[0169] 实施例 4
[0170] 使用与实施例 1 相同的聚合条件，但在聚合前填充反应器时将 80μl Octastat®2000 抗静电剂，相当于 40rpm/升烃溶剂，加入纯化的烃溶剂。在 156 分钟反应时间之后，关闭乙烯进料，将反应器冷却至室温，通气，用氮冲洗 1 小时，将聚合物浆料收集入桶中。然后过滤聚合物，用异丙醇洗涤，在 80°C 干燥过夜。获得收率 95g 的自由流动粉末，相当于 950g/kg 的催化剂活性。