发明名称
基于模糊层次分析法的枢纽综合交通运行态势评价方法

摘要
本发明公开了一种基于模糊层次分析法的枢纽综合交通运行态势评价方法，包括如下步骤：
a) 建立所述运行态势的分层评价指标体系；
b) 计算所述评价指标体系的权重值；
c) 根据所述权重值对所述评价体系进行综合评价。根据本发明的评价方法，将 FAHP 与模糊综合评价方法相结合，不但可以知道运行态势中哪个指标更重要，而且可以知道态势的综合运行情况，从而可以有针对性地进行乘客和车辆的疏导以及设计和规划中设施布局的改善。
1. 一种基于模糊层次分析法的枢组综合交通运行态势评价方法，其特征在于，包括如下步骤：
 a) 建立所述运行态势的分层评价指标体系；
 b) 计算所述评价指标体系的权重值；
 c) 根据所述权重值对所述评价体系进行综合评价。
2. 如权利要求1所述的评价方法，其特征在于，所述步骤a)包括：
 a1 找出表现所述枢组综合交通的运行态势的主要特征作为因素集；
 a2 将所述因素集分为两层指标。
3. 如权利要求1所述的评价方法，其特征在于，所述两层指标中，一层指标为U= {U1, U2, U3} = {外部车流组织状态，内部客流换乘组织状态，旅客舒适度}，其中相对应的二层指标为：U1 对应的二层指标为 {U11, U12, U13, U14, U15} = {平均车速，车流量，车辆的平均占有率，车辆的平均延误时间，路段车辆平均排队长度}；U2 对应的二层指标为 {U21, U22, U23} = {公共区域人均换乘面积，公共区域内客流密度，平均步行距离}；U3 对应的二层指标为 {U31, U32, U33} = {舒适性，便利性，安全性}。
4. 如权利要求1所述的评价方法，其特征在于，所述步骤b)包括：
 b1 应用三角模糊数的模糊层次分析法计算各所述二层指标的权重值；
 b2 应用所述模糊层次分析法逐一求得各层指标相对于上层指标的权重值，然后根据层次分析法向上逐层计算，进而得到各基础因素的综合权重值。
5. 如权利要求4所述的评价方法，其特征在于，所述步骤b)包括：
 a) 利用三角模糊数构建三角模糊数互补判断矩阵；
 b) 根据所述判断矩阵计算本层因素相对于上层因素的权重。
6. 如权利要求4所述的评价方法，其特征在于，所述步骤c)包括：
 c1 对所述评价体系进行单层次评价；
 c2 对所述评价体系进行多层次综合评价。
7. 如权利要求6所述的评价方法，其特征在于，所述步骤c)包括：
 a) 建立模糊评价集；
 b) 确定所述二层指标与所述模糊评价集之间的评估矩阵；
 c) 使得所述二层指标的权重与所述评估矩阵进行模糊合成运算而得到各所述二层指标的单层次综合评价。
8. 如权利要求7所述的评价方法，其特征在于，所述步骤c)包括：
 a) 根据所述二层指标与所述模糊评价集之间的评估矩阵，建立所述评价指标与所述模糊评价集之间的综合评估矩阵；
 b) 使得所述综合权重与所述综合评估矩阵进行模糊合成运算而得到所述评价指标的综合评价。
9. 如权利要求7或8所述的评价方法，其特征在于，所述模糊合成运算为加权型。
基于模糊层次分析法的枢纽综合交通运行态势评价方法

技术领域
[0001] 本发明涉及公共交通技术领域, 尤其涉及采用模糊层次分析法对枢纽综合交通的
运行态势进行评价方法。

背景技术
[0002] 当前, 大型城市的办公及私人汽车拥有量已大大超过城市道路饱和标准, 尽管各
地政府不断加大城市路网的改造建设, 但远远跟不上社会汽车数量的急剧膨胀, 而由此引
发的严重交通堵塞及城市环境恶化等问题, 已经成为制约经济和社会发展的重要因素。大
力发展公共交通, 改善出行结构成为缓解这一问题的必然途径。
[0003] “枢纽综合交通” 作为城市公共交通体系建立的关键节点, 起着平衡、衔接城市综
合客运体系各子系统、大幅度提高换乘效率重要作用。枢纽在交通网络中起到汇集和分配
交通流的作用。对于个体, 乘客利用公共交通枢纽进行换乘; 对于整个交通网络, 枢纽的建
设可以有效地控制整个网络的规模和提高交通工具的运营效率。对于提高交通工具特别是
有较大和固定运输能力的交通工具 (如飞机、地铁、公共汽车等) 的运营效率十分有效。
[0004] 如何针对枢纽内复杂的客流、车流状况以及大型枢纽独特的设计理念, 从技术角
度对整个枢纽综合交通的运行态势作出系统的、科学的、正确的评价, 对完善和加强枢纽建
设, 改善枢纽运输效率都具有重要意义。
[0005] 层次分析法 (Analytic Hierarchy Process, AHP) 是一种实用的多因素决策方法,
该方法定性与定量相结合地处理各种决策因素的过程实质是一个多属性决策过程 (MADM)。
AHP 法是在决策过程中对于定性事件做定量分析的一种方法, 也是对人们主观判断做客观
分析的有效方法。考虑到主观判断的不确定性, 故在使用 AHP 法进行专家咨询时, 可将专家
的主观描述用数数域上的模糊数来描述, 从而使所得到的判断矩阵成为模糊判断矩阵, 经
过权重求和取 tolerant 来解决实际决策问题。近年来, 该方法也被应用于枢纽综合交通的运行
t 态势评价和城网规划的决策过程。
[0006] 然而, 上述技术方案在具体的应用过程中, 存在有以下缺陷:

1) 评判专家对运行态势的定性评价打分采用点值, 不能够准确地反映规划决策因素
的模糊性和不确定性;
2) 在构造比较判断矩阵时, 由一个评价专家来给出比较判断矩阵往往带有较大的片
面性, 从而导致由排序向量进行规划决策的可信度不足。
[0007] 此外, 传统的层次分析法中存在着标度范围与一致性矛盾的局限, 造成评判专家
较难以对被评价对象的性能和权重进行判断, 从而为枢纽运行管理者所形成的技术和决策
支持往往不够客观。

发明内容
[0008] 因此, 本发明的目的是提供一种以合适的方式把定性和定量信息有机结合起来,
通过量化的指标对枢纽综合交通运行态势进行评估的方法。
[0009] 为了达成上述目的，本发明提供了一种基于模糊层次分析法的枢纽综合交通运行态势评价方法，具体包括如下步骤：

a）建立所述运行态势的分层评价指标体系；
b）计算所述评价指标体系的权重值；
c）根据所述权重值对所述评价体系进行综合评价。

[0010] 在一些实施例中，所述步骤a）包括：

a1）找出表现在所述枢纽综合交通的运行态势的主要因素作为因素集；
a2）将所述因素集分为两层指标。

[0011] 在一些实施例中，所述两层指标中，一层指标为 \(U = \{ U_1, U_2, U_3 \} \)（外部车流组织状态，内部客流组织状态，旅客舒适度），其中相对应的两层指标为：

U1 对应的两层指标为：\(U_{11}, U_{12}, U_{13}, U_{14}, U_{15} \)（平均车速，车流量，车辆的平均占有率，车辆的平均延误时间，路段车辆平均排队长度）；
U2 对应的两层指标为：\(U_{21}, U_{22}, U_{23}\)（公共区域人均换乘面积，公共区域内客流速度，平均步行距离）；
U3 对应的两层指标为：\(U_{31}, U_{32}, U_{33}\)（舒适性，便利性，安全性）。

[0012] 在一些实施例中，所述步骤b）包括：

b1）应用三角模糊数的模糊层次分析法计算各所述二层指标的权重集；
b2）应用所述模糊层次分析法逐一求得各层指标相对上层指标的权重集，然后根据层次分析法向上逐层计算，进而得到各基础因素的综合权重集。

[0013] 在一些实施例中，所述步骤b）包括利用三角模糊数构建三角模糊数推断矩阵，根据所述判断矩阵计算本层因素相对于上层因素的权重。

[0014] 在一些实施例中，所述步骤c）包括：
c1）对所述评价体系进行单层次评价；
c2）对所述评价体系进行多层次综合评价。

[0015] 在一些实施例中，所述步骤c1）包括：

建立模糊评价集；确定所述二层指标与所述模糊评价集之间的评估矩阵；使得所述二层指标的权重与所述评估矩阵进行模糊合成运算而得到各所述二层指标的单层次综合评价。

[0016] 在一些实施例中，所述步骤c2）包括：

根据所述二层指标与所述模糊评价集之间的评估矩阵，确定所述评估指标与所述模糊评价集之间的综合评估矩阵；使得所述综合权重与所述综合评估矩阵进行模糊合成运算而得到所述评估指标的综合评价。

[0017] 在一些实施例中，所述模糊合成运算为加权型。

[0018] 根据本发明的评价方法，将 FAMHP 与模糊综合评价方法相结合，不但可以知道运行态势中哪个指标更重要，而且可以知道运行态势的综合素质情况，从而可以有针对性地加强运行态势的提升。

[0019] 以下结合附图，通过示例说明本发明主旨的描述，以清楚本发明的其他方面和优点。

附图说明

[0020] 结合附图，通过下文的详细说明，可更清楚地理解本发明的上述及其他特征和优点，其中：

图 1 为示出本发明的方法一具体实施例的流程图；
图 2 为本发明的方法一具体实施例中的平均车速隶属度函数图。

具体实施方式

[0021] 参见本发明具体实施例的图 1、图 2，下文将更详细地描述本发明。然而，本发明可
以以许多不同形式实现，并且不应解释为受在此提出之实施例的限制。相反，提出这些实施例是为了达成充分及完整公开，并且使本技术领域的技术人员完全了解本发明的范围。

[0022] AHP 法在应用中有几点不足：一是判断矩阵的一致性与人类思维的一致性有差异；二是检验判断矩阵的一致性比较困难；三是当判断矩阵不具有一致性时，调整成一致性需要麻烦；四是检验判断矩阵一致性的判断标准（CR < 0.1）缺乏科学的依据。

[0023] FAHP 法可以克服以上不足，是一种比传统层次的 AHP 法更科学、更简便的方法。FAHP 法可以量度地计算出评价体系各个指标的相关重要程度，但是不能定量地计算。

[0024] 为此，本发明采用模糊综合评价方法对枢纽综合交通的运行态势进行评价。根据本发明的评价方法，将 FAHP 法与模糊综合评价方法相结合，不但可以知道运行态势中哪个指标更重要，而且可以知道运行态势的综合素质情况，从而可以有针对性地加强运行态势的提高。

[0025] 现参考附图，详细描述根据本发明的枢纽综合交通运行态势评价方法的实施例。

[0026] 图 1 为示出本发明的枢纽综合交通运行态势评价方法的实施例的流程图。

[0027] 本实施例中，评估专家小组由交通领域的 10 名成员组成，他们根据相关标准对枢纽运行状态进行全面评估。

[0028] 如图 1 所示，本发明的评价方法首先建立所述运行态势的分层评价指标体系。

[0029] 枢纽综合交通的运行态势是一个庞大而复杂的系统，反映其水平、影响其变化的因素比较多。为了客观、准确、完整地对枢纽综合的交通运行态势做出评价，必须要筛选出能够全方位、多角度反映枢纽综合交通运行态势的评价指标，反映其多指标评价的层次结构。根据这一原则，在定性分析枢纽综合交通运行态势的基础上，按照层次分析法的层次结构建立的评价体系。

[0030] 本实施例中，根据本发明的评价方法首先找出表现所述枢纽综合交通的运行态势的主要因素作为因素集。

[0031] 其后，将所述因素集分层为两层指标。

[0032] 具体地，依据所建立的指标体系综合评估因素集，一级指标 U= {U1, U2, U3} = {外部车流组织状态，内部客流换乘组织状态，乘客舒适度}。相对应的二级指标为 U1 对应的二级指标为 [U11, U12, U13, U14, U15] = {平均速度，车流量，车辆的平均占有率，车辆的平均延误时间，路段车辆平均排队长度}；U2 对应的二级指标为 [U21, U22, U23] = {公共区域人均换乘面积，公共区域内客流速度，平均步行距离}；U3 对应的二级指标为 [U31, U32, U33] = {舒适性，便利性，安全性}。

[0033] 再后，本发明的评价方法计算所述评价指标体系的权重值。

[0034] 具体地，首先，应用三角模糊数的模糊层次分析法计算各所述二级指标的权重值。

[0035] 层次分析法是一种定量和定性相结合的评价方法，其关键环节是建立判断矩阵是否合理、科学直接影响到它的应用效果。

[0036] 其中，先利用三角模糊数构建三角模糊数互补判断矩阵。

[0037] 本实施例中，利用三角模糊数建立专家模糊比较判断矩阵。设 S 名专家给出的三角模糊数互补判断矩阵集为：

\[
\left\{ \overrightarrow{A^k} \mid \overrightarrow{A^k} = (a_y^k)_{m\times n} = (l_y^k, m_y^k, u_y^k)_{m\times n}, k = 1, 2, \ldots, s \right\}
\]
并综合S名专家的偏好信息，求得判断矩阵：

$$
\bar{a}_{ij} = \frac{1}{s} \left(a_{ij} \oplus a_{ij}^{-1} \oplus a_{ij}^{-2} \oplus \ldots \oplus a_{ij}^{-s} \right) = \left(\frac{\sum_{k=1}^{s} l_{ij}^k}{s}, \frac{\sum_{k=1}^{s} m_{ij}^k}{s}, \frac{\sum_{k=1}^{s} u_{ij}^k}{s} \right)
$$

（2）

然后，根据所述判断矩阵计算本层因素相对于上层因素的权重。现以二级指标U2为例，说明计算过程。

[0038] 专家对可用性U2的二级指标进行两两比较，并给出下列三角模糊数互补判断矩阵：

$$
A_2 = (a_{ij})_{3 \times 3} = \begin{bmatrix}
(0.5, 0.5, 0.5) & (0.3, 0.4, 0.6) & (0.5, 0.7, 0.9) \\
(0.4, 0.6, 0.7) & (0.5, 0.5, 0.5) & (0.4, 0.6, 0.7) \\
(0.1, 0.3, 0.5) & (0.3, 0.4, 0.6) & (0.5, 0.5, 0.5)
\end{bmatrix}
$$

（3）

根据模型

$$
\min J = \sum_{j=1}^{n} \sum_{i=1}^{n} \left\{ \left[a_{ij} \omega_{ij} - a_{mj} \omega_{mi} \right]^2 + \left[a_{nj} \omega_{nj} - a_{mj} \omega_{mj} \right]^2 + \left[a_{nj} \omega_{nj} - a_{nj} \omega_{nu} \right]^2 \right\}
$$

s.t.

$$
0 \leq \omega_{ii} \leq \omega_{mi} \leq \omega_{ui} \leq 1
$$

$$
0 \leq \sum_{i=1}^{n} \omega_{ii} \leq 1 \leq \sum_{i=1}^{n} \omega_{ui}, i \in N
$$

（4）

利用求解二次规划问题的quadprog函数，解得

$$
\omega^*_i = \left[((0.2991, 0.2991, 0.3704), (0.5549, 1, 1), (0.1461, 0.1461, 0.7572)) \right]^T
$$

（5）

利用公式，

$$
\omega^{(\alpha)} = \frac{1}{2} [(1 - \alpha) \omega_{ii} + \omega_{mi} + \alpha \omega_{ui}], i = 1, 2, 3,
$$

（6）

计算三角模糊数 ω 的期望值；其中 α 值的选择取决于决策者的风险态度。

[0039] 本实施例中，取 $\alpha = 0.5$，解得
\[
\omega_{21}^{(α)} = \frac{1}{2}[(1-α)ω_{i1} + ω_{m1} + αω_{u1}] = 0.2991 + 0.03565α = 0.31693
\]
(7)

\[
\omega_{22}^{(α)} = \frac{1}{2}[(1-α)ω_{i2} + ω_{m2} + αω_{u2}] = 0.7775 + 0.2225α = 0.88875
\]
(8)

\[
\omega_{23}^{(α)} = \frac{1}{2}[(1-α)ω_{i3} + ω_{m3} + αω_{u3}] = 0.1461 + 0.3055α = 0.29885
\]
(9)

将指标权重归一化后得：

\[
\omega_{21}^{(α)} = 0.2107, \quad \omega_{22}^{(α)} = 0.5907, \quad \omega_{23}^{(α)} = 0.1986
\]
(10)

类似地, 将指标两两比较的互补判断矩阵和所计算的权重用下面的表格表示。U1 的判断矩阵和权重集为：
表 1 U1 的判断矩阵和权重集:

<table>
<thead>
<tr>
<th></th>
<th>U1</th>
<th>U11 (0.5, 0.5, 0.5)</th>
<th>U12 (0.4, 0.5, 0.6)</th>
<th>U13 (0.2, 0.4, 0.6)</th>
<th>U14 (0.2, 0.3, 0.4)</th>
<th>U15 (0.2, 0.3, 0.5)</th>
<th>θ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>U11</td>
<td>(0.4, 0.5, 0.6)</td>
<td>(0.2, 0.4, 0.6)</td>
<td>(0.2, 0.3, 0.4)</td>
<td>(0.2, 0.3, 0.5)</td>
<td>0.1261</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>U12</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.2, 0.4, 0.5)</td>
<td>(0.1, 0.3, 0.4)</td>
<td>(0.2, 0.3, 0.4)</td>
<td>0.1037</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>U13</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.3, 0.4, 0.5)</td>
<td>(0.4, 0.5, 0.7)</td>
<td>0.2105</td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>U14</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.4, 0.6, 0.8)</td>
<td>0.3017</td>
<td></td>
</tr>
<tr>
<td>U5</td>
<td>U15</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>(0.5, 0.5, 0.5)</td>
<td>0.2580</td>
<td></td>
</tr>
</tbody>
</table>
表 2 U2 的判断矩阵和权重集为

同理，U3 的判断矩阵和权重集为 :

<table>
<thead>
<tr>
<th></th>
<th>U31</th>
<th>U32</th>
<th>U33</th>
<th>ω3</th>
</tr>
</thead>
<tbody>
<tr>
<td>U31</td>
<td>(0.5,0.5,0.5)</td>
<td>(0.3,0.4,0.5)</td>
<td>(0.2,0.4,0.6)</td>
<td>0.2324</td>
</tr>
<tr>
<td>U32</td>
<td>(0.5,0.6,0.7)</td>
<td>(0.5,0.5,0.5)</td>
<td>(0.5,0.5,0.6)</td>
<td>0.4724</td>
</tr>
<tr>
<td>U33</td>
<td>(0.4,0.6,0.8)</td>
<td>(0.3,0.4,0.5)</td>
<td>(0.5,0.5,0.5)</td>
<td>0.2952</td>
</tr>
</tbody>
</table>

表 3 U2 的判断矩阵和权重集为

接着，应用所述模糊层次分析法逐级一求的各层指标相对于上层指标的权重集，然后根据层次分析法向上逐层计算，进而得到各基础因素的综合权重集。

由此，U 的判断矩阵和权重集为 :

<table>
<thead>
<tr>
<th></th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>(0.5,0.5,0.5)</td>
<td>(0.1,0.3,0.4)</td>
<td>(0.2,0.4,0.6)</td>
<td>0.2449</td>
</tr>
<tr>
<td>U2</td>
<td>(0.6,0.7,0.9)</td>
<td>(0.5,0.5,0.5)</td>
<td>(0.5,0.6,0.8)</td>
<td>0.4195</td>
</tr>
<tr>
<td>U3</td>
<td>(0.5,0.6,0.8)</td>
<td>(0.2,0.4,0.5)</td>
<td>(0.5,0.5,0.5)</td>
<td>0.3556</td>
</tr>
</tbody>
</table>

表 4 U 的判断矩阵和权重集

其次，应用所述模糊层次分析法逐级一求的各层指标相对于上层指标的权重集，然后根据层次分析法向上逐层计算，进而得到各基础因素的综合权重集。

则各层指标权重和综合权重整理成下表 :

<table>
<thead>
<tr>
<th>一级指标</th>
<th>相对于上层指标综合权重</th>
<th>二级指标</th>
<th>相对于上层指标综合权重</th>
<th>综合权重</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部交通组织状态 (U1)</td>
<td>0.2449</td>
<td>平均车速 (U11)</td>
<td>0.1261</td>
<td>0.03088</td>
</tr>
<tr>
<td></td>
<td></td>
<td>车流量 (U12)</td>
<td>0.1037</td>
<td>0.02540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>车辆的平均占有率 (U13)</td>
<td>0.2105</td>
<td>0.05155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>路段车辆密度 (U14)</td>
<td>0.3017</td>
<td>0.07389</td>
</tr>
<tr>
<td></td>
<td></td>
<td>路段车辆平均排队长度 (U15)</td>
<td>0.2580</td>
<td>0.06318</td>
</tr>
<tr>
<td>内部客流量组织状态 (U2)</td>
<td>0.4195</td>
<td>公共区域人均乘车面积 (平方米/万人) (U21)</td>
<td>0.2107</td>
<td>0.08339</td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共区域内部速度 (U22)</td>
<td>0.5097</td>
<td>0.24779</td>
</tr>
<tr>
<td></td>
<td></td>
<td>平均步行距离 (U23)</td>
<td>0.1986</td>
<td>0.08331</td>
</tr>
<tr>
<td>旅客舒适度 (U3)</td>
<td>0.3356</td>
<td>舒适性 (U31)</td>
<td>0.2324</td>
<td>0.07799</td>
</tr>
<tr>
<td></td>
<td></td>
<td>便利性 (U32)</td>
<td>0.4724</td>
<td>0.15833</td>
</tr>
<tr>
<td></td>
<td></td>
<td>安全性 (U33)</td>
<td>0.2952</td>
<td>0.09906</td>
</tr>
</tbody>
</table>

表 5 各层指标权重和综合权重

从计算的权重可看出，专家对于数据的内部客流量组织状态及其下面的因素与其他因素相比较为重视。
\[
R = \begin{bmatrix}
 r_{11} & r_{12} & \cdots & r_{1m} \\
 r_{21} & r_{22} & \cdots & r_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{n1} & r_{n2} & \cdots & r_{nm}
\end{bmatrix}
\]

(11)

其中元素 \(r_{ij} \) (0 \(\leq \) \(r_{ij} \) \(\leq \) 1) i = 1 \cdots n, j = 1 \cdots m 为 U 中因素 \(u_i \) 对应等级 \(v_j \) 的隶属关系，即从因素 \(u_i \) 着眼被评对象能被评为 \(v_j \) 等级的程度，其中，m 和 n 都是定量，代表行和列数，i 和 j 是变量。评价指标中有定性指标和定量指标，对于这两种类型指标其评判矩阵 R 采用不同的方法进行确定。例如，平均车速可以根据平均车速的隶属度函数来计算出评判矩阵 R，像舒适性、安全性和便利性这样的指标没办法量化的，要通过专家（调查者）给出评判矩阵 R。

定量指标如一些时间量等其评判矩阵 R 的建立需要确定隶属函数。隶属度表示因素集 U 与评价集 V 之间的模糊关系，其中元素 \(r_{ij} \) (0 \(\leq \) \(r_{ij} \) \(\leq \) 1) 为 U 中因素 \(u_i \) 对应等级 \(v_j \) 的隶属关系，即从因素 \(u_i \) 着眼被评对象能被评为 \(v_j \) 等级的程度。对等级 \(v_j \) 的隶属度，对应上述隶属度。

[0047] 本实施例中，得到：

\[
R_1 = \begin{bmatrix}
 0.1 & 0.8 & 0.1 & 0 & 0 \\
 0.3 & 0.6 & 0.1 & 0 & 0 \\
 0.2 & 0.4 & 0.4 & 0 & 0 \\
 0 & 0.5 & 0.4 & 0 & 0.1 \\
 0 & 0.2 & 0.6 & 0.2 & 0
\end{bmatrix}
\]

(12)

\[
R_2 = \begin{bmatrix}
 0 & 0.1 & 0.5 & 0.4 & 0 \\
 0 & 0.2 & 0.2 & 0.6 & 0 \\
 0.1 & 0.6 & 0.2 & 0.1 & 0
\end{bmatrix}
\]

(13)

\[
R_3 = \begin{bmatrix}
 0.3 & 0.5 & 0.2 & 0 & 0 \\
 0.1 & 0.8 & 0.1 & 0 & 0 \\
 0 & 0.5 & 0.4 & 0 & 0
\end{bmatrix}
\]

(14)
在一些实施例中，对于某段时间参数运行状态，按照上述方法确定定量数据的评判矩阵 R 如图 2 所示。图 2 中，x 轴为平均速度 km/h；y 轴为相应的隶属度。

[0048] 再使得所述二层指标的权重与所述评估矩阵进行模糊合成运算而得到各所述二层指标的单层次综合评价。

[0049] 本实施例中，

\[
B_1 = \alpha_1 \circ R_1 = (0.1261, 0.1037, 0.2105, 0.3017, 0.2580) \circ \\
(0.1, 0.8, 0.1, 0, 0) \\
(0.2, 0.4, 0.4, 0, 0) \\
(0.3, 0.6, 0.1, 0, 0) \\
(0.4, 0.4, 0, 0.1, 0) \\
(0.5, 0.4, 0.2, 0, 0) \\
\]

(15)

其中模糊变换的合成算子 “ \circ ”，本实施例采用加权平均型。

[0050] 类似地，同理可得对单因素集 U2, U3 的综合评价结果为 B2, B3

\[
B_2 = \omega_2 \circ R_2 = (0.2107, 0.5907, 0.1986) \circ \\
(0, 0.1, 0.5, 0.4, 0) \\
(0, 0.2, 0.2, 0.6, 0) \\
(0.1, 0.6, 0.2, 0.1, 0) \\
\]

(16)

\[
B_3 = \omega_3 \circ R_3 = (0.2324, 0.4724, 0.2952) \circ \\
(0.3, 0.5, 0.2, 0, 0) \\
(0.1, 0.8, 0.1, 0, 0) \\
(0, 0.5, 0.4, 0, 0) \\
\]

(17)

其次，对所述评价体系进行多层次综合评价。

[0051] 根据所述二层指标与所述模糊评价集之间的评估矩阵，确立所述评价指标与所述模糊评价集之间的综合评估矩阵，即通过 B1, B2, B3 构造 U 的单因素评判矩阵。

[0052] 然后，使得所述综合权重与所述综合评估矩阵进行模糊合成运算而得到所述评价指标的综合评价，即

\[
B_2 = \omega \circ R = (0.2449, 0.4195, 0.3356) \circ \\
(0.0858, 0.4497, 0.3837, 0.0516, 0.0302) \\
(0.0199, 0.2584, 0.2632, 0.4586, 0) \\
(0.1170, 0.6447, 0.2118, 0, 0) \\
\]

(18)
最后得到的结果向量为：\(\mathbf{B} = (0.0686, 0.4339, 0.2754, 0.2050, 0.01267) \)。

[0053] 以上结果表明：有 6.86% 的专家认为运行态势很好，43.39% 的专家认为运行态势较好，有 27.54% 的专家认为运行态势一般，有 20.5% 的专家认为运行态势差，只有 1.267% 的专家认为运行态势很差。运用最大隶属度原则，根据本次综合评估结果说明该枢纽运行态势级别为较好。

[0054] 本发明具有如下优点。

[0055] （1）根据本发明的评价方法，将 FAHP 法与模糊综合评价方法相结合，不但可以知道运行态势中哪个指标更重要，而且可以知道综合运行态势的情况，从而可以有针对性地加强对所涉及相关问题的处理解决。

[0056] （2）本发明通过对指标重要程度比较给定模糊判断矩阵，减少了评判专家打分过程中的主观随意性，计算得到的指标结果具有一定的客观性，并且突破了传统 AHP 法中的标度范围与一致性矛盾的局限，更易于专家对被评价对象的性能权重进行判断，为枢纽运行管理者提供一定的技术和决策支持。

[0057] （3）本发明在采用 FAHP 法进行数据质量评估时，针对构造比较判断矩阵存在着主观判断不确定性问题引入了三角模糊数来构造模糊判断矩阵，解决了评价过程中专家判断的模糊性问题，通过对指标重要程度比较给定模糊判断矩阵，减少了专家打分过程中的主观随意性，计算得到的指标结果具有一定的客观性。

[0058] 以上详细描述了本发明的较佳具体实施例。应当理解，本领域的普通技术人员依据本发明的思想在现有技术的基础上，通过逻辑分析、推理或者有限的实验可以得到的技术方案，皆应在由权利要求书所确定的保护范围内。
建立所述运行态势的分层评价指标体系

计算所述评价指标体系的权重值

根据所述权重值对所述评价体系进行综合评价

图 1
图 2