WO 2006/015935 A2 |0 |00 000 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 February 2006 (16.02.2006)

529 A0 0 00O O

(10) International Publication Number

WO 2006/015935 A2

(51) International Patent Classification:

GOGF 9/40 (2006.01)
(21) International Application Number:
PCT/EP2005/053511
(22) International Filing Date: 20 July 2005 (20.07.2005)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/915,146 10 August 2004 (10.08.2004) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
(US).

(71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BYRD, Stephen

(74)

(81)

[US/US]; 5220 Terner Way, No.308, San Jose, CA
95136 (US). CZERWINSKI, Steven [US/US]; 443 Soda
Hall, University of California at Berkeley, Berkeley,
CA 94720-1776 (US). FOX, Kristofer [US/US]; 1310
Miraleste Ln., San Luis Obispo, CA 93401 (US). HILLS-
BERG, Bruce, Light [US/US]; 11 Elston Court, San
Carlos, CA 94070 (US). KLINGENBERG, Bernhard,
Julius [US/US]; 14905 Dark Star Ct., Morgan Hill, CA
95037 (US). KRISHNAN, Rajesh, Francisco [US/US];
155 Gifford Avenue, Apt. 1, San Jose, CA 95110-2508
(US). THIRUMALALI, Balaji [US/US]; 8238 Rinconada
Ct., Newark, CA 94560 (US).

Agent: SEKAR, Anita; IBM United Kingdom Limited,
Intellectual Property Law Hursley Park, Winchester Hamp-
shire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Continued on next page]

(54) Title:
RESOURCES USED BY A BUSINESS PROCESS

APPARATUS, SYSTEM AND METHOD FOR AUTOMATICALLY DISCOVERING AND GROUPING

(57) Abstract: An apparatus, system,
and method are provided for automat-
ically discovering and grouping files
and other resources used by a business
process. The present invention includes
a monitoring module that collects
trace data representative of operational
behaviour of software applications. An
analysis module analyzes the trace data
to discover resources affiliated with
the business process. A determination
module defines a logical application
corresponding to the business process
and includes the resources discovered
by the analysis module. The logical
application is automatically defined
such that business policies may be
readily implemented on the logical
application as a whole. Manual

200
4
<~ P
Files
210
. 4
Frocess File 110 / os
Manager 204 202
208 #
Process | | | Wonitor Network 1/O
2148 218 208
Process
214p ¥
Process Analysis Determination
214c 218 220
Ul <?xml version="1.0" encoding="UTF-8" 7>
224 <LogicalApp Name="web_hook_store">
<file name="baokstore" path="fopt/wsb/bookstars/'~
Users.db atyperexecLtable<types <Mle
228 <file name="payment" path="/faptiwe bibookstore!"~
<typerexecliable</type> </file>
<file name="e-commerce" path="foptiwebishared/">
297 <type>cenfiguration<itype> <file>
s <file name="users" path="foptiweblshared/">
<type>data<fype> </file>
<fLogicalApp>

identification of resources for a business
process is eliminated or substantially
reduced.

WO 2006/015935 A2

0 0 000 0 O O

KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2006/015935 PCT/EP2005/053511

Description
APPARATUS, SYSTEM AND METHOD FOR AUTO-

MATICALLY DISCOVERING AND GROUPING RESOURCES

[0001]

[0002]

[0003]

[0004]

[0005]

[0006]

USED BY A BUSINESS PROCESS
Technical Field

The invention relates to enterprise computer systems. Specifically, the invention
relates to apparatus, systems, and methods for automatically discovering and grouping

resources used by a business process.

Background Art

Computer and information technology continues to progress and grow in its ca-
pabilities and complexity. In particular, software applications have evolved from single
monolithic programs to many hundreds or thousands of object-oriented components
that can execute on a single machine or distributed across many computer systems on a
network.

Computer software and its associated data is generally stored in persistent storage
organized according to some format such as a file. Generally, the file is stored in
persistent storage such as a Direct Access Storage Device (DASD, i.e., a number of
hard drives). Even large database management systems employ some form of files to
store the data and potentially the object code for executing the database management
system.

Business owners, executives, managers, administrators, and the like concentrate on
providing products and/or services in a cost-effective and efficient manner. These
business executives recognize the efficiency and advantages software applications can
provide. Consequently, business people factor in the business software applications in
long range planning and policy making to ensure that the business remains competitive
in the market place.

Instead of concerning themselves with details such as the architecture and files
defining a software application, business people are concerned with business
processes. Business processes are internal and external services provided by the
business. More and more of these business processes are provided at least in part by
one or more software applications. One example of a business process is internal com-
munication among employees. Often this business process is implemented largely by
an email software application. The email software application may include a plurality
of separate executable software components such as clients, a server, a Database
Management System (DBMS), and the like.

Generally, business people manage and lead most effectively when they focus on

WO 2006/015935 PCT/EP2005/053511

[0007]

[0008]

[0009]

[0010]

[0011]

[0012]

2

business processes instead of working with confusing and complicated details about
how a business process is implemented. Unfortunately, the relationship between a
business process policy and its implementation is often undefined, particularly in large
corporations. Consequently, the affects of the business policy must be researched and
explained so that the burden imposed by the business process policy can be accurately
compared against the expected benefit. This may mean that computer systems, files,
and services affected by the business policy must be identified.

Figure 1 illustrates a conventional system 100 for implementing a business process.
The business process may be any business process. Examples of business processes
that rely heavily on software applications include an automated telephone and/or
Internet retail sales system (web storefront), an email system, an inventory control
system, an assembly line control system, and the like.

Generally, a business process is simple and clearly defined. Often, however, the
business process is implemented using a variety of cooperating software applications
comprising various executable files, data files, clients, servers, agents, daemons/
services, and the like from a variety of vendors. These software applications are
generally distributed across multiple computer platforms.

In the example system 100, an E-commerce website is illustrated with components
executing on a client 102, a web server 104, an application server 106, and a DBMS
108. To meet system 100 requirements, developers write a servlet 110 and applet 112
provided by the web server 104, one or more business objects 114 on the application
server 106, and one or more database tables 116 in the DBMS 108. These separate
software components interact to provide the E-commerce website.

As mentioned above, each software component originates from, or uses, one or
more files 118 that store executable object code. Similarly, data files 120 store data
used by the software components. The data files 120 may store configuration settings,
user data, system data, database rows and columns, or the like.

Together, these files 118, 120 constitute resources required to implement the
business process. In addition, resources may include Graphical User Interface (GUI)
icons and graphics, static web pages, web services, web servers, general servers, and
other resources accessible on other computer systems (networked or independent)
using Uniform Resource Locators (URLSs) or other addressing methods. Collectively,
all of these various resources are required in order to implement all aspects of the
business process. As used herein, “resource(s)” refers to all files containing object code
or data as well as software modules used by the one or more software applications and
components to perform the functions of the business process.

Generally, each of the files 118, 120 is stored on a storage device 122a-identified by
either a physical or virtual device or volume. The files 118, 120 are managed by

WO 2006/015935 PCT/EP2005/053511

[0013]

[0014]

[0015]

[0016]

[0017]

3

separate file systems (FS) 124a-c corresponding to each of the platforms 104, 106, 108.

Suppose a business manager wants to implement a business level policy 126
regarding the E-commerce website. The policy 126 may simply state: “Backup the E-
commerce site once a week.” Of course, other business level policies may also be im-
plemented with regard to the E-commerce website. For example, a load balancing
policy, a software migration policy, a software upgrade policy, and other similar
business policies can be defined for the business process at the business process level.

Such business level policies are clear and concise. However, implementing the
policies can be very labor intensive, error prone, and difficult. Generally, there are two
approaches for implementing the backup policy 126. The first is to backup all the data
on each device or volume 122a-c. However, such an approach backs up files unrelated
to the particular business process when the device 122a-c is shared among a plurality
of business processes. Certain other business policies may require more frequent
backups for other files on the volume 122a-c related to other business processes. Con-
sequently, the policies conflict and may result in wasted backup storage space and/or
duplicate backup data. In addition, the time required to perform a full copy of the
devices 122a-c may interfere with other business processes and unnecessarily prolong
the process.

The second approach is to identify which files on the devices 122a-c are used by,
affiliated with, or otherwise comprise the business process. Unfortunately, there is not
an automatic process for determining what all the resources are that are used by the
business process, especially business processes that are distributed across multiple
systems. Certain logical rules can be defined to assist in this manual process. But, these
rules are often rigid and limited in their ability to accurately identify all the resources.
For example, such rules will likely miss references to a file on a remote server by a
URL during execution of an infrequent feature of the business process. Alternatively,
devices 122a-c may be dedicated to software and data files for a particular process.
This approach, however, may result in wasted unused space on the devices 122a-c and
may be unworkable in a distributed system.

Generally, a computer system administrator must interpret the business level policy
126 and determine which files 118, 120 must be included to implement the policy 126.
The administrator may browse the various file systems 124a-c, consult user manuals,
search registry databases, and rely on his/her own experience and knowledge to
generate a list of the appropriate files 118, 120.

In Figure 1, one implementation 128 illustrates the results of this manual, labor-
intensive, and tedious process. Such a process is very costly due to the time required
not only to create the list originally, but also to continually maintain the list as various

software components of the business process are upgraded and modified. In addition,

WO 2006/015935 PCT/EP2005/053511

[0018]

[0019]

[0020]

[0021]

[0022]

4

the manual process is susceptible to human error. The administrator may unintentiona
Ily omit certain files 118, 120.

The implementation 128 includes both object code files 118 (i.e., e-commerce.exe.
Also referred to as executables) and data files 120 (i.e., e-comdatal.db). However, due
to the manual nature of the process and storage space concerns, efforts may be con-
centrated on the data files 120 and data specific resources. The data files 120 may be
further limited to strictly critical data files 120 such as database files. Consequently,
other important files, such as executables and user configuration and system-specific
setting files, may not be included in the implementation 128. Alternatively, user data,
such as word processing documents, may also be missed because the data is stored in
an unknown or unpredictable location on the devices 122a-c.

Other solutions for grouping resources used by a business process have limitations.
One solution is for each software application that is installed to report to a central
repository which resources the application uses. However, this places the burden of
tracking and listing the resources on the developers who write and maintain the
software applications. Again, the developers may accidentally exclude certain files. In
addition, such reporting is generally done only during the installation. Consequently,
data files created after that time may be stored in unpredictable locations on a device
122a-c.

From the foregoing discussion, it should be apparent that a need exists for an
apparatus, system, and method that automatically discovers and groups files and other
resources used by a business process. Beneficially, such an apparatus, system, and
method would automatically discover substantially all the resources used by a business
process such that a business level policy can be applied to the business process as a
whole. In addition, the apparatus, system, and method would apply heuristic routines to
ensure that all the appropriate resources are included. Furthermore, the set of resources
identified as affiliated with a business process would be modifiable to accommodate
user needs and system changes over time.

Disclosure of Invention

The present invention has been developed in response to the present state of the art,
and in particular, in response to the problems and needs in the art that have not yet
been met for automatically discovering and grouping files and other resources used by
a business process. Accordingly, the present invention has been developed to provide
an apparatus, system, and method for automatically discovering and grouping
resources used by a business process that overcomes many or all of the above-
discussed shortcomings in the art.

According to a first aspect, the present invention provides an apparatus for auto-

WO 2006/015935 PCT/EP2005/053511

[0023]

[0024]

[0025]

[0026]

[0027]

matically discovering and grouping resources used by a business process, the apparatus
comprising: a monitoring module configurable to collect trace data representative of
operational behavior of software applications; an analysis module configurable to
analyze the trace data to discover resources affiliated with a business process that
includes at least one of the software applications; and a determination module con-
figurable to define a logical application that includes the discovered resources.

According to a second aspect, the present invention provides a system for auto-
matically discovering and grouping resources used by a business process, comprising:
an operating system configurable to manage execution of processes; a process manager
configurable to provide information on running processes; an Input/Output (I/0)
module configurable to provide file activity information; a file system configurable to
manage files stored in storage and provide metadata about the files; a monitoring
module configurable to collect trace data during execution of at least one software ap-
plication within the operating system, the monitoring module interacting with at least
one of the process manager, the I/O module, and the file system to collect the trace
data directly related to operation of the software application; and an analysis module
configurable to analyze the trace data to discover resources affiliated with a business
process that includes the software application and to define a logical application that
includes the discovered resources.

According to a third aspect, the present invention provides a method for auto-
matically discovering and grouping resources used by a business process, the method
comprising the steps of: collecting trace data representative of operational behavior of
software applications; analyzing the trace data to discover resources affiliated with a
business process that includes at least one of the software applications; and defining a
logical application that includes the discovered resources.

According to a fourth aspect, the present invention provides a computer program
comprising program code means adapted to perform all the steps of any one of claims
14 to 25, when said program is run on a computer.

An apparatus according to the present invention includes a monitoring module, an
analysis module, and a determination module. The monitoring module collects trace
data representative of operational behavior of one or more software applications
included within a business process. Certain trace data may be collected during
execution of the software application while other trace data may be collected
regardless of whether the software application is executing. In one embodiment, the
monitoring module collects trace data for all software applications of a computer
system.

The analysis module analyzes the trace data to discover resources affiliated with the

business process. Preferably, the analysis module applies one or more heuristic

WO 2006/015935 PCT/EP2005/053511

[0028]

[0029]

[0030]

[0031]

routines to identify both direct and indirect relationships between resources and the
business process. The determination module defines a logical application that includes
the discovered resources. Preferably, the logical application corresponds directly to the
business process. As used herein, “logical application” refers to a set of all files and
other resources required to provide the business level services defined for the business
process. The term “logical” combined with “application” is intended to include
software applications within a single computer system and/or those which may be
distributed across multiple computer systems, but is not limited to this interpretation.
In one embodiment, the analysis module and determination module operate iteratively
on a logical application to ensure that all appropriate files are included in the logical
application.

In certain embodiments, the business process is identified by an identifier or a char-
acteristic of the software application. The identifier or characteristic may be provided
through an interface. The identifier may comprise the name of an executable file or
data file, name of a running process, or the like. The characteristic may comprise a
well-known function performed by the software application. Preferably, the function is
specific to the particular business process. For example, the software application may
perform network communications using a well-known port number to communicate
with a particular server or software module. Preferably, the identifier or characteristic
is unique to the particular business process and clearly definable.

In one embodiment, the monitoring module and analysis module utilize information
about resources previously identified as belonging to the logical application. Con-
sequently, the monitoring module and analysis module may iteratively identify
additional resources using an identifier and/or information about previously identified
resources. Once defined, the logical application may be provided to a management
module that applies a business level policy to the logical application.

The monitoring module may include a launch module that initiates one or more
activity monitors. The activity monitors may trace a specific type of activity relating to
aresource. The activity monitors may operate independent of, or concurrent with,
execution of the business process. A controller within the monitoring module may
control the activity monitors. A storage module in the monitoring module may store
trace data that describes a specific type of activity involving the resource. In one
embodiment, the monitoring module includes a scanner that scans system information
for trace data describing a specific type of activity by the business process. The
monitoring module may operate concurrently with or separate from the analysis
module.

The analysis module may include a query module, an evaluation module, and a

discovery module. The query module, in one embodiment, may filter the trace data to

WO 2006/015935 PCT/EP2005/053511

[0032]

[0033]

[0034]

[0035]

produce a result set based in part on an identifier. The evaluation module may apply
one or more heuristic routines to the result set to discover one or more resources
affiliated with the identifier. The discovery module discovers one or more resources in
response to the application of the one or more heuristic routines.

A method of the present invention is also presented for automatically discovering
and grouping resources used by a business process. In one embodiment, the method
includes receiving an identifier for a business process. The identifier is directly related
to a resource that implements the business process. Next, trace data is collected
relating to the resource and is representative of operations performed by one or more
software components implementing the business process. Alternatively, trace data may
be collected for all operations involving resources of a computer system. The trace data
is analyzed (as referred to as data mining) to discover one or more resources affiliated
with the identifier. Finally, a logical application is defined that includes the one or
more discovered resources.

It should be noted that while the present invention is described in relation to logical
applications that correspond to business processes, the logical applications are not
limited to business processes. A logical application may correspond to any set of
software resources employed for benign or malicious purposes. For example, the
present invention may be used to identify a logical application defining spy-ware, ad-
ware, viruses, and other software applications. The present invention may be par-
ticularly useful in defining logical applications for software applications which attempt
to conceal what software resources are being used. In addition, the business process
may correspond to a single software application.

Preferably, the business process is identified by an identifier for the business
process, the identifier provided by a user. More preferably, the business level policy is
a policy selected from the group comprising a load balancing policy, a software
migration policy, and a backup policy. Still more preferably, the system information is
selected from the group comprising file system information, processes information,
networking information and Input/Output (I/O) information.

In a preferred embodiment, the system further comprises a Graphical User Interface
(GUI) configured to receive an identifier for the business process from a user and
present the logical application to the user. Preferably, the monitoring module further
comprises a process monitor, an I/0O monitor, a network monitor, and a file system
monitor. More preferably, the monitoring module is further configured to interact with
a plurality of file systems. Still more preferably, the analysis module defines the
logical application within a markup language data structure. Still more preferably, the
discovered resources are resources selected from the group comprising data files,

executable files, and service applications.

WO 2006/015935 PCT/EP2005/053511

[0036]

[0037]

[0038]

[0039]

[0040]

[0041]

[0042]

[0043]

[0044]

[0045]

[0046]

8

The present invention also includes embodiments arranged as a system, computer
readable code, and an apparatus that comprise substantially the same functionality as
the components and steps described above in relation to the apparatus and method. The
features and advantages of the present invention will become more fully apparent from
the following description and appended claims, or may be learned by the practice of
the invention as set forth hereinafter.

Brief Description of the Drawings

In order that the advantages of the invention will be readily understood, a more
particular description of the invention briefly described above will be rendered by
reference to specific embodiments that are illustrated in the appended drawings. Un-
derstanding that these drawings depict only typical embodiments of the invention and
are not therefore to be considered to be limiting of its scope, the invention will be
described and explained with additional specificity and detail through the use of the ac-
companying drawings, in which:

Figure 1 is a block diagram illustrating one example of how a business level policy
may be conventionally implemented;

Figure 2 is a logical block diagram illustrating one embodiment of an apparatus for
automatically discovering and grouping resources used by a logical application in
accordance with the present invention;

Figure 3 is a schematic block diagram illustrating in detail sub-components of one
embodiment of the present invention;

Figure 4 is a schematic block diagram illustrating an interface module that allows a
user to interact with certain embodiments of the present invention;

Figure 5 is a schematic block diagram illustrating a single system in accordance
with the present invention;

Figure 6 is a schematic block diagram illustrating a networked system in
accordance with the present invention;

Figure 7 is a schematic flow chart diagram illustrating a method for automatically
discovering and grouping resources used by a business process; and

Figure 8 is a schematic flow chart diagram illustrating an alternative method for au-
tomatically discovering and grouping resources used by a business process.

Best Mode for Carrying Out the Invention

It will be readily understood that the components of the present invention, as
generally described and illustrated in the figures herein, may be arranged and designed
in a wide variety of different configurations. Thus, the following more detailed de-
scription of the embodiments of the apparatus, system, and method of the present

invention, as presented in the Figures, is not intended to limit the scope of the

WO 2006/015935 PCT/EP2005/053511

[0047]

[0048]

[0049]

[0050]

[0051]

invention, as claimed, but is merely representative of selected embodiments of the
invention.

Many of the functional units described in this specification have been labeled as
modules, in order to more particularly emphasize their implementation independence.
For example, a module may be implemented as a hardware circuit comprising custom
VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips,
transistors, or other discrete components. A module may also be implemented in pro-
grammable hardware devices such as field programmable gate arrays, programmable
array logic, programmable logic devices or the like.

Modules may also be implemented in software for execution by various types of
processors. An identified module of executable code may, for instance, comprise one
or more physical or logical blocks of computer instructions which may, for instance, be
organized as an object, procedure, function, or other construct. Nevertheless, the ex-
ecutables of an identified module need not be physically located together, but may
comprise disparate instructions stored in different locations which, when joined
logically together, comprise the module and achieve the stated purpose for the module.

Indeed, a module of executable code could be a single instruction, or many in-
structions, and may even be distributed over several different code segments, among
different programs, and across several memory devices. Similarly, operational data
may be identified and illustrated herein within modules, and may be embodied in any
suitable form and organized within any suitable type of data structure. The operational
data may be collected as a single data set, or may be distributed over different locations
including over different storage devices, and may exist, at least partially, merely as
electronic signals on a system or network.

Reference throughout this specification to “a select embodiment,” “one
embodiment,” or “an embodiment” means that a particular feature, structure, or char-
acteristic described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of the phrases “a select
embodiment,” “in one embodiment,” or “in an embodiment” in various places
throughout this specification are not necessarily all referring to the same embodiment.

Furthermore, the described features, structures, or characteristics may be combined
in any suitable manner in one or more embodiments. In the following description,
numerous specific details are provided, such as examples of programming, software
modules, user selections, user interfaces, network transactions, database queries,
database structures, hardware modules, hardware circuits, hardware chips, etc., to
provide a thorough understanding of embodiments of the invention. One skilled in the
relevant art will recognize, however, that the invention can be practiced without one or

more of the specific details, or with other methods, components, materials, etc. In other

WO 2006/015935 PCT/EP2005/053511

[0052]

[0053]

[0054]

[0055]

[0056]

[0057]

10

instances, well-known structures, materials, or operations are not shown or described
in detail to avoid obscuring aspects of the invention.

The illustrated embodiments of the invention will be best understood by reference
to the drawings, wherein like parts are designated by like numerals throughout. The
following description is intended only by way of example, and simply illustrates
certain selected embodiments of devices, systems, and processes that are consistent
with the invention as claimed herein.

Figure 2 illustrates a logical block diagram of an apparatus 200 configured to auto-
matically discover and group files used by a logical application which may also
correspond to a business process. A business process may be executed by a wide array
of hardware and software components configured to cooperate to provide the desired
business services (i.e., email services, retail web storefront, inventory management,
etc.). For clarity, certain well-known hardware and software components are omitted
from Figure 2.

The apparatus 200 may include an operating system 202 that provides general
computing services through a file I/O module 204, network I/O module 206, and
process manager 208. The file I/O module 204 manages low-level reading and writing
of data to and from files 210 stored on a storage device 212, such as a hard drive. Of
course, the storage device 212 may also comprise a storage subsystem such as various
types of DASD systems. The network module 206 manages network communications
between processes 214 executing on the apparatus 200 and external computer systems
accessible via a network (not shown). Preferably, the file I/O module 204 and network
module 206 are modules provided by the operating system 202 for use by all processes
214a-c. Alternatively, custom file I/O module 204 and network modules 206 may be
written where an operating system 202 does not provide these modules.

The operating system 202 includes a process manager 208 that schedules use of one
or more processors (not shown) by the processes 214a-c. The process manager 208
includes certain information about the executing processes 214a-c. In one embodiment,
the information includes a process ID, a process name, a process owner (the user that
initiated the process), process relation (how a process relates to other executing
processes, i.e., child, parent, sibling), other resources in use (open files or network
ports), and the like.

Typically, the business process is defined by one or more currently executing
processes 214a-c. Each process 214 includes either an executable file 210 or a parent
process which initially creates the process 214. Information provided by the process
manager 208 enables identification of the original files 210 for the executing processes
214a-c, discussed in more detail below.

In certain embodiments, the apparatus 200 includes a monitoring module 216,

WO 2006/015935 PCT/EP2005/053511

[0058]

[0059]

[0060]

[0061]

[0062]

11

analysis module 218, and determination module 220. These modules 216, 218, 220
cooperate to dynamically identify the resources that comprise a logical application that
corresponds to the business process. Typically, these resources are files 210. Al-
ternatively, the resources may be other software resources (servers, daemons, etc.)
identifiable by a network address such as a URL or IP address.

In this manner, operations can be performed on the files 210 and other resources of
a logical application (business process) without the tedious, labor intensive, error prone
process of manually identifying these resources. These operations include im-
plementing business level policies such as policies for backup, recovery, server load
management, migration, and the like.

The monitoring module 216 communicates with the process manager 208, file I/O
module 204, and network I/O module 206 to collect trace data. The trace data is any
data indicative of operational behavior of a software application (as used herein
“application” refers to a single process and “logical application” refers to a collection
of one or more processes that together implement a business process). Trace data may
be identifiable both during execution of a software application or after initial execution
of a software application. Certain trace data may also be identifiable after the initial in-
stallation of a software application. For example, software applications referred to as
installation programs can create trace data simply by creating working-copy files in a
specific directory.

Preferably, the monitoring module 216 collects trace data for all processes 214a-c.
In one embodiment, the monitoring module 216 collects trace data based on an
identifier (discussed in more detail below) known to directly relate to a resource im-
plementing the business process. Alternatively, the monitoring module 216 may collect
trace data for all the resources of an apparatus 200 without distinguishing based on an
identifier.

In one embodiment, the monitoring module 216 communicates with the process
manager 208 to collect trace data relating to processes 214 currently executing. The
trace data collected represents processes 214a-c executing at a specific point in time.
Because the set of executing processes 214a-c can change relatively frequently, the
monitoring module 216 may periodically collect trace data from the process manager
208. Preferably, a user-configurable setting determines when the monitoring module
216 collects trace data from the process manager 208.

The monitoring module 216 also communicates with the file I/O module 204 and
network module 206 to collect trace data. The file I/O module 204 maintains in-
formation about file access operations including reads, writes, and updates. From the
file I/O module, the monitoring module 216 collects trace data relating to current

execution of processes 214 as well as historical operation of processes 214.

WO 2006/015935 PCT/EP2005/053511

[0063]

[0064]

[0065]

[0066]

[0067]

[0068]

12

Trace data collected from the file I/O module 204 may include information such as
file name, file directory structure, file size, file owner/creator, file access rights, file
creation date, file modification date, file type, file access timestamp, what type of file
operation was performed (read, write, update), and the like. In one embodiment, the
monitoring module 216 may also determine which files 210 are currently open by
executing processes 214. In certain embodiments, the monitoring module 216 collects
trace data from a file I/O module 204 for one or more file systems across a plurality of
storage devices 212.

As mentioned above, the monitoring module 216 may collect trace data for all files
210 of a file system or only files and directories clearly related to an identifier. The
identifier and/or resources presently included in a logical application may be used to
determine which trace data is collected from a file system.

The monitoring module 216 collects trace data from the network I/O module 206
relating to network activity by the processes 214a-c. Certain network activity may be
clearly related to specific processes 214 and/or files 210. Preferably, the network I/O
module 206 provides trace data that associates one or more processes 214 with specific
network activity. A process 214 conducting network activity is identified, and the
resource that initiated the process 214 is thereby also identified.

Trace data from the network I/O module 206 may indicate which process 214 has
opened specific ports for conducting network communications. The monitoring module
216 may collect trace data for well-known ports which are used by processes 214 to
perform standard network communications. The trace data may identify the port
number and the process 214 that opened the port. Often only a single, unique process
uses a particular network port.

For example, communications over port eighty may be used to identify a web server
on the apparatus 200. From the trace data, the web server process and executable file
may be identified. Other well-known ports include twenty for FTP data, twenty-one for
FTP control messages, twenty-three for telnet, fifty-three for a Domain Name Server,
one hundred and ten for POP3 email, etc. In certain operating systems 202, such as
UNIX (UNIX is a registered trademark of The Open Group in the United States and
other countries) and LINUX (Linux is a trademark of Linus Torvalds in the United
States, other countries, or both), network I/O trace data is stored in a separate directory.
In other operating systems 202 the trace data is collected using services or daemons
executing in the background managing the network ports.

In one embodiment, the monitoring module 216 autonomously communicates with
the process manager 208, file /O module 204, and network I/O module 206 to collect
trace data. As mentioned, the monitoring module 216 may collect different types of

trace data according to different user-configurable periodic cycles. When not collecting

WO 2006/015935 PCT/EP2005/053511

[0069]

[0070]

[0071]

[0072]

[0073]

[0074]

13

trace data, the monitoring module 216 may “sleep” as an executing process until the
time comes to resume trace data collection. Alternatively, the monitoring module 216
may execute in response to a user command or command from another process.

The monitoring module 216 collects and preferably formats the trace data into a
common format. In one embodiment, the format is in one or more XML files. The
trace data may be stored on the storage device 212 or sent to a central repository such
as a database for subsequent review.

The analysis module 218 analyzes the trace data to discover resources that are
affiliated with a business process. Because the trace data is collected according to
operations of software components implementing the business process, the trace data
directly or indirectly identifies resources required to perform the services of the
business process. By identifying the resources that comprise a business process,
business management policies can be implemented for the business process as a whole.
In this way, business policies are much simpler to implement and more cost effective.

In one embodiment, the analysis module 218 applies a plurality of heuristic routines
to determine which resources are most likely associated with a particular logical ap-
plication and the business process represented by the logical application. The heuristic
routines are discussed in more detail below. Certain heuristic routines establish an as-
sociation between a resource and the logical application with more certainty than
others. In one embodiment, a user may adjust the confidence level used to determine
whether a candidate resource is included within the logical application. This
confidence level may be adjusted for each heuristic routine individually and/or for the
analysis module 218 as a whole.

The analysis module 218 provides the discovered resources to a determination
module 220 which defines a logical application comprising the discovered resources.
Preferably, the determination module 220 defines a structure 222 such as a list, table,
software object, database, a text eXtended Markup Language (XML) file, or the like
for recording associations between discovered resources and a particular logical ap-
plication. As mentioned above, a logical application is a collection of resources
required to implement all aspects of a particular business process.

The structure 222 includes a name for the logical application and a listing of all the
discovered resources. Preferably, sufficient attributes about each discovered resource
are included such that business policies can be implemented with the resources.
Attributes such as the name, location, and type of resource are provided.

In addition, the structure 222 may include a frequency rating indicative of how
often the resource is employed by the business process. In certain business processes
this frequency rating may be indicative of the importance of the resource. In addition, a

confidence value determined by the analysis module 218 may be stored for each

WO 2006/015935 PCT/EP2005/053511

[0075]

[0076]

[0077]

[0078]

[0079]

[0080]

14

resource.

The confidence level may indicate how likely the analysis module 218 has
determined that this resource is properly associated with the given logical application.
In one embodiment, this confidence level is represented by a probability percentage.
For certain resources, the structure 222 may include information such as a URL or
server name that includes resources used by the business process but not directly
accessible to the analysis module 218.

Preferably, the analysis module 218 cooperates with the determination module 220
to define a logical application based on an identifier for the business process. In this
manner, the analysis module 218 can use the identifier to filter the trace data to a set
more likely to include resources directly related to a business process of interest. Al-
ternatively, the analysis module 218 may employ certain routines or algorithms to
propose certain logical applications based on clear evidence of relatedness from the
trace data as a whole without a pre-defined identifier.

A user interface (UI) 224 may be provided so that a user can provide the identifier
to the analysis module 218. The identifier 226 may comprise one of several types of
identifiers including a file name for an executable or data file, file name or process ID
for an executing process, a port number, a directory, and the like. The resource
identified by the identifier 226 may be considered a seed resource for the logical ap-
plication, as the resource identified by the identifier 226 is included in the logical ap-
plication by default and is used to add additional resources discovered by searching the
trace data.

For example, a user may desire to create a logical application according to which
processes accessed the data base file “Users.db.” In the UI 224, the user enters the file
name users.db. The analysis module 218 then searches the trace data for processes that
opened or closed the users.db file. Heuristic routines are applied to any candidate
resources identified, and the result set of resources is presented to the user in the Ul
224,

The result set includes the same information as in the structure 222. The UI 224
may also allow the user to modify the contents of the logical application by adding or
removing certain resources. The user may then store a revised logical application in a
human readable XML structure 222. In addition, the user may adjust confidence levels
for the heuristic routines and the analysis module 218 overall.

In this manner, the apparatus 200 allows for creation of logical applications which
correspond to business processes. The logical applications track information about
resources that implement the business process to a sufficient level of detail that
business level policies, such as backup, recovery, migration, and the like, may be

easily implemented. Furthermore, logical application definitions can be readily

WO 2006/015935 PCT/EP2005/053511

[0081]

[0082]

[0083]

[0084]

[0085]

[0086]

15

adjusted and adapted as subsystems implementing a business process are upgraded,
replaced, and modified. The logical application tracks business data as well as the
processes/executables that operate on that business data. In this manner, business data
is fully archivable for later use without costly conversion and data extraction
procedures.

Figure 3 illustrates more details of one embodiment of the present invention. This
embodiment is similar to the apparatus 200 illustrated in Figure 2. Specifically, the il-
lustrated embodiment includes a monitoring module 302, analysis module 304, de-
termination module 306, and interface 308.

In one embodiment, the monitoring module 302 collects trace data 310 as a
business process is executing. In other words, the monitoring module 302 collects trace
data as applications implementing the business process are executing. However, the
monitoring module 302 may also collect sufficient trace data 310 when a business
process is not being executed/operated. In addition, the interface 308 may receive an
identifier that directly relates a resource implementing a business process to the
business process. Preferably, the identifier is unique to the business process, although
uniqueness may not always be required. This identifier may be used by the analysis
module 304 in analyzing the trace data 310.

The monitoring module 302 includes a launch module 312, a controller 314, a
storage module 316, and a scanner 318. The launch module 312 initiates one or more
activity monitors 320. The launch module 312 may launch activity monitors 320 when
the monitoring module 302 starts or periodically according to monitoring schedules
defined for each activity monitor 320 or for the monitoring module 302 as a whole.

An activity monitor 320 is a software function, thread, or application, configured to
trace a specific type of activity relating to a resource. The activity monitor may gather
the trace data by monitoring the activity directly or indirectly by gathering trace data
from other modules such as the process manager 208, file I/O module 204, and
network I/O module 206 described in relation to Figure 2.

In one embodiment, each activity monitor 320 collects trace data for a specific type
of activity. For example, a file I/O activity monitor 320 may communicate with a file 1/
O module 204 and capture all file I/O operations as well as contextual information,
such as which process made the file I/O request, what type of request was made and
when. One example of an activity monitor 320 that may be used with the present
invention is a shim application described in U.S. patent application number ###,
hereby incorporated by reference. Of course, various other types of activity monitors
may be initiated depending on the nature of the activities performed by the business
process. Certain activity monitors may trace Remote Procedure Calls (RPC).

The controller 314 controls the operation of the activity monitors 320 in one

WO 2006/015935 PCT/EP2005/053511

[0087]

[0088]

[0089]

[0090]

[0091]

[0092]

[0093]

16

embodiment. The controller 314 may adjust the priorities for scheduling of the activity
monitors to use a monitored system’s processor(s). In this manner, the controller 314
allows monitoring to continue and the impact of monitoring to be dynamically adjusted
as needed. The control and affect of the controller 314 on overall system performance
is preferably user configurable.

The storage module 316 interacts with the activity monitors 320 to collect and store
the trace data collected by each individual activity monitor 320. In certain em-
bodiments, when an activity monitor 320 detects a resource (executable file, data file,
or software module) conducting a specific type of activity, the activity monitor 320
provides the activity specific trace data to the storage module 316 for storage.

The storage module 316 may perform certain general formatting and organization to
the trace data before storing the trace data. Preferably, trace data for all the activity
monitors 320 is stored in a central repository such as a database or a log/trace file.

Typically, activity monitors 320 monitor dynamic activities performed during
operation of a business process while the scanner 318 collects trace data from
relatively static system information such as file system information, processes in-
formation, networking information, I/O information, and the like. The scanner 318
scans the system information for a specific type of activity performed by the business
process.

For example, the scanner 318 may scan one or more file system directories for files
created/owned by a particular resource. The resource may be named by the identifier
such that it is known that this resource belongs to the logical application 319 that
implements the business process. Consequently, the scanner 318 may provide any trace
data found to the storage module 316 for storage.

In one embodiment, the monitoring module 302 produces a set or batch of trace
data 310 that the analysis module 304 examines at a later time (batch mode). Al-
ternatively, the monitoring module 302 may provide a stream of trace data 310 to the
analysis module 304 which analyzes the trace data 310 as the trace data 310 is
provided (streaming mode). Both modes are considered within the scope of the present
invention.

The analysis module 304 may include a query module 322, an evaluation module
324, a discovery module 326, and a modification module 328. The evaluation module
324 and discovery module 326 work closely together to identify candidate resources to
be associated with a logical application 319.

The evaluation module 324 applies one or more heuristic routines 330a-f to a set of
trace data 310. Preferably, the query module 322 filters the trace data 310 to a smaller
result set. Alternatively, the heuristic routines 330a-f are applied to all available trace
data 310.

WO 2006/015935 PCT/EP2005/053511

[0094]

[0095]

[0096]

[0097]

[0098]

[0099]

17

The filter may comprise an identifier directly associated with a business process.
The identifier may be a resource name such as a file name. Alternatively, the filter may
be based on time, activity, type, or other suitable criteria to reduce the size of the trace
data 310. The filter may be generic or based on specific requirements of a particular
heuristic routine 330a-f.

In one embodiment, the evaluation module 324 applies the heuristic routines 330a-f
based on an identifier. The identifier provides a starting point for conducting the
analysis of trace data. In one embodiment, an identifier known to be associated with
the business process is automatically associated with the corresponding logical ap-
plication 319. The identifier is a seed for determining which other resources are also
associated with the logical application 319. The identifier may be a file name for a key
executable file known to be involved in a particular business process.

Each heuristic routine 330a-f analyzes the trace data based on the identifier or a
characteristic of a software application represented by the identifier. For example, the
characteristic may comprise the fact that this software application always conducts
network I/O over port 80. An example identifier may be the inventorystartup.exe
which is the first application started when an inventory control system is initiated.

Each heuristic routine 330a-f may analyze the trace data in relation to the members
of the logical application 319. A heuristic routine 330a-f is an algorithm that examines
trace data 310 using a member of the logical application 319. The heuristic routine
330a-f seeks to identify candidate resources for which the trace data 310 indicates a
potential relationship between a candidate resource and members of the logical ap-
plication 319. Because the relationship is heuristically determined, the heuristic routine
330a-f assigns a probability that a candidate resource is associated to the logical ap-
plication 319. This determination is very complex and difficult given such little in-
formation, about the logical application 319. Consequently, a plurality of heuristics of
different probabilities are applied to provide as accurate of a determination as possible.

As used herein, the term “heuristic” means “a technique designed to solve a
problem that ignores whether the solution is probably correct, but which usually
produces a good solution or solves a simpler problem that contains or intersects with
the solution of the more complex problem.” (See definition on the website www
wikipedia org.).

In a preferred embodiment, an initial set of heuristic routines 330a-f is provided,
and a user is permitted to add his/her own heuristic routines 330a-f. The heuristic
routines 330a-f cooperate with the discovery module 326. Once a heuristic routine
330a-f identifies a resource associated with the logical application, the discovery
module 326 discovers the resources and creates the association of the resource to the

logical application.

WO 2006/015935 PCT/EP2005/053511

[0100]

[0101]

[0102]

[0103]

[0104]

[0105]

18

One heuristic routine 330a identifies all resources that are used by child ap-
plications of the application identified by the identifier. Another heuristic routine 330b
identifies all resources in the same directory as a resource identified by the identifier.
Another heuristic routine 330c analyzes usage behavior of a directory and parent di-
rectories that store the resource identified by the identifier to identify whether the sub
or parent directories and all their contents are associated with the logical application.

One heuristic routine 330d determines whether the resource identified by the
identifier belongs to an installation package, and if so, all resources in the installation
package are deemed to satisfy the heuristic routine 330d. Another heuristic routine
330e examines resources used in a time window centered on the start time for
execution of a resource identified by the identifier. Resources used within the time
window satisfy the heuristic routine 330e. Finally, one heuristic routine 330f may be
satisfied by resources which meet user-defined rules. These rules may include or
exclude certain resources based on site-specific procedures that exist at a computer
facility.

In one embodiment, the evaluation module 324 cooperates with the discovery
module 326 to discover resources according to two distinct methodologies. The first
methodology is referred to as a build-up scheme. Under this methodology, the heuristic
routines 330a-f are applied to augment the set of resources currently within a set
defining the logical application. In this manner, the initial resource identified by the
identifier, the seed, grows into a network of associated resources as the heuristic
routines 330a-f are applied. Use of this scheme represents confidence that the heuristic
routines will not miss relevant resources, but runs the risk that some resources may be
missed. However, this scheme may exclude unnecessary resources.

The second methodology, referred to as the whittle-down scheme, is more con-
servative but may include resources that are not actually associated with the logical ap-
plication. The whittle-down scheme begins with a logical application comprising a pre-
defined superset representing all resources that are accessible to the computer
system(s) implementing the logical application, business process. The heuristic
routines 330a-f are then applied using an inverse operation, meaning resources that
satisfy a heuristic routine 330a-f are removed from the pre-defined superset.

Regardless of the methodology used, the evaluation module 324 produces a set of
candidate resources which are communicated to the modification module 328. The
modification module 328 communicates the candidate resources to the determination
module 306 which adds or removes the candidate resources from the set defined in the
logical application 319. The determination module 306 defines and re-defines the
logical application 319 as indicated by the modification module 328.

Preferably, the evaluation module 324 is configured to apply the heuristic routines

WO 2006/015935 PCT/EP2005/053511

[0106]

[0107]

[0108]

[0109]

[0110]

[0111]

19

330a-f for each resource presently included in the logical application 319. Con-
sequently, the modification module 328 may also determine whether to re-run the
evaluation module 324 against the logical application 319. In one embodiment, the
modification module 328 may make such a determination based on a user-configurable
percentage of change in the logical application 319 between running iterations of the
evaluation module 324. Alternatively, a user-configurable setting may determine a pre-
defined number of iterations.

In this manner, the logical application 319 continues to grow or shrink based on re-
lationships between recently added resources and resources already present in the
logical application 319. Once the logical application 319 changes very little between
iterations, the logical application may be said to be stable.

Once the modification module 328 determines that the logical application 319 is
complete (stable or the required number of iterations have been completed), the de-
termination module 306 provides the logical application 319 to the interface 308.
Preferably, the interface 308 allows a user to interact with the logical application 319
using either a Graphical User Interface 332 (GUI) or an Application Programming
Interface 334 (API).

Figure 4 illustrates one embodiment of the interface 308 of Figure 3 in more detail.
The interface 308 allows parameters regarding identification of logical applications to
be controlled. A user may directly provide input 402 that affects how a logical ap-
plication is defined. Such input 402 may include an initial identifier, threshold values
for the heuristic routines 330a-f (See Figure 3), a selection of the scheme (build up or
whittle-down) to be used to build the logical application, user-defined rules for use in
one of the heuristic routines 330, and the like.

User input 402 may be provided through a GUI 332. The GUI 332 may include an
editor 404 which allows a logical application to be edited. The editor 404 may present
the name and other details of the logical application as well as a list of resources
currently associated with the logical application. A user may then add or delete
resources from this list using the editor 404.

Once defined, a logical application may be exported from the interface 308 in a
variety of formats using a formatter 406. In one embodiment, the formatter 406
produces a human-readable XML file that includes one or more logical applications
and their associated resources.

Other software applications 408 may use the interface 308 to identify logical ap-
plications for use in these other software applications 408. For example, a management
module 408 may call functions or methods of the API 334 in order to identify logical
applications. In response, the API 334 provides logical application definitions in a
published format.

WO 2006/015935 PCT/EP2005/053511

[0112]

[0113]

[0114]

[0115]

[0116]

[0117]

20

The management module 408 may then apply business level policies 410 to the
logical application. For example, the management module 408 may comprise the
Tivoli storage manager 408. Given a logical application provided by the API 334, the
storage manager 408 may apply a backup policy 410 to the logical application as a
whole. In this manner, the backup policy 410 is automatically implemented for
resources that may be spread across a number of storage devices and file systems. The
labor intensive and error prone process of manually identifying the resources involved
in satisfying the backup policy is avoided because the present invention has auto-
matically identified the logical application.

Of course, logical applications representative of business processes may be used by
various other software applications 408 to implement a variety of business level
policies 410. For example, certain software applications 408 may implement load
balancing policies, software migration policies, and the like using logical applications.
In addition, the present invention allows these logical applications to be revised and re-
defined as resources, and sub-components are upgraded or replaced.

Figure 5 illustrates one embodiment of a single system 500 for automatically
discovering and grouping resources used by a business process. The system 500
includes an operating system 502, process manager 504, and I/O module 506. The
operating system 502 manages execution of processes. The process manager 504
provides information on running processes. The I/O module 506 provides information
on file activity.

The system 500 may include a plurality of file systems (FS) 508a-n that use cor-
responding storage devices 510a-n. The I/O module 506 may provide file information
for all the file systems 508a-n.

A monitoring module 512 collects trace data 514 during execution of software ap-
plications by the operating system 502. The monitoring module 512 may interact with
the process manager 504, I/0O module 506, and file systems 508a-n to collect trace data
514. To collect certain types of trace data 514, the monitoring module 512 may include
a process monitor 516, I/O monitor 518, network monitor 520, and FS monitor 522. In
one embodiment, the monitors 516, 518, 520, 522 perform substantially the same
functions in gathering trace data 514 as the activity monitors 320 discussed in relation
to Figure 3.

The monitoring module 512 provides the trace data 514 to an analysis module 522
which analyzes the trace data to discover resources affiliated with a business process.
The analysis module 522 functions substantially similar to the analysis module 304
described in the embodiment of Figure 3. The analysis module 522 may also define a
logical application 524. The logical application 524 may be defined within a markup
language data structure such as XML..

WO 2006/015935 PCT/EP2005/053511

[0118]

[0119]

[0120]

[0121]

[0122]

[0123]

21

An interface 526 may allow a user to interact with the logical application 524 using
a GUI 528. Alternatively, or in addition, the logical application 524 may be provided
to other software applications 408 (See Figure 4) by way of an API 530.

The system 500 automatically discovers the resources (files, ports, etc.) used by a
business process in a single system. Typically, business processes are implemented
using a plurality of software applications. Even a single software application can have
a high number of resources stored in various known and unknown locations on the
same system. The system 500 automatically identifies the logical application that
corresponds to the business process.

In certain instances, this logical application corresponds to a single software ap-
plication. Because a logical application is automatically discovered, operations can be
performed on the logical application as a whole rather than on sub-systems and sub-
modules independently. These operations may include upgrading a logical application,
deleting a logical application, backing up a logical application, and the like.

Figure 6 illustrates one embodiment of a system 600 for automatically discovering
and grouping resources associated with a business process. The system 600 defines a
logical application for a business process that is spread across a plurality of inter-
networked computer systems 602. In other words, the resources that are affiliated with
and implement the business process may be stored on a number of storage devices
604a-e. In such an environment, manual identification of all the resources that
implement a business process is difficult and error prone because the resources are so
spread out.

In the embodiment of Figure 6, the present invention automatically discovers and
groups resources associated with the business process. Specifically, a monitoring
module 606a-e may execute on each computer system 602a-e that implements a
portion of the business process. For example, a web server 602a may implement a web
interface with clients 608 over the Internet 610. Several application servers 602b, 602e
may execute middleware software modules, and a couple of database management
systems (DBMS) 602c, 602d may handle data for the business process. The computer
systems 602a-e may operate a variety of operating systems including Linux, Mac,
Windows, z/OS, and the like.

Preferably, each monitoring module 606a-e collects trace data representative of
operations of software applications on its host computer system 602a-e. The
monitoring modules 606a-e may monitor all file I/O, network, and process activity for
all software applications executing on the host computer system 602a-e to ensure that
trace data is collected for all resources that could potentially belong to the business
process. Alternatively, the monitoring modules 606a-e may be more selective in de-

termining what software applications are monitored.

WO 2006/015935 PCT/EP2005/053511

[0124]

[0125]

[0126]

[0127]

[0128]

[0129]

[0130]

[0131]

22

A storage module 612 may execute on one computer system 602e. The storage
module 612 may communicate with each monitoring module 606a-¢ to collect trace
data. The storage module 612 may periodically contact the monitoring modules
606a-e. Alternatively, the monitoring modules 606a-¢ may send trace data to the
storage module 612 once a certain quantity of trace data is collected or trace data has
been collected for a certain period of time. The storage module 612 may store the trace
data in a central repository 614.

An analysis module 616, preferably on the same computer system 602¢ as the
storage module 612, analyzes trace data in the repository 614. The analysis module
616 in the embodiment of Figure 6 functions in substantially the same manner as the
analysis module 522 described in the embodiment of Figure 5. One difference is that
the trace data comes from a plurality of computer systems 602a-e rather than just the
host computer system 602e.

A user may use a GUI 618 to interact with the analysis module 616 to define and
revise logical applications using the interface 620. Preferably, the user provides an
identifier that identifies a first resource to be included in a list of resources comprising
a logical application. Alternatively, or in addition, another software application may
interact with the analysis module 616 using the API 622.

Together the storage module 612, analysis module 616, and interface module 620
cooperate in a subsystem 624 configured to automatically discover and group
resources used by a business process according to trace data provided by the
monitoring modules 606a-e. The system 600 defines logical applications by the
resources the logical application actually uses.

These logical applications may be used by software management applications to
apply business level policies to the logical application as a whole. Typically, these
resources include data files and executable files. However, resources may also include
service applications, such as web services, servers, agents, and daemons, enlisted by
some portion of the logical application in performing its desired functions.

Figure 7 illustrates a flow chart of a method 700 for automatically discovering and
grouping resources used by a business process. The method 700 begins by receiving
702 an identifier for the business process. The identifier identifies a resource known to
have a direct affiliation with the business process. The resource implements at least a
portion of the business process.

The logical application is defined to include at least this resource. In one example,
the identifier may comprise a file name of an executable file known to execute in order
to implement the business process. As mentioned above, the identifier may comprise a
port number or other distinguishing feature.

Alternatively, or in addition, a traceable characteristic of a software application that

WO 2006/015935 PCT/EP2005/053511

[0132]

[0133]

[0134]

[0135]

[0136]

[0137]

23

implements the business process may be identifiable using the identifier. For example,
the identifier may comprise a data file name. The method 700 may be used to
determine a logical application comprising all resources that access the data file
directly or indirectly.

Next, activity monitors are initiated 704 to trace specific types of activities of
resources. The activity monitors may function substantially the same as activity
monitors 320 described in relation to Figure 3. One activity monitor 320 may trace file
I/0, another may trace network communication, while another may trace executing
processes. Preferably, the activity monitors 320 are not limited to operations performed
by the resource identified by the identifier.

Preferably, while the activity monitors 320 operate, the business process is executed
such that the behavior of the computer system includes operations performed by
resources implementing the business process. Next, trace data defined by the activity
monitors 320 is collected 706. In addition, the trace data may be reorganized and/or
formatted into a common format. The combined trace data is then stored 708. In
certain embodiments, the trace data is stored in a central repository 614 (See Figure 6).

In addition to trace data collected during operation of software applications im-
plementing a business process, system information may be scanned 710 for trace data.
For example, file systems may be scanned for files having creation timestamps and/or
access timestamps indicative of software application activity. These scans may
comprise a snapshot of the current status of the file system. Such information (trace
data) may be used later to identify behavior of certain resources in implementing a
business process.

System information may include resource related information. For example, system
information may include the contents of directories and relationships between files and
directories in a file system. System information may also include the listing of current
processes running as well as relationships between processes and logs of permitted and
prohibited network activity.

Next, collected trace data is analyzed 712 in view of the identifier provided in step
702 in order to discover resources affiliated with the identifier. In one instance, the af-
filiation may be between files. In another instance, the affiliation is between a file and
network activity on a certain port number. Resources identifiable in the trace data are
determined to be affiliated with the identifier and/or other resources in a logical ap-
plication according to one or more heuristic routines. Preferably, the discovered
resources are affiliated with a business process that includes a software application for
which trace data has been collected.

The process 700 defines 714 a logical application beginning with a resource
identified by the identifier. In one embodiment, the analysis step 712 builds a

WO 2006/015935 PCT/EP2005/053511

[0138]

[0139]

[0140]

[0141]

[0142]

24

collection (build-up) of related resources beginning with the resource identified by the
identifier. As new resources are discovered, these are added 714 to the logical ap-
plication. The logical application is modified to include resources that are affiliated
with resources already associated with the logical application. If new resources have
been added 716, the process continues with the analysis step 712 to determine if other
resources are directly related to the newly added resources. If no new resources are
added, the process 700 may end.

In another embodiment, the logical application is defined to include a pre-defined
superset. The superset includes all resources accessible to a computer system (i.e., all
the files in connected files systems). The analysis step 712 then applies heuristic
routines to determine which resources to remove from the superset (whittle-down). If
resources are removed, the analysis step 712 may be repeated until very few resources
are removed on each additional iteration.

Alternatively, rather than repeating the analysis step 712 until no more resources are
added/removed, or only a few new resources are added/removed, the process 700 may
repeat the analysis for a predetermined, user-defined number of iterations. Those of
skill in the art will recognize that the steps 704-710 relating to collection and storage of
trace data may be performed separately from the steps 702 and 712-716 for receiving
the identifier and performing the analysis. Consequently, the method 700 is not limited
to the order of operation illustrated in Figure 7.

Figure 8 illustrates a flow chart of a method 800 for automatically discovering and
grouping resources used by a business process in which the business process is im-
plemented by a plurality of networked computer systems. The method 800 begins by
monitoring 802 operation of the business process. In one embodiment, monitoring
modules 606a-e execute on each computer system that implements the business
process.

Next, trace data is gathered 804 preferably by way of the monitoring modules 606
(See Figure 6). The monitoring modules 606 allow the behavior of the business process
to be traced while placing a minimal overhead on the operation of the computer
systems implementing the business process. The monitoring modules 606 may provide
the trace data to a storage module 612 for storage in a central repository 614. The trace
data serves as a historical record of the behavior of substantially all the processes on
each of the inter-networked computer systems 602.

The trace data is then analyzed to discover resources affiliated with the business
process by identifying those resources that are affiliated with the identifier (i.e., file
name, port number, process ID, etc.). In one embodiment, certain heuristic routines are
used to analyze the trace data in view of the identifier and characteristics of a resource

identified by the identifier. According to the heuristic routines, the trace data may be

WO 2006/015935 PCT/EP2005/053511

[0143]

[0144]

[0145]

[0146]

[0147]

[0148]

25

searched 806 using a search criteria derived using the identifier and a heuristic routine.

For example, the heuristic routine may be based on resources accessed after a pre-
determined time. Consequently, the trace data may be searched 806 using search
criteria that includes trace records for resources accessed after the pre-determined time.
Alternatively, the search criteria may simply comprise the identifier, such as a file
name.

Typically, a search of the trace data produces a result set comprising trace records.
In certain embodiments, a heuristic routine is applied 808 to the result set such that
resources satisfying the heuristic routine are discovered. Alternatively, the heuristic
routine may be applied 808 as all of the trace data is scanned. In yet another alternative
embodiment, depending on the type of heuristic routine, the trace data may be scanned
repeatedly to ensure that the heuristic routine is properly applied and that the trace data
is fully utilized.

Next, resources satisfying at least one heuristic routine are assembled 810 into a
logical application under the build-up scheme. Under the whittle-down scheme,
resources satisfying at least one heuristic routine are removed 810 from a logical ap-
plication comprising a superset of all resources available to the inter-networked
computer systems 602.

Finally, business level policies both automated and manual are applied 812 to the
logical application. Examples of business policies may include transaction load
balancing, data and/or software recovery, software migration, and backup. Other
policies may include identification of a logical application comprising resources
affected by a virus attack including resources comprising the virus as well as resources
altered by the virus in one or more computer systems.

Those of skill in the art will quickly recognize the potential benefits provided by the
present invention. The ability to automatically identify logical applications which
correspond to legitimate business processes and/or illegitimate processes and other
distributed systems greatly simplifies the implementation of offensive and defensive
business policies.

In summary, the present invention provides an apparatus, system, and method for
automatically discovering and grouping resources used by a business process or other
distributed system. The present invention is highly accurate because such extensive
trace data is collected, and a plurality of accurate heuristic routines are employed in
identifying resources. In addition, the present invention is highly configurable. A user
may edit the automatically defined logical application, define heuristic rules if desired,
and adjust the sensitivity of the heuristic routines that are applied. In this manner, the
present invention may operate more conservatively or more liberally depending on the

importance of the particular business process involved. The present invention may also

WO 2006/015935 PCT/EP2005/053511

[0149]

26

interface with other software management systems to facilitate implementation of
business policies. Furthermore, defined logical applications may be refined as more
trace data becomes available. In this manner, logical applications may be modified to
accommodate upgrades and changes to subcomponents of a business process over
time.

The present invention may be embodied in other specific forms without departing
from its scope. The described embodiments are to be considered in all respects only as
illustrative and not restrictive. The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description. All changes which come
within the meaning and range of equivalency of the claims are to be embraced within
their scope.

WO 2006/015935 PCT/EP2005/053511

[0001]

[0002]

[0003]

[0004]

[0005]

[0006]

[0007]

[0008]

[0009]

27

Claims

1. An apparatus for automatically discovering and grouping resources used by a
business process, the apparatus comprising: a monitoring module configurable to
collect trace data representative of operational behavior of software applications;
an analysis module configurable to analyze the trace data to discover resources
affiliated with a business process that includes at least one of the software ap-
plications; and a determination module configurable to define a logical ap-
plication that includes the discovered resources.

2. The apparatus of claim 1, further comprising a modification module con-
figurable to modify the logical application to comprise resources affiliated with
resources already included within the logical application.

3. The apparatus of claim 1 or claim 2, wherein the logical application is con-
figurable such that a user can add or delete discovered resources.

4. The apparatus of any preceding claim, further comprising a management
module configurable to apply a business level policy to the logical application.
5. The apparatus of any preceding claim, further comprising: an interface con-
figurable to receive an identifier for the business process, the identifier directly
related to a resource that implements the business process; wherein the
monitoring module is configurable to collect trace data as the business process
executes, the trace data relating to the resource; and wherein the analysis module
is configurable to analyze the trace data to discover one or more resources
affiliated with the identifier.

6. The apparatus of claim 5, wherein the analysis module further comprises a
query module configurable to filter the trace data to produce a result set; an
evaluation module configurable to apply one or more heuristic routines to the
result set to discover one or more resources affiliated with the identifier; and a
discovery module configurable to discover one or more resources, in response to
the one or more heuristic routines.

7. The apparatus of claim 5, wherein the determination module adds one or more
discovered resources in response to a heuristic routine.

8. The apparatus of claim 5, wherein the determination module removes one or
more resources from a pre-defined superset comprising substantially all available
resources in response to a heuristic routine.

9. The apparatus of claim 5, wherein the monitoring module further comprises a
launch module configurable to initiate one or more activity monitors, each
activity monitor configurable to trace a specific type of activity relating to a

resource; a controller configurable to control the activity monitors; and a storage

WO 2006/015935 PCT/EP2005/053511

[0010]

[0011]

[0012]

[0013]

[0014]

28

module configurable to store trace data from the activity monitors that describes
a specific type of activity, in response to utilization of the resource conducting
the specific type of activity.

10. The apparatus of claim 9, further comprising a scanner that scans system in-
formation for trace data that describes a specific type of activity performed by
the business process.

11. The apparatus of any preceding claim for use with a plurality of inter-
networked computer systems implementing a business process, wherein the
monitoring module resides on each computer system, the monitoring module
configurable to collect trace data representative of operations performed by at
least one software application; a storage module configurable to collect trace data
from the monitoring modules and store the collected trace data in a repository;
wherein the analysis module is configurable to analyze the collected trace data to
discover resources affiliated with a business process that includes the software
application and to define a logical application that includes the discovered
resources; and wherein the interface is in communication with the analysis
module and the interface is configurable to interact with a user by way of a
Graphical User Interface (GUI) and another software application by way of an
Application Programming Interface (API).

12. The apparatus of claim 11, wherein the interface provides the logical ap-
plication to another software application that applies a business level policy on
the logical application.

13. A system for automatically discovering and grouping resources used by a
business process, comprising: an operating system configurable to manage
execution of processes; a process manager configurable to provide information
on running processes; an Input/Output (I/0) module configurable to provide file
activity information; a file system configurable to manage files stored in storage
and provide metadata about the files; a monitoring module configurable to
collect trace data during execution of at least one software application within the
operating system, the monitoring module interacting with at least one of the
process manager, the I/O module, and the file system to collect the trace data
directly related to operation of the software application; and an analysis module
configurable to analyze the trace data to discover resources affiliated with a
business process that includes the software application and to define a logical ap-
plication that includes the discovered resources.

14. A method for automatically discovering and grouping resources used by a
business process, the method comprising the steps of: collecting trace data repre-

sentative of operational behaviour of software applications; analyzing the trace

WO 2006/015935 PCT/EP2005/053511

[0015]

[0016]

[0017]

[0018]

[0019]

[0020]

[0021]

[0022]

[0023]

[0024]

29

data to discover resources affiliated with a business process that includes at least
one of the software applications; and defining a logical application that includes
the discovered resources.

15. The method of claim 14, further comprising the step of: modifying the logical
application to comprise resources affiliated with resources already included
within the logical application.

16. The method of claim 14 or claim 15, wherein the logical application is con-
figurable such that a user can add or delete discovered resources.

17. The method of any of claims 14 to 16, further comprising the step of:
applying a business level policy to the logical application.

18. The method of any of claims 14 to 17, further comprising the steps of:
receiving an identifier for the business process, the identifier directly related to a
resource that implements the business process; collecting trace data as the
business process executes, the trace data relating to the resource; and analyzing
the trace data to discover one or more resources affiliated with the identifier.

19. The method of claim 18, wherein the step of analyzing the trace data to
discover one or more resources affiliated with the identifier, further comprises
the steps of: filtering the trace data to produce a result set; applying one or more
heuristic routines to the result set to discover one or more resources affiliated
with the identifier; and discovering one or more resources, in response to the one
or more heuristic routines.

20. The method of claim 18, further comprising the step of: adding one or more
discovered resources in response to a heuristic routine.

21. The method of claim 18, further comprising the step of: removing one or
more resources from a pre-defined superset comprising substantially all available
resources in response to a heuristic routine.

22. The method of claim 18, further comprising the steps of: initiating one or
more activity monitors, each activity monitor configurable to trace a specific
type of activity relating to a resource; controlling the activity monitors; and
storing trace data from the activity monitors that describes a specific type of
activity, in response to utilization of the resource conducting the specific type of
activity.

23. The method of claim 22, further comprising the step of: scanning system in-
formation for trace data that describes a specific type of activity performed by
the business process.

24. The method of any of claims 14 to 23, for use with a plurality of inter-
networked computer systems implementing a business process, further

comprising the steps of: collecting, on each computer system, trace data repre-

WO 2006/015935 PCT/EP2005/053511

[0025]

[0026]

30

sentative of operations performed by at least one software application; storing the
collected trace data in a repository; analyzing the collected trace data to discover
resources affiliated with a business process that includes the software application
and to define a logical application that includes the discovered resources; and in-
teracting, via a Graphical User Interface (GUI), with a user and via an Ap-
plication Programming Interface (API), another software application.

25. The method of claim 24, further comprising the step of: providing the logical
application to another software application that applies a business level policy on
the logical application.

26. A computer program comprising program code means adapted to perform all
the steps of any one of claims 14 to 25, when said program is run on a computer.

PCT/EP2005/053511

WO 2006/015935
1/8
100
'Y
Web Server App Server DEMS
< 104 108 108
Client i —
102 1107 Business DB
< » Object Table
112 ’\»| Applet 114 116
File File File
"-\-..J /'__, 1’-_,
124a System 124b System 124¢ System
S S SR
Volume A Volume B Volume C
1222 122hb 122¢
me\[cose]| 1 Gove]| 118 o]
120"{_Data 120 Y{ Data]| 120} Data_|
N ~— S~
Policy: Backup E-commerce site
12671 once a week.
Implementation: Weekly Copy
Store jar
Storeserver. jsp from Vaolume A
E-commerce.exe,
E-commerce.html,
~_ E-settings.cfg from Yolume B
128 E-com data.db,
E-com dataz.db from Volume C
to Tape A.
(Prior Art)

Fig. 1

WO 2006/015935 PCT/EP2005/053511
2/8
200
Y
3 212
Files
210
.4
Process File 110 / as
Manager 204 202
208 #
Process Monitor Network 1/O
2142 | 218 [P 208
Process
214b ¥
Process Analysis Determination
214c 218 220
Ul <?xml version="1.0" encoding="UTF-8" 7>
224 <Logicalapp Name="web_hook_store">
<file name="hookstore" path="{fopt/web/boockstores'>
Users.db <type>executable<itype> <fie>
228 <file name="payment" path="/aptiwe b/bookstore/">
<typerexecutable<Aype> <file>
<file name="e-commerce" path="foptiwebfsharedf">
999 <type>configuration</type> <ffile>
s <file name="users" path="foptiwebfshareds">

<type>data<ttype> </fle>

</LogicalApp>

Fig. 2

WO 2006/015935 PCT/EP2005/053511

3/8
Launch Module Monitor
312 302 Interface
308
GUI APl
314 318 332 334
A
Trace
Data
310
v \
Analysis Determination
304 308
322
\s.__‘ Logical App

Evaluation Meodule
374

o8]
N
[+2]

Fig. 3

WO 2006/015935

User
Input
402

4/8
Interface
208
GUI
332
API
Editor 334
404
Formatter
408
Software App
408
Policy
1410

Fig. 4

PCT/EP2005/053511

WO 2006/015935

PCT/EP2005/053511

Storage
£10a

Storage
510n

5/8
500
4
F&
O3 5083
502 .
Process sgﬁ
Manager L
504 1/C Module
508
Monitaring Module
512
Process Network
Monitor Monitor
5186 520
IO Monitor FS Monitor
518 522
Trace Data
514
Analysis Module
522
v
526
GUI API
528 530

Logical App
524

Fig. 5

WO 2006/015935 PCT/EP2005/053511
6/8
600
"
i < i >
6042 604b 604c 604d
|nternet
610
S Web Server App Server DBMS
Client 602a 602b 602c
508 [« N
. Maenitor Monitor Monitor
M wind
e T | 608 [
Maonitor — ¥ Monitor
s06e Wy St;!:ge * gosa | 2°°
I 812
A | i \ DBMS
SeK’ir | | Analysis 802d
goze | L &8 |
: Interface | o
620
Zi0s | — \) 604e
— #— — + < | |Repository
/ 614
GUI APl y
618 622 624

Fig. 6

WO 2006/015935

700

7/8

PCT/EP2005/053511

Receive Identifier for 2 Business Process

702

y

Initiate Activity Monitors that Trace Specific
Activity of Resources

704

y

Collect Trace Data as Business
FProcess Executes

706

v

Store Trace Data

708

y

Scan System Information for Trace Data

710

v

Analyze Collected Trace Data to Discover
Resources Affiliated with the Identifier andfor
Resources of the Logical Application

712

y

Define Logical Application Including the
Discovered Resources

714

New Resources
Added?

716

Fig. 7

WO 2006/015935 PCT/EP2005/053511
8/8

800

v

Monitor Operation of the Business Process -

v

802

Gather Trace Data %804
Search the Trace Data for Resources 806

Identified by Search Criteria

Apply at Least One Heuristic Routine N

v

Assemble/Remove Resources Identified 810

808

R
into a Logical Application
Apply a Business Level Policy to the L~ 812

Logical Application

End

Fig. 8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

