PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 97/48054

Al
GOGF 13/12, 13/14, 15/16, HOAL 12/56 (43) International Publication Date: 18 December 1997 (18.12.97)

(72) Inventors: LEVIN, Vladimir K., Apartment 94, 67-
2 Izmailovskii Boulevard, Moscow, 105077 (RU).

12 July 1996 (12.07.96) JABLONKSY, Sergei V.; Apartment 56, 61/14 Pervo-
maiskaia Street, Moscow, 105077 (RU). KORNEEV,

Victor V.; Apartment 2, 7a Volokolamsoie Sch, Moscow,
I . 125080 (RU). MASSALOVITCH, Andrei I.; Apartment

) B s 12 Tuly 1995 (12.07.95) Us 30, 37/2 Kosmodemjanski Street, Moscow, 125130 (RU).
LACIS, Alexei O., Apartment 360, 13/12 Litovskii

Boulevard, Moscow, 117593 (RU). ZABRODIN, Alexei

(71) Applicant: SUPER PC INTERNATIONAL, LLC [US/US]; V.; Apartment 101, 2-1 Bakinskih Komls§arov Street,
ppSuite 1050, 601 Lakeshore Parkway, Minnetonka, MN Moscow, 117546 (RU). KARATANOV, Vijacheslav V.;
55305 (US). Apartment 14§, 43 Shipilovskaja, Moscow, 115573 (RU).
JALIN, Valerii V.; Apartment 425, 6 Oseenii Boulevard,
Moscow, 125127 (RU). TITOV, Alexandr; Apartment 82,
17 Zjukova Prospekt, Moscow, 115505 (RU). AGEIJEV,
Vjacheslav M.; Apartment 240, 26-1 Pilugina Street,
Moscow, 117393 (RU). PATRIKEEV, Andrei; Apartment
61, 5a Proletarskaya Street, Chimki, Moscow, 141400
(RU).

(21) International Application Number: PCT/US96/11583

(22) International Filing Date:

(74) Agents: WOLDE-MICHAEL, Girma et al.; Patterson &
Keough, P.A., 1200 Rand Tower, 527 Marquette Avenue
South, Minneapolis, MN 55402 (US).

(81) Designated States: BR, CN, RU, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
With international search report.

(54) Title: DEADLOCK-FREE MESSAGE-PASSING SYSTEM FOR MIND COMPUTER PROCESSING SYSTEMS UTILIZING A
CSP PROGRAMMING MODEL

THE ROUTER OF NODE STRUCTURE
&

(57) Abstract

A message-passing system allows for deadlock-free message-passing and ability to support irregular connection topologies among
nodes in the computer system. Messages are passed from node (74) to node utilizing buffers (82) at intermediate nodes to temporarily
store the messages. The user code is divided into multiple concurrent user processes (64) which communicate with each other via channels
(82-2). Each user process executing at a node is also provided with a corresponding, but separate, router process (80) which uses a set of
N-1 virtual channels (84) to communicate with all other processes in the system, N being the number of processes. The router process (80)
is provided with a routing table (86) implementing the minimum route length solution for interconnecting nodes in any arbitrary network
topology. The router process (80) also allows for standard I/O functions to be emulated at every node in the system. The router process
implements a buffer pool (120-1 and 120-2) management structure which is organized by channels (118) and hops.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA

CG
CH

cM
CN
Ccu
Ccz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Genmany
Denmark
Estonia

ES
FI

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz,
TD
TG
TJ)
™
TR
TT
UA
UG
uUs
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

‘Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 97/48054 PCT/US96/11583

10

15

DEADLOCK-FREE MESSAGE-PASSING SYSTEM
FOR MIMD COMPUTER PROCESSING SYSTEMS
UTILIZING A CSP PROGRAMMING MODEL
TED LICATI
This application is a formal application of a part of the Provisional

Application filed on July 12, 1995 and assigned Serial No. 60/001,072.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by any one of the patent
document or the patent disclosure as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

FIELD OF THE INVENTION
The present invention relates generally to parallel computer
processing systems, and more particularly, to a deadlock-free message
passing system for multiple-instruction, multiple-data (MIMD) parallel
computer processing systems utilizing a communicating sequential

process (CSP) programming model.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

BACKGROUND OF THE INVENTION

Parallel computer processing systems are well known and are
typically divided into two basic types, single-instruction, multiple-data
(SIMD) systems and multiple-instruction, multiple-data (MIMD) systems.
SIMD systems use multiple processing elements which are linked together
to execute the same instruction on different data points so that the same
task is accomplished simultaneously on all of the different data points. A
classic example of an SIMD system is an image processing system where
multiple processing elements each use the same instructions to
simultaneously process different pixel points in an image. MIMD systems
also have multiple processing elements which are linked together, but
each processing element executes a different set of instructions on different
data values. In this way, a MIMD system can split up different segments of
instructions necessary to solve a problem and execute these different
segments simultaneously to increase the speed at which the problem is
solved.

SIMD systems typically use a central controller to disseminate the
single instruction being executed and to coordinate multi-transfer of
information among the processing elements. In contrast, MIMD systems
use either a shared memory model or message passing model to
coordinate the various processing elements and communicate
information among them. In the shared memory model, each processing
element has access to a common memory used for storing data and control
flags which are used to communicate information and coordinate the
processing elements. In contrast, each processing element in the message
passing model has only its own distributed, local memory and all
communication among processing elements occurs via messages passed
along a series of connection links between processing elements.

One of the key trade-offs in designing message passing systems for
MIMD computer systems is the manner in which processing elements are

connected. Obviously, if every processing element is directly and

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-3-

singularly connected to every other processing element, the speed at which
messages can be passed is maximized because each message takes only one
hop time to move from one processing element to another. The
disadvantage with such an all-to-all connection scheme is that, as the
number of processing elements increases, the number of connections
required grows geometrically and quickly becomes impractical to
implement. At the other extreme, if every processing element were
connected to one common connection network, such as a single bus, then
messages would still take only one hop time to transfer between
processing elements, but only one pair of processing elements could
communicate with each other at any given time. To solve these
connection problems for massively parallel MIMD computer processing
systems, having large numbers of message passing processing elements,
two general types of connection schemes have been developed: two-
dimensional and n-dimensional grid networks.

In a two-dimensional grid network, all of the processing elements
or nodes are directly connected in a regular pattern to four other adjacent
processing elements (e.g., left, right, up and down), and messages are
routed through this message passing network from a sending node to a
receiving node by having each node receive messages and, if the message
is not for that node, sending the message on to one of the other adjacent
nodes. Examples of a two-dimensional grid networks include the
Transputer® systems developed by Inmos Ltd, Bristol, England, as
described in U.S. Patents Nos. 4,692,861, 4,783,734 and 5,243,698 and the
massively parallel array processing system developed by Digital Equipment
Corp., Maynard, Mass., as described in U.S. Patents Nos. 4,985,832 and
5,276,895.

In an n-dimensional grid network, all of the processing elements or
nodes are directly connected in a regular pattern to six or more other
processing elements. In essence, an n-dimensional grid network is similar
to a two-dimensional grid network, only the number of dimensions in the

network has been increased. Examples of n-dimensional grid networks

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-4-

include the hypercube networks developed by nCUBE Corp., Foster City,
Cal., as described in U.S. Patents Nos. 5,113,523 and 5,367,636, and by
Thinking Machines Corp., Cambridge, Mass., as described in U.S. Patents
Nos. 5,152,000 and 5,367,692, as well as the hexagonal mesh network
developed by the University of Michigan, as described in U.S. Patent No.
5,101,480.

A popular programming model for message passing networks is the
communication sequential process (CSP) programming model which was
originally developed by Prof. C.A.R. Hoare. In the CSP model, a software
program is divided into independent processes which can exchange data
and synchronize their activity via communication links referred to as
channels. Each process represents a segment of the software program that
can execute independently and of, and generally concurrently with, other
segments of the program. Each channel serves as a communication path
by which information and data are exchanged between processes. To
insure synchronization of processes, transmissions are always
acknowledged by the receiving process and the sending process always
waits to receive this acknowledgement. Concurrent processing in the
ANSI C programming language, for example, conforms to the CSP
programming model.

One of the more difficult problems in managing CSP inter-process
communications for a message passing MIMD computer processing
systems is preventing deadlocks. Deadlocks are situations where the
passing of messages among the various process stops because some or all
of the processes are endlessly waiting or blocked. In networks where
messages are passed from one node to the next on their way from a source
node to a destination node, the messages may be temporarily stored in a
buffer of an intermediate node during the message passing process. In this
situation, deadlocks can occur because one or more of the intermediate
nodes will have only a limited buffer space available for the temporary
storage of information passing by that node on its way to another node. If

the buffers in adjacent nodes fill up, for example, then no messages can be

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-5-

sent to unload the buffer in the center node and a deadlock situation is
created. By analogy, a deadlock is somewhat like a traffic gridlock across a
series of traffic intersections where cars in one intersection cannot move
forward because there is no room in any of the adjacent intersections.

Two techniques have been used, in an effort to decrease or prevent
deadlocks when managing CSP inter-process communications. First, the
message passage networks are designed with regular interconnections
between nodes. The regularity of the interconnections makes it easier to
anticipate deadlock conditions and easier to accommodate deadlock
conditions by using information that is known about the structure of the
network and contained, for example, within the address of a message to
help in preventing deadlock conditions. Second, the routing algorithms
used in the message passage networks are usually designed to implement
adaptive routing, rather than oblivious routing. Oblivious routing
implies that, when a message directed to a destination node B, for
example, arrives at an intermediate node A, that message is always routed
to intermediate node C, regardless of the “traffic” conditions associated
with node C. Adaptive routing, on the other hand, allows intermediate
node A to check on the “traffic” conditions at the next intermediate node
C, and, if the conditions are not good, select an alternate intermediate node
for routing the message to destination node B. An example of an adaptive
routing message passing system is shown in U.S. Patent No. 5,170,393.

While the use of regular interconnections and adaptive routing can
effectively handle most deadlock situations in message passing networks
that utilize intermediate buffers, the use of these two techniques is not
without a performance penalty. Specifically, the requirement for regular
interconnections necessarily increases the number of inter-node hops, for
example, which must be made to pass a message from one side of a
network to another, particularly in a 2-dimensional grid network. The use
of adaptive routing necessarily increases the overhead associated with the
routing algorithms, and hence decreases the overall message passing

performance of the network.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-6-

Other attempts have been made to provide interprocessor switching
networks that solve the deadlock problem. The use of control circuitry as
part of a regularly-structured message passing network is described in U.S.
Patents Nos. 5,058,001, 5,105,424 and 5,291,489. The problem of deadlocks
in an irregularly connected MIMD computer processing system is described
in U.S. Patent No. 4,177,514, which proposes a separate, decentralized
control network connected from multiple control nodes to multiple
processing nodes to solve the deadlock problem. In U.S. Patent No.
5,347,450, router circuitry in each node for a network switched
communication path between a source node and a destination node,
thereby eliminating the need for any intermediate buffers in the message
passing network. Unfortunately, these types of hardware and control
solutions only complicate and limit what is otherwise a very simple inter-
process communication architecture for the CSP programming model.

A different attempt to increase the performance of message passing
networks is proposed in U.S. Patent No. 5,247,694. In this patent, a
problem graph is created to represent the various processes that comprise a
given software program. The problem graph is then used to aid in
assigning processes to processing nodes so as to optimize communications
among the processing nodes of a regularly connected hypercube network
for the given software program. In essence, this solution optimizes the
way in which the software program is divided so as to avoid deadlocks
when executing that particular program, rather than altering the message
passing network so as to prevent the occurrence of deadlocks in the first
place.

While existing techniques for providing message passing networks
in a MIMD computer processing system offer many advantages over other
types of parallel processing computer systems, it would be advantageous to
provide a simple message passing system for a MIMD computer processing
system which could provide enhanced message passing performance, yet

avoid the deadlock problem.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-7-

SUMMARY OF THE INVENTION

The present invention provides for a message passing system for an

MIMD parallel processing computer system utilizing a CSP programming
model that is relatively simple and inexpensive, yet allows for deadlock-
free message passing, as well as the ability to support irregular connection
topologies among nodes in the computer system. Messages are passed
from node to node utilizing buffers at intermediate nodes to temporarily
store the messages. In accordance with the CSP programming model, the
user code is divided into multiple concurrent user processes which
communicate with each other via channels. Each user process executing at
a node is also provided with a corresponding, but separate, router process
which uses a set of N-1 virtual channels to communicate with all other
processes in the system, where N is the number of processes. The router
process is preferably provided with a routing table that preferably
implements an acyclic sub-graph solution for interconnecting nodes in any
arbitrary network topology, including irregular network topologies. The
router process also allows for standard I/O functions to be emulated at
every node in the system, not just those nodes which are directly
connected to an 1/0O device. Preferably, the router process implements a
buffer pool management structure which is organized first by channels
and then by hops.

The advantages produced by the present invention include the
ability to implement a true CSP multi-processor programming model
without deadlocks using relatively inexpensive processing circuitry at each
node without the use of complicated routing circuitry. Additionally, the
ability of the present invention to support irregular connection topologies
enables the use of a quasi-matrix 2-D connection network which has no
more than four connections per node, but which has a maximum network
dimension which more closely matches an N-dimensional hypercube
network. This significantly increases the speed at which messages are
passed in the message passing system of the present invention as

compared to a regular 2-D connection network. As such, the overall price-

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-8-

performance metrics of an MIMD parallel processing computer system
implemented using the present invention are improved as compared to
the price-performance metrics of existing MIMD message passing

networks.

BRIEF DESCRIPTION OF THE DRAWI

Figure 1 is a simplified block diagram of a prior art 2-D grid
connection network for a MIMD computer processing system.

Figure 2 is a simplified block diagram of a prior art hypercube grid
connection network for a MIMD computer processing system.

Figure 3 is a simplified block diagram of a prior art message passing
system.

Figure 4 is a simplified block diagram of a message passing system in
accordance with the present invention.

Figure 5 is a simplified block diagram of the contents of a message
package in accordance with a preferred embodiment of the present
invention.

Figure 6 is a simplified block diagram of the operation of reader and
writer sub-processes within a preferred embodiment of the router process
of the present invention.

Figure 7 is a block diagram of processes in an individual processing
node in accordance with the message passing network of the present
invention.

Figure 8 is a block diagram of a preferred embodiment of a router
process of the present invention.

Figure 9 is a block diagram of a preferred embodiment of a buffer
pool structure in accordance with the present invention.

Figure 10 is a block diagram of the 2-D grid connection network of
Figure 1 showing a looping deadlock situation of a prior art message
passing network.

Figure 11 is a block diagram of the 2-D grid connection network of

Figure 1 showing a set of loop-free subgraph message passing in accordance

WO 97/48054 PCT/US96/11583

10

15

20

25

30

with the present invention.

Figure 12 is a graph diagram of the prior art message passing
network of Figure 10.

Figure 13 is a graph diagram of the message passing network of the
present invention as shown in Figure 11.

Figure 14 is a simplified block diagram of an irregular grid
connection network for a MIMD computer processing system in
accordance with the message passing system of the present invention.

Figure 15 is a circuit diagram of a preferred embodiment of a
processing element of the present invention.

Figure 16 is a block diagram of a preferred embodiment of a

multimedia operating system utilizing the present invention.

DETAILED DESCRIPT OF THE IN ION

The present invention is specifically directed to a message passing
MIMD computer processing system. Familiarity with the basic concepts of
parallel processing and with the particular characteristics of message
passing MIMD computer processing systems is helpful in understanding
the present invention. For a general background in parallel processing
computer systems, reference is made to Baron, R and Higbie, L., Computer
Architecture, Addison-Wessley Publ. (1992) Chpt. 7. Throughout the
detailed description of the invention, the first time a term is used in
describing the message passing system of the present invention, that term
will be capitalized for easy reference.

In describing the present invention, a background of the hardware
and software of a typical message passing system will be presented first to
describe how elements within the system are related. The basics of the
preferred programming model for use with the present invention are then
described. The programming model describes a model of how a
programmer views the computer processing system that will dictate how
the user’s software program should be programmed in order to run on a

particular system. Next, a review of existing message passing systems is

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-10 -

presented. With this background in mind, the way in which the present
invention improves on existing message passing MIMD computer
processing systems will then be described. Finally, additional
improvements directed to the unique problems of deadlocks and irregular

connection networks are described.

BACKGROUND
Existing Hardware Connections for Message Passing Systems

Referring now to Figures 1 and 2, two different examples of the
hardware connection networks for message passing systems are shown. In
Figure 1, PROCESSING ELEMENTS (PEs) 20 are each connected by four bi-
directional CONNECTIONS 22-1, 22-2, 22-3 and 22-4 to four adjacent
processing elements 20 so as to form a 2-D grid CONNECTION
NETWORK 24. In Figure 2, processing elements 30 are each connected by
eight bi-directional connections 32-1, 32-2, 32-3, and 32-4 to four other
processing elements 30 (one processing element in each of four different
dimensions or directions) so as to form a hypercube connection network
34.

It can be seen that connection networks 24 and 34 are both formed of
regularly patterned combinations of processing elements 20, 30 and
connections 22, 32, respectively. It can also be seen that for processing
element PE-1, for example, to communicate with processing element PE-7,
some form of message passing must occur along intermediate processing
elements because there is no direct connection link between nodes PE-1
and PE-7. In the 2-D grid connection network 24, the intermediate
processing elements might be PE-2 and PE-3, for example, in which case
the message passing is referred to as requiring three HOPS, e.g. from PE-1
to PE-2, from PE-2 to PE-3, and from PE-3 to PE-7. In the hypercube
connection network 34, only one intermediate processing element, PE-2
for example, would be necessary to go from PE-1 to PE-7, in which case the

message passing requires only two hops, e.g., PE-1 to PE-2 and PE-2 to PE-7.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-11 -

Existing Software Connections for Message Passing Systems

With this basic understanding of the hardware involved in a typical
message passing MIMD computer processing system, Figure 3 shows how a
part of a 2-D grid connection network 24 of Figure 1 to demonstrate how a
typical message passing system 40 operates. In this example, it is assumed
that a USER PROGRAM 42 has been divided into a number of parts, and
that each part of the user program is loaded into a different processing
element 20 to be executed. Each part of the user program 42 that well be
executing on a different processing element 20 is referred to as a NODE 44
in the message passing system 40. Individual nodes 44 are identified by
unique NODE NUMBERS, which are unique throughout the message
passing system 40. Nodes 44 communicate with one another by way of
links 46 defined between nodes 44.

In Figure 3, each of the nodes 44 is shown as being loaded into a
unique processing element 22 (as indicated by the dashed lines). It should
be understood that, as used within the present invention, a node 44 and a
processing element 20 are not directly corresponding components of a
message passing system 40. Neither are a link 46 and a connection 22. As
will be described in connection with the discussion of the CSP
programming model, it is possible for multiple nodes 44 to be
implemented on the same processing element 20, in which case some of
the links 46 from a given node 44 will be physical links in the form of
connections 22 and others of the links 46 from the given node 44 will be in
the form of virtual channels, as will be described. This added level of
abstraction is sometimes difficult to grasp upon an initial reading and it is
recommended that, until a reader is familiar with the concepts of nodes
and links as part of the CSP programming model which will be described,
it is easiest to understand the present invention by assuming that nodes 44
and links 46 have a one-to-one correspondence with processing elements
20 and connections 22, respectively.

There are two basic assumptions about communications among
nodes 44. First, any node, N-1, (the SOURCE) may send a MESSAGE 50 of

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-12 -

arbitrary length to any other node, N-4, (the DESTINATION), and it is
guaranteed that node N-4 will consume message 50 in some finite time.
The logic to provide for this unconditional consumption may be quite
different from one message passing system to the next, however, it is
assumed that unconditional consumption exists. Second, all of the nodes
44 will have a limited amount of space in an INTERMEDIATE BUFFER 48
for the temporary storage of messages 50 passing by a given node, N-2, (the
INTERMEDIATE NODE) that are directed to some other destination node,
node N-4, for example. This limited amount of buffer space means that a
message 50 may be divided, for the purpose of transfer, into multiple
PACKAGES 52 of limited size, to ensure that any package 52 may be stored
in a single intermediate buffer 48.

The process of transferring messages 50 comprised of multiple
packages 52 between nodes 44 is referred to as a routing scheme. Just as the
hardware connections 22 which interconnect processing elements 20 into a
particular connection network 24 may differ, so too may the routing
schemes which control the passing of messages 50 between nodes 44 via
links 46. When messages 50 are divided into packages 52, a message
passing system 40 may implement either a STORE AND FORWARD
routing scheme or a WORMHOLE routing scheme. The store and forward
routing schemes imply that the information about the destination node
number is included into each package 52. In fact, each package 52 may be
routed separately as if it were a complete message 50. With the wormhole
routing, only the first package 52 of a message 50 carries routing
information, such as the destination node number. This implies that
when such first package 52 of a message 50 is passed through an
intermediate node 44, a temporary "worm hole" appears between the
incoming and outgoing links 46, which passes all the packages 52 of a
message 50 till the end is encountered. All other messages 50 that want to
be directed to the same outgoing link 46 are blocked until the first message
50 which created the worm hole is completely transferred through the

intermediate node 44.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-13-

The advantage of the store and forward scheme is the ability of the
intermediate nodes 44 to interleave packages 52 from different messages 50
to keep as many of the links 46 as busy as possible. When the wormhole
routing scheme is used, some links 46 may be waiting for work, even
though there is work for them to do, because the packages 52 can not
arrive due to the fact that the first package 52 containing the routing
information is blocked somewhere else in the message passing system 40.

In order to understand the disadvantages of the store and forward
routing scheme as compared to the wormhole routing scheme, it is
necessary to introduce several more terms: the EFFECTIVE SPEED of the
message passing, the LATENCY and PIPELINING. It is clear that with both
schemes the transfer of messages 50 through the intermediate nodes 44 is
pipelined. While the first package 52 of a message 50 has reached the
destination node 44, the last package 52 may have not yet been left the
source node 44, and the intermediate packages 52 are moving
simultaneously, because they are passed through the different links 46 and
buffers 48. In theory this means that the effective speed of transfer may be
almost as large as the speed of transfer between adjacent nodes, connected
directly. The larger the number of hops between the source and
destination, the more connections work simultaneously on the same
message 50. In practice, however, this theoretical speed is not achieved.

If the transfer time is compared between adjacent and non-adjacent
nodes 44 for either routing scheme, there is at least one source of delay in
the latter case: the time of delivery of the first package 52 from the source
to the destination, the so-called latency time. If the packages 52 are very
small, the latency time decreases because it takes less time to transfer the
packages 52 from source to destination. But, the smaller the packages 52
are, the larger is the fraction of the package 52 occupied by the addressing
information. Let the size of the addressing information be, for example, 8
bytes. With packages 52 having bodies only 8 bytes long, for example, the
store and forward router will decrease the effective speed twice in

comparison with the real media speed, because each package 52 will be

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-14 -

only half occupied with the useful information as the other half of each
package 52 is the address. Thus, while a decrease of the package length
minimizes the latency with the store and forward scheme, it does so at the
cost of effective speed. The wormhole scheme is free of this disadvantage.

Both routing schemes suffer from a speed decrease as compared to
the theoretical speed because of the limited startup time of the media. The
time of physical link transfer may be defined as:

k*n+b, (Eq. 1)

where k is the transfer rate, n is the length of a message and b is the startup
time independent of the length n. The shorter the packages 52 are, the
more there is a difference between the effective speed and the transfer rate.
This is because there are more "b"™s from Eq. (1) are included in the
transfer time. It should be noted that the "b" value depends fully upon the
hardware implantation of the particular processor elements 20 and
connections 22, for example, which comprise each node 44 and link 46.

With extremely reactive intermediate nodes 44, i. e. nodes with very
low "b" values, the wormhole scheme is preferable, because it allows
decomposition of messages 50 into very small packages 52 without the loss
of the overall speed. With nodes 44 having larger "b" values, the necessity
to preserve high effective speed prevents making packages 52 very short,
and thus the store and forward routing is preferable, because it allows
message interleaving, thereby putting potentially more links 46 to
simultaneous work. Another factor in choosing the routing technique to
be used in a message passing system is the size of the message passing
system 40 in terms of the number of nodes 44 in the system, because with
larger systems 40 the inability to interleave messages under the wormhole
scheme can lead to potentially to more traffic jams or deadlocks.

The message passing system of the present invention is applicable to
either a store and forward routing scheme or a wormhole routing scheme,
and the choice of which routing scheme to utilize can be established

independent of the implementation of the present invention.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-15-

ROGR MODEL
SP] municati

In the preferred embodiment of the present invention, the
processing element 22 for each node 44 will implement in hardware a
channel communication scheme known as Hoare's Communicating
Sequential Processes (CSP) model. In the CSP programming model, a
software program consists of multiple PROCESSES 54 connected by
CHANNELS 56. A process 54 is a set of computer instructions which can
execute separately from other sets of computer instructions in the software
program. A channel 56 is a point-to-point synchronous connection
between a pair of processes which can perform two operations: (a) send n
bytes, and (b) receive n bytes. As shown in Figure 3, in the prior art, each
process 54 in the CSP programming model is uniquely associated with a
particular node 44 and each pair of channels 56 is uniquely associated with
a particular link 46 such that there is a one-to-one correspondence.

In the CSP programming model, processes 54 communicate as
follows: When a process A sends n bytes to the channel connecting it to
the process B, process A stops until process B receives n bytes from the
other end of the channel. The behavior of process B is similar. The
communication between process A and process B may start in any order,
but the communication will end only when A has sent, B has read and the
transfer is physically over. During the period of the transfer, the process
that communicates is inactive. A reading process may query if the channel
it wants to read from is ready to transfer something. The writing process
may only start writing and thus stay idle until the message is read from the
opposite end of the channel. Generally, the length of the messages sent
and received by one operation have to coincide, though in some cases it is
possible to send 50 bytes twice and receive 100 bytes once, for example.

The "send" and "receive" operations which implement the channel
transfer are preferably part of the instruction set of processing element 20,
and, in simple programming environments, these instructions are

supplied to application programmers just as they are provided in the

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-16 -

hardware. From the CSP scheme point of view, a link 46 is just a channel
pair, a pair of channels 56 in opposite directions. Preferably, links 46 are
physically independent, with each link 46 being guarded by a separate
direct memory access (DMA) link engine implemented in the hardware of
the processing element 20. The "send to link" and "receive from link"
operations are preferably processor instructions which may be issued by
processes 54.

The most obvious example of a link 46 in the form of a real physical
channel between processes is a connection 22 between two processing
elements 20. Alternatively, it is possible to implement a link 46 within the
memory of a processing element 20 so as to provide for a virtual channel
56 that can be utilized by two different processes 54, i.e., virtual nodes 44,
executing on the same processing element 20. This type of scenario might
be used, for example, in a situation where the number of processes in a
user program 42 is greater than the number of processing elements 20
within the connection network 24, in which case processes 54 will be
mapped onto both physical and virtual nodes 44 and channels 56 will be
mapped onto both physical and virtual links 46.

To implement virtual nodes 44 and virtual channels 46 within a
message passing system 40, it is necessary for the preferred embodiment of
processing element 20 to have a hardware-implemented process scheduler.
A single processing element 20 may execute a theoretically unlimited
number of concurrent processes 54 by using a fair timer-based scheduling
with very fast context switching (an order of time of 10-20 instructions per
one context change). The processes 54 may be coded as occupying different
memory areas within the processing element 20 and, in this case, they are
truly concurrent CSP processes 54 that may be connected by virtual
channels 56.

Inter-process communication in a CSP manner may occur either
between processes 54 executing in different processing element 20 and
connected by physical connections 22, or between processes 54 in virtual

nodes 44 executing in the same processing element 20 and connected by

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-17 -

virtual links 46. Preferably, this difference is transparent to the
programmer as channel communication are implemented in a unified
manner at the hardware level of the processing element 20.

In the preferred embodiment of the present invention as will be
described, the processing element 20 may organize as many channels as
required for arbitrary interconnection of the processes inside the same
processing element 20, and the same instructions are used to send/receive
messages between the processes inside the same processing element 20 and
between the processes in the adjacent processing elements 20 connected by
connections 22. Technically this is achieved via the difference in the value
of the instruction operand for the send/receive instructions. Each channel
end in a node is guarded by a CHANNEL CONTROL WORD, the address
of which is an operand of a send/receive instruction of the processing
element 20. Some reserved words in memory are hardwired to be the
control words of external links. Other words, if previously assigned a
special initializing value, may serve a control word for a virtual link

inside a node.

SP Programming Model

The unification of the notions of "channel" and "process" leads to
several non-trivial consequences in the style of CSP programming for a
message passing system 40.

First of all, the strict CSP style of programming should be fairly well
supported by the hardware of the processing element 20, and need only
limited software support. Indeed, a true “CSP-style” program is a couple of
processes 54 that share no common data, but are connected by channels 56
for purposes of synchronization. The second consequence regarding the
CSP style of programming is not so obvious and is more interesting for the
system programmers. The communication of processes 54 inside the same
processing element 20 via the CSP primitives is not just "one more"
facility of asynchronous programming. It is the only facility. There is no

such notions as "interrupt", "asynchronous event”, etc. in the CSP

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-18 -

programming model. So, inside the asynchronous system components,
when some sort of "event-handling” behavior should be implemented,
the system programmer is forced to use channel communications instead
of interrupts, etc. The processes 54 may be very tightly coupled by shared
data structures, but they still communicate via channels 56 for the purpose
of synchronization.

In the CSP programming model, the concept of placement of
processes 54 on nodes 44 and channels 56 on links 46 in the form of either
connections 22 (for external channels) or memory locations (for
internal/virtual channels) implies some mechanism for passing
parameters about the way in which the user code has been organized and
divided to the process code unit for each process at run-time. This
mechanism is referred to as the CONFIGURATION DESCRIPTION. At
the time the user code is compiled and linked, units of process code 54,
each of which implements some process and all of which are treated as
independent "black boxes", are assigned to a node 44 and are connected by
channels 56 to the other processes 54. When this "black box" starts its
execution, the user process 54 has to pull from somewhere the
information about the channels 56 it possesses, and, perhaps, some other
application-dependent information. Such information is presented in the
configuration description in a so-called PROCESS INTERFACE (or
IMPORT) LIST 58, and is available for the user process 54 through a special
library function on a parameter-number basis. For example, the user code
may query the address of the import number 7 and, knowing that it must
be a channel, input from it. Other functions of a system library for a CSP
programming model will include functions: to input/output from/to a
channel, to query channel ready to input, to start a process dynamically on

the same processor, to perform semaphore/signal functions and so on.

EXISTIN ME I YSTEM
The Inmos_Transputer® ten

One example of an existing system which implements the CSP

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-19-

programming model is the Inmos Transputer® system available from
Inmos, Ltd., Bristol, England. In the Inmos Transputer® system, each
processing element 20 is implemented using an Inmos Transputer®
having four internode connections 22 and the network connection 24 is
constructed as shown in Figure 1. The Inmos Transputer® system is
usually thought of as a message passing system that generally has no
peripheral equipment besides the connection links. In practice, one
connection 22 of the network 24 is connected to a HOST COMPUTER 26,
which is a general-purpose computer, most often an IBM® PC-compatible
computer. The host computer 26 is provided with a special board which
carries a LINK ADAPTER 28. Special hardware is added to the host
computer 26 to reset the network 24 programmatically to initial state, from
which all of the processing elements 20 in the network 24 may be BOOTED
via the link adapter 28.

Up to this point, an overview of the general requirements of a
particular software model, CSP, have been described. There are a number
of software toolsets which have been created to implement the CSP
programming model. One of the most popular software toolsets for the
CSP programming model is the Inmos C Toolset for the Inmos
Transputer® system, as described in ANSI C Toolset - User Manual,
INMOS Ltd, Doc. No. 72 TDS 224 00 (August 1990).

In the Inmos C Toolset, a simplified operating system is provided,
referred to below as a TOOLSET OS, which has no resident code, no
command monitor code and no resource management code which exists
as a process separate and distinct from the process which is the user code.
In the Inmos C Toolset, a single executable file is booted on the
Transputer® system from the host computer 26, which contains a user
code collected together with a "single-use" operating system that together
comprise the process 54 which is to be loaded onto a node 44. The Toolset
OS services any system requests of the user code while the user code is
executing and dies with the user code when the user code terminates. The

next executable file booted in the Transputer® system will also contains a

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-20-

single-use OS in itself, and so on.

While the booted user code is executing, the user code may issue
some I/0 requests to the host peripherals. These requests are received and
served by a host program, the HOST FILE SERVER, executing on the host
computer 26 which boots the user code program and remains active until
the booted code reports end of work. So, in the lifetime of the user code
program, the host computer 26 essentially serves as just an "intellectual
peripheral station" of the Transputer® system.

The development tools for the Inmos C Toolset include the
following components: the C compiler, the linker, the configuration
description compiler to compile the placement description for the
compiled and linked units, and the collector to execute the compiled
configuration description. The result of the execution of the compiled
configuration description is a collected bootable file of the user program,
directly bootable and serviceable by the host file server. In addition to
these components, all of which should be familiar to a programmer skilled
in the art of CSP programming, the Inmos C Toolset includes an IMPORT
facility and a system library to use the process/channel primitives.

While the Inmos C Toolset implements most of Hoare’s CSP
programming model, one notable disadvantage limits the practical
effectiveness of the Inmos C Toolset. Because each channel 56 must
complete an entire transfer before the process 54 which initiated the
channel 56 can release, no more than one channel 56 between two
processes 54 residing on different processing elements may be in use at any
one time in the Inmos C Toolset. In other words, the process 54 executing
on a node 44 becomes completely bound to whatever channel 56 it has
presently initiated on a given link 46. As a result, the functions required
of an intermediate node 44, namely to pass messages 50 on to an adjacent
node 44, cannot effectively be executed in the “background” while
execution of the process 54 for the intermediate node 44 which needs to
initiate a second channel 56 to a different adjacent node 44 is

simultaneously occurring in the “foreground”.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-21-

1/Q Functions for Prior Art CSP ms

There is a severe limitation in the Posix I/O functions (open file,
printf, ...). Only a process connected to a host link adapter 28 by a channel
pair may call such functions, other processes are restricted to the
transputer-specific features. This obviously present a severe limitation to

the programmer in designing the user code.

HE PRESENT IN TI

Although the Inmos C toolset provides many of the features which
are needed to fully implement the CSP programming model, the present
invention adds several software-implemented facilities to broaden the
application of the CSP programming model and to improve the execution
and operational performance of user programs executed under the CSP
programming model in accordance with the present invention.

As shown in Figures 4 and 7, the present invention accomplishes
these objectives by utilizing a message passing system 60 for a user
program 62 comprised of a plurality of user processes 64 logically
connected by channels 66 which are mapped onto a plurality processing
nodes 74 and a set of transfer links 76 according to a user configuration list
68 for communicating a message 70 of arbitrary length and preferably
comprised of multiple packages 72 from one user process 64 to another
user process 64 identified by a destination node number. Although the
physical processing elements and connections are not represented in
Figure 4, it should be understood that the nodes 74 are mapped onto
physical processing elements and transfer links 76 are mapped onto
physical connections or virtual channels defined in memory in the same
way in which nodes 44 and links 46 are mapped onto processing elements
20 and connections 22 or virtual channels as described with respect to
Figure 3.

Unlike the prior art message passing system 40, the message passing

system 60 of the present invention also creates a unique ROUTER

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-22-

PROCESS 80 that will execute on the same processing node 74 as the user
process 64 during compilation of the user process 64. Each user process 64
and its” associated router process 80 are connected by defining in the
memory of the processing node 74 at least one communication channel 82
between the user process 64 and the associated router process 80. For each
router process 80, an array of N-1 TRANSFER CHANNELS 84, each of
which is correlated to the set of transfer links 76 of the processing node 74,
is defined in the memory of processing node 74. A ROUTING TABLE 86 is
also created in the memory of processing node 74 unique to that processing
node 74 for mapping a destination node number to a particular transfer
channel 84. During execution of the user processes 64, messages 70 are
passed within the message passing system 60 by having a routing process
80 at each processing node 74 route messages 70 received by that processing
node 74 in response to a destination node number contained in the
message 70 and the routing table 86 unique to that processing node 74.

Several advantages are derived from the manner in which the
message passing system 60 is preferably implemented.

First, the message passing system 60 of the present invention
implements transfers of messages 70 without requiring that a user process
64 wait for the transfer operation to complete. Transferring while doing
some other job at the same time is a fundamental feature of good parallel
processing systems. The implementation of this feature by the user of the
router processes 80 and the routing table 86 solves the problems of how
existing message passing systems 40 have implemented the assumption in
the CSP programming model that a message must be guaranteed to be
consumed.

Second, the message passing system 60 of the present invention
implements a low startup time as the fundamental criteria for
optimization of the operation of the message passing system. The criteria
of optimization for the message-passing systems are numerous and
mutually contradictory. In the present invention, the startup time of the

transfer seen effectively by the user is designed to be as low as possible.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-23 -

Third, the message passing system 60 of the present invention
provides for a complete set of transfer channels 84 between all user
processes 64. No arbitrary limitation is imposed on the ability of any
process 64 residing on any processing element 22 to communicate with any
other process 64 within the system 60.

Finally, the message passing model of the present invention
implements true file I/O transparency. Any user process 64 executing on
any node 74 should be able to execute all of the basic 1/0O operations, such
as printf, fopen, fclose, etc. The implementation of this feature solves the
existing problems with I/O functions which presently limit 1/O operations
only to those processes executing in nodes which have a direct channel

link with a host adapter.

Low Startup Time

In order to understand why a low startup time is chosen as the basis
for the design of the present invention, it is helpful to recall the model of
the physical link transfer time as defined in Eq. (1). In the k*n + b formula,
k is the transfer rate, n is the message length and b is the startup time of
the channel. What the present invention recognizes is that this same
formula applies, regardless of whether a hardware link is used to set up a
channel or whether the channel is a virtual channel set up in the memory
of the processing element of a node. It can be seen that any reasonable
implementation of virtual channels implemented in software will have
the transfer time calculated by the same formula as set forth in Eq. (1), with
the same (or almost the same) value of k, but with a much greater value of
b. Indeed, when passing very large messages, the overhead time
introduced by the software tends to be small compared to the time of
transfer itself. Unlike the case of physical links, the "b" value for the
virtual, software-implemented channels depends on the particular way of
software implementation. Making the “b” value as small as possible,
especially for the transfers within the same node or between directly

connected nodes, means that the need for the application programmer to

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-24 -

directly use and manipulate physical links in order to optimize
performance is eliminated.

The objective of making the startup time as small as possible greatly
simplifies the message passing system of the present invention in general,
both in use and in implementation. Interestingly, this objective is in
sharp contrast to most of the complex message passing techniques which
have been proposed by others in the CSP field, such as adaptive routing,
conditional deadlock prevention, and dynamic load balancing. Each of
these proposed message passing techniques potentially increase the value
of "b" due to large time overhead introduced by the software. Indeed,
while such complex message passing techniques tend to improve the
behavior of the system in general, especially a system having a large
number of processes and nodes, they tend to spoil the performance of
individual transfers, particularly transfers within the same processing
element or between directly connected processing elements. The increased
value of “b” brought about by these complex techniques is especially
unsatisfactory for parallel processing systems having smaller numbers of
processes and nodes, where such problems as traffic jams, etc., usually do
not appear. It has been found that the problems introduced by complex
message passing techniques with respect individual transfers are more
troublesome than might be expected because most real-life user programs

involve only small numbers of processes and nodes.

A Hardware Viewpoint of the Present Invention

Preferably, the present invention is implemented in an irregular 2-
D connection network 25 as shown in Figure 14 in which the processing
element 21 are not all regularly connected to one another. As shown, for
example, hardware connection 23 directly connects PE-1 to PE-16. Because
of the irregular connections, the maximum diameter of network 25 is only
3, as compared with a maximum diameter of 6 for a classic regular 2-D
connection network 24. Moreover, the open links of network 25 can be

connected to peripheral devices as shown in Figure 16.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-25.-

In a preferred embodiment, as shown in Figure 15, each processing
element 21 is comprised of a pair of processors, a communication
processor 211 and a matrix processor 212, both of which share a shared
memory 213. The routing and operating system code resides in a separate
DRAM 214 and a set of control logic 215 controls and arbitrator access by
the processors 211, 212 to and from the memories 213, 214 with the
processing element. While such a dual processor configuration is
preferred to enhance performance, it will be seen that any number of
know hardware implementation for the processing elements of MIMD
parallel processing computer system may be utilized with the present

invention.

rogr 's Viewpoint of th nt Inventi

To aid in understanding the operation of the present invention, it is
helpful to examine how the present invention appears to a programmer
in terms of understanding the programming model in which a user’s
program code will be executed. Other than understanding the
fundamentals of a CSP programming model and the C programming
language, a programmer writing a user program to be executed using the
present invention will need to be aware of the following:

1). The user code 62 is a set of user processes 64, created at
compile time. If some processes are started dynamically, they can not
directly use the message passing system 60 of the present invention.

2). The user processes 64 are numbered from zero, and are
mapped onto the network nodes 74. Network nodes 74 may send messages
70 of arbitrary length to each other, identifying the receiver by its node
number. Network nodes 74 may reside on different physical processing
elements or the same physical processing element, depending upon how
the user processes 64 are mapped to the physical processing elements in
accordance with the configuration description 68.

3). The discipline of message interchange is traditional CSP

programming model channel-like communications, with the only

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-26 -

exception being that the send/receive operations do not wait for an end of
transfer.

4). Any network node 74 may perform basic Posix-style 1/0
operations independently from any other network node 74, provided there
is no resource clash at the node 74 which is actually providing the 1/0
service.

These four paradigms are implemented such that:

1). Any node 74 has N-1 (virtual) channel pairs 66 in the form of
the set of transfer channels 84, N being the number of network nodes 74 in
the message passing system 60. Input channel number i comes from node
number i, output channel number j goes to node number j. No additional
channels 66 may be created during execution of the user code 62, and the
channels 66 mentioned above can not be created or destroyed they just
exist by the definition.

2). Any channel 66 may either be free or have exactly one
transfer in progress, the latter meaning the channel is busy. Thus, there
are no queues, ports, etc. in the message passing system 60. When a
channel 66 is busy, no more transfers may be started in that channel.
Different channels 66 within the set of transfer channels 84 are
independent, and may work simultaneously.

3). A channel transfer occurs when the reader starts reading and
writer starts writing, i. e., by the mutual agreement, and, because those two
conditions take place simultaneously, the transfer is sure to be over in
some finite time. If only one side of the channel 66 starts the transfer, and
the other does not, the transfer might never finish. The lengths of
messages 70 should be supplied at the both sides of a channel 66 and
should coincide for the same transfer and it is up to the application to
insure that this happens. (It should be noted that when the length of a
message 70 does not coincide at both sides of a channel 66, the message
passing system may hang or crush).

4). Besides the "start read/write" primitives, a process 62 has

four other control primitives which it can execute: query read/write over

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-27-

on specified channel and wait for the read/write over on specified
channel. Waiting for a free channel returns immediately and is a legal
action.

Summing it up, it can be seen that the discipline of the present
invention really resembles a true CSP programming model, but the
present invention is asynchronous with respect to the end of transfer and
guarantees that any pair of user processes 64 is connected by one and only
one channel pair 66. All the functions mentioned above are organized as
the following C function interface which would be implemented in the

user’s C program code as set forth, for example, in Appendix A-1.

A System Viewpoint of the Present Invention

As previously described, any message passing system built upon the
Inmos C Toolset is composed of a number of linked nodes 74, each of
which is executing code for some user process 64, and a configuration
description 68, which connects processes 64 by channels 66 and places them
all on the hardware resources. From the system viewpoint of the “black
box" nodes 74, the message passing system 60 of the present invention is
organized according to the following conditions:

For each user process 64, there is one and only one router process 80,
which should be placed on the same node 74 as the user process 64 it
serves. The latter is important, because, for the purpose of efficiency, these
two processes share some of the same data structures, addresses of which
are transferred between them via virtual channels.

As shown in Figure 7, a user process 64 and a corresponding router
process 80 are preferably connected by two communication channel pairs
82. The first is the I/O channel pair 82-1, to which the user process sends
the file 1/O protocol requests. The I/O channel pair 82-1 allows the user
process to "assume" that this channel pair is connected directly to the host
computer, and thus the user process is able to perform printf and other
basic 1/0O operations that normally would be reserved for processor nodes

directly connected to the I/O node. In this way, the message passing

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-28-

system 60 of the present invention emulates the host I/O for the user
process. The second channel pair is the MESSAGE channel pair 82-2,
serving the explicit message passing from one user process 64 to another.
Unlike the I/O channel pair 82-1, a user process 64 may not "assume" that
the message channels 82-2 are connected directly to some other user
processes 64. Instead, the message channels 82-2 are operated in accordance
with the protocol which will be described. Together, these two
communication channel pairs 82 carry some non-trivial protocol, issued
and interpreted by the user-called library functions listed above.

Any number of user/router process pairs 64, 80 may be placed on a
single processing element or any such pair may occupy a separate processor
elements in a connection network.

Unlike the prior art message passing systems, the message passing
system 60, by using a router process 80 having an array of transfer channels
84, allows processing node 74 to be connected in an arbitrary network
topology, with only the following restrictions: All transfer channels 84
should be connected to transfer links 76 and should map to real hardware
resources, either memory or connections. In this way, the transfer link
connection is a subset of a physical topology of a connection network, and
the job of the router processes 80 and array of channel links 84 is to
emulate for user processes 64 a network topology in which any is
connected to any. To do this, router processes 80 have to know the real
underlying connection topology, and configuration description 68
provides such information.

As shown in Figure 16, there is a special node 74 in the network,
called the I/0O SERVER-CONCENTRATOR 78, which resembles a router
process 80 because it is connected by a transfer link 76 to some other router
process 80 in the message passing system. Unlike other router processes
80, however, the 1/O server concentrator 78 has only one transfer link 76
and thus is never intermediate in any transfer. Additionally, the I/0O
server concentrator 78 does not carry a user process 64 upon it. The

processing node 74 for the I/O concentrator 78 is really connected to a host

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-29-

computer 75 and thus is the only process that can "really” perform printfs
and other basic I/O functions. The job of the I/O server concentrator 78 is
to serve as a background for the I/O emulation performed by the I/0
channel pairs 82-1 and router processes 80 on all the other nodes 74.

In a preferred embodiment, some of the functions of 1/0
concentrator 78 may be distributed to the operating systems of router
processes 80 located in peripheral nodes 74. These peripheral nodes 74 are
considered to have an enhanced nucleus OS (80-H), whereas interior
nodes 74 can be provided with a basic nucleus OS (80-B), thereby further
improving the performance of such interior nodes 74 by eliminating that
portion of the OS required for particular I/O operations.

Referring again to Figure 4, after compilation and linking, each type
of process (i.e, user processes 64, router processes 80 and 1/O server
concentrator 78) has an interface list format specific for that linked process.
For the server process 78 and user processes 64, the format of the interface
list 68 is trivial and easily seen from examples. For the router processes 80,

the interface list 68 is large and complex.

The Ro Pr

The general transfer scheme of the router is designed in response to
the very strong limitations imposed by the functional requirement to keep
overhead as low as possible. As a result, the preferred embodiment of the
transfer scheme of the router process 80 as shown in Figures 4 and 6, is
kept as simple as possible. It implements a sort of oblivious store and
forward routing. The routing tables 86 used to map a destination node
number to a particular transfer channel number may be hand-coded in the
configuration description for every node 74, except the server-concentrator
78. So, choosing the proper transfer channel from the known destination
node number is achieved by just indexing in the routing table 86.

Two types of messages 70 circulate in the message passing system 60
of the present invention: those messages 70 explicitly sent by user

processes 64 and other messages 70 generated by router processes 80 in

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-30 -

order to emulate file I/O requests.

User Messages

In the CSP programming model, it is known that the consumption
of any message 70 arriving at a destination node 74 should be guaranteed.
The simplest way to achieve this is starting a message transfer only when
the receiver reports its readiness to receive, i. e., the existence of a receive
buffer. So, when some user process 64 starts a read operation, the user
process 64 instructs its associated router process 80 to send a short control
message 70-1 to the writer, which means "I am ready to receive a message
from you". This message 70-1 is sure to be consumed by the recipient,
because each router process 80 maintains a scale of ready flags for all other
router processes 80. When a router process 80 receives an "l am ready"
message from another router number N, it just sets the N-th flag in the
scale.

After the user process 64 has instructed its associated router process
80 to send "I am ready", the user process 64 transfers to its router process 80
the address of a receive buffer 90 into which the user process want the read
operation to occur. The router process 80 stores such addresses in a receive
buffer array 88. The N-th element of this array 88 is the address of the
receive buffer 90 to read from the node number N, if supplied.

In the progress of moving from reader to writer, the "I am ready"
message counts the number of hops it passes. In fact, it just has a field 110
as shown in Figure 5, which is zero initially and is incremented by any
intermediate node 74. When the control message 70-1 is consumed, the
distance (in hops) from the reader is also stored, together with a ready flag
92.

What happens when a user process 64 wants to write? First of all,
user process 64 blocks until ready flag 92 of the reader becomes set. Then
user process 64 clears ready flag 92 and instructs its router process 80 to
send a control message 70-2, passing to router process 80 by message

channel 82 the length 104, number of whom to send 106 and an address

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-31-

108 of a send buffer 94. The router process 80 examines the distance to the
reader in terms of the number of hops 106 stored in the control message
70-2. If the distance is "1", i. e. the reader is physically adjacent, the router
process 80 will send all the messages 70-1 as a single package 76 through
the appropriate channel 66. Otherwise, the router process 80 slices the
message 70 into packages 72, small enough to fit into standard along the
network intermediate buffer 78 and numerous enough to pipeline the
transfer. The information to calculate the proper package size is the
distance to the reader, which is known from the control message 70-2.

When a package 76 arrives to a node 74, the router process 80
examines the destination node number. In the case the destination is
reached, the package body is read from the transfer channel 84 directly to
the read buffer 90, address of which has been stored when issuing "I am
ready". Otherwise, it is stored in intermediate buffer 78 and then
retranslated. Together with the read buffer address table, the router
process 80 maintains a table of counters 88 to count the number of bytes
received from any writer. When the count reaches the message length
required, the read operation is over, and the writer's entries in the reader's
tables of counters and read buffer addresses may be zeroed.

The preferred embodiment of the message passing system 60 is
highly efficient and has the requisite low overhead for a number of
reasons. It will be noted that redundant copying in both the reading and
writing operation is eliminated in the message passing system 60 of the
present invention, because only the addresses of the buffers 90, 94 are sent
from the user process 64 to the router process 80, and not the message 70
itself. In the case of the transfer of a message 70 of any length between
physically adjacent nodes 74, the present invention is clearly better than
existing message passing systems. Other than some short communications
between the user process 64 and the router process 80 inside the same
processing node 74, and one additional short message between the writer
and a reader, which is done to pass a message head, just one channel

transfer is made, directly from the writer buffer to the reader one. No

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-32-

slicing takes place, no matter the length of the message 70. While the
present invention is notably slower than the raw transfer media between
adjacent processing elements 22, the adjacent transfer scheme
implemented by the message passing system 60 of the present invention is
very good in comparison with other message passing systems 40.

The arrays and tables mentioned recently are shown exactly in the
form they are encountered in the C programming language of the
preferred embodiment of the message passing system 60 in Table I. These
arrays and tables are maintained collectively by a network node 74, both by

the user process 64 and the router process 80.

========= /* user receive addresses for respective processors: */
static unsigned char **useraddr;

========= /* required & done lengths for receive: */
static unsigned *I_reqd, *I_done; /* the same for send: */
static unsigned *l_reqd_w, *1_done_w;

========= /* user ready_to_receive flags, with # of stages values: */

static unsigned *ready_to;

In terms of the above, the user receive addresses is "the receive
buffer array”. Useraddr{i] is a pointer to the buffer to which a package body
should be written, when a package comes from the i-th node. For instance,
1_done[i] is a number of bytes read from the i-th node while receiving the
current message. These counters make sense mostly because the messages
are sliced, thus coming in portions. A scale of ready flags and an array of
distances is, in fact, a single array. As a distance can not be zero,
ready_to[i]==0 means that the i-th node is not ready to read from me,
ready_to[ij==5 means that it is ready, and is 5 hops from the current node.

It should be noted that the data structures above are quite enough to
construct the accurate foolproof synchronisation: in fact, they count

messages and prevent the user code 62 from running two simultaneous

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-33-

transfers in the same virtual channel 66. What they do not do, but can do
partly with minor modifications, is recovering from the different message
lengths specified on the different ends of the transfer. This is not done
fully because it is impossible, due to the fact that a processing element 22
can not do physical dummy reads, and error recovering is thus unsafe: a

situation may always occur in which there is no memory to recover.

1/0O Messages

The second sort of messages 70 circulating in the message passing
system 60 of the present invention are messages 70 that are created inside a
router process 80 to emulate a user I/O function. To understand these I/0O
MESSAGES, it is first necessary to observe the Inmos I/O protocol
generated by system runtime and passed by it by the host-connected links
when the user process 64 requires file I/O. As previously mentioned, the
I/0 communication channel pair 82 connects the user process 64 and the
router processes 80. The user process 64 "thinks" that those channels 82
connects it directly to the host 28, sends some protocol directed to the host
by the outgoing channel and requires some responses from the incoming
one.

The Inmos 1/O protocol is fairly simple. Each host transaction
consists of a REQUEST and a RESPONSE. Both are represented by
messages, consisting of a head just a short integer with the body's length
and a body of specified length. It is important that the transactions are
strictly sequential. When a response is issued and a request has not yet
arrived, no more requests may be issued: the user process just blocks
inside the requested I/O function until the request is received. Bodies are
never generated of a size greater than a maximum, constant and known in
advance. This greatly simplifies the transfer synchronization, because the
messages do not need to be sliced and are guaranteed to be consumed
unconditionally. As a result, no "I am ready"” messages are needed. It will
be noted that slicing of I/O messages into packages still may be done for the

purpose of efficiency, but in the preferred embodiment this is not done

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-34-

because the file I/O is usually either not a bottleneck in comparison with
explicit message passing of user messasges, or because the file I/O is sure to
be a bottleneck due to host restrictions.

When a router process 80 receives an 1/0O request from the user
process 64, the router process 80 just turns it into a package 70 with a
standard network head and a body taken directly from the request, and
sends it as a usual package to the server-concentrator 78. As it may be far,
the standard network intermediate buffer size 88 should not be less than
the Inmos I/O protocol body size. On the other hand, a server-
concentrator 78 has to have a one-request buffer for every user process 64.
For the unconditional consumption it is enough, because no other request
may arrive from the same user until the current one is replied. It should
be remembered also that explicit generation of server-directed messages is
forbidden for the user processes 64, so those buffers in server-concentrator
78 are always free when necessary for use by the router process 80.

To send a message to the server-concentrator 78 "as a usual
package"”, the server-concentrator 78 is assumed automatically to have the
last + 1 number as a network node 74, that is, the node number of the
server concentrator 78 is equal to the total number of the user processes 64.
This is reflected in the routing tables 86: the routes to the server-
concentrator 78 are coded in them as well. The server-concentrator 78
itself does not need a routing table, because it has only one network entry.

When a server-concentrator 78 receives a package from some user
process, it consumes it, reconverts it to Inmos format, replacing the
network head by the Inmos one, and sends to host file server by the "real"
host connection channel it possesses. When the response comes from the
host file server, the procedure is repeated in backward order. When, at
least, the reply arrives back to the router process 80 from which the request
was issued, it reconverts it to Inmos format and sends to the I/O user
channel 82. All this time the user process 64 has been waiting for the

reply, so it consumes it immediately.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-35-

T es 1

In the above discussion of the package flow in the message passing
system 60 of the present invention, the "standard network head" of a
package 70 was mentioned. Referring now to Figure 5, the format of a
standard package 70 of a preferred embodiment of the present invention
will be described. A package 74 consists of a HEAD 100 and a BODY 102,
which is optional. The head 100 has a fixed length, the body 102 may be of
any length. A body length value 104 is stored in the head. A package 74 is
always transferred in two physical channel transfers: first the head 100,
then the body 102. It is because the hardware requirement of the preferred
embodiment of processing element 22 that the length of the message read
should be known in advance.

The head 100 is a number of words, each of which has a fixed
meaning. Note that full words, and not halfwords, are used, in an effort to
increase the processing speed of decoding the head 100. In addition to the
body length value 104, the head 100 includes a to whom destination node
number 106, a from whom destination node number 108 and a number of
hops passed 110. The length 104 may be zero, meaning that the body 102 is
absent. Such zero-length messages have special meaning they are the "I
am ready" messages previously mentioned. The number of hops passed
110 is a stamp that increments at each hop during the transfer. The other

fields are constant throughout the transfer.

The Router Pro t

The router process 80 must react to asynchronous events, so it can
not be coded as a single process. If it were a program component in a
computer with the more or less traditional architecture, the router process
80 would be coded as a main process with a couple of event handling
procedures invoked on interrupts initiated by the links 76. The links 76,
however, do not interrupt the node 74, because there are no interrupts at
all in the architecture of the CSP programming model. Instead, the CSP

programming model provides for many asynchronous processes,

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-36-

communicating via the channels. Consequently, the preferred
embodiment of "router process” 80 is not a single process at all, but is a
number of communicating sub-processes, all sharing a common data
structure. What has been referred to as "router process" 80 up to now is
just an initializer of a group of sub-processes that are started dynamically,
with the code implementing them compiled and linked together so as to
simplify the program text.

The problem of decomposition of a router into sub-processes and
establishing communications between them is non-trivial, because the
potential danger of deadlock exists. To realize that the danger really exists,
imagine trying to code a router as a single sequential process. Such
implementation is sure to deadlock at the very first moment, because of
the fixed order of inputs and outputs. But suppose that the fixed order did
not appear to cause an immediate deadlock. Such a situation might be as
follows:

1.) each incoming router channel has a READ process, with an

internal channel to which it outputs what it received,

2). each outgoing one has a WRITE process, with an internal

channel from which it inputs what to send,

3). there is a MANAGER process, connected by internal channels

to each reader and writer. It loops endlessly, querying the readers'

internal channels. As soon as any one is ready, it reads from the
reader, writes to the proper writer and loops again.

While such a construction of a single router process seems quite
asynchronous, it will deadlocks. Generally speaking, when only one
manager is used for many potential reader-to-writer connections the
deadlock situtation will exist. While the connection between, say, reader 0
and writer 2 is served by manager, need for connection between reader 1
and writer 3 has arisen, but it can not be served until connection 0 2 is
served, because the manager is single. This introduces DEPENDENCY
between those two internal transfers. Many such dependencies in the

message passing system may occasionally form a cycle, and, as a result, the

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-37 -

system clinches.

It should be noted that the situation described here is still not a
"real" deadlock, in that this situation may be eliminated by rearranging the
behavior of the program not seen from outside. In other words, it is a
deadlock due to the improperly coded program. The problem of "real”
deadlocks that depend on the connection topology of the message passing
system and require changes on the node level will be discussed at a later
point.

The way to avoid the artificial deadlock situation constructed above
is to eliminate the "manager" process as shown in Figure 8. In this
embodiment, there is a sender/receiver 112 for each node 74 with router
process 86. Each sender/receiver 112 includes a writer sub-process 114 and
a receiver sub-process 116. Each writer sub-process 114 is connected by
internal channels 118 to all reader sub-processes 114, and does a manager
work for itself: each writer sub-process 114 queries all the channels 118
coming to that writer 114 from readers 116, inputs from the first reader 116
encountered ready and outputs to the transfer link for which the writer is
responsible. Preferably, each reader 116 has two or more buffers 120-1, 120-
2 to which it may input. When something is input, reader 116 marks the
buffer 120-1 "full" and outputs its address to the writer 114 by the internal
channel 118. As soon as the address is taken by the writer 114, the reader
116 may try to input to the other buffer 120-2. Before trying, it has to be
sure the buffer 120-2 is free of the previous portion. This is accomplished
by having the reader 116 block until a "full" flag 122-1 of the buffer 120-1
which is being requested becomes deasserted. Deasserting this flag 122-1 is
the job of a writer 110 that has got the buffer 120-1 marked "full" the last
time.

The buffers 120 for the packages to be stored and retranslated are
organized as a busy tag (1 word), a package head (of SIZHEAD words) and a
package body or package address, depending upon whether the package is
an 1/0 package from a communication channel 82 which needs to be

translated into a standard package 100, whether the package is a user

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-38 -

message from a communication channel 82, or whether the package is
from some other node 74. It is preferred that the buffer 120 be coded as
structures/unions, not as arrays. The busy tag may have one of the three
values: (i) “0” - meaning the buffer 120 is free, (ii) MESSAGE_TO_LINK -
meaning the package body is stored in the buffer 120, or (iii)
USER_TO_LINK - meaning a package body address is stored in the buffer
120.

It will be noted that this discipline for the writers 114 and readers
116 includes minimum overhead. There are no queues, no searching, no
signals or semaphores, no buffer pool management, and, surely, no
redundant copying as addresses, not messages, are transferred by internal
channels 118. A preferred example of the router source code organized
according to this discipline is set forth in APPENDIX A- 2. In this example,
all printfs are commented out because the preferred embodiment of the
router code is linked with a "reduced"” system library which includes no
I/0 services. While the router process 80 offers the I/O services to the user
process 64 it serves, the router process 80 cannot perform I/O services
itself. The function "ProcAltList" is a standard CSP programming
construction that means "query a list of input channels and return the
number of any one ready to input” in some finite time. Unlike channel
reads and writes, “ProcAltList” is not a single transputer instruction, but it
is an accepted practice to include such a facility into low-level standard
communication libraries as a single communication primitive. The
function "ProcReschedule” is another traditional primitive, usually found
in low-level standard libraries. It should be noted that a busy waiting does
not prevent other processes from elapsing the CPU time. It just places the
process that invokes it to the end of the process scheduler's list of processes
ready to work.

To make the picture complete, examples of two more source files
are described - "router.h" (as set forth in APPENDIX A- 3) and "routelib.c"
as set forth in APPENDIX A- 4). It will be noted that routelib.c is not a part

of router process 80, but the user process 64 which interfaces to router

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-39-

process 80. It mainly consists of the functions described above. It may
seem surprising at a first glance that the standard library to be invoked
from an application includes the function named "main". As the router
services 80 need some startup performed by the user process 64, the main
is transferred to the library. The user main function called from "main"
after the startup is called "r_main" and receives all the arguments that the
"main" does in the Inmos C Toolset.

To understand the import of parameters from the configuration, a
sample configuration description 68 is also presented in APPENDIX A- 5.
The only thing that may be not clear from scratch when reading this
example is the Inmos agreement about the host connection channels. It is
assumed that the file I/O runtime imports the host connection channels as
the first two interface parameters, so they should be supplied like this in a
configuration description, if only a printf I/O function is desired.

The source code for the server-concentrator server 74 is not
included because it is not interesting and is overloaded by the "technical
peculiarities” like rudimentary graphics, primitive arbitration preventing
the opening simultaneously too many files and so on, that are particular to
the architecture of the processing element 20 and host computer 28. For
completeness, the source code of the user process tnet.c is included in
APPENDIX A- 6. In this example, all the user processes 64 execute the
same code. It is typical enough, but is not obligatory. The sample code
tnet.c is just a network complex test and does the following: (i) start reads
from all the other nodes, (ii) write to all nodes the array with a counter,
shifted by the self node number, (iii) wait for all reads to be over, (iv)
ensure that everybody sent to this node the counter, shifted by its node

number. This process is then performed many times.

DEADL S AND IRREGULAR NETWORK
With the basic structure of the present invention now in mind, the
next section discusses the development and application of the present

invention and the problems of deadlocks and irregular networks.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-40 -

Provided a message passing system has only about 10 nodes that
may be hard or softwired to different topologies, it is possible to
experiment with changing the physical topology. As soon as we try to start
such an experiment with some untrivial message length and large
number of times to execute (10000 and 10000, for example), using for the
physical connection a ring of 5 nodes at least, the program would hang
inevitably, perhaps, at different moments in different runs. In other
words, it deadlocks, depending on some subtle timing circumstances.
This is shown graphically in Figure 10 for a 4x4 network of nodes. When
there is a loop of requests, all nodes 74 in the loop will end up waiting on
each other as they are not able to recognize the deadlock situation.

In the present invention, an optimal set of loop-free subgraphs are
created, as shown in Figure 11, and, as a result, there is deadlock-free
routing map for fast communication among nodes 74. A ring is an
example of a CYCLIC topology, while the simplest pipeline topology we
started with is an ACYCLIC one. Unlike the simplest topology, the router
of the present invention does not require an acyclic topology to work well.
The program also works on a rectangular grid, a topology containing just a
series of cycles. To understand this better, this discussion all needs some

more theoretical background.

Buffer pool structuring by channels.

The intuitive opinion that the problem has something to do with
the presence of cycles in the topology is quite true. To start from the
beginning, let us make a router that is able to work only on the acyclic
topologies. That is, a router that deadlocks on a rectangular grid as well as
on the ring. What should be changed is the order of intermediate buffers'
assigning to packages. To do this, we decided that each reader process
inside a router shall have its own subset of intermediate buffers.
Although we originally did this just for the purpose of saving time of
execution, because any other technique requires some non-trivial buffer

pool handling overhead, it also turned out to be also an anti-deadlock

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-41-

feature mentioned above. We then changed this assumption and
organized a common buffer pool for the whole router. When a reader
process needs a buffer, it tries to obtain a buffer from the common buffer
pool. If a buffer is not available, the reader process blocks until a buffer
becomes available.

Such a router will block on a rectangular grid as well because a
dense stream of packages coming from any single link may capture
temporarily all buffers. If such situation occurs cyclically and the necessity
for one more buffer to deblock forms a ring, the network would clinch.
Graphically this is shown in Figure 12. With the version observed above
this could not happen, because no package coming from link #0 could ever
obtain a buffer allocated for a reader #3. The restrictions like this are
generally known as BUFFER POOL STRUCTURING techniques. This
particular way of the buffer pool structuring is named STRUCTURING BY
CHANNELS, because buffers are allocated for the particular channels, and
only a message from a channel to which a buffer is allocated may occupy a
buffer.

It is clear that a router based on a channel-structured buffer pool
works on a topology with no cycles (for example, any sort of a tree), and we
see that it may work on some cyclic topologies (grid) or not work on other
cyclic topologies (ring). But why would a 2 by 2 grid not be a ring? To
formulate this question precisely, what is the class of the topologies which
the router of the present invention can accommodate? The graph theory
specialists refer to this class as to the "topologies with the acyclic channel
dependency graph”. To understand this in practice, let us do the
following:

First, think of the physical topology as of a directed graph of NODES
and CHANNELS, but not links. Each bidirectional link is not one, but two
edges of a graph, having opposite directions.

Second, decompose a graph into a number of SUBGRAPHS so that
any edge belongs to one and only one subgraph, but any node may belong

to any number of them.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-42-

Finally, examine the order of passing by the subgraphs when
travelling by any route. For example, when moving from node A to node
B by the route coded in routing tables, we first travel through the subgraph
number 1, then through the subgraph number 3, etc.

The basis for this process can be set forth as a Theorem 1:

IF such a decomposition of a topology exists such that:

each subgraph is acyclic,

each route passes any pair of subgraphs in the same order as any
other route passes this pair,

THEN the channel-structured buffer pool routing is deadlock-
free.

Instead of rigorous proof of this theorem, it is easier to note that
there may be no cyclic dependencies inside a subgraph. Moreover, there
may be no dependencies between subgraphs because these "parallel
universes” are passed by any package in the same order. If one has to enter
subgraph A, no other one may, explicitly or implicitly, want to enter "his"
subgraph from A. And finally, as the buffers are tailored to channels, the
"parallel universes" are really paralle], i. e. independent.

Such decomposition of a rectangular grid is straightforward. Indeed,
as shown, for example, in Figure 13. Any route in such a grid lies
completely in only one subgraph of the following 4 ones: the "up & right"
one, or "up & left". Or "down & right", or "down & left". Each such a
subgraph is acyclic.

Finally, let us stress two assumptions we made implicitly just above.

1). We considered the oblivious routing solution. With the
adaptive routing, the theory of avoiding deadlocks is quite complex.

2). When speaking about the ring and a grid, it is assumed that
the routing tables contain the MINIMAL routes. It is possible to organize
such a routing on a ring that it becomes deadlock-free (for example, by just
ignoring one of the links), but this routing table will not be minimal in
terms of hops necessary to travel from a node to another. Similarly, it is

possible to organize the deadlockable routing in a grid, but it is sure to be

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-43-

not minimal, as a minimal one's deadlock freedom was shown above.
The most remarkable thing concerning this theory is that it works

"by itself”. It is not necessary to introduce the subgraphs and

decompositions anywhere into the sources of the programs. Just apply

the channel-structured buffer pool, and for some class of topologies it will

- work. But for some others.. How much do we lose restricting the

topologies used to the "good" ones?

Consider an envelope 4 by 4 processors (i. e. a 4 by 4 rectangular grid
with diagonal connections added. The NETWORK DIAMETER (the
longestin hops minimal route in it) for this topology is 3. To make this
topology "good" in the sense covered above, it is necessary to restrict the
use of diagonals to the nodes adjacent to them. That gives a diameter of 5
only 1 less than a diameter of a grid with no diagonals at all. So, there
surely is what to struggle for.

To make the router of the present invention work on the wider
class of topologies (in fact, on any topology that is fully connected) it is best
to choose some other scheme of the buffer pool structuring other than by
channels.

One alternative is to implement a very complex algorithm with the
elements of global knowledge of a situation in a network, capable of
detecting deadlocks and deblocking each particular occurrence of a
deadlock by special "emergency" procedures. This is quite a special area of
knowledge and is not very effective from the viewpoint of requiring a low
startup time, especially for the networks that are not extremely large.
With very large networks such algorithms may be useful because some of
them may be applied to adaptive (non-oblivious) routing thus solving the
problem of deadlocks together with the problem of load balancing of
traffic.

It should be noted that not just any scheme of dividing messages
into packages may be used with any scheme of the buffer pool structuring.
For example, the wormhole routing may be used only with the channel-

oriented buffer pool structuring, and thus can practically not be adapted to

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-44 -

"bad" topologies. It is because the packages of different messages can not be
interleaved in wormhole schemes: to structure buffer pool not by channels
we should in fact have to buffer not packages, but whole messages, which
is impossible because their lengths are not limited.

CHANNEL MULTIPLEXING techniques, for example, may be used,
when special software is introduced to emulate several independent links
on a single physical one. By "adding" links in this way, it is usually
possible to make a topology "good" in the sense covered above. Surely,
such a software multiplexer of a link should be designed and coded very
carefully to provide the truly independent functioning of the virtual
channels it implements. It is sure to require passing some additional
control messages by the physical link, and thus introduces non-trivial
execution time overhead. The question is if the gain obtained using the

topology with a little diameter worth the loss of time in the multiplexer.

Buf | structuring by hops.

The last thing to examine is to see how the store and forward
method's ability to interleave messages may help to find the buffer pool
structuring technique able to cope with an arbitrary topology. We still
restrict our considerations to an oblivious routing. Such a method exists
and is named STRUCTURING BY HOPS. Let us construct the scheme in
two steps. In the first step we construct it in theory and then see than it is
unimplementable. In the second step we improve it.

Step 1.

Let a buffer pool be single for all the readers of a node. Let the
buffers be subdivided into CLASSES, with one buffer in each class at least.
There must be as many classes as the longest route in the network plus 1.

Let any package be stamped by a number of hops it has passed.
When a package is issued, it has a stamp 0, at the next node it has a stamp
1, etc. Let this stamp be the CLASS OF A PACKAGE.

Let the package of class N be able to occupy only the buffers of classes

0 to N inclusively, but not the higher ones.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-45 -

Theorem 2.

This sort of routing is deadlock-free.

Proof.

Each message can wait only for a buffer occupied by another one,
which is closer to the destination than itself is. As the routes are finite, the
cyclic waiting is impossible.

Proof over.

Note that counting the hops already passed is not the only choice
possible. The scheme may be built that counts the number of remaining
hops as well, and it essentially makes no difference.

This is, perhaps, conventionally acceptable, but there is a great catch
in the scheme proposed. How does the node's router know what buffers
may be transferred and what ones have to wait? In the router covered
above, the messages arriving to intermediate nodes were output in
arbitrary order. No information was extracted from the adjacent node if it
is possible already to output. With the channel-based buffer pool
structuring, it all worked for the "good" topologies. If we do the same with
the hops structuring, we may try to output first the message that has the
lower class. If there is no buffer for it, it blocks the channel. The message
with the higher class that we wanted to output second is thus blocked,
though the buffer for it exists at the adjacent node. Deadlock.

One way to avoid the problem is to output first the messages with
the highest classes. But, what does "first" mean? When a decision is
made as to what to output first, how can we be sure a great deal of the
messages of a very high class are not just now arriving from another link?
Apparently, this scheme requires a CENTRAL MANAGER to maintain
the buffer pools globally. For such fast and reactive networks as the
transputer ones this solution is inacceptable. Too many control message
need to be exchanged to emulate such a manager in the distributed-media
network.

The local managers are designed (invented) by managing just the

adjacent nodes in the following manner. Let any link writer of a node

WO 97/48054 PCT/US96/11583

10

15

20

25

30

~-46 -

examine the buffer pool's scale of free buffers. As soon as it changes to the
best (some buffer frees), it writes to the neighbor the special control
message about it. This lets the adjacent node send only packages that are
sure to be accepted. If there are no such ones, it really waits, but the
channel remains unblocked. If a package arrives of the higher class that
may be sent, it is sent.

The last catch in this scheme which has to be dealth with, is to make
sure that a buffer thought to be free is not captured by a package coming to
a neighbor from another processor adjacent. The solution to this catch is
really quite easy. Let us first structure the buffer pool by the channels, and
then structure any reader’s subpool by the hops. The local free buffer scale
reporting becomes safe nobody but myself can occupy my buffers, I need
only the freeing of them to be reported. An example of this is shown

graphically in Figure 9.

he data structures for the preferred .

A version of the router 80 is presented below that implements this
procedure of buffer pool structuring. To help reading the sources, let us
examine here the main data structures that appeared in comparison with
the previous version.

1). The additional buffers.

In the implementation presented, there are more buffers than
absolutely necessary, for the purpose of gaining the speed of execution.
First of all, the messages "I am ready to input" covered above should
circulate as fast as possible, but are very short. To simplify and speedup
their transfer, each node contains a separate "I am ready" message buffer
for any pair of nodes in the network. From what was said above about
those messages, for each pair of nodes there surely may be not more than
one such a message from the first to the second in the whole network, at
any moment of time. So, such messages are never delayed when the
proper channels are free, and the buffer pool search is eliminated.

The messages generated by the file i/0 system are also restricted in

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-47 -

number. There may be not more than one "to server" and one "from
server" package for any node in the network at any moment of time. This
decision may be otherwise, but the preferred embodiment of the invention
has special buffers for them as well. Each node has a buffer for any node's
"to server" and "from server” packages.

The rest of the packages are the ones that are parts of messages
generated explicitly. For them, the buffers are allocated due to the scheme
presented right above.

2). How the processes interact inside a router.

The router decomposition into processes is generally the same as in
the previous version. But the manner of interprocess interaction has
changed. As the structuring by hops requires packages reordering in the
writer's queues, it is no longer possible just to pass the addresses of buffers
between the reader and the writer by channels.

The main implementation trick was not to change the buffer's
“full", or "busy" tag covered above. This reduces the queues management
overhead twice at least. Indeed, buffers are not transferred between
different lists of "busy”, "free", etc. They are listed once and forever in
their "native" lists, for example, "a list of to-server buffers", etc. When
busy, they are linked additionally to the proper writer's queue, and that is
all. When the writer frees the buffer, it just deasserts its busy flag, and the
buffer finds itself automatically in the "native" list of free buffers. There is
no action of inserting a freed buffer back into the "free" list.

The structure of the writer's queue of busy buffers is also very
simple. It is just an array of pointers to buffers, long enough to contain all
buffers of the node so overflow is never tested and can not be a source of
deadlock situation. The queue is maintained always dense when
something is freed from the middle, the rest of the array is moved
physically. This seems to be not as horrible as seems at first, because the
transputer has a "block move" CPU command. But maintaining an array
of pointers instead of a linked list with the necessity to look for the empty

slot really saves time. Besides, such a simple discipline guarantees that the

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-48-

packages of the same message never change the order of sending, and this
saves an "offset” field of the package head, which would otherwise be
necessary.

The queues are maintained both by the writers that own them and
the readers adding buffers to them, so each a queue has to be protected by a
semaphore.

In fact, the writer's queue consists of not 1, but 3 arrays. Besides the
buffer address table, there are the buffer link number table (it stores the
number of the link to the reader of which the buffer belongs) and the
buffer number table (it stores the buffer's serial number in the buffer pool
of the appropriate link). This is done to enable the reporting of the fact of
freeing the buffer from the writer that sent the buffer and made it free to
the writer of the link to which's pool the buffer belongs. The latter may
then report freeing the buffer to the adjacent node, as described above.

It should be noted that, from the viewpoint of both style and
execution speed, these tables may be coded as something other than 3
separate arrays, not as an array of 3-field structures because this leads to the
necessity of doing 3 block moves instead of 1.

3). Miscellaneous decisions.

Some small technical decisions have to be mentioned here.

Preferably, the writer process scans its queue circularly, and before
each scan it tests if it is necessary to report the adjacent node about freeing
of some buffers. This test is not trivial, because the buffers to be reported
are freed by other writers, not the one that reports. Anyhow, the report of
the buffer freed has to be done as soon as possible, to avoid deadlocks. So,
reporting of the buffer becoming free may be delayed for not longer than
the time of one buffer output.

Also, the additional table appears, preferably as a table of
DISTANCES. It is important, because sending a message to the adjacent
node needs no intermediate buffers and may be done on spot, without
waiting for anything, as soon as the target buffer is ready. This table is

constructed at the self-configuration phase (at startup time), and this is

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-49 -

described below.

Finally, the format of the message head has changed to make it
shorter as compared to the message 20 shown in Figure 5. As the table of
distances is constructed at startup, no "number of the hops passed” field is
necessary. There are only three fields:

length of the body

to whom

from whom but they are overloaded in some cases.

There are two such cases:

First, when a "node to node” (not "node to server" or "I am ready")
package is transferred between the not-adjacent nodes, only the low 2 bytes
of the length carry the length. The high 2 bytes carry the number of buffer
in the link buffer subpool of the adjacent node to which the message
should be placed. Note that, as covered above, the decision of what buffer
to place a message to is taken by the sender, and that is why the receiver
has to report regularly what buffers are free.

Second, the second overloaded field is a "to whom" field. In this
version, there are two types of messages such that "to whom" field's value
is not necessary for them. They are, firstly, the messages with the
information about what buffers are free at the adjacent nodes, and,
secondly, the messages of self-configuration at startup time, which are
covered below. These messages should be filtered out by any reader
process as soon as possible to not increase the overhead at runtime. To do
this, a special value FREEBUFS is used for "to whom" to mark the
messages with information about free buffers. A byte scale of free buffers
follows such a head.

Another special "to whom" value, ROUTCONF, marks the startup
self-configuration messages covered below. The "to whom" field of such
messages is ROUTCONF+n, where n is a hops passed stamp. Both
ROUTCONF and FREEBUFS is greater than the maximal node number,
which makes it possible to filter such messages out in a single "if" in a

reader.

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-50 -

mati t 1 t

The other improvement of the router presented above is its ability
to construct the routing tables automatically. The first thing to invent is
something like the very well known "worm" or "spy" programs that try to
spread themselves to all the links of the network. This idea, however, is
not so good. On the one hand, some links may be connected to the special
hardware like electronic routing switches, etc. On the other hand, it is not
good to restrict the networks to those connected by links to be placed on
some network nodes to the same processor. So, the compromise decision
is to have the physical topology to be used by the network remain in the
configuration description, but remove the routing tables from the
configuration description. The "worm" or "spy" procedure is performed
only on the channels imported from the configuration description.

The idea of the procedure is following.

Assume that the channel topology is "quasy-link": no matter what
channels are used, either the software ones inside a processor or the link-
based ones, all the connections are bidirectional. For any connection from
A to B one and only one connection from B to A exists. These channel
pairs are referred to as "links".

At a startup moment, each node issues a special message "I am
here" by all its links. The message is stamped by the hops passed. When
this message arrives to a node, it is examined if it carries some new
information about the node it originates from. If not (for example, a
message from myself came, or a message came in 5 hops from a node from
which another one came in 2 ones), nothing is done. Otherwise, a hops
stamp is incremented, and a message is retranslated to all the appropriate
links. Besides, in this case the routing table entry to the origin of the
message is assigned a number of the link the message came from.

To understand if the message really carries any new information,
each node maintains the two data structures the RELIEF TABLE and the
ROUTE TABLE. Each one is a matrix. Here they are explained using the

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-51-

identifiers of the source code presented in Appendix A-7.

m_relief[i][j] is a relief table entry. Its value is the distance (in hops)
to the i-th node from the current one, provided we travel through the j-th
link.

m_routes[i][j] is a route table entry. Mind that it is not the routing
table in the sense covered above, but an auxiliary data structure used at the
self-configuration stage only.

The value is 1 if travelling through the j-th link to the i-th node is
the shortest way to it, 0 otherwise.

There is also an auxiliary SCALE OF SEND FLAGS, named tosend.
It is a vector as long as the number of links in the node.

The procedure consists of the following steps:

1). Emit the message "I am here" by all the links. Stamp it by
number of hops passed equal to 0, and by self number of the sender.

Mark all reliefs as "very far", all route table entries as "not the
shortest way".

On receipt of the message "I am here" marked by the sender number
S and hops number D, coming from link L, do:

2). If S equals to the self number, do nothing. (the mirrored
message from myself has returned).

3). m_relief[S][L] = D+1;

4). Find the lowest relief value among the m_relief[S][i] for all i-s
(for all links of the node).

5). if m_relief[S][L] is the lowest,

6). then count the lowest reliefs m_relief[S][i] for all i-s, mark the
appropriate m_routes[S][i] with 1-s for the lowest reliefs and 0-s for not the
lowest. Assign tosend]i] the same values as m_routes[S][i].

7). if the number of the lowest reliefs encountered at the
previous step was 1, remember the retranslation is necessary.

Update the "real" router's route and distance tables for the node S,
that are to be used during the regular work.

8). endifinp.5

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-52 -

9). if it is remembered that the retranslation is necessary,
increment the hops stamp and retranslate the message to all links for
which tosend[i] value is zero.

The procedure description is over.

Preferably, to make implementation safe the access to common for
the whole node data structures should be semaphore protected.

At the cost of some mental strain it may be seen that the procedure
just presented should work, and it really works. But, there are several
questions to the implementation, both concerning deadlocks.

1). First, is the procedure of self-configuration just presented
above deadlock-free in itself? It may be stated definitely that for the case of
unstructured buffer pool for the routing messages it is NOT. That is why a
special buffer pool for the configuration messages at each node was

introduced. This over is not too bad, because the buffers are very

small. This pool is structured first by incoming channels. For each
incoming channel's subpool, a special buffer is provided for each pair (S,I)
such that a message originating from node S has to be retranslated to link
number 1. Perhaps, it may be made less numerous, but it works like this,
and the buffers are so small that there is not much need for careful
optimization here. In addition, according to the procedure, no useless
information is output twice about the same original node down the same
link, so the procedure must be fairly efficient.

2). Second, it is obvious that if we start working when the
procedure is not over, the deadlock situations may occur, because in fact
working with the changing final routing tables is a sort of adaptive
routing. So, for the purpose of safety, we have to know when does the
procedure end? The answer is NEVER, and that is why it is ca_lled a
"procedure”, not an "algorithm”. To be more exact, the procedure finishes
at some moment, but there is no straightforward way for a particular node
to discover the moment when the procedure is over, or, at least, a way for
a node to know when the changes to the final route map are complete.

This way should exist, but as of yet it has not been identified for. So, now a

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-53-

potentially unsafe way of finding the moment to start is used. This can be
seen from the source code for the process flags_out:

the process first detects a moment when the final routing
tables become constructed.

then it waits for a moment when they do not change during
one second.

then it assumes they will change no more, and opens the
locks of the user and i/0 input for the node, starting the work.

Note that if the end of the procedure were found, it could be very
useful for the networks with potentially unreliable links, to detect the
hardware fails and reconfigure at runtime. This requires running the
configuration procedure, say, once a minute, or once each 10 seconds...

3). The procedure as it is described here is sure to construct the
minimal routes finally. But it ignores absolutely the load balancing of the
links. It may overburden some links and underburden the others among
those providing equivalently minimal routes from a given node. A
simple way of partially balancing the burden is also suggested in Appendix
A-7.

Nodes A and B can use C or D for connection with node E. From
the point of efficiency A and B should use different nodes A use C and B
use D or A D and B C. But procedure of self-configuration can't prevent
situation then A and B use the same node for connection (for example C),
because while A may choose between C and D for connection with E it
doesn’'t know which node are used by B and vice versa. So this problem

can't be resolved locally.

The fi red versi fth i i roced

As discussed hereinabove, one of the most important criterion by
which the design was optimized is the pure startup time of transfer
between the adjacent nodes. It is important because of the two
considerations:

First, because of the case of existing physical connection, the virtual

WO 97/48054 PCT/US96/11583

10

15

20

25

30

-54 -

links should be as close to the physical in their performance as possible, in
order to eliminate the necessity for using the physical links at all.

Second, because this is the minimum of overhead, the overhead in
a real network may depend on the traffic, the buffer size, etc., but never can
be better than the overhead introduced by the fact of transfer itself.

This minimum of overhead (the "b" in the "k*x + b" formula
mentioned above) can be reasonably measured in "n-s". That is, we say
that "the startup of a message is effectively the time of transfer of the n
bytes". Well, for the both of the versions (which is remarkable, as the
second one is much more complex) b equals 400 bytes. In this regard, the
preferred embodiment resembles much the Inmos virtual links and is
several times better than the handle level of communication of the early
versions of Helios.

The last thing to do for the conclusion is to present the readme and
packing.lst of the sources coming together with this text. There is a
directory ROUTER which contains the final version described here. To
build everything, enter the SOURCES subdirectory and execute the
following .bat files:

compr compile the router,

comps compile the server-concentrator,

linkr, links link them.

Then copy the result of the work:

router.lku, server.lku and routelib.tco

to the upper level (i. e. to the ROUTER directory.

Then enter the ROUTER directory and build the test:

mtnet.bat

Provided you have a standard Inmos pipeline of 4 nodes, with the
transputers of type T8 or T425, you may then run the test:

iserver /sb mdos.btl 5000 10000

To do this, it is necessary to have the 2-nd generation version of the
Inmos C Toolset installed. With the 3-rd generation version, some minor

changes may be required, for example, replacing _memcpy by memcpy.

WO 97/48054 PCT/US96/11583
-55-
APPENDIX A-1

/* start read: */

extern int r_read(int /*proc*/, void* /*buffer*/, int /*length*/); /*
test read over: */

extern int t_read(int /*proc*/); /* wait for the read over: */

extern int w_read(int /*proc*/); /* start write: */

extern int r_write(int /*proc*/, void* /*buffer*/, int /*length*/);
/* test write over: */

extern int t_write(int /*proc*/); /* wait for the read over: */

extern int w_write(int /*proc*/); /* externals containing the self
number & total number of nodes */ /* for the user process: */

extern int my_number, server_number;

WO 97/48054 PCT/US96/11583

-56 -
APPENDIX A-

#include <stdlib.h> #include <misc.h> #include <process.h> #include
<string.h> #include <math.h> /* a simple non-buffering message router:
*/ #include "router.h” /***/ /* tag values for the message head while
routing inside: */ #define MESSAGE_TO_LINK 1 #define
USER_TO_LINK 2 /* data imported from the configuration: */ /* routing
table: */

static unsigned *routes; /* the processor number: */

static my_number; /* the server processor number: */

static server_number; /* in/out channels, number of them, special
channel indices: */

static int Size, ind_route, ind_prot;

static Channel **Input = NULL, **Output = NULL;

static Channel *HostInput = NULL, *HostOutput = NULL; /***/ /*
soft channels: */

static Channel **Ready[10]; /***/ /* router to user address output
process: */

void flags_out(Process *p) {

p=p;/*/

ChanOutInt(Output[ind_route], (int)useraddr);

ChanOutint(Output[ind_route], (int)l_reqd);

ChanOutlnt(Output[ind_route], (int)l_done);

ChanOutlnt(Output[ind_route], (int)l_reqd_w);

ChanOutlnt(Output[ind_route], (int)l_done_w);

ChanOutlnt(Output[ind_route], (int)ready_to);

ChanOutInt(Output[ind_route], (int)my_number);

ChanOutlnt(Outputfind_route], (int)server_number);

ProcStop(); } /* link input process: */

void p_input(Process *p, Channel *In, int n_of_me) I /* In is
Input, Out is Ready: */

unsigned *buf[2];

unsigned *curbuf;

unsigned bufO[SIZHEAD+1+(SIZPACK/ sizeof(unsigned))];

unsigned buf1[SIZHEAD+1+(SIZPACK / sizeof(unsigned))];

int k = 0, leng, from, to;

p=p; /¥

buf[0] = bufQ;

buf[1] = bufl;

(buf[0])[0] = (buf[1])[0] = 0; /***/

while(1)

{

curbuf = buf[k];

while (curbuf[0]) ProcReschedule();

curbuf++;

Chanlin(In, curbuf, SIZHEAD*sizeof(*curbuf));

leng = curbuf[M_LENGTH];

WO 97/48054 PCT/US96/11583

-57-

from = curbuf[M_FROM];
to = curbuf[M_TO];
curbuf[M_STAGES]++; /* examine the special cases: */
if (to == my_number)
{ /* it is to me, receive & process: */
if (leng)
{ /* it is a message to me, so */ /* see if it is a message or a server
reply: */
if (from != server_number)
{ /* message: */ /* receive directly, do not use writer: */
Chanlin(In, useraddrfrom], leng);
useraddr|from] += leng;
1_done[from] += leng;
J
else
{ /* server reply: */
ChanlIn(In, curbuf+SIZHEAD, leng);
ChanOut(Output[ind_prot], &leng, 2);
ChanOut(Output[ind_prot], curbuf+SIZHEAD, leng);

}
}

else
{ /* it is a ready-to receive message: */
ready_to[from] = curbuf[M_STAGES];

}
}

else
{ /* the message is not to me, route it: */

if (leng) ChanIn(In, curbuf+SIZHEAD, leng);
curbuf--;
curbuf[0] = MESSAGE_TO_LINK;
ChanOutInt((Ready[routes{to]])[n_of_me], (int)curbuf);
k =1-k;
}
} } /* user input process: */
void p_input_u(Process *p, Channel *In, int n_of me) { /* In is
Input, Out is Ready: */
unsigned buf[SIZHEAD+2];
unsigned *curbuf;
int leng, nproc;
p=p; /*™/
buf[0] =0;
while(1)
{

curbuf = buf;
while (curbuf[0]) ProcReschedule();
curbuf[0] = USER_TO_LINK; curbuf++;

WO 97/48054

*/

PCT/US96/11583

-58 -

ChanliIn(In, curbuf, SIZHEAD*sizeof(*curbuf));

leng = curbuf(M_LENGTH];
if (leng ==0)

{ /* user is going to receive: */

curbuf[M_STAGES] = (;

)

else

{ /* user is sending, the address is packed instead of stages, repack:

nproc = curbuf{M_TO]J;

curbuf[SIZHEAD] = curbuf[M_STAGES};

curbuf[M_STAGES] = ready_to[nproc];

ready_to[nproc] = 0;

}

ChanOutInt((Ready[routes{curbuf[M_TO]]]){n_of_me],

(int)(curbuf-1));

}} /* i/0 protocol input process: */
void p_input_p(Process *p, Channel *In, Channel *Out) { /* In is

Input, Out is Ready: */

unsigned buf[SIZHEAD+1+(512/sizeof(unsigned))];
unsigned *curbuf;
int leng;
p=p; /*/
buf[0] = 0;
leng = 0;
while(1)
{
curbuf = buf;
while (curbuf[0]) ProcReschedule();
curbuf[0] = MESSAGE_TO_LINK; curbuf++;
Chanln(In, &leng, 2);
curbuffM_TO] = server_number;
curbuffM_FROM] = my_number;
curbuf[M_LENGTH] = leng;
Chanln(In, curbuf+SIZHEAD, leng);
ChanOQOutlnt(Out, (int)(curbuf-1));
} } /* output process: */
void p_output(Process *p, Channel **In, Channel *Out) { /* In is

Go, Out is Output: */

unsigned *buf, *curbuf;

unsigned char *tosend;

int m, n, leng, from, to, stages, k;
p=p; /*™/

while (1)

{

k = ProcAltList(In);

buf = (unsigned*)ChanInInt(In[k]);

WO 97/48054 PCT/US96/11583

-59-

curbuf = buf+1;

leng = curbuf[M_LENGTH];

from = curbuf[M_FROM];

to = curbuf[M_TO]J; /* message is never to me, it should be output:
/ / see if it is from me & non-trivial: */

if (leng)

{
if (buf[0] == MESSAGE_TO_LINK)
{ /* message from the internal buffer, just output: */
ChanOut(Out, curbuf, SIZHEAD*sizeof(*curbuf));
ChanOut(Out, curbuf+SIZHEAD, leng);
)

else
{ /* message from the user buffer, it may be too long to send, slice:

*
/
stages = curbuf[M_STAGES];
curbuf[M_STAGES] = 0;
tosend = (unsigned char*)(curbuf[SIZHEADY]); /* make the package
standard length: */
if (stages <2)
n = leng;
else
{ /* stages number of stages (given) leng message length (given)
n slice length (should be computed here) */ /* Here we just primitively
slice the message into the number of packages equal to the number of
hops. Yes, this is not good. The better formulae may be derived for the
ideal slice length, including k, n and b from the functional requirement
number 4 in 2.2. But mind, the formula should not be so complicated that
its calculation takes all the time saved by optimal slicing!!! (Courtesy of
Dr. L. A. Pozdniakov, IAM RAS, Moscow, Russia */
n = leng / stages;
if (n>SIZPACK)
n = SIZPACK;
else if (n < SIZPACK_MIN)
n = SIZPACK_MIN;
} /* send: */
while (leng)
{
if (leng>n)
m=n;
else
m = leng;
curbuf[M_LENGTH] = m;
ChanQOut(Out, curbuf, SIZHEAD*sizeof(*curbuf));
ChanOut(Out, tosend, m);
tosend += m; leng -= m;
1_done_w{to] +=m;

WO 97/48054 PCT/US96/11583

-60 -
}
}
}
else
ChanOut(Out, curbuf, SIZHEAD*sizeof(*curbuf));
buf[0] = 0;

} } /* link channel processes: */
Process *reader[10], *writer[10], *outputter; /***/ /* CreateChannels:
*/ static Channel ** CreateChannels (Channel *OldChannels[},
int ChannelsSize, int extra) { Channel **NewChannels =
NULL; /***/ NewChannels = malloc((ChannelsSize + extra + 1) *
sizeof(Channel *)); if (NewChannels == NULL)
abort(); else {
int ChannelsCount = 0; /***/
while (ChannelsCount++ < ChannelsSize)
NewChannels[ChannelsCount 1] = OldChannels[ChannelsCount
1];
NewChannels[ChannelsSize+extra] = NULL; }
return(NewChannels); } /***/
int main() {
intk, L, /***/
set_abort_action(ABORT_HALT); /* import the link channels, the
processor number, etc: */
HostInput = get_param(1);
HostOutput = get_param(2);
Size = *((int *) get_param(5));
Input = CreateChannels(get_param(3), Size, 2);
Output = CreateChannels(get_param(4), Size, 2);
Input[Size] = get_param(6);
Output[Size] = get_param(7);
ind_prot = Size; Size++;
Input[Size] = get_param(8);
Output[Size] = get_param(9);
ind_route = Size; Size++;
routes = get_param(10);
my_number = *((int *) get_param(11));
server_number = *((int *) get_param(12));
useraddr = malloc((server_number+1)*sizeof(*useraddr));
if (useraddr == NULL)
{/* printf("Can't allocate\n"); */
abort();
}
1_reqd = malloc((server_number+1)*sizeof(*I_reqd));
if (1_reqd == NULL)
{/* printf("Can't allocate\n"); */
abort();
J

WO 97/48054

PCT/US96/11583
-61-

1_done = malloc((server_number+1)*sizeof(*1_done));
if (1_done == NULL)

{ /* printf("Can't allocate\n"); */

abort();

}

1_reqd_w = malloc((server_number+1)*sizeof(*I_reqd_w));
if (1_reqd_w == NULL)

{ /* printf("Can't allocate\n"); */

abort();

)

1_done_w = malloc((server_number+1)*sizeof(*I_done_w));
if (I_done_w == NULL)

{ /* printf("Can't allocate\n"); */

abort();

}

ready_to = malloc((server_number+1)*sizeof(*ready_to));
if (ready_to == NULL)

{/* printf("Can't allocate\n"); */

abort();

} /* import done */
for (k = 0; k <= server_number; k++)

{

useraddrfk] = NULL;

I_reqd[k] = |_done[k]

= 1_reqd_wl[k] = 1_done_w][k] = ready_to[k] = 0;

}
for (k = 0; k < Size; k++)

{ /* make writer channel array: */

Ready(k] = (Channel**)malloc((Size+1)*sizeof(Channel*));
for (1=0;1< Size; I++)

{

(Ready[k])[1] = ChanAlloc();

if ((Ready[k])[l] == NULL) abort();

}

(Ready[k])[Size] = NULL;
}
for (k = 0; k < Size; k++)
{
if (k==ind_prot)
{
if ((reader[k] = ProcAlloc(p_input_p, 0, 2,
Input[k],
(Ready[routes|server_number]])[k])) == NULL)
{/* printf("Can't allocate\n"); */
abort();
}

else

WO 97/48054 PCT/US96/11583

-62 -

{
ProcRun(reader[k]);
} /* writer does not exist for protocol link: */
goto done;
}
else if (k == ind_route)
{
if ((reader(k] = ProcAlloc(p_input_u, 0, 2,
Input[k], k)) == NULL)
{/* printf("Can't allocate\n"); */
abort();
}

else

{
ProcRun(reader[k]);
} /* writer does not exist for user link as well: */
goto done;
}

else

{
if ((reader(k] = ProcAlloc(p_input, 0, 2,

Input[k], k)) == NULL)
{/* printf("Can't allocate\n"); */
abort();
}

else

{
ProcRun(reader[k]);
}

}
if ((writer[k] = ProcAlloc(p_output, 0, 2,

Readyl[k], Output[k])) == NULL)
{/* printf("Can't allocate\n"); */
abort();
}

else

{

ProcRun(writer[k]);
} done:;

}
if ((outputter = ProcAlloc(flags_out, 0, 0)) == NULL)

{ /* printf("Can't allocate\n"); */
abort();
}

else

{

ProcRun(outputter);

WO 97/48054 PCT/US96/11583

-63-

}
ProcStop(); }

WO 97/48054 PCT/US96/11583

-64 -
PPENDIX A-
/* router.h: */ /* the standard packet size: */ #define SIZPACK 512 /*

the minimum packet size: */ #define SIZPACK_MIN 40 /* special index
values for the package head: */ #define M_LENGTH 0 #define M_TO 1
#define M_FROM 2 #define M_STAGES 3 #define SIZHEAD 4 #ifndef
SERVER /* data passed to user process from router when it starts: */ /*
user receive addresses for respective processors: */

static unsigned char **useraddr; /* required & done lengths for
receive: */

static unsigned *1_reqd, *I_done; /* the same for send: */

static unsigned *1_reqd_w, *I_done_w; /* user ready_to_receive
flags, with # of stages values: */

static unsigned *ready_to; #endif /* special tag values for server
manipulations: */ #define GRAB_TAG 128 #define UNGRAB_TAG 129
#define VGABUF_TAG 130 #define FOPEN_TAG 10 #define
FCLOSE_TAG 11 #define EXIT_TAG 35 /***/ /* end of router.h */

WO 97/48054 PCT/US96/11583
-65 -

APPENDIX A- 4

/* routelib.c the functions to interface router services */ /* from within a
user process. To compile and link with an */ /* application that uses the
message-passing network: */ #include <stdlib.h> #include <string.h>
#include <misc.h> #include <process.h> #include <stdio.h> /* a simple
non-buffering message router interface: */ #include "router.h” /***/ /*
the processor number: */

unsigned my_number, server_number;

int *routes;

int *distance;

static notinit = 1, is_grabbed = 0;

static Channel *HostInput, *HostOutput, *In, *Out; /***/ /*
initialize routing: */

int r_start() { /* import the link channels, the processor number,
etc:*/

HostInput = get_param(1);

HostOutput = get_param(2);

In = get_param(3);

Out = get_param(4);

useraddr = (unsigned char**)ChanInint(In);

I_reqd = (unsigned*)ChanInInt(In);

1_done = (unsigned*)ChanInInt(In);

1_reqd_w = (unsigned*)ChanInlnt(In);

1_done_w = (unsigned*)ChanInInt(In);

ready_to = (unsigned*)ChanInint(In);

my_number = (unsigned)ChanlnInt(In);

server_number = (unsigned)ChanInInt(In);

notinit = 0;

return((intymy_number); } /* grab/ungrab the server: */

void grab_server() {

int leng = 1, msg = GRAB_TAG; /***/

if (notinit | | is_grabbed) return;

ChanOut(HostOutput, &leng, 2);

ChanQOut(HostOutput, &msg, 1);

ChanIn(HostInput, &leng, 2);

ChanIn(HostInput, &msg, leng);

is_grabbed = 1; }

void ungrab_server() {

int leng = 1, msg = UNGRAB_TAG,; /***/

if (notinit I | (!is_grabbed)) return;

ChanOut(HostOutput, &leng, 2);

ChanOut(HostOutput, &msg, 1);

is_grabbed = 0; } /* receive: * /

int r_read(nproc, buffer, length)

int nproc; char *buffer; int length; {
unsigned head[SIZHEAD]; /***/

WO 97/48054

PCT/US96/11583

- 66 -

if ((nproc == my_number) | | notinit

| I (nproc >= server_number) | | (length <= 0)) return(-1);
if (1_reqd[nproc] != I_done[nproc]) return(-2);
head[M_TO] = nproc;
head[M_LENGTH] = 0;
head[M_FROM]= my_number;
useraddr[nproc] = (unsigned char*)buffer;
l_reqd[nproc] = length;
1_done[nproc] = 0;
ChanOut(Out, head, SIZHEAD*sizeof(head[0]));
return(0); } /* test receive over: */
int t_read(nproc)

int nproc; {

if ((nproc == my_number) | | notinit

| I (nproc >= server_number)) return(0);
if (1_reqd[nproc] != I_done[nproc]) return(0); else return(1); } /*

wait for the receive over: */

int w_read(nproc)
int nproc; {
if ((nproc == my_number) | | notinit
I'I (nproc >= server_number)) return(0);
while (I_reqd[nproc] != 1_done[nproc]) ProcReschedule();
return(1);} /* send: */
int r_write(nproc, buffer, length)
int nproc; char *buffer; int length; {
unsigned head[SIZHEAD)]; /***/
if ((nproc == my_number) | | notinit
I'l (nproc >= server_number) | | (length <= 0)) return(-1);
if (1_reqd_w][nproc] != 1_done_w][nproc]) return(-2);
while (!ready_to[nproc]) ProcReschedule();
head[M_TO] = nproc;
head[M_FROM] = my_number;
head[M_LENGTH] = length;
head[M_STAGES] = (unsigned)buffer;
1_reqd_w{nproc] = length;
1_done_w[nproc] = 0;
ChanOut(Out, head, SIZHEAD*sizeof(head[0]));
return(0); } /* test send over: */
int t_write(nproc)
int nproc; {
if ((nproc == my_number) | | notinit
I I (nproc >= server_number)) return(0);
if (1_reqd_wI[nproc] != 1_done_w[nproc]) return(0); else return(1

); } /* wait for the send over: */

int w_write(nproc)
int nproc; {
if ((nproc == my_number) ! | notinit

WO 97/48054 PCT/US96/11583
-67 -

| I (nproc >= server_number)) return(0);
while (1_reqd_w[nproc] != 1_done_w[nproc]) ProcReschedule();
return(1); } /* router starter: */
extern int r_main(int, char**, char**, Channel**, int, Channel**,
int);
int main(int argc, char *argv[], char *envp[},
Channel *in[], int inlen, Channel *out[], int outlen) {
my_number = r_start();
printf("Processor %d started OK\n", my_number);
return(r_main(argc, argv, envp, in, inlen, out, outlen)); }

WO 97/48054 PCT/US96/11583
-68 -
APPENDIX A-

/* router configuration for 4 nodes: */ val BootLink 0; val N_of_nodes 4;
val RouteTableSize 5;

process (stacksize = 50K);

T425 (memory = 1M) Proc_1; T425 (memory = 1M) Proc_2; T425 (memory
= 1M) Proc_3; T425 (memory = 1M) Proc_4;

/* Host link connection */ connect Proc_1.link[BootLink] to host; /*
hardware connections: */ connect Proc_1.1ink[2] to Proc_2.link[1]; connect
Proc_2.link[2] to Proc_3.link[1]; connect Proc_3.link[2] to Proc_4.link[1];

process(heapsize=50k,
interface(input MuxInput, output MuxOutput,
input In, output Out, int Total = N_of_nodes)) server;

process(heapsize=600k,
interface(input MuxInput, output MuxOutput,
input In, output Out)) user_1;

process(heapsize=600k,
interface(input MuxInput, output MuxOutput,
input In, output Out)) user_2;

process(heapsize=600k,
interface(input MuxInput, output MuxOutput,
input In, output Out)) user_3;

process(heapsize=600k,
interface(input MuxInput, output MuxOutput,
input In, output Out)) user_4;

process(heapsize=50k,
interface(int DummyHostIn = 0, int DummyHostOut = 0, /* the
next line should replace the previous for debugging. */ /* the channels
should be multiplexed to host to make router */ /* printf-able: */ /*
input MuxInput, output MuxOutput, */
input In[2], output Out{2],
int Size=2,
input Protln, output ProtOut,
input Routeln, output RouteOut,
int routes[RouteTableSize] ={0,1,1,1, 0},
int Node_number=0,
int Total = N_of_nodes)) router_1;

WO 97/48054 PCT/US96/11583

- 69 -

process(heapsize=50k,

interface(int DummyHostIn = 0, int DummyHostOut = 0, /* the

next line should replace the previous for debugging. */ /* the channels
should be multiplexed to host to make router */ /* printf-able: */ /*
input MuxInput, output MuxOutput, */

input In[2], output Out[2],

int Size=2,

input Protin, output ProtOut,

input Routeln, output RouteOut,

int routes[RouteTableSize] ={0,0,1,1,0},

int Node_number=1,

int Total = N_of_nodes)) router_2;

process(heapsize=50k,

interface(int DummyHostIn = 0, int DummyHostOut = 0, /* the

next line should replace the previous for debugging. */ /* the channels
should be multiplexed to host to make router */ /* printf-able: */ /*
input MuxInput, output MuxOutput, */

input In[2], output Out{2],

int Size=2,

input ProtIn, output ProtOut,

input Routeln, output RouteOut,

int routes[RouteTableSize] = {0,0,0, 1,0},

int Node_number=2,

int Total = N_of_nodes)) router_3;

process(heapsize=50k,

interface(int DummyHostIn = 0, int DummyHostOut = 0, /* the

next line should replace the previous for debugging. */ /* the channels
should be multiplexed to host to make router */ /* printf-able: */ /*
input MuxInput, output MuxOutput, */

input In[1], output Out{1],

int Size=1,

input ProtIn, output ProtOut,

input Routeln, output RouteOut,

int routes[RouteTableSize] = { 0,0,0,0,0},

int Node_number=3,

int Total = N_of_nodes)) router_4;

input HostInput; output HostOutput;

connect HostOutput to server.MuxOutput; connect Hostlnput to
server.MuxInput;

/* connect routers: */

connect server.Out to router_1.In[0]; connect server.In to router_1.0ut[0};

WO 97/48054 PCT/US96/11583
-70 -

/***/ connect router_1.0ut[1] to router_2.In[0] by LinkAI12; connect
router_1.In[1] to router_2.0ut[0] by LinkAO12; /***/ connect
router_2.0ut[1] to router_3.In[0] by LinkAI23; connect router_2.In[1] to
router_3.0ut[0] by LinkAO23; /***/ connect router_3.0Out[1] to
router_4.In[0] by LinkAI34; connect router_3.In[1] to router_4.Out{0] by
LinkAO34; /* connect drivers to routers: */ connect user_1.MuxOutput to
router_1.ProtIn; connect user_1.MuxInput to router_1.ProtOut; connect
user_1.0ut to router_1.Routeln; connect user_1.In to router_1.RouteQut;
connect user_2.MuxOutput to router_2.Protln; connect user_2.MuxInput
to router_2.ProtOut; connect user_2.0ut to router_2.Routeln; connect
user_2.In to router_2.RouteOut; connect user_3.MuxOutput to
router_3.Protln; connect user_3.MuxInput to router_3.ProtOut; connect
user_3.0ut to router_3.Routeln; connect user_3.In to router_3.RouteOut;
connect user_4.MuxOutput to router_4.Protln; connect user_4.MuxInput
to router_4.ProtOut; connect user_4.0ut to router_4.Routeln; connect
user_4.In to router_4.RouteQOut;

/* Mapping description */ /***/ use "router.lku" for router_1; place
router_1 on Proc_1;

use "router.lku” for router_2; place router_2 on Proc_2;

use "router.lku" for router_3; place router_3 on Proc_3;

use "router.lku” for router_4; place router_4 on Proc_4; /***/
use "server.lku" for server; place server on Proc_1;

use "tnet.lku" for user_1; place user_1 on Proc_1;

use "tnet.lku" for user_2; place user_2 on Proc_2;

use "tnet.lku" for user_3; place user_3 on Proc_3;

use "tnet.lku" for user_4; place user_4 on Proc_4;

WO 97/48054 PCT/US96/11583

-71 -
PPENDIX A-
#include <stdio.h> #include <stdlib.h> #include <misc.h> #include
"routelib.h"
int SIZMES;

static int *buffers[1000];
int r_main(argc, argv)
int argc; char **argv; {
int total, i, j, k, times, toterr = 0; /***/
if (argc!=3)
{

printf("Usage: iserver /sb <this_file.btl> size_of_mes times\n");
exit_terminate(0);

}

total = server_number;

SIZMES = (int)(atol(argv(1]));

times = (int)(atol(argv(2]));

printf("Message size is %d\n", SIZMES);

for (i=0;i < total; i++)

{
if ((buffers[i] = malloc(SIZMES*sizeof(int))) == NULL)
{
printf("No memory\n");
exit_terminate(0);
}

}
printf("Hello, I am %s, #%d Total %d\n",

argv[0], my_number, total);
printf("Running all routes %d times\n", times);
while (times-)
{
for (i=0;i < total; i++)
{
if (i != my_number)
{
for (k = 0; k < SIZMES; k++) (buffers[i])[k] = -1;
r_read(i, buffers|i], SIZMES*sizeof(int));
}
}
j=0;
for (k = 0; k < SIZMES; k++)
(buffers[my_number])[k] = my_number + k;
for (i=0;1i < total; i++)
{
if (1 '= my_number)

{
r_write(i, buffersimy_number], SIZMES*sizeof(int));

WO 97/48054 PCT/US96/11583

-72-

w_write(i);
}
}
for (i=0;1i < total; i++)
{
if (i != my_number)
{
w_read(i);
for (k = 0; k < SIZMES; k++)
{
if ((buffers[i])[k] != (i+k))
{
printf("Processor %d received %d instead of %d from %d\n",
my_number, (buffers[i])[k], i+k, i);
J++;
)
J
}
}
printf("Processor %d received from all with %d errors\n",
my_number, j);
toterr +=j;
)
printf("Total errors: %d\n", toterr);
exit_terminate(0); }
This file #includes routelib.h. Here it is

/* the router library interface: */ /***/
extern int r_read(int /*proc*/, void* /*buffer*/, int /*length*/);
extern int t_read(int /*proc*/);
extern int w_read(int /*proc*/);
extern int r_write(int /*proc*/, void* /*buffer*/, int /*length*/);
extern int t_write(int /*proc*/);
extern int w_write(int /*proc*/);
extern void grab_server(void);
extern void ungrab_server(void);
extern int my_number, server_number; /***/

WO 97/48054 PCT/US96/11583

-73-

APPENDIX A-7

If the number of the lowest reliefs encountered was greater 1 it means
there are few links with lowest relief for node S. For every link M with
m_relief[S][M]=1 count two numbers:

c_count_link total number of nodes for which relief is lowest with link M
(i.e. m_relief[i][M]=1) c_select total number of nodes (except node S) for
which relief

is lowest with link M according to "real" router's route table (i.e.
routes[i]=M).

Select link with minimal c_select. If there are few such links choose one
with highest c_count_link. Write its number to "real" router's route table
for node S and make retranslation.

int count_link = VERY_FAR, c_count_link, select=0, c_select, ii; for (i= 0;
i < NetSize; i++) { if (m_routes[from][i] == 1) /* Link the one of the
lowest relief */

{

c_count_link = 0;

c_select = 0;

for (ii = 0; ii < server_number+1; ii++)

{

c_select =+ m_routes[ii][i]

if (routes|ii] == i && ii = from)

c_count_link ++ ;

}

if (c_count_link<count_link| | (c_count_link==count_link &&
c_select>select))

{

count_link = c_count_link;
routes[from] = i;

select = ¢_select;

send = 1;
}
H

WO 97/48054

1
2
3
4
5
6
7
8
9

10

11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

PCT/US96/11583
-74 -
CLAIMS
1. A method of controlling communications among a plurality of user

processes executing in a multiple instruction, multiple data (MIMD)

parallel processing computer system having a number (N) of processing

nodes, each of which is provided with a distributed memory and all of

which are interconnected by a set of transfer links to a message passing

network via which one user process may communicate a message of

arbitrary length to another user process identified by a destination node

number, the method comprising the computer-implemented steps of:

(a)

(b)

during compilation of each user process performing the steps

of:

(al)

(a2)

(a3)

creating a unique router process that will execute on
the same processing node as the user process;
connecting each user process and its’ associated router
process by defining in the memory of the processing
node at least one communication channel between the
user process and the associated router process; and

for each router process, defining in the memory of the
processing node an array of N-1 transfer channels, each
of which is correlated to the set of transfer links of the
processing node, and creating a routing table in the
memory of the processing node unique to that
processing node for mapping a destination node

number to a particular transfer channel; and

during execution of the user processes, passing messages

within the message passing network by having a routing

process at each processing node route messages received by

the processing node in response to a destination node

number contained in a message and the routing table unique

to that processing node.

WO 97/48054 PCT/US96/11583

[NN Ul b WO e B W N e N B W N e

D o W N =

—

-75-

2. The method of claim 1 wherein the processing nodes are physically
connected within the message passing network as elements of a two-
dimensional grid having an irregular connection arrangement and
wherein the routing table created in step (a3) accommodates the irregular

connection arrangement.

3. The method of claim 1 where step (b) routes the messages according
to a routing scheme selected from the set comprising: store and forward
routing, wormhole routing, obvious routing, adaptive routing, or any

combination thereof.

4, The method of claim 1 wherein step (b) routes messages in
accordance with a channel protocol such that each transfer channel
defined in step (a3) is independent of all other transfer channels for a
routing process and each transfer channel is either free or busy such that
no queues are used for messages to be transmitted on a given transfer
channel and wherein any pair of adjacent processes is connected by one

and only one channel.

5. The method of claim 4 wherein a message includes a length value
for the message and wherein a channel transfer is asynchronous with

respect to an end of the channel transfer.

6. The method of claim 4 wherein the channel protocol for step (b)
includes six control primitives which may be issued by the routing process:
start read, start write, query read over for a given channel, query write over
for a given channel, wait for read over for a given channel, wait for write

over for a given channel.

7. The method of claim 1 wherein the router process created in step (a)
is comprised of N sub-processes executing on the processing node and

wherein each sub-process performs the store and forward routing of step

WO 97/48054 PCT/US96/11583

s —
O O 0NN Ul R W O O NN o U R W N

=W N

[y

-76 -

(b) for messages sent to or received from a unique one of the processing

nodes in the message passing network.

8. The method of claim 7 wherein each sub-process is provided with a
unique subset of buffers defined in the memory of the processing node,
including a first set of buffers in the memory of the processing node
accessible to both the user process and the router process and a second set
of intermediate buffers accessible only to the router process and wherein
the router process in step (b) uses the first set of buffers for writing
messages if the user process initiates the message and for reading messages
if the destination node number contained in the message matches a node
number of the processing node, and uses the second set of intermediate

buffers for all other messages.

9. The method of claim 7 wherein each sub-process utilizes buffers in a
common buffer pool defined in the memory of the processing node, the
common buffer pool including a first set of buffers in the memory of the
processing node accessible to both the user process and the router process
and a second set of intermediate buffers accessible only to the router
process and wherein the router process in step (b) uses the first set of
buffers for writing messages if the user process initiates the message and
for reading messages if the destination node number contained in the
message matches a node number of the processing node, and uses the

second set of intermediate buffers for all other messages.

10. The method of claim 9 wherein step (b) further comprises the step
of assigning buffers from the common buffer pool to sub-processes by
structuring the common buffer pool so as to have buffers allocated for

particular transfer links.

11. The method of claim 10 wherein message passing in step (b) is

deadlock-free when a topology of the message passing network constructed

WO 97/48054

O 00 g O G b W N -

10
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1

2

PCT/US96/11583

-77 -

as a directed graph of processing nodes and transfer channel pairs forms an

acyclic channel dependency graph.

12. The method of claim 9 wherein step (b) further comprises the steps

of:

(bl) assigning buffers from the common buffer pool to sub-

processes by structuring the common buffer pool so as

to have buffers allocated based on a number of hops;

(b2) determining a number of hops between directly

connected processing nodes which a given message

travels in the message passing network; and

(b3) selecting a buffer for the routing process based on the

number of hops determined in step (b2).

13. The method of claim 12 wherein step (b3) is accomplished by

performing the steps of:

(b31)

(b32)

(b33)

subdividing the buffers in the common buffer
pool into classes, with at least one buffer in each
class and with there being at least as many
classes as a longest number of hops between
processing nodes in the message passing
network;

determining a number of hops which a message
travels in the message passing network and
assigning that number as a class of the message
within that routing process; and

letting the message occupy only buffers in the
common buffer pool having a class less than or

equal to the class of the message.

14. The method of claim 13 wherein the number of hops which a

message travels as determined by step (b32) is selected from the set

WO 97/48054 PCT/US96/11583

[V 'S T N6 T

O 00 g O U b WO =

10
11
12
13
14
15
16

-78 -

comprising: a number of hops which the message has remaining before
delivery to an intended processing node, or a number of hops which the

message has traveled from the processing node initiating the message.

15. The method of claim 9 wherein the store and forward routing of
step (b) divides messages from user processes into a plurality of packages
and interleaves the packages from one message with the packages from

another message.

16. The method of claim 15 wherein step (b) further comprises the step
of assigning buffers from the common buffer pool to sub-processes by
performing the steps of:

(bl) structuring buffers allocated from the common buffer
pool so as to have unique buffers allocated for
particular transfer links;

(b2) allocating the unique buffers for particular transfer
links based on a number of hops between directly
connected processing nodes which a given package
travels in the message passing network;

(b3) advising any directly connected processing nodes
whether there are any buffers for that particular
transfer link which are available to be used; and

(b4) writing packages to buffers in directly connected
processing nodes only when there are buffers for that

particular transfer link which are available to be used.

17. The method of claim 1 wherein consumption of a message from an
initiating node to a destination node is guaranteed by performing the

additional step of:
(9] determining the existence of an available buffer in the
destination node into which the message is to be read prior to

initiating transfer of the message across the message network.

WO 97/48054 PCT/US96/11583

- O oo I N Ul e W N e

O N U ok W N =

[

-79 -

18. The method of claim 1 wherein duplicate transfers of messages
within a processing node are avoided by defining a first set of buffers in the
memory of the processing node accessible to both the user process and the
router process and a second set of intermediate buffers accessible only to
the router process and wherein the router process in step (b) uses the first
set of buffers for writing messages if the user process initiates the message
and for reading messages if the destination node number contained in the
message matches a node number of the processing node, and uses the

second set of intermediate buffers for all other messages.

19. The method of claim 1 wherein the store and forward routing of

step (b) is oblivious.

20. The method of claim 1 wherein step (a2) defines at least two
communication channels between the user process and the associated
router process, a message passing channel and an input/output channel,
wherein at least one processing node in the message passage network is
designated as an input/output server and wherein the router process in
step (b) passes messages from the input/output channel to the
input/output server so as to emulate a direct connection of each

processing node to the input/output server.

21. The method of claim 20 wherein the input/output server is never
intermediate any transfer of messages in the message passing network in

step (b).

22. The method of claim 1 wherein step (a3) includes the step of
initiating a self-configuration process on each node to automatically

generate the routing table.

WO 97/48054

1/10

PCT/US96/11583

Prior Art
22-1
20 22-2 223
I \ ,
PE-1 PE-5 PE-9 PE-13
22-4
PE-2 PE-6 PE-10 PE-14
PE-3 PE-7 PE-11 PE-15
PE-4 PE-8 PE-12 PE-16
| I

24

Figure 1

PCT/US96/11583

WO 97/48054

2/10

zz

N

Tl

*-Tg

TEe & \\\

2\

Xa[dwo) g 31Se,]

HHMNOdAd A H

ARY D0

>

WO 97/48054 PCT/US96/11583

Prior Art .

50 v

T Ei‘r‘—Zﬁ'zzss ?/54
42\§IZIIZIZZISZZ;

..........

\56
.

WO 97/48054 PCT/US96/11583

4/10

74

~ N-1_ &=\ A ‘ Z

WO 97/48054 PCT/US96/11583

5/10

Fjég T e m«ﬂéaa?(i’ ﬂ;,/d H Sage -z@ae,ézzga

/60 (2.
Mesgase Head)
of Kols .
TO WwhHoM &Fﬁ?ﬂu A PASSE‘J]‘ mm (‘)

by g e =
e

| !0

)L&em"

—
i & Tfe operatvn of weer « warTER
e Ful —proeesses

E7UING WAITING
R@ Fd MESCAGE A FREE SENSING

WRITER ORHAesld x , BOF FER OFCLASs Sh SF A MESSAEE
W B —_— _

ooMPLETION ' W
READER e e OPERATIBY
_keAPER o Z

T ME

WO 97/48054 PCT/US96/11583
6/10
Fioes 7
User—Router communlcations

Processor @
Node 74

User
Process (04

rota!
’X MESSAGE PASSING
STANDARD 1/ CHANNEL PAIR

CHANNEL PAIR

N-1 y /.

4 MESSAGE PASSING-
PHYSICAL | CHANNEL PAIRS

LINES —/ Router

Process /&£/
~—

sy

THE *ROUTER OF NODE STRUCTURE

W2

g > .
R
LS *wﬁwmé?

e St o IR
% ROUTING | SENDER/

N¥ RECEIVER
"‘."-I,‘AB E FOR NODE 1

7/ SENDER/RECEIVER
FOR NODE N

.............................

. SENDER

: y CONNECTIONS {E

723|| TABLE OF | INSIDE NODE |&

B, REE BUFFERS|
“\ RECEIVER : <| RECEIVER

-\ FOR NODE

FOR MESSAGES
FROM_NODE N

BUFFER POOL '"

WO 97/48054 PCT/US96/11583

7/10

Fig. 9

l FOR MESSAGES FROM NODE N
o000 [4

FOR MESSAGES FROM NODE 3

FOR MESSAGES FROM NODE 2

BUFFER POOL FOR
MESSAGES FROM NODE 1

FOR MESSAGES THAT WERE
TRANSFERRED THROUGH
NO LESS THAN K NODES

N FREE

.....

RECTIFIED SHEET {RULE 91)

WO 97/48054 PCT/US96/11583

8/10

The DEADLOCK-FREE CONNECTIONS

The DEADLOCK Problem

o N e S o W

Message-passing of different nodes
can create the "loop” of requests.
All nodes in the loop will wait each

)
%
.

=
Z2)

i | other. They aren’t able to recognise
il J'@‘ i the Deadlock situation.
L—‘ B
F\b\\ﬂ \D
The SOLUTION
1
! I8P Our algorithm creates optimal set
LEATTIT) of loop-free subgraphs and,
ALY as the result, the deadlock-free
/U gl routing map for fast communications.
[— —
Frgere U

THE STRATEGY OF CREATING DEADLOCK-FREE
SUB-GR APHS
(‘-‘.S"""“ \\
NOT-DEADLOCK-FREE GRAPH

e

Cygor—
THE SET OF DEADLOCK-FREE SUBGRAPHS

T UIT
L LIt]

WO 97148054 PCT/USS6/11583
9/10
[gps 19
The basic element of QM—structure
Quasi—Matrix for 16 nodes

ps
(Z.h L]

1L} Ot~ - %
"v e

L L Max diameter=3
sl B 5T

— BER| PR .

gt gl =R (for 2D grid=6)

4\ ‘]. ,_.‘.
t)_[1?:2153—;?;452 Number of links=12

Shared
Memory /\\. A3

Comm. "I DRAMA™
Proc 32 i 2/ L/

4 A
Clockin

ITJKJ\A\
YYVY

reset,
analyse,
error

ST s I8

WO 97/48054 PCT/US96/11583

10/10

The MULTI-PLATFORM
MULTIMEDIA OPERATING SYSTEM

L)

v~ Graphic User Interface
M- Master Scheduler
H- Enhanced nucleus of OS

B~ Basic nucleus of OS with fast router

T——\aoxﬁ., \6

0o

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/11583

A. CLASSIFICATION OF SUBJECT MATTER
[PC(6) :Please See Extra Sheet.

US CL :395/200.02, 200.13, 840, 872; 370/60, 61, 85.6; 340/826
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/200.02, 200.13, 840, 872; 370/60, 61, 85.6; 340/826

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS

message passing, eliminate or prevent or avoid deadlocks, separate or unique or private routers

Electronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

54

the abstract, and col. 5 lines 1-32

AE US, A, 5,546,391 (HOCHSCHILD ET AL) 13 August 1996, | 1-22
Fig. 1, the abstract, col. 9 lines 14-55, and col. 11 lines 46-

A UsS, A, 5,491,801 (JAIN ET AL) 13 February 1996, Fig. 4, 1-22
the abstract, col. 6 lines 20-36, and col. 7 lines 9-20

A US, A, 5,379,440 (KELLY ET AL) 03 January 1995, Fig. 1,| 1-22

A US, A, 5,170,393 (PETERSON ET AL) 08 December 1992, | 1-22
Fig. 4, the abstract, and col. 5 line 1 - col. 6 line 46

Further documents are listed in the continuation of Box C.

D Sec patent family annex.

. Special calegories of cited d

"A® document defining the genenal state of the ast which is not considered
to be parnt of particular relevance

‘E" earlier document published on or afier the intemationat filing date

"L document wlnch may lhrw doubh on pnonty clnm(t) or which ia
cited W blish the date of or other
apecial reason (as lpemf' ed)

0 document referring to an orsl disclosure, use, exhibition or other
means

Pt document published prior to the intcrnationst filing date but later than

the priority date claimed

T Iater document published afier the intermationa] filing date or pnonty

date and not in conflict with the application but cited to

4

principle or theory underlying the inveation

1 be

X d of particular relevance: the claimed in

considered mvel or cannot be conndcrvd to involve an inventive step

when the document is taken alone

TY* docurnent of particular relevance; the claimed invention cannot be
conaidered 0 involve an inventive step when the document s

i,

combined with one or more other such d ts, such

being obvious to & person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

03 SEPTEMBER 1996

Date of mailing of the international search report

30 SEP 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer R
T AU
X THOMAS C. LEE (¥« .

lephone No. (703) 305-9717

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/11583
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 5,105,424 (FLAIG ET AL) 14 April 1992, Fig. 9, the 1-22
abstract, col. 6 lines 24-49, and col. 14 lines 36-67
A US, A, 4,345,116 (ASH ET AL) 17 August 1982, Fig. 4, the 1-22

abstract, and col. 7 line 37 - col. 7 line 30

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/11583

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

GO6F 13/12, 13/14, 15/16; HO4L 12/56

Form PCT/ISA/210 (extra sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

