
(19) United States
US 20070168931A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0168931 A1
Martin et al. (43) Pub. Date: Jul. 19, 2007

(54) SYSTEMS AND METHODS FOR DEFINING A
SIMULATED INTERACTIVE WEB PAGE

(75) Inventors: Maurice Martin, Hermosa Beach, CA
(US); Stephen Brickley, Hermosa
Beach, CA (US); Leon Amdour, Los
Angeles, CA (US); Alex Kravets,
Marina Del Rey, CA (US); Brian Fan,
Irvine, CA (US); Dominic Infante,
Redondo Beach, CA (US): Stuart
Larking, Redondo Beach, CA (US);
Paul Aldama, Los Angeles, CA (US)

Correspondence Address:
KNOBBE MARTENS OLSON & BEAR LLP
2O4O MAN STREET
FOURTEENTH FLOOR
IRVINE, CA 92614 (US)

(73) Assignee: IRISE, El Segundo, CA (US)

(21) Appl. No.: 11/671,331

(22) Filed: Feb. 5, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/763,080, filed on
Jan. 22, 2004, now Pat. No. 7,174,286, which is a
continuation of application No. PCT/US02/23816,
filed on Jul. 26, 2002.

COLLECT NTIAL

(60) Provisional application No. 60/308,052, filed on Jul.
26, 2001.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 717/104

(57) ABSTRACT

The system includes a novel software application interactive
representation modeling language, a software application
(82) operative to use the modeling language to create, read
and modify interactive representation models of the pro
posed applications, a memory (86) to store requirement data
and interactive representation model data, a software appli
cation (92) operative to read and update the interactive
representation model data across a computer network, a
software application (76) operative to maintain a record of
the requirements and to administer operation of the system,
a software application (78) operative to render interactive
representations of the proposed applications in browser
readable format, a software application (82) operative to
allow multiple instances of other applications to access
interactive representation data and requirement data residing
in the memory and a software application (84) operative to
allow an individual users interactions with the system to be
broadcast across a networked system to other users.

52 -- MODEYIADD TO
REQUIREMENTS MODIFYIADD TO INTERACTIVE

REQUIREMENTS REPRESENTATION
MODEL

RECORD EN 62
54 -- REQUIREMENT

REPOSTORY

CREATENTAL
INTERACTIVE

REPRESENATION
MODEL

56

REVIEW NTERACTIVE
REPRESENTATION &
REQUIREMENTS

58

PROVIDE
OUTPUTSTO

DESIGNI
DELEVERY

Patent Application Publication Jul. 19, 2007 Sheet 2 of 24 US 2007/0168931 A1

OO
OO C

ON

> 2. A.
... in 9 w

O 3.
P 2 >

N
N

N
N

CN

b)

V
N

A4
A4

g 3
O E
3. >

S 3

Patent Application Publication Jul. 19, 2007 Sheet 4 of 24 US 2007/0168931 A1

RECEIVE
REQUEST 124

126 128

VALI) REDIRECT
SESSION TO ION (END) Fig. 4

p LOGIN PAGE 19.

130 YES 134

PROCESS
MAGE

IMAGE
REQUESTED

YES

REQUEST
136 (ENE), NO FIND ALL SHOWSTATIC

PAGES AND
"PAGE NOT RETURN

SHOW FOUND" PAGE ACCUMULATED
DIRECTORY

HTML TO
132 BROWSER

134

YES
PAGE OR
DECISION
REQUESTED

PAGE NOT 142
FOUND? UNSPECIFIED

CONTROL
FLOW

VSTATION
150 ALGORTHM

RETURN
ACCUMULATED PROCESS

FORMSUBMT HTML TO
BROWSER

154 156

RETURN
ACCUMULATED

PROCESS ROW
FROM DYNAMIC SELECTION

TABLE
QUESTED

HTML TO
BROWSER

FROM DYNAMIC
TABLE

(END) 158
NO

Patent Application Publication Jul. 19, 2007 Sheet 5 of 24 US 2007/0168931 A1

160 PAGE
PRIMTVE

176
CONSTANT
PRIMITIVE CONTAINMENT

162

DATA FLOW

CONTAINMENT CONTAINMENT
CONTAINMENT

164
TEXT TEXT
INPUT . INPUT

PRIMTVE PRIMITIVE

DATA FLOW
DATA FLOW CONTROL FLOW

170 172

MATH ADD PAGE
PRIMITIVE PRIMITIVE

CONTAINMENT

174

Fig. 5
DATA FLOW

US 2007/0168931 A1 Patent Application Publication Jul. 19, 2007 Sheet 6 of 24

Patent Application Publication Jul. 19, 2007 Sheet 7 of 24 US 2007/0168931 A1

Fig. 7
145

EXTRACT ALL VALUES
SUBMITTED INFORM
AND PACKAGE INTO

DATA TOKENS

147

DATA FLOW WISTATION
ALGORTHM

149 x
DETERMINE PAGE OR
DECISION TO BE
PROCESSED

151
CONTROL FLOW
VISTATION
ALGORTHM

Patent Application Publication Jul.19, 2007 Sheet 8 of 24 US 2007/0168931 A1

START

DECSON
ORTAG
PRIMTVE

NO

PRIMTIVE

206
CACHE

TOKEN AT
PRIMITIVE

TOKEN
ALREADY
CACHED

CACHE
TOKEN AT
PRIMITIVE

214
FND ALL
DATA FLOW
EXTS

Fig. 8A

Patent Application Publication Jul. 19, 2007 Sheet 9 of 24

232

ACTION
PRIMITIVE

220

ACTION
ALREADY
XECUTED

222 NO

CACHE TOKEN
AT PRMTVE

224

FND ALL
EMPTY DATA
FLOW INPUTS

226

ALL DATA
FLOW INPUTS
CACHED

DATA FLOW
PULL

ALGORTHM

238 EXECUTE
n ACTION

234 236

NO RETURN
ERROR

ODEL REF
PRMITIVE

CACHE
TOKEN
AT

PRIMTVE

FIND ALL
EMPTY DATA

FLOW
INPUTS

ALL, DATA
YES (1FLow INPUTs

CACHED

DATA FLOW
PULL

ALGORTHM

END

Fig. 8B

US 2007/0168931 A1

END

Patent Application Publication Jul. 19, 2007 Sheet 10 of 24 US 2007/0168931 A1

300

(start) "\
302 306

NO NPUT TAG
PRMITIVE

CONSTANT
PRMTVE2

314
PLACE

VALUE(S) IN
TOKEN

316

DATA FLOW RETURN
PULL EMPTY

ALGORTHM TOKEN

EN)

CACHE
TOKEN AT
PRIMITIVE

FND ALL
DATA FLOW 336

EXITS

DATA FLOW
PUSH

ALGORTHM

Fig. 9A

Patent Application Publication Jul. 19, 2007 Sheet 11 of 24

308

ACTION
PRMTVE

336 YES

DETERMINE
ORIGIN

338

FND ALL
EMPTY DATA
FLOW INPUTS

340
ALL, DATA

FLOW INPUTS
CACHED

YES

DATA FLOW
PULL

ALGORTHM

ACTION
ALREADY
XECUTED

346

RETURN
OUTPUT FOR
ORIGN

NO

US 2007/0168931 A1

RETURN 312
ERROR

NO
310

MODEL REF
PRIMITIVE?

YES
348

DETERMINE
ORIGN 360

FIND ALL
EMPTY DATA
FLOW INPUTS

350

ODEL RE
ALREADY
EXECUTED

ALL, DATA
FLOW INPUTS
CACHED

352 YES YES

RETURN
OUTPUT FOR

ORIGIN

354

EXECUTE
ACTION 366

DATA FLOW
PULL

ALGORTHM

FND ALL
DATA FLOW

EXITS

DATA FOW
PUSH

ALGORTHM

Fig.9B

END

Patent Application Publication Jul.19, 2007 Sheet 12 of 24 US 2007/0168931 A1

, is wit "...trial a vir

Application Selectod Cogout Button
E.

402

406 404

400u? 408 Fig 10

You are requesting a Secured
application that requires

is: authentication, Please log in to
begin using your applications.

Patent Application Publication Jul. 19, 2007 Sheet 13 of 24 US 2007/0168931 A1

504

REQLREMENTS. LOGIN PAGE
(1)-Logiri Page .

D: FOOD Type: FDD This is the htni for the loginpage.
Priority: Unassigned
Assigned To: This is the html for the Engin page.
Subtype:
Status:
Scope/Release. In Scope Jnassigned
Recuestor:
Modified OB-Apr-200206:41 PM RiseSupport

f(4)-MA Number of Requirements: 1

Number of Requirements:f

806WW Marketing Admininistrator requirret.
Priority: Unassigned
Assigned To. Marketing Adenininistrator requirment.
Suktype:
Status:
Scope/Release;
Requestor:
Modified: 08-Apr-200206:41 PM RiseSupport

NAVIGATION REOND on PAGE
Pages d area

Login Pege "Budget Eritry Worksheet

2 (PAGEworkbench-MA and FM
it (Passworench pardo

-- S(DECSION) Login. As MA
ictext) p. icoecision)lognas PM
T (TEXT). DH -s (DECISION) Login ASDH

-- (OECISION) Login As FM

Patent Application Publication Jul.19, 2007 Sheet 14 of 24 US 2007/0168931 A1

SO.

PAGEFORFORM:
(DAAFND) valid login
(DATAFND) veil Login

s ExtuT) i -- username --
512

B ACA fif in ... it is -

Patent Application Publication Jul.19, 2007 Sheet 15 of 24 US 2007/0168931 A1

REOUREMENTS - 3.09. LIST

Wolf
Priority: Liassigned
Assigned To: Temporary Administrator The List Page will slow users to search for CDs according ta
Suatype. More their Genre.
Status; Proposed
Scope/Release. Undecided/lassigned
Requestor: Temporary Administrator
Modified: 4-du-2205:49 PM user

List Page Functionality

a.

Page Functionality3(dist CDs
s

DSR 2
Priority: Uriassigned
Assigned TO:
Subtype: None
Status; Proposed
Scopefrelease: Undecided nassigned
Requestor, User One
Modified 3-Jun-22:34 PM user

s
Page Fuctionality3.00 List CDs

Title Column

The Recordstshauld be sorted by Title when the user clicks
the Title colunheater.

Fig. 16

My CD Manager Report
Report Typ; Requirements invontcy Report

Application: Cormanagar i. This is the customized header.

Pago Fu}ctionality is of 29
U32010 Color Conventions

3.

Any Drop-down for selecting or editing the Genre of a CD should contain the Rock, Blues, and Country
as options,

Rht: Ulleged
ress: Mr.

Fig. 17

Fod

The background of the left navigaton, and the textcolor should match the site standard colors: blue and .
gray, it should also be bold, underlined, and slightly larger than the normal text. :

geoded Release: Uragssigned Locked by: fore
le:M subtype: one Estimate:

Requesferreirporary status: Proposed Asagreedo; Temporary V.
strow Adinistrator

Priority: Unassigned

300GP Genre Values
FOO

Patent Application Publication Jul. 19, 2007 Sheet 16 of 24 US 2007/0168931 A1

sity: it this thrivir it right irst ris Fia'izz's if tipi Yir tusiri il trict thirikor
e a for to stretcairngo

(Back i? sourch Favorites edia A' A' A Links lighton Riseras ree
stan - R K FK R-T-seok a re-A

ti - f.

ss serect

arous congresourconting soccer se; ope

&egy: red
rea

Saff
Gogodde?t GDrthbourger. Click Creek, he sympresents page
the contain its carry their the datase.

221J to cosford

for posiounder Greecdb house
shadh day preseth. Therer mas r

s t st f ifts o

serve re e
vary ad te, torporary

retly:

essarie
Streetcar Gato pages appyth as test

atter-propage3.net of fasha'alotecteur

R. de corr

The Road a should be abibits who the sadda on the tale columbiado.
() is a of a sixth to H is

startlas C. Yacyres. Re-ea. Jerbox sessidented-Petric festivate staire

Fig. 18
esta a A is basi K is serve still sac A

s i. Potre
acces?.

it is 2 is . . .
1s states

had chairtuosaarhoresterstoies 20, es et and

Aftei Lifegfunctionally
Fo

This Pag ?tation urosure occaccordingtotal rear,

ise to; pair
Aertscar

setti
r

tithaanecdotadar hanaerody the tarotoliapagathnarror
shot isdipoco the Gos try resugiholandmogenic acid,

easy-sa
e

tights' rewarf

Patent Application Publication Jul. 19, 2007 Sheet 17 of 24 US 2007/0168931 A1

w define Pit kg
Artist Genre Update
Prince Rock

endriven Engine Paley Rock

Assdated Test Typeror T t
is Modeled; statoeroticed "T

subtype:none"T
Requestorteros"T

Associated Ta: E. Type: frter T.
Hodeiad; r. status: foxsed T.

subtype:none T
433 Reguestor Rao -

The Pawniowusers to tearch for coe accordingbo

neRacetailshould be sorted by the whenevelterecks
cres takimhackf

Statuk Papoed
Scopeftalestmecked unassed
Rachesloe" let on
lockfiers-202 0234 use

Éclassifications
Page Furcoratiotects

439

Patent Application Publication Jul. 19, 2007 Sheet 18 of 24 US 2007/0168931 A1

was seal

Esteemine Engine Pulley Rock
Joshua Tree 2 Rock

Patent Application Publication Jul. 19, 2007 Sheet 19 of 24 US 2007/0168931 A1

Patent Application Publication Jul.19, 2007 Sheet 20 of 24 US 2007/0168931 A1

profile

unpack Your eccessleyes

accesslowed

Here is your ful name: yourfularine

The Start Page is the starting point for all simulations,
*To simulate the experience of an existing account, select
accourt number 10, To simulate the experience of a new
account, use account number 2001

Patent Application Publication Jul.19, 2007 Sheet 21 of 24 US 2007/0168931 A1

Patent Application Publication Jul. 19, 2007 Sheet 22 of 24 US 2007/0168931 A1

Fig. 37

Claua by headminen May 2020224 Pa
thraki 4Aud-kytipudalakuh 28,0243 PM

six

Project Browser

US 2007/0168931 A1 Patent Application Publication Jul. 19, 2007 Sheet 23 of 24

aaos---owneasuranaanster

Fig. 41

Patent Application Publication Jul. 19, 2007 Sheet 24 of 24 US 2007/0168931 A1

i

is it is

Eri

US 2007/0168931 A1

SYSTEMS AND METHODS FOR DEFINING A
SIMULATED INTERACTIVE WEB PAGE

0001. This application is a continuation application of
U.S. application Ser. No. 10/763,080, filed Jan. 22, 2004,
which is a continuation application under 35 U.S.C. S 365(c)
and 35 U.S.C. S 120 of prior PCT application PCT/U502/
23816, filed Jul. 26, 2002, which was published as WO
03/010684 A1 on Feb. 6, 2003 under PCT Article 21(2) in
English, which claims the benefit under 35 U.S.C. S 119(e)
of U.S. Provisional Application No. 60/308,052, filed Jul.
26, 2001, the entireties of which are hereby incorporated by
reference herein.

0002 This application is related to (i) copending appli
cation entitled SYSTEMAND PROCESS FOR GATHER
ING, RECORDING AND VALIDATING REQUIRE
MENTS FOR COMPUTER APPLICATIONS, Ser. No.
10/484,541, which is the National Phase of prior PCT
application PCT/U502/23816 filed Jul. 26, 2002: to (ii)
copending application entitled SYSTEMS AND METH
ODS FOR COLLABORATIVE PROGRAMMING OF
SIMULATIONS OF COMPUTER PROGRAMS, Ser. No.
10,763,012, filed Jan. 22, 2004, which is also a continuation
application of prior PCT application PCT/U502/23816; and
to (iii) copending application entitled SYSTEMS AND
METHODS FOR A PROGRAMMING ENVIRONMENT
FORASIMULATION OF ACOMPUTER APPLICATION,
Ser. No. 10/762,428, filed Jan. 22, 2004, which is also a
continuation application of prior PCT application PCT/
USO2/23816.

TECHNICAL FIELD

0003. The present invention is directed to a system and
process for gathering, recording and validating requirements
for computer applications in the fields of requirements
analysis for computer application development and of com
puter application development.

0004. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

INDUSTRIAL APPLICABILITY

0005 The present invention has applicability in the field
of design and development of computer Software applica
tions for businesses and other entities, particularly concern
ing large, complex systems adapted for networks, including
private networks as well as public networks Such as the
Internet.

BACKGROUND OF THE INVENTION

0006 With the increasing complexity involved in the
development of computer programs that embody very
Sophisticated business logic, specification of the require
ments of these programs before they are actually built, i.e.,
programmed into computer readable code is important to
timely and cost-effective production of these systems.
0007 As organizations are forced to do more with less,
the need to deliver Such applications on-time and on-budget

Jul. 19, 2007

without sacrificing quality presents a bigger challenge than
ever before. One of the major problems in these fields is
system definition, i.e., the effective identification of accu
rate, complete and unambiguous requirements for the sys
tem or application. This is especially true of applications
used on the Internet. These applications must meet require
ments related not only to graphic design, content and usabil
ity, but also related to complex scenarios of user system
interactions that are not complete and accurate requirements
from outset and may not even be documented before starting
the application design.
0008 Traditional software development falls typically
into several main disciplines. The first is known as the
“waterfall software development life cycle approach. The
second approach attempts to improve the effectiveness of the
waterfall approach by introducing prototypes into the devel
opment lifecycle early in the development cycle. Each of
these approaches is associated with significant problems.
0009. The waterfall approach is a development method
that is linear and sequential. Waterfall development has
distinct goals for each phase of development. Once a phase
of development is completed, the development proceeds to
the next phase and there is no turning back. This phase of
development is analogous to the flow of water over a
waterfall; it cannot flow back to the top of the waterfall. In
the waterfall design approach, the requirements gathering
phase typically results with capture of requirements on paper
documents. Typically, the system designers generate a
paper-based design from the paper-based requirements. The
system developers then interpret the paper-based design and
convert it into executable computer code. Typically, the
executable code is then delivered to the testers, who then
evaluate the code to determine if the resulting computer
application meets the requirements.
0010 While waterfall development allows for depart
mentalization and managerial control, it does not allow for
much reflection or revision. Iterations of the design process
require iterations of the entire process. However, once an
application is in the testing stage, it is very difficult to go
back and change something that was not well thought out in
the concept stage. Also, typically, problems are not discov
ered until system testing, and requirements must be fixed
before the system is designed. Requirements evolution
makes the development method unstable. Often during the
design and code writing phases, requirements inconsisten
cies, missing system components and unexpected develop
ment needs are discovered. Also, system performance can
not be tested until the system is almost coded, and under
capacity may be difficult to correct. For these reasons the
standard waterfall model has been associated with the failure
or cancellation of a number of large systems.
0011 Known alternatives to the standard waterfall design
approach include modified waterfall approaches that include
those that start with a very rough notion of the system and
become more detailed over time, analogous to going over
several smaller waterfalls (spiral waterfall design); and those
that include overlapping phases and Sub-projects (modified
waterfalls).
0012. Other known design approaches includes the
staged delivery approach, in which the designer reviews the
concept, requirements analysis, and architectural design
phases, and then implements these phases, shows them to

US 2007/0168931 A1

the customer as the components are completed, and then
goes back to the previous phase(s) if needed.

0013 All of these waterfall type approaches suffer from
the same or similar problems, however. The iterative
approach through the phases, even when overlapped, results
in static requirements being interpreted into static designs
and developments. Because the requirements for most sys
tems are not well understood in the beginning, the costs for
development often become excessive and delivery schedules
originally estimated must be revised. Finally, because com
plex systems typically are not well understood in terms of
their actual implemented behaviors, it is only through actual
interaction with the system that the system designers and
business analysts truly begin to understand what has been
built. Although the lessons learned may be valuable during
waterfall implementations, they cannot easily be taken
advantage of due to the prohibitive costs of re-factoring the
designs and implementations to reflect the new requirements
that spring from these lessons.
0014. The second general approach, the prototyping of
critical parts of the application, was developed, partly in
response to the problems associated with the waterfall and
modified waterfall approaches. As used herein, the term
prototype, and its variations, in the context of the design of
computer applications means the use of some form or stage
of application code, or the use of static images to represent
computer Screen display.

0.015 The prototyping of critical parts, referred to some
times herein as code prototyping, also was developed in
response to awareness in the field of the invention that
Software product development tends to move along four
paths: (1) ideas to product; (2) low technology to high
technology; (3) drawings to code; and (4) appearance and
behavior to performance. In the code prototyping approach,
a prototype code is built to test the results of the planning
phase, during which the developers attempt to understand
the users and the users’ needs and how those were to be
addressed in the Software application. The prototype code is
then measured to see how the user reacts and understands the
developers work, and is analyzed to see which parts of the
prototype are doing well and which parts are not. In this
prototyping approach, the prototype is actually code that is
intended to accomplish the intended purpose of designated
parts of the overall software application, and is therefore
referred to herein as a “coded prototype.”

0016. The prototyping approach also has been associated
with numerous problems, foremost among them is that
prototypes are typically written in computer languages that
only programmers can understand and use. Thus the proto
types are still developed as traditional computer programs,
by programmers. This has several drawbacks. The first
drawback is that business analysts, who are the people most
likely to understand the needs and desires for the computer
application, cannot develop the prototype without reliance
on computer programmers, and must translate and commu
nicate these needs and desires to computer programmers in
order to have them construct the prototype. This communi
cation is traditionally inefficient and translation errors tend
to be introduced because of the differences in the interpre
tation of the needs and desires for the prototype between two
constituencies with differing backgrounds and skill sets.
Second, in many organizations, skilled programming

Jul. 19, 2007

resources are preferentially assigned to fixing existing com
puter systems or completing development of systems that
are soon to be placed in production. Thirdly, programming
resources need potentially expensive hardware and software
tools to accomplish their work. Fourthly, because prototypes
are frequently constructed using the same infrastructure that
the eventual application will be deployed upon, prototyping
efforts are frequently delayed until strategic hardware acqui
sition, development Software acquisition and training have
been completed.
0017. Yet another problem with prototyped systems is
that they tend to become a replacement for actual develop
ment of the envisioned system. There is a tendency to
attempt to field a completed, or near-completed prototype.
Because the programmers were originally building just a
Subset of the system for demonstration purposes, short cuts
typically are taken in this phase that lead to systems that do
not scale well and have significant performance problems.
0018 Yet another problem with coded prototypes is that
they suffer from poor documentation, often because the
prototype and the requirements are not represented within
the same context.

0019. Another problem with coded prototype based
developments arises from the tendency for difficult problems
to be pushed to the future, and not solved by the time of
product completion, so that the initial hope of the prototype
is not met by the Subsequent product.
0020. Because of these limitations, another prototyping
approach, referred to as static prototyping, has evolved. In
this approach, only an image of the user interface of the
prospective computer application is developed. This image
may be created using commonly available drawing and
diagramming Software, and may be created without Some of
the drawbacks associated with employing programming
resources to create a coded prototype. Prototypes created in
this manner, however, suffer from additional drawbacks.
Foremost among them is that Such static prototypes created
with drawing and diagramming Software are unable to
convey to stakeholders an understanding of or how the
application will behave. Prototypes constructed in this man
ner do not exhibit many of the interactive behaviors of
computer applications, e.g., navigation from screen display
to other screen display, computation, storage and retrieval of
data. They are therefore referred to as “static image proto
types' herein. It is commonly known in the field of the
current invention, that stakeholders are much more apt to
identify potential errors or omissions in the early phases of
software development if they are permitted to interact with
a prototype that does exhibit these interactive behaviors.
0021. To summarize the forgoing discussion of back
ground art; coded prototypes suffer from drawbacks derived
from the need to utilize computer programmers in their
construction and Static image prototypes Suffer from draw
backs derived from the fact that they are inherently not
interactive.

0022. In addition, the evolutionary delivery design pro
cess, a cross between evolutionary prototyping and staged
delivery, is known.

0023. Within the context of the above described software
design approaches, many systems analysts simply use a pad
of paper to record requirements they gather from the even

US 2007/0168931 A1

tual users of the computer program being envisioned for
development. Still other systems analysts use word-process
ing programs to write specifications in a prose style. Several
design methodologies have emerged to graphically describe
the use of iteration with computer programs, and how these
programs are to be organized internally. Ultimately, these
specifications all coalesce to static representations of the
proposed or prospective computer program that computer
programmers must either read on paper, or read from a
computer screen to gain an understanding of what the
systems analysts interpreted what the users meant when they
designed the system. The programmers must then write the
code that represents their best interpretation of what the
systems analysts and the users meant when the static system
specification was created. Finally, after the computer pro
grammers create the computer Software code, it is tested by
the systems analysts and users to determine if the program
mers interpretation of the system specification (that is, in
turn, the system analysts interpretation of the requirements
from users of the proposed computer system) meets the
users requirements. In complex systems that must interact
with multiple users, playing different roles, and in turn
interact with multiple other computer programs, also playing
different roles, the probability of interpreting the users
requirements correctly the first time is quite remote. This
necessitates frequent code changes and reinterpretations,
first by the users, second by the systems analysts and third,
by the computer programmers. This cycle is repeated until
the computer programmers rewrite the Software enough
times to embody what the users require of the system. The
reliance on static documents to transfer the requirements
into a correct computer program results in repeated cycles of
development. These cyclic and redundant development
activities inflate the cost of the resulting system.
0024. As such, the programmers, at the end of the cycle
of research and development of a large program or system,
typically are left to discover all of the ambiguous, hidden
and conflicting requirements as they actually write Software
code. This invariably leads to failures of the code to cor
rectly embody the users’ requirements, longer development
cycles, increased costs and lower quality end products.
0025. In addition, known computer application develop
ment approaches typically do not include input from all of
the various stakeholders. Rather, it is generally business
managers who determine the need for the application, and
then business analysts translate these needs into the domain
specific jargon appropriate to the problem being solved, and
finally the computer programmers translate the business
domain information into executable code. This serial pro
cess leads to misunderstandings, unresolved issues and
misconceptions.
0026. Finally, another problem with known software
application development approaches is that software testers
are provided with only a document for use in developing
quality assurance and acceptance tests, and acceptance test
ing can occur only at the end of the development cycle. This
is an additional source of delay and problems because the
quality assurance engineers are then required to conduct
there own interpretation of all of the prior development
work.

SUMMARY OF THE INVENTION

0027. The right of priority for the present invention is
claimed on the basis of U.S. Provisional Patent Application

Jul. 19, 2007

Ser. No. 60/308,052, filed Jul. 26, 2001. The disclosure of
invention contained therein is incorporated by reference as
if set forth fully herein.
0028. With reference to FIG. 1, the overall process of a
preferred mode of the present invention is shown at 50,
including its requirements gathering, recording and valida
tion steps. Upon starting the process, initial requirements for
a proposed or prospective computer Software implemented
application are collected at 52. The computer application
that is intended to be developed and deployed based on the
requirements and an interactive representation generated
using the present invention, is referred to alternatively as the
proposed application, the prospective application, the
intended application and the Subject application.
0029. The requirements are then recorded in an electronic
requirements repository or memory, shown at 54. Next an
initial interactive representation model, Sometimes referred
to as an IRM, of the prospective application is created at 56.
In the course adding creating the initial interactive repre
sentation model at 56, associations between requirements
and elements of the interactive representation may be
recorded in an electronic repository or memory. Then the
interactive representation model and the requirements, along
with their associations between them, may be reviewed at
58. During the course of reviewing the interactive represen
tation and requirements at 58, requirements may be added
and associated to elements of the interactive representation.
Following the review at 58 a determination is made at 66 on
whether the interactive representation model and the
requirements are sufficiently complete. If they are suffi
ciently complete, then they are provided as outputs of the
process at 68, which serve as inputs for generation of the
actual code for the prospective application. If they are not
Sufficiently complete, then the requirements are modified at
60 and/or the interactive representation model is modified at
62. In the course adding to and/or modifying requirements
at 60 or when modifying and/or adding to the interactive
representation model at 62, associations between require
ments and elements of the interactive representation may be
recorded in the electronic repository or memory.
0030 The term user(s) and the term stakeholder(s) herein
refer collectively and individually to persons who participate
in the process of the present invention and/or utilize the
software components of the present invention. The term
user(s) include(s), but is not limited to business analysts,
programmers, project managers, business managers and
users of the prospective or Subject application. The term
user(s) also means (1) individuals who will use, or are
intended to use the Subject application once it has been
developed and deployed; and/or (2) individuals who repre
sent the proposed application users in the process of the
present invention, particularly with respect to communicat
ing their needs and desires relative to the behavior of the
prospective application. For example, when gathering and
validating the requirements for a Subject application that will
be used by the general public, for example, a retail internet
application for the sale of books or compact disks, it is
unlikely that a significant number of the Subject applica
tions eventual users, the general public, will be available to
participate in the process of the present invention. Instead,
marketing representatives, product mangers and similar
individuals would act as proxies or Surrogates for the Subject
application’s end users. Thus, as used herein, the term

US 2007/0168931 A1

proposed application user(s) refers to both the true user(s) of
the Subject application, as well as to those acting as their
proxies.
0031. As used herein the term requirement(s) refers to a
statement or portion of a statement regarding the desired or
necessary behavior of a prospective or subject computer
implemented Software application or a set of proposed
applications. A collection of one or more requirements is a
subset of the information that is typically provided to
computer programmers and typically enables them to
develop a computer application. For example, a Subset of the
requirements for a retail internet application might include
the following requirements:

0032 1. “The system shall require the user to enter the
user’s zip code before allowing the user to submit the
user's order.”

0033 2. “The order entry page shall have the corporate
logo in the upper left corner.”

0034) 3. “If the user has ordered more than USS50.00
worth of qualifying merchandise during the previous
three months, adjust the shipping cost of all items that
are domestically sourced to the lower of USDS15 or
50% of the standard shipping cost.”

0035. The initial requirements for the subject application
are recorded at 54 and subsequently modified or added to at
60 by business managers, business analysts, programmers
and Subject application users. Within this context an advan
tageous feature of the present invention is its ability to
enable multiple users to view and edit the requirements over
a computer network.
0036) Another advantageous feature of the present inven
tion is its ability to enable flexible definition of a classifi
cation structure for the requirements and assignment of each
requirement to one or more of these classifications. For
example, different classifications could include “order man
agement requirements.”“technical requirements' and
“requirements from external clients.” Another advantageous
feature of the present invention is its ability to designate the
e-mail addresses of other users and interested parties Such
that any change to the electronic record of the requirements
causes an e-mail to be sent to each address to notify the
recipient of the change. Also, the present invention provides
the ability to establish the value of several attributes of the
requirements. For example, “type.”“subtype.'priority.'s-
tatus” and “assigned to attributes may be established. Other
advantageous features of the present invention include its
ability to record electronic discussions regarding the require
ments; its ability to store and retrieve various electronic
documents with each requirement; and its ability to produce
on-screen or printed reports of the requirements. Still other
advantageous features of the present invention include its
ability to record defect reports and tasks related to require
ments. In this context a defect report includes statements
regarding incorrect or undesirable behavior of the prospec
tive application, that can optionally be tracked in the present
invention after providing the outputs of the invention at 68
to individuals involved in the development and deployment
of the prospective application. In this context tasks refer to
an optional record of activities to be performed, or activities
that have been performed by users during the course of the
use of the invention. These functions are provided by a

Jul. 19, 2007

Software application that is part of the present invention.
This application is programmed, preferably, in Java R lan
guage and provides requirements management functionality
for the preferred implementation of the present invention.
0037. A feature of the overall process is creation of an
interactive representation, Sometimes referred to as IR,
and/or an interactive representation model. Sometimes
referred to as an IRM, of the prospective application. For the
purposes of the present invention, the term interactive rep
resentation means (1) a simulation of the behavior of a
prospective application that is used to review conformance
of behavior to the desired or necessary behavior of the
prospective application before it is developed and deployed;
or, (2), the result of interpreting and executing an IRM. The
IRM is an executable set of computer data that defines how
an IR behaves. In a preferred embodiment of the present
invention, this computer data is stored in terms of funda
mental units, referred to as “primitives,” or rules, and
relationships among these rules that are permitted by an
interactive representation modeling language, sometimes
referred to herein as “IRML.” More specifically, IRML
refers to a language created as part of the present invention,
and used in the embodiments of the invention to specify the
behavior of an interactive representation. That language is
represented in terms of the fundamental rules, or primitives
that are used to create and execute interactive representa
tions. As used herein, the term primitive refers the most
basic, indivisible unit in a language, specifically including
the IRML used in the present invention and its alternate
embodiments. A list of preferred IRML primitives for pre
ferred embodiments is provided in Table II.
0038) One or more users create the initial IRM at 56, and
modify and/or add to the IRM at 62 through various mouse
and keyboard gestures understood by one of the software
components of the present invention, as will be described in
detail. Using this software, referred to as “Studio,” a user
defines the appearance and behavior of an interactive rep
resentation by (1) adding IRML primitives to the IRM, (2)
setting their attributes, and in some cases, their location; and
(3) establishing relationships between and among these
IRML primitives, as will also be described in detail. The
requirements for the prospective application are then asso
ciated to the primitives in the interactive representation.
Each association is recorded in a single, electronic system of
record. Examples of activities that can be performed by a
user during creation of the initial interactive representation
model at 56 or modifying and/or adding to the interactive
representation model at 62 include:

0039) 1. Initiating the “Studio' computer program
component. The process of creating the interactive
representation begins with a user initiating a computer
application component referred to as “Studio. Once
the user has been authenticated to this component the
user selects a particular proposed application on which
to work. An advantageous feature of the present inven
tion is that the requirements that were previously
recorded at 54, 58 or 60 appear on the screen presented
by the Studio software component of the system and
provide useful information to the user as the user
proceeds with building or creating the interactive rep
resentation model, as well as the ability to record
associations between these requirements and elements
with the IRM.

US 2007/0168931 A1

0040 2. Initially defining the user interface of the
IRM. In initially defining the user interface of the IRM,
the user reviews the requirements previously recorded
at 54, 60 or 58 and then, through various mouse and
keyboard sequences, instructs the Studio Software com
ponent to perform certain pre-designated functions
Such as add (1) pages; (2) forms; (3) tables; (4) text
inputs; (5) buttons, and other functions or components
to the interactive representation model. Throughout the
use of various mouse and keyboard gestures, the user
may define the relative positioning of various user
interface components and their containment within
other user interface components. Within the context of
the present invention the term containment refers to the
relationship between two primitives that effects the
manner in which the contained primitive is treated by
a software component of the system referred to as the
“simulator.” One of these two primitives is referred to
as a container primitive and the other as a contained
primitive. Containment, as used herein, is conceptually
derived from, and causes behaviors similar to the
nesting of HTML tags in a conventional HTML docu
ment. For example, a “text input' primitive may be
contained in a “table cell' primitive. The simulator
Software component of the present invention renders
this relationship by generating HTML, with an HTML
tag equivalent to the “text input' nested within the
HTML tag equivalent to the “table cell, as will be
described in detail below. When the HTML tag equiva
lent is interpreted by a browser, the text input appears
graphically within the table cell. The containment rela
tionship among primitives also implies the association
between various user interface components and the user
interface component “form,” and is used by the simu
lator Software component to extract values Submitted in
a form, and to package them into data tokens.

0041. The user may also define attributes effecting the
appearance and behavior of these various user interface
components in the interactive representation. Alternatively,
users may choose to specify very minimal information
regarding the appearance of the Subject application, and
focus instead on later steps in this process. The process of
creating the user interface of the IRM continues until the
user has defined one or more pages that are intended to
represent the user's understanding of the desired or needed
behavior of the subject application.
0042. The Studio software component enables the user to
request that the interactive representation be displayed by
the simulation Software component at any time. This is also
an advantageous feature of the present invention because in
permits users to review the work done to date and/or to
evaluate the extent to which the interactive representation
reflects the users interpretation of the requirements. In
accordance with the principles of the present invention, it is
intended that users will iteratively modify the IRM and
review its compliance with the requirements through use of
the simulator component of the invention, as will be
described in detail hereinafter.

0043. 3. Subsequently defining the user interface flow
of the IRM. Once preliminary compliance of the user
interface components with the requirements has been
reached, the user Subsequently can define the user
interface flow of the IRM by connecting various primi

Jul. 19, 2007

tives in ways that define the user interface flow of the
interactive representation and, hence, the intended user
interface flow of the proposed application. This task
typically involves (1) selection of a user interface
primitive. Such as an image, text or button; (2) selecting
a destination “page' primitive; and (3) choosing a
menu option labeled "connect.” An advantageous fea
ture of the present invention is its capability to interpret
the user's intention to designate the user interface flow
of the application simply because of the types of
primitives they have chosen to connect, and without
further specification of a users intention to designate
user interface flow. During this activity of defining the
user interface flow of the IRM the Studio software
component of the system continues to support viewing
of requirements and of the dynamic display of the
interactive representation. Another advantageous fea
ture of the present invention is its ability to enable the
user to designate several potential pages at a particular
point in the user interface flow. This function is accom
plished through use of a “decision' primitive. Through
various mouse and/or keyboard gestures, a user (1)
connects a user interface component to a primitive
called “decision' in the preferred embodiment; (2)
connects the decision to one or more potential pages;
and, (3) connects another primitive to the decision
using the system’s “data flow' function, as described
below in detail. These actions cause the simulator
Software component of the system to display one of the
potential pages during review of the interactive repre
sentation and requirements shown at 58 in FIG. 1, and
as described in greater detail below. This display is
based on the value of the data flow function at the time
the interactive simulation is rendered. Hence, the user
is provided with structure and functioning components
of the system of the present invention to define different
behaviors of the model, with the behaviors being con
tingent on data values present at the time the interactive
representation is rendered.

0044 4. Defining additional behaviors in the IRM.
Subsequent to defining the user interface and user
interface flow of the IRM, the user may then specify
other behaviors of the IRM. These other behaviors,
include, by way of example, and not by way of limi
tation, Such functions as the capture, storage and
retrieval of data. Through use of various mouse and
keyboard gestures, the user may connect user interface
components to primitives referred to as “actions” in the
preferred embodiment. Actions generally correspond to
functions or behaviors that are common among known
computer programs, for example the action labeled
"data create causes the IRM to store some specified
data for later retrieval by an action labeled “data find.”
Similarly, actions are provided in the preferred embodi
ment for String manipulation, Sorting lists of data and
simple mathematical functions. A list of these preferred
actions is provided as part of Table II. In the preferred
embodiment each action takes Zero, one or many input
parameters and provides Zero, one or many outputs.
These inputs and outputs are connected, using the
Studio component, to other actions or user interface
components, and these connections are referred to as
"data flow” connections. By connecting the outputs of
an action to the inputs of another action, users are

US 2007/0168931 A1

enabled by the present invention to define complex
manipulation of data in the IRM. An advantageous
feature of the present invention relative to this process
is that the definition of such complex behavior in the
IRM does not require knowledge or use of a computer
language.

0045. It might appear that the presentation of the process
for developing an IRM as described herein implies a pro
gression from user interface definition to user interface flow
definition, and only then to definition of more complicated
behavior of the IRM. However, another advantageous fea
ture of the present invention is that it enables these activities
to occur, to varying degrees, as will be described in detail
below, in any order in the overall system, as desired by the
users. Furthermore, the activities described in this process
may be distributed among multiple users, working collabo
ratively on one or more IRMs. Furthermore, in other imple
mentations of the present invention, one or more of Such
activities may be omitted from the process without signifi
cant impact on the efficacy of the process. For example, the
activity of defining additional behaviors in the IRM may be
omitted if the users conclude that the requirements and
interactive representations are sufficiently complete to
express the users’ needs and desires. With respect to the
above functions, another advantageous feature of the present
invention is the ability of its Studio software component to
enable the user, through a series of simple mouse move
ments, to record an association between one or more require
ments and one or more primitives that have been added to
the IRM. Similarly, the Studio software component enables
the display of associations that have been previously
defined.

0046 Yet another advantageous feature of the present
invention is the capability of the Studio software compo
nent, working in concert with the Music Software compo
nent, to enable multiple users to collaboratively and simul
taneously work on the same IRM. In the preferred
embodiment of the present invention, several users may
utilize individual copies of the Studio component on differ
ent computers, and in the context of the present invention
each individual copy is referred to as an “instance' of the
Studio. Modifications to the IRM made by one user working
with that user's instance of the Studio are seen by other users
working with their instances of the Studio on a near real
time basis. Furthermore, these changes are immediately
visible to any user who is executing the IRM. As would be
evident to a person skilled in the art, this near real-time
capability constitutes another advantage of the invention
relative to computer systems in which users must publish the
results of their work to other users or computer systems in
which users must actively retrieve the results of others
work. For example, consider two users Jon and Stephen,
working collaboratively and simultaneously on the creation
of a single IRM. As Jon adds new primitives to the model
using his instance of the Studio component, Stephen's
instance of the Studio program displays the new primitives
on a near real time basis. Unlike many known computer
systems, Jon does not need to instruct his instance of the
Studio to update Stephens instance, nor does Stephen need
to request the latest IRM from Jon's instance. As used herein
the term collaboration, and its variations, refer to the shared
creation of two or more individuals with complementary
skills by their interacting to create a shared understanding of
a proposed Software application that none had previously

Jul. 19, 2007

possessed or could have created alone. The goal of collabo
ration is the creation of value resulting from interactions
among the collaborators. Collaboration, as thus defined, and
as enabled by the system and process of the present inven
tion, enables near real-time access by all collaborators. Thus,
in accordance with the principles of the present invention the
IRM serves as both a model and as a guide or “road map'
for identifying and reducing ambiguity that arises during
creation of a proposed software application before it is
coded or deployed.
0047 Similarly, changes to the requirements made by the
ION or Studio software components are reflected in all other
instances of ION and the Studio. This dynamic sharing of
requirements and IRM information facilitates effective com
munication between all users of the system and contributes
to higher quality requirements and IRMs. Furthermore, this
dynamic sharing of information, coupled with the feature of
a single electronic record of the requirements and IRM of a
particular subject application, reduces the need for users to
maintain and reconcile multiple copies of the same infor
mation.

0048. The next step in the overall process of the present
invention is the review of interactive representation and
requirements, shown at 58. In this step, the interactive
representation of the Subject application, in conjunction with
the associated requirements, may be reviewed iteratively by
business managers, business analysts, programmers, and
proposed application users. In the presently most preferred
embodiment or mode of practicing the invention, two activi
ties are available for accomplishing this task: simulation and
simulcasting, as will be described in detail below.

0049 Simulation is an activity that begins when a user
executes an interactive representation model by choosing the
“simulate” menu item in the ION software component or the
“simulate” menu item in the Studio software component.
This choice causes the simulator component of the present
invention to render the selected page of the IRM to the user's
browser. As referred to in the present invention, the term
simulator means a software component of the present inven
tion that renders an interactive representation of a proposed
application and related requirement information based on an
interactive representation model and associated requirement
information.

0050. The simulator initially provides a list of the pages
in the application to the user. The user then chooses the page
at which they would like to simulate and calls the simulator
again. Upon receiving the request for this page, the simu
lator creates a temporary memory area to build a response to
the user's request. The simulator then “visits the primitive
that represents the page requested by the user and processes
that primitive along with all of the primitives contained by
that page. As it "visits’ primitives, the simulator incremen
tally builds up its response. Some primitives are used to
display variable data to users, and for each of these primi
tives, the simulator starts a separate process to determine the
values of these variables. Once all the necessary primitives
have been “visited' and their corresponding portion of the
response has been appended to the response, the response is
sent back to the user. Typically, the user then enters data and
clicks on a button or link to Submit this data for processing.
The simulator receives this submission and extracts the
values entered by the user into the fields that were presented

US 2007/0168931 A1

to them. It then passes these values to primitives in the IRM
that call standard Sub-routines that process the data, and, in
turn, pass the results of Such processing on to other Sub
routines for further processing. This continues until all
processing is complete, at which point the simulator begins
construction of the response to the user in the same way it
constructed the user's first request for a page. Once com
pleted, the simulator passes its response to the user, and
waits for another request. This process repeats until the user
has completed their interactive representation session.

0051. Another advantageous feature of the present inven
tion is its capability to display the requested page in a certain
format referred to as "Meta’ mode. In Meta mode the
requirements associated to the primitives contained on the
page through use of the Studio Software component are
displayed on the user's browser in addition to display of the
page itself. Furthermore, each of the primitives that is
visually represented on the page is automatically assigned a
reference number, and each of the requirements displayed is
cross referenced to these numbers. In the present invention,
this display of the IRM page and the cross-referenced
requirements is referred to as “requirements in context'.
This feature of the present invention is intended to facilitate
each user's understanding of the requirements and to sig
nificantly increase the likelihood of discovery of erroneous
or incomplete requirements at this stage of the overall
process. In addition, preferred embodiments of the present
invention provide the capability to produce a report that
contains the image of the page, the automatically assigned
cross-reference numbers and the cross-referenced require
mentS.

0.052 Simulation continues as the user, though mouse
and keyboard gestures, interacts with the interactive repre
sentation. For example, the user may enter text into text
inputs presented in the interactive representation, or may
click buttons presented in the interactive representation.
Each of these interactions is then communicated by the
user's browser to the simulator software component. The
simulator Software component then evaluates each interac
tion and responds by rendering a new page to the user's
browser, with the new page including the result of each
interaction. In this way, the user is presented with an
experience very similar to what would be experienced if that
user were interacting with the completed proposed applica
tion. This capability is also advantageous because it greatly
increases the likelihood of discovering erroneous or incom
plete requirements at this stage of the overall process.

0053. The simulator software component also provides,
as yet another advantageous feature, a capability for the user
to enter newly discovered requirements directly into the
user's browser during simulation, and for these requirements
to be stored by the ION software component into the
repository of requirements for the Subject application.

0054 As used in describing the present invention, the
term simulcasting refers to an activity that is identical to that
of simulation, but with the following differences. When
simulcasting, an individual users interaction with the IRM
through the simulator is broadcast to other users. The
individual user whose interaction is broadcast is referred to
as the lead user. The users viewing the interaction are
referred to as following users. This provides another way in
the present invention to review interactive representations

Jul. 19, 2007

and requirements, as shown at 58. Furthermore, the simul
castor Software component provides the capability for a
following user who is viewing the interaction broadcast
through the to temporarily initiate each Such user's own
interaction with the IRM and, at a time chosen by the lead
user, to be returned to the broadcast simulation. In the
preferred implementation this capability is provided by the
simulcastor. The simulcastor is a Software program applica
tion implemented using Java R language in an applet frame
work. Alternatively, known, commercial web-casting appli
cations, such as for example, Web-Ex, could be used to
provide this or similar functionality. The preferred embodi
ment, however, is advantageous relative to this alternative
because the preferred embodiment does not require purchase
or configuration of additional software, nor does it require
additional training for effective use.
0055. In the next step of the overall process 50 of the
present invention the user, or several users determine if the
requirements and the IRM are completed sufficient at 66 to
warrant proceeding to providing outputs to design and
delivery of the actual code for the prospective application at
68.

0056. If the requirements and/or the IRM of the proposed
application is determined to be incomplete, the process of
the present invention enables the user to modify and/or add
requirements at 60 and/or to modify and/or add to the IRM
at 62. As used herein, the terms incomplete or insufficiently
complete, when used in reference to requirements or the
interactive representation, by way of example, and not by
way of limitation, refer to instances where either the require
ment or interactive representation does not accurately rep
resent the needs and/or desires of the users regarding the
behavior of the prospective application, or when changes to
the interactive representation or requirements could better
communicate to the designers and developers the intended
behavior of the application.
0057 The actions taken at 62 are operationally the same
as the combination of actions taken at 52 and at 54, with one
difference. The difference is that in the case of step 60, users
edit the previously described requirements to increase con
formity with the needs and/or desires of the users and/or by
adding newly discovered requirements.

0058. The actions taken at 62 are operationally the same
as those at 56, with one difference. The difference is that the
users modify or add to the interactive representation model
to increase conformity with the needs and/or desires of the
USCS.

0059) The process then proceeds to step 58, review
interactive representation and requirements, and Subse
quently to step 68 in which, again, a determination is made
on whether the requirements and/or the interactive repre
sentation model are Sufficiently complete.

0060. When the interactive representation model and the
requirements are sufficiently complete, the process proceeds
to provide outputs to design and delivery at 68. These
outputs are used by the individuals involved in the design,
programming, testing and deployment of the proposed appli
cation as a description of the needed and desired behavior of
the proposed application. This step preferably includes uti
lizing the ION software component of the invention to
generate various reports that can then be provided to pro

US 2007/0168931 A1

grammers, designers, architects, testing personnel and others
involved in the actual development and/or deployment of
code for the proposed application.

0061 These reports are the result of yet another advan
tageous feature of the present invention, i.e., the ability of
the ION software component, working in conjunction with
the simulator Software component to generate such reports,
Such as a functional specification report. An example of Such
a report is shown in FIGS. 11-14, described below. This
report depicts a visual image of the appearance of a page or
pages in the IRM as well as a list of requirements that are
associated with user interface components that appear on the
page or pages. Furthermore, the functional specification
report automatically provides a numerical cross-reference
between the user interface components and their associated
requirements. In practical application of the present inven
tion, steps 58, 66, 60 and 62 occur iteratively, as the
requirements and IRM incrementally approach completion.
Another advantageous feature of the present invention is that
(1) this iterative process results in better communication
between and among users regarding the needs and desires of
the users relative to the Subject application, and (2) changes
made in steps 60 and 62 are immediately recorded such that
step 58 can occur within seconds of steps 60 and 62.
0062 Also, in practical application of the principles of
the present invention, users may elect to begin the process
at step 56, when it is believed that the user(s) has/have
sufficient knowledge regarding the needs and/or desires for
the Subject or prospective application to begin at this step in
the overall process.

0063. One embodiment is a method of defining a simu
lated interactive Web page, where the method includes:
displaying on a computer display a programming area
comprising one or more HTML user interface components
for the simulated interactive Web page; displaying on the
computer display an area for primitives; and enabling a user
to draw a graphical coupling from a selected HTML user
interface component to a selected primitive, wherein execu
tion of the simulated interactive Web page is based at least
in part on an interpretation of the graphical coupling.

0064 One embodiment is an interpreted interactive rep
resentation modeling apparatus that is executable in an
interactive graphical user interface, where the apparatus
includes: a user interface component displayed in the inter
active graphical user interface, where the user interface
component includes at least two visible branches, where the
visible branches are visible at least during configuration of
the instruction for the interpreted interactive representation
modeling language; a Boolean condition associated with at
least a first branch and a second branch of the at least two
visible branches, where the first branch is associated with a
first state of the Boolean condition, and where the second
branch is associated with a second state of the Boolean
condition, where the association of the Boolean condition is
visibly displayed in the interactive graphical user interface at
least during configuration of the instruction; an interactive
component responsive to user interaction during execution
of the instruction, where the interactive component monitors
data flow inputs to the interactive graphical user interface for
a selection of a state of the Boolean condition; at least a first
executable instruction associated with the first branch,
where the first executable instruction is activated upon the

Jul. 19, 2007

detection of a selection of the first state of the Boolean
condition such that the first executable instruction is condi
tionally executed; and at least a second executable instruc
tion associated with the second branch, where the second
executable instruction is activated upon the detection of a
selection of the second state of the Boolean condition such
that the second executable instruction is conditionally
executed.

0065 One embodiment is an interpreted interactive rep
resentation modeling apparatus, where the apparatus
includes: a user interface component displayed in an inter
active graphical user interface, where the user interface
component includes at least three visible branches, where
the visible branches are visible at least during configuration
of the instruction for the interpreted interactive representa
tion modeling language; an integer-mode condition associ
ated with at least a first branch, a second branch, and a third
branch of the at least three visible branches, wherein: the
first branch is associated with a first integer value of the
integer-mode condition; the second branch is associated
with a second integer value of the integer-mode condition;
the third branch is associated with a third integer value of the
integer-mode condition; wherein the association of the inte
ger-mode condition is visibly displayed at least during
configuration of the instruction; an interactive component
responsive to user interaction during execution of the
instruction, where the interactive component monitors for a
selection of a value for the integer-mode condition; at least
a first executable instruction associated with the first branch,
where the first executable instruction is activated upon the
detection of a value corresponding to the first integer value
of the integer-mode condition; at least a second executable
instruction associated with the second branch, where the
second executable instruction is activated upon the detection
of a value corresponding to the second integer value of the
integer-mode condition; and at least a third executable
instruction associated with the third branch, where the third
executable instruction is activated upon the detection of a
value corresponding to the third integer value of the integer
mode condition.

0066 One embodiment is a method of interacting with a
user to define a behavior of a portion of an interactive
presentation, where the interactive presentation corresponds
to a simulation model, where the interactive presentation
and the user interact via an interactive graphical user inter
face, where the method includes: monitoring a manipulation
of a cursor by a pointing device; monitoring a graphical
dragging and dropping of a first graphical symbol to a first
area in the interactive graphical user interface Such that a
user interface component appears in the first area, where the
user interface component corresponds to a conditionally
executed instruction; receiving a name for the user interface
component; receiving a name and a text description for a
requirement for the user interface component; identifiably
storing the name of the user interface component, the name
of the requirement, and the text description of the require
ment with the user interface component; monitoring a drop
ping of a second graphical symbol into the first graphical
symbol in the pane of the interactive graphical user inter
face, and at least partly in response to the dropping of the
second graphical symbol, adding a first branch to the first
graphical symbol, where the first branch corresponds to a
first code that is executed upon selection of the first branch
during run time; monitoring a dropping of a third graphical

US 2007/0168931 A1

symbol into the first graphical symbol in the pane of the
interactive graphical user interface, and at least partly in
response to the dropping of the third graphical symbol,
adding a second branch to the first graphical symbol, where
the second branch corresponds to a second code that is
executed upon selection of the second branch during run
time; and receiving a data flow input control for the first
graphical symbol, where the data flow input is associated
with the first graphical symbol such that when the interactive
simulation of the simulation model runs in the interactive
graphical user interface, a combination of the data flow input
control and a data flow input received during run-time
control the branching of the first graphical symbol to the first
branch and to the second branch.

0067. One embodiment is a method of automatically
configuring at least a portion of a behavior for an instruction
for a requirements validation computer program, where the
method includes: providing a user interface component in an
interactive graphical user interface; monitoring conditional
branches added to the user interface component, where the
conditional branches control program flow for the require
ments validation computer program; automatically associ
ating the conditional branches with a Boolean state when
there are two conditional branches associated with the user
interface component; and automatically associating the con
ditional branches with an integer-mode when there are at
least three conditional branches associated with the user
interface component.

0068 One embodiment is a computer system that is
configured to define a simulated interactive Web page,
where the computer system includes: a component config
ured to display on a computer display a programming area
comprising one or more HTML user interface components
for the simulated interactive Web page; a component con
figured to display on the computer display an area for
primitives; and a component configured to enable a user to
draw a graphical coupling from a selected HTML user
interface component to a selected primitive, wherein execu
tion of the simulated interactive Web page is based at least
in part on an interpretation of the graphical coupling.

0069. One embodiment is a computer system that is
configured to define a simulated interactive Web page,
where the computer system includes: a means for displaying
on a computer display a programming area comprising one
or more HTML user interface components for the simulated
interactive Web page; a means for displaying on the com
puter display an area for primitives; and a means for
enabling a user to draw a graphical coupling from a selected
HTML user interface component to a selected primitive,
wherein execution of the simulated interactive Web page is
based at least in part on an interpretation of the graphical
coupling.

0070. One embodiment is a computer program embodied
in a tangible medium for defining a simulated interactive
Web page, where the computer program includes: instruc
tions configured to display on a computer display a pro
gramming area comprising one or more HTML user inter
face components for the simulated interactive Web page:
instructions configured to display on the computer display
an area for primitives; and instructions configured to enable
a user to draw a graphical coupling from a selected HTML
user interface component to a selected primitive, wherein

Jul. 19, 2007

execution of the simulated interactive Web page is based at
least in part on an interpretation of the graphical coupling.

BRIEF DESCRIPTION OF THE DRAWINGS

0071 Various objects, features and attendant advantages
of the present invention are described in conjunction with
the accompanying drawings, in which like reference char
acters designate the same or similar parts throughout the
several views, and wherein:

0072 FIG. 1 depicts the overall process of a preferred
mode of practicing, i.e., a preferred embodiment the present
invention.

0073 FIG. 2 depicts the overall software components of
the FIG. 1 mode of the present invention, and their interac
tion.

0074 FIG. 3 depicts the operation of the software com
ponent of the FIG. 1 mode that enables the user to read,
create and modify interactive representation models of the
present invention.

0075 FIG. 4 depicts the processing of the software
component of the FIG. 1 embodiment that enables interac
tive representations of prospective applications.

0076 FIG. 5 is schematic diagram representing primi
tives in an interactive representation model of the FIG. 1
embodiment.

0077 FIG. 6 is a depiction of an interactive representa
tion of the interactive representation model of FIG. 5.

0078 FIG. 7 is a flow diagram of process form submit
algorithm of the FIG. 1 embodiment.

0079 FIG. 8 is a flow diagram of the push mode of the
data flow visitation algorithm.

0080 FIG. 9 is a flow diagram of the pull mode of the
data flow visitation algorithm.

0081 FIG. 10 is a default screen of a preferred embodi
ment of the present invention.

0082 FIG. 11 is an example of the interactive represen
tation page section of the functional specification report of
the preferred embodiment of the present invention.

0083 FIG. 12 is an example of the requirements section
of the functional specification report of the preferred
embodiment of the present invention.

0084 FIG. 13 is an example of the control flow section
of the functional specification report of the preferred
embodiment of the present invention.

0085 FIG. 14 is an example of the data flow section of
the functional specification report of the preferred embodi
ment of the present invention.

0.086 FIG. 15 is another example of the interactive
representation page section of the functional specification
report of the preferred embodiment of the present invention.

0087 FIG. 16 is another example of the requirements
section of the functional specification report of the preferred
embodiment of the present invention.

US 2007/0168931 A1

0088 FIG. 17 displays an example of a requirement
inventory report of a preferred embodiment of the present
invention.

0089 FIGS. 18 and 19 display examples various reports
of a preferred embodiment of the present invention.
0090 FIG. 20 displays a page of the interactive repre
sentation of the preferred embodiment of the present inven
tion in Meta mode.

0.091 FIG. 21 displays a page of the interactive repre
sentation of the preferred embodiment of the present inven
tion in Clean mode.

0092 FIGS. 22 and 23 display an examples of usage of
a dynamic table of a preferred embodiment of the present
invention.

0093 FIG. 24 displays an example of use of an action
primitive of a preferred embodiment of the present inven
tion.

0094 FIG. 25 displays an example of the use of a
decision primitive in boolean mode of a preferred embodi
ment of the present invention.
0.095 FIG. 26 displays an example of use of a decision
primitive in integer mode of a preferred embodiment of the
present invention.
0.096 FIG. 27 displays an example of use of a constant as
an input to an action of a preferred embodiment of the
present invention.
0097 FIG. 28 displays an example of a use of a comment
of a preferred embodiment of the present invention.
0098 FIGS. 29 through 36 display examples of icons for
use in a preferred embodiment of the present invention.
0099 FIG. 37 displays an example of use of the property
editor feature of a preferred embodiment of the present
invention.

0100 FIG. 38 displays an example of use of the project
browser feature of a preferred embodiment of the present
invention.

0101 FIG. 39 is a display of an example of an icon for
use in a preferred embodiment of the present embodiment.
0102 FIG. 40 is a display of an example of an IRM that
accepts and saves data.
0103 FIG. 41 is a display of an example of an IRM that
checks a password.
0104 FIG. 42 is a display of an example of an IRM that
displays a list of retrieved data.
0105 FIG. 43 is a display of an example of an IRM that
displays a list of retrieved data and allows updating of that
data.

MODE(S) FOR CARRYING OUT THE
INVENTION OVERVIEW OF SOFTWARE
COMPONENTS AND THEIR INTERACTION

0106. One preferred embodiment of the current invention
includes several Software components. These components
and their interaction are described in this section, with
reference to FIG. 2. The software components of the present

Jul. 19, 2007

invention may stored, individually or collectively on any
computer-readable medium, Such as, by way of example,
including but not limited to conventional hard disks, CD
ROMS, Flash ROMS, nonvolatile ROM, RAM and floppy
disks.

0.107 A standard browser (such as, preferably,
Microsoft(R) Internet Explorer(R)70) is used to present the
user interface of the ION component 76 of the present
invention, as well as the user interface to the simulator
component 78 of the present invention. The browser 70 and
ION component 76 interact over a computer network 72
utilizing a TCP/IP and HTTP or HTTPS communication
protocols 74. Similarly, the browser 70 and the simulator 78
interact over the computer network 72 utilizing TCP/IP and
HTTP or HTTPS 74. The browser component runs on a
computer system 80, typically referred to as a client com
puter.

0108). The ION component 76 of the present invention is
used to edit information regarding requirements, defect
reports and tasks, and information regarding administration
used for the operation of the present invention, Such as user
names and passwords.
0.109 The simulcastor component 64 runs within a stan
dard browser (not depicted in FIG. 2) and is used to present
the interactive representation to multiple users concurrently.
The simulcastor component 64 also interacts with the simu
lator component 78, over computer network 72 utilizing
TCP/IP and HTTP or HTTPS protocol 74.
0110. The studio component 82 of the present invention

is used to edit the IRM and the requirements, and interacts
with the music client component 84. Communication
between these components is implemented through use of
conventional Java method calls. The music client compo
nent 84 communicates with the music server component 92
over computer network 72 utilizing TCP/IP and HTTP or
HTTPS prototype 74.
0111. The music client component at 84 and 94 of the
present invention, working in conjunction with the music
server component 92 of the present invention provide access
to information about the requirements and IRM, as well as
administrative information stored in the repository files 86 to
the ION component 76, the simulator component 78 and the
studio component 82.
0.112. The music server component 92 mediates the stor
age and retrieval of information regarding the requirements,
tasks, defect reports and the IRM among multiple users of
this information and reads and writes transactions reflecting
changes to this information to the repository files 86. The
music server component also communicates any changes to
the information made by one user, on a near real-time basis,
to other users accessing the same information and provides
for grouping of related updates to this information.
0113. The repository files 86 component is a set of
computer files, encoded in and industry standard format
called Extensible Markup Language (XML) that contains
information regarding the IRM, requirements, defect
reports, tasks and administrative information used in the
operation of the present invention, Such as user names and
passwords. XML offers a flexible format for storing different
data and other advantages as would be understood by an
individual skilled in the art. The ION, simulator, and music

US 2007/0168931 A1

server components, as well as an instance 94 of the music
client, run on a computer system 88, typically a server, that
runs a Servlet and Java Server Page (JSP) container 90.
Communication among these components is implemented
through use of conventional Java method calls.

0114. Alternative embodiments of the preset invention
could be implemented through use of a commercially avail
able version of a container, such as BEATM WebLogicTM or
IBM WebSphereTM containers. However, such alternative
embodiments would require users of the present invention to
pay license fees to the vendor of those containers.

0115) Another way to describe the role and interaction of
the Studio, IRML, and the simulator in the present invention
is to relate each to common definitions that are familiar to
those skilled in the art. The studio can be considered to be
a specialized "editor, used to edit the IRML “language.”
IRML is subsequently processed by the simulator, which is
similar in function to an “interpreter.” As with other editors,
including, for example, text editors, integrated development
environment editors, and language specific editors, the stu
dio is used to create and maintain a set of computer
instructions, i.e., a “program, or in the present invention, an
IRM, for later execution by another program or application.
IRML, in this context, is a specialized computer language
designed for use by business analysts and other users not
familiar with traditional computer languages like HTML,
JavaTM or C++. The IRML language is designed to be
presented graphically by the Studio, and is another advan
tageous feature that permits individuals without program
ming experience to create IRMs. Like other interpreters, the
simulator is capable of translating a language, in this case,
IRML into instructions that can be ultimately executed by a
computer, and when so executed, results in the interactive
representation of the present invention.

0116. In an alternative embodiment of the present inven
tion, a commercially available "editor computer program
such as Microsoft(R) .NET Studio(R) and/or a commercially
available “interpreter computer program could be used in
place of the studio and/or simulator respectively. However,
these commercially available computer programs would
need to be modified significantly to provide the ability to
associate requirements to elements of the interactive repre
sentation model and to present these requirements in the
context of the interactive representation. Furthermore, this
alternative embodiment would suffer from some of the
drawbacks of prior art, with respect to the fact that com
mercially available "editors' and “interpreters' are designed
for use by computer programmers. Another disadvantage of
this alternative embodiment is that these commercially
available computer programs are not specifically designed
for creation of interactive representation models, but rather
for the development of prospective computer applications,
and, therefore, may require performance of additional costly
activities to achieve a similar effect, e.g., declaration of
variable types, declaration of database record definitions,
specification of deployment configuration and/or installation
and configuration of additional database management com
puter programs.

0117 Similarly, in an alternative embodiment of the
present invention, IRML could be replaced by a single or
combination of several existing computer languages, such as
C++, Java R or Visual BasicR). Because these are general

Jul. 19, 2007

purpose computing languages, they contain many more
primitives and rules for construction than IRML, and, there
fore require additional time and effort in the creation of an
IRM. Furthermore, this alternative embodiment would suf
fer from some of the drawback of prior art, with respect to
the fact that commercially available computing languages
are designed for use by computer programmers.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0118 With reference to FIGS. 2-9, preferred, and alter
nate software components of the preferred embodiment of
the present invention will be described.
0119) The first software component is a computer pro
gram that enables the user to read, create and modify
interactive representation models. Preferably the program is
written in Java R language. For convenience this program is
referred to as “Studio and is shown at 82 in FIG. 2. The
IRM’s in Studio are represented in IRML. FIG. 3 depicts
operation of the Studio component.
0120 Studio implements three high level processes: start
up process 96, process user input 98 and process incoming
messages 100.
0.121. During the start up process 96 the Studio software
calls another software component of the system, referred to
as the Music Client 84 and requests that an interactive
representation model be retrieved from the server 88 and
made available for reading and modification at 102. Upon
successful retrieval of an IRM, the Studio component 82
displays a visual representation of the IRM as well as other
information about the IRM and enters an await state 104,
during which time it can receive and process either user
input 106 or incoming messages 100.
0.122 The Studio program monitors for user input 106 via
keystroke or mouse action. Upon receipt of Such informa
tion, the Studio program performs a function, represented at
108 in FIG.3, based on what information was received from
the user. The following are examples of the functions that the
Studio software performs:
0123)
0.124 2. Adding new instances of primitives to the IRM.
0.125 3. Modifying the attributes associated with the
primitives in the IRM.

1. Choosing an IRM for viewing or modification.

0.126 4. Deleting instances of primitives in the IRM.
0.127 5. Declaring relationships between primitives in
the IRM.

0128 6. Modifying the visual display of the IRM.
0129. 7. Declaring relationships between requirements
and instances of IRM primitives.
0.130. The Studio program then evaluates whether the
requested function is valid at 110 and, if valid, executes that
function 108.

0131) If the function changes the information contained
in the IRM, then the Studio component updates the IRM by
calling the Music Client 112 and updating the electronic
record as will be described in greater detail below. In some
cases, the Studio program makes immediate changes to the

US 2007/0168931 A1
12

screen displayed to the user that reflect the update at 114. In
other cases, the Studio program does not make immediate
changes, but waits until the music server 92 responds via the
music client 84 and then processes the update as incoming
messages are processed, shown at 10.
0.132. During processing of incoming messages, at 100.
the studio program receives messages from the local music
client whenever a remote music client updates the IRM via
the music server. The Studio program then updates the
screen displayed to the user reflecting the update, shown at
116, unless the studio program has already made these
changes under the process user input process 98 described
above.

0133. In the preferred embodiment, the studio program is
written in Java R language and utilizes some components of
the conventional "Swing and “AWT libraries that are part
of the Java RTM System Developers Kit (Java R SDK). Alter
natively, the Studio program could be written in another
language. Such as, for example C++, C# or Visual Basic.
0134) The second software component of the preferred
embodiment of the present invention is a computer program
used to read and update IRM's stored on a server computer
across a computer network. The term computer network
refers to a private network, usually internal to a company or
Some other organization, and also refers to a public com
puter network, such as the Internet. This second software
component is, for convenience, referred to as the music
client. The music client preferably is written in Java(R)
language. The other software components of the preferred
system of the present invention, i.e., the Studio, ION and
simulator programs also use the music client 84 to read and
update IRMs. The music client program also enables

Command

public String name()

public int port()

public Note new Note(String type)

public Note load Note (String key)

Jul. 19, 2007

changes made to an IRM by a studio program running on a
computer at one user's location to be transmitted on a near
real-time basis to other studio programs that are running on
different computers. The music client software program that
is running on the same computer as a particular studio
Software program is referred to as the local music client.
Music client software programs that are running on other
computers are referred to as remote music clients.

0.135 The music client software program implements
numerous commands that relate to reading and updating
IRMs. The preferred commands that the music client of the
preferred embodiment processes are listed below in Table I,
along with a description of the effect of each. The music
client software program can be best understood by a person
skilled in the art as the implementation of an Application
Programming Interface (API), which is shown in Table I.
The first column of the table contains Java method calls that
are Supported by the music component, as would be under
stood by a person skilled in the art. Commands in this
preferred embodiment are provided as Java R method calls.
The other software components of the preferred embodiment
of the present invention that use the music client utilize these
commands to access and manipulate information regarding
the requirements and the IRM. The descriptions of the effect
of the commands listed in Table I below include the terms
“Tape” and “Note.” Note refers to the basic record that the
music Software program processes, and may contain infor
mation about IRML primitives that are part of the IRM, and
may contain information about the IRM itself and/or about
requirements. Tape refers to a collection of notes, typically
the set of notes that collectively comprise a single IRM of a
proposed application and its requirements.

TABLE I

MUSIC CLIENT API

(C) 2002 iRise, Inc.

Description of Effect

if returns the name of the tape instance
i? may return the namespace separator character

public int index() returns an intrepresenting the index (current
state) of the tape instance
indexes are completely relative with lesser
index(es) representing older state(s)

public String user() returns the user for the tape instance
public String host() returns the http(s) server host for the current

tape instance

returns the http(s) server port for the current
tape instance

public String file() returns the http(s) file for the current tape
instance

public String get Property (String returns a string property on the tape instance
name)
public void set Property (String name, sets a string property on the tape instance
String value)

creates a new Note instance within the tape
instance of the given type
attempts to find and return a Note instance with
the specified key within the tape instance
returns null if key is null or if the Note cannot
be found

US 2007/0168931 A1
13

TABLE I-continued

MUSIC CLIENT API
(C) 2002 iRise. Inc.

Command

public Note find (Note. Filter, Note.
Sorter sorter

public Note filter(Note notes, Note.
Filter filter)

public Note sort (Note notes, Note.
Sorter sorter)

public boolean stop ()

public boolean play()

public boolean play (int timeout)

pauses the tape and resets state of the
ape to given index
public void pause()
public void pause()
public void unpause()
public boolean register(int timeout)
hrows java.io. IOException
public boolean unregister(int timeout)
hrows java.io. IOException
public void openContext()

public void closeContext()

public boolean save(int timeout)
public void load(java.io.InputStream
is) throws java.io. IOException

public void save(ava.io...OutputStream
os) throws java.io.IOException
public Note
importNotes(java.io.InputStream is)
hrows java.io. IOException
public void exportNotes(Note notes,
java.io.OutputStream Os) throws
java.io. IOException
public String list(int timeout)

public boolean rename(int timeout,
String name)

public boolean compact(int timeout)

Description of Effect

attempts to find and return an array of Note
instances meeting the specified filter criteria
and in the order of the specified sorter criteria
returns an empty array of notes if no notes meet
the filter criteria
returns all notes in the tape if no filter is
specified
returns notes in any order if no sorter is
specified
Attempts to find and return an array of Note
instances from the array of input Note instances
meeting the specified filter criteria
returns an empty array of notes if no notes
meet the filter criteria
returns all notes if no filter is specified
returns an array of Note instances from the
array of input Note instances in the order of the
specified sorter criteria
returns notes in any order if no sorter is
specified
stops continuous play if continuous play is in
elect

continuous play where the tape instance
endlessly attempts to receive all updated
transactions
does not block current thread
single play where the tape attempts to receive
all updated transactions at the time of the call
blocks current thread
public boolean jump (int timeout, int index)

pauses continuous play
pauses continuous play
unpauses continuous play
registers the tape with its server and obtains a
unique mask key generator
unregisters the tape with its server and returns
its unique mask key generator
opens an internal context for batching
transactions
closes the internal context if one exists
(automatically queued for save)
saves all queued internal contexts
parse xml from UTF-8 char stream and execute
all transactions from the given input stream
loaded transactions are not queued
save all queued internal contexts to xml in
UTF-8 char stream
parse Xml from Zip-encoded input stream and
execute all transactions found

save all queued internal contexts to xml in Zip
encoded output stream

list all tape namespaces directly beneath
current tape namespace
namespaces beginning with are
hidden for system purposes
rename the current tape namespace fails if a
tape instance already exists in the new
namespace
Perform compacting of the server xml
transaction log (optimization)

Jul. 19, 2007

0136. The third software program included in a preferred
embodiment of the present invention is a computer program
that provides the capability to allow multiple, simultaneous
studio, ION and/or simulator instances to access IRM’s and
requirement data residing in a file on a server. This third

program is referred to as the “Music Server.” The Music
Server, shown at 92 in FIG. 2, also coordinates transmission
of updates made by the studio, ION and/or simulator pro
grams to other studio, ION and/or simulator programs when
they access the same IRM.

US 2007/0168931 A1

0137 The music server and the music client programs
communicate using Hypertext Transfer Protocol, an industry
standard communications protocol, commonly referred to as
HTTP. The music server and the music client can also
communicate using Hypertext Transfer Protocol Secure, an
industry standard encrypted communications protocol, com
monly referred to as HTTPS.
0138 Alternatively, the music server software program
could be implemented using a different computer language,
for example C++, C# or Visual Basic, each of which is
well-known. Similarly, the communication between the
music server and the music client programs could be imple
mented using another protocol for program to program
communication across computer networks, such as, for
example, Remote Method Invocation (RMI) or Distributed
Component Object Model (DCOM), both of which are
well-known to those skilled in this field.

0139 Alternatively, the functionality provided by the
combination of the music server and music client Software
programs of the present invention could be provided through
use of a combination of various commercially available
database programs and/or messaging programs. Examples of

Class

14

Primitive

Break

Button

Text

Image

RadioButton

Jul. 19, 2007

commercially available database programs Suitable for use
in the present invention include Oracle and SQL Server.
Examples of commercially available messaging programs
that are suitable for use in the present invention include MQ
Series, Vittria and Java R Messaging Service (JMS).
0140. In another alternative embodiment of the invention,
IRM and requirements data files could be stored on one or
more server computers, or could be distributed across mul
tiple computers that were running studio, ION and/or simu
lator, and were utilizing file sharing provided by the com
puters disk operating systems to share this data.
0.141. The third software component of the present inven
tion, the interactive representation modeling language,
referred to as IRML, is a language created for and used in
the current invention to specify the behavior of interactive
representations. The language is represented in terms of (1)
primitives and (2) allowed connections between and among
these primitives. The list of IRML primitives, along with
their functions, allowed containment relationships, allowed
outbound connections and allowed inbound connections are
presented in Table II, Table III, Table IV and Table V.
respectively, below.

TABLE II

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Function

User Interface Components - Tags

The Break Primitive causes the Simulator to present
a HTML “
 tag to force a visible line break.
This primitive is not accessible as a selection in the
iRise Studio client, it is automatically inserted on
each new line.
The Button Primitive causes the Simulator to

HTML “button' tag. The Simulator
Form submission when a button within a
icked during the execution of an

interactive Representation. Subsequently the
Simulator presents the Page to which the Button is
connected. An Image can be used on the button.
The Text Primitive will display two different
behaviors during execution of an interactive
representation, depending on whether the Text is
connected with ControlFlow or not. If the text is
connected with control flow, then the Simulator will
present a HTML “a hreftag, making it a clickable
ORL in the Simulator. If the Text is not connected
with ControlFlow, then the Simulator will present
plain text.

resental
OCESSES

Form is c

The Image Primitive causes the Simulator to present
a HTML “img tag. The Simulator will display any
attached graphical image (gif, jpg, jpeg) during the
execution of an Interactive Representation.

User Interface Components - Input Tags

The RadioButton Primitive causes the Simulator to

present a HTML “radio' tag with the value provided
either from user input during Interactive
Representation or defined in the IRM. The
Simulator processes DataFlow connected from a
RadioButton on Form submission during the
execution of an Interactive Representation with the
selected value in the RadioButton being used.

US 2007/0168931 A1

Class

15

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Primitive

Select

TextArea

TextInput

CheckBox

User Interface Components - Container Tags

ConditionalHTML

Dynamic Table

Form

page

Table

TableCell

TableRow

Function

The Select Primitive causes the Simulator to present
a HTML “select’ tag with the options provided
either from user input during Interactive
Representation or defined in the IRM. The
Simulator processes DataFlow connected from a
Select on Form submission during the execution of
an Interactive Representation with the selected
option in the Select being used.
The TextArea Primitive causes the Simulator to
present a HTML “textarea tag. The Simulator
processes DataFlow connected to a TextArea on
Form Submission during the execution of an
interactive Representation. The TextArea can
populate with text using inbound DataFlow values
as defined by the user in the IRM.
The TextInput Primitive causes the Simulator to
present a HTML input of “text tag. The Simulator
processes DataFlow connected to a TextInput on
Form Submission during the execution of an
interactive Representation. The TextInput can
populate with text using inbound DataFlow values
as defined by the user in the IRM.
The CheckBox Primitive causes the Simulator to
present a HTML “checkbox” tag. The Simulator
processes DataFlow connected to a checkbox on
Form Submission during the execution of an
interactive Representation. The checkbox can
populate with checked or not checked using inbound
DataFlow values as defined by the user in the IRM.

The ConditionalHTML primitive is a container that
etermines HTML contents to display on execution

of an Interactive Representation, based on the
efined inbound DataFlow value at runtime
(dynamic) or from the IRM (constant user defined
action). The primitives are contained in a condition
hat can be defined (T, F, 0, 1, 2 or user defined) that

is evaluated on execution and outputs the resulting
HTML in the Simulator.
The Dynamic Table primitive causes the Simulator
o present a HTML table with the number of table
rows determined at execution time, based on the
Subject applications IRM and the number of rows of
ata matched if the criterion for the contents of the
Dynamic Table is populating based off data in the
Simulator.
The Form Primitive is used to group input primitives
ogether. When a Submission is executed that is
contained in the Form, (example, button or tex
inked to control flow is clicked) the Forms input
elements with defined DataFlow (in the IRM) is
executed for the Interactive Representation.
The Page Primitive causes the Simulator to present a
HTML page. The name of the page defined in the
RM causes the Simulator to create the “Title' tag
with the name provided.
The Table Primitive is used to group and layout
visual primitives as required. The Table Primitive
causes the Simulator to present a HTML “table' tag.
The TableCell Primitive is used to group and layout
visual primitives as required. The TableCell
Primitive causes the Simulator to present a HTML
“tc' tag.
The TableRow Primitive is used to group and layout
visual primitives as required. The TableRow
Primitive causes the Simulator to present a HTML
“tr tag.

Jul. 19, 2007

US 2007/0168931 A1
16

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Class Primitive Function

Comment Comment The comment allows a text comment to be defined
in the IRM for the purposes of creating a readable
note in the model. If the comment is connected to a
visual primitive (a instance of which is represented
in HTML at execution), it causes the Simulator to
present an image of a page in a book next to the
connected primitive. This comment text will display
when the mouse cursor is left over the image for a
Second. If connected to a non-visual primitive, the
comment can be viewed and edited in the Studio,
but will not show in the HTML output during
interactive Representation.

Flow Label Flow Label The flow label primitive is a specialized primitive
used to denote a name for the data that flows
between two other primitives that are connected
using Data Flow.

Decision Decision The Decision primitive is used to specify different
control flow based on some modeled criteria (in the
RM), such as user input during the execution of an
interactive Representation. The possible Decisions
control flows are user defined in the IRM.

References ModelEntry A single ModelEntry instance is allowed in an IRM
o represent a single ControlFlow entry point into
he subject application model from another calling
Model.

ModelBxit Model Exit represents a single ControlFlow
connection leaving a ModelRef element in the
Subject application to be used by another model.

ModelRef ModelRef represents an invocation reference to
another application IRM with the ability to pass and
retrieve data values to the Subject application, as
well as the ability to enter and return from the
referenced IRM through ControlFlow connections.
Inbound data values are passed into the subject
application IRM through Model Input defined in the
referenced IRM. Outbound values are returned from
ModelOutput operations defined in the referenced
IRM. Inbound ControlFlow enters through
ModelEntry element and outbound DataFlow is
represented by ModelExit elements in the referenced
IRM.

Reference The Reference Primitive allows the definition a
Master element, that can then be referred to from
multiple locations on multiple pages within the
Subject application IRM. References can refer to all
visual (HTML replaced) Primitives except or
Decisions.

Constant Constant A Constant allows for non-changeable values to be
defined in the IRM that can be used for statically
populating primitives during execution of an
Interactive Representation. Another use of
Constants is to provide static input values for
actions.

Action Data Create The Data Create Action allows for single and
composite DataFlow values to be persistently stored
from an interactive representation of the subject
application. Data Create is equivalent to a single set
of Pack and Save actions. The label on the Dataflow
connection is the name of the composite data it
creates.

Data Delete The Data Delete Action is used to delete single or
composite values from persistently stored data
created during an interactive representation of the
Subject application. The label on the Dataflow
connection is the name of the data element and the
input DataFlow value is the actual data to be
deleted.

Data Find The Data Find Action returns the results of
searching the persistently stored data for a Subject
application. The inbound DataFlow defines the

Jul. 19, 2007

US 2007/0168931 A1

Class

17

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Primitive

Data FindOR

Data Pack

Data Save

Data Unpack

Data Update

Session

HTML. Href

HTML Img

HTML Link

Function

criteria, the outbound are the values for the data
found matching the inbound criteria. If no inbound
DataFlow (criteria) is Supplied, all values go
outbound. If multiple inbound connections, the find
criteria is the intersection (AND) of these values.
The Data FindOR Action returns the results of
searching the persistently stored data for a Subject
application. The inbound DataFlow defines the
criteria, the outbound are the values for the data
found matching the inbound criteria. If more than
one DataFlow is connected inbound, then the Find
criteria will find the union of the values, e.g.
dataConnectInV1 OR dataConnectInV2.
The Data Pack Action creates a composite DataFlow
value from the Supplied values on the inbound
DataFlow connections.
The Data Save Action allows for single or
composite Dataflow values to be persistently stored
from an interactive representation of the subject
application. The label on the inbound Dataflow
connection is the name of the data it creates.
The Data Unpack Action disassembles the data
elements in a composite to its single elements. The
DataFlow inbound is the composite and the
DataFlow outbound label specifies the element to be
pulled from the composite.
The Data Update Action updates the persistent data
stored for the subject application. The first inbound
connection is the composite to be updated, the
Second (and any additional) DataFlow connections
inbound are the values to update with. It must be a
composite for the first value, single elements cannot
be updated.
The Session Action is used for storing data to be
used between pages that are not needed beyond the
users interaction. The Session Action stores
DataFlow values for the duration of a users
interaction in one specific instance of a connection
between the user's browser and the Simulator (uses
cookies). Data in a Session Action is NOT put in
persistent storage for the Subject application. There
is only one instance of a Session Action for each
users connection, it can store unlimited amounts of
composites or single data elements, but the names
must be unique, otherwise it will be overwritten.
The HTML. Hrefaction takes the DataFlow inputs to
construct a URL that can be used to connect to text
to display as a clickable href during execution of the
interactive representation. The first inbound
DataFlow connection is the text that the URL will
display and the second inbound DataFlow
connections make up the actual URL. More
inbound DataFlow connections can be made, these
will be appended as name value pairs. E.g.
2s1 = val1&s2 = val2 where S1 is the name of the
connected DataFlow and val1 is the data value.
The URL value should be complete, using http://in
at the start, otherwise it will prepend the Simulator
URL.
The HTML Img action takes the DataFlow inputs to
construct a URI that can be used to connect to text
to display an image during execution of the
interactive representation. The first inbound
DataFlow connection is the URI to an image that
will display.
The HTML Link action takes the DataFlow inputs to
construct a URL that can be used to connect to text
to display as a clickable href during execution of the
interactive representation. The first inbound
DataFlow connections make up the actual URL and

Jul. 19, 2007

US 2007/0168931 A1
18

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Class Primitive

List Count

List Range

List Sequence

List Sort

Cast

Email

Logic AND

Logic OR

Logic NOT

Logic FALSE

Function

the second inbound DataFlow connection is the text
that the URL will display.
The URL value should be complete, using http://in
at the start, otherwise it will prepend the Simulator
URL.
The List Count Action counts the number of data
values connected on the inbound DataFlow. The
count number is the outbound DataFlow value.
An example use could be to count the number of
found elements from a Find Action.
The List Range Action returns the values in the
range specified by the inbound DataFlow required
connections. The first inbound DataFlow
connection is the list of data values that the range
will be extracted from, the second inbound
DataFlow connection is the number of elements to
be returned. The third optional inbound DataFlow
connection can be used to specify an offset, or
starting point from the Supplied list of values.
The List Sequence Action acts like a counter that
will increment by one when supplied a value for
name on the required first inbound DataFlow
connection. The name gives each instance of a List
Sequence Action a unique identifier. The second
optional DataFlow inbound connection will set the
sequence to the Supplied value. The optional
DataFlow outbound connection can be used to get
the sequence number.
The List Sort will alphabetically sort the named data
values specified on the inbound DataFlow
connections. The first inbound DataFlow
connection is the compound dataObject, the second
inbound DataFlow is the name of the data element
o be sorted. Note: For the second inbound
DataFlow connection, it is the name of the element
hat is the sorting criteria, not the value.
The Cast Action changes the name of single or
composite data Supplied on the inbound DataFlow
connection to whatever is specified as the name of
he outbound DataFlow connection.
The Email Action uses the following required
DataFlow inputs to form an SMTP email message
hat will actually be sent if the Simulators server is
configured to use an SMTP server. First input is To,
second is From, third is Subject, and fourth is the
Body. The labels used in the inbound connections
must match those exactly (To, From, Subject,
Body).
The Logic AND Action evaluates any inbound
DataFlow connections, if ALL of the optional inputs
are 1 then True is the DataFlow outbound
connection value, else it is <nulls. When only an
outbound DataFlow connection is made, then value
will be True.
The Logic OR Action evaluates any inbound
DataFlow connections, if ANY of the optional
inputs are 1 then True is the DataFlow outboun
connection value, else it is <nulls. When only an
outbound DataFlow connection is made, then value
will be <nulls.
The Logic NOT Action evaluates any inbound
DataFlow connections, if the first of the optiona
inputs are O then True is the DataFlow outboun
connection value, else it is <nulls. When only an
outbound DataFlow connection is made, then value
will be <nulls.
The Logic FALSE Action always returns <nulls on
the DataFlow connection outbound, not matter what
DataFlow connections are made inbound.

Jul. 19, 2007

US 2007/0168931 A1

Class

19

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS
(C) 2002 Rise.

Function of the primitives

Primitive

Logic TRUE

Math Plus

Math Minus

Math Div

Math Mult

Math Min

Math Max

Math Remainder

Math Floor

Math Round

Function

he Data

The Ma
nbound

O.O.
The Ma

her. If

The Ma

The Ma

and outp

is 0.0.

he Logic FALSE Action always returns True on
Flow connection outbound, not matter what

DataFlow connections are made inbound.
h Plus Action adds the optional DataFlow
connection values together. If no inputs are

upplied, the outbound DataFlow connection value

h Minus Action Subtracts the optional
ataFlow inbound connection values from each

no inputs are Supplied, the outbound
ataFlow connection value is 0.0.

h Div Action divides the optional DataFlow
connection values by each other. If no

inputs are supplied, the outbound DataFlow
connection value is O.O.

h Mult Action multiplies the optional
DataFlow inbound connection values by each other.
no inputs are Supplied, the outbound DataFlow

connection value is O.O.
h Min Action outputs the Smallest value of

all the optional values Supplied on the inbound
DataFlow connections. Negative numbers are
considered Smaller than Zero and positive numbers.

no inputs are Supplied, the outbound DataFlow
connection value is O.O.
The Math Max Action outputs the largest value of
all the optional values Supplied on the inbound
DataFlow connections. Negative numbers are
considered Smaller than Zero and positive numbers.

no inputs are Supplied, the outbound DataFlow
connection value is O.O.
The Math Remainder Action divides the optional
DataFlow inbound connection values by each other

uts the remainder. If no inputs are supplied,
he outbound DataFlow connection value is 0.0.
The Math Floor Action rounds down the first
(optional) DataFlow inbound connection value to
he nearest integer number. If no inputs are

Supplied, the outbound DataFlow connection value

The Math Round rounds up or down to the closest of
he first (optional) DataFlow inbound connection

Math Abs

Math Ceiling

Math Random

Math LT

Math GT

Math LE

value to the nearest whole

connection value is 0.0

value. If no inputs are Sup

(optional) DataFlow inbou

Supplied, the outbound Da
is 0.0.
The Math Random Action

inbound DataFlow connec

(optional) DataFlow inbou

(optional) DataFlow inbou

(optional) DataFlow inbou

integer number. If no
inputs are supplied, the outbound DataFlow

The Math Abs gives the absolute integer value of
he first (optional) DataFlow inbound connection

plied, the outbound
DataFlow connection value is 0.0
The Math Ceiling Action rounds up the first

nd connection value to
he nearest integer number. If no inputs are

aFlow connection value

generates a random
ecimal number between Zero and one. Any

ions will be ignored.
The Math LT Action returns true if the first

nd connection value is
less than the second (optional) inbound connection
value, otherwise returns <nulls.
The Math GT Action returns true if the first

nd connection value is
greater than the second (optional) inbound
connection value, otherwise returns <nulls.
The Math LE Action returns true if the first

nd connection value is
less than or equal to the second (optional) inbound
connection value, otherwise returns <nulls.

Jul. 19, 2007

US 2007/0168931 A1

Class

20

TABLE II-continued

IRML PRMITIVES AND THEIR FUNCTIONS

Primitive

Ma

(X

(X

(X

(X

(X

(X

(X

GE

NE

elInput

elOutput

Length

rim

LOW(C8Se.

Uppercase

Equals

Notequal

Add

Substrng

UserDefined

(C) 2002 Rise.
Function of the primitives

The Math GE Action returns true if the first

(optional) DataFlow inbound connection value is
greater than or equal to the second (optional)
inbound connection value, otherwise returns <nulls.
The Math EQ Action returns true if the first
(optional) DataFlow inbound connection value is
equal to the second (optional) inbound connection
value, otherwise returns <nulls.
The Math NE Action returns true if the first

(optional) DataFlow inbound connection value is
NOT equal to the second (optional) inbound
connection value, otherwise returns <nulls.
The Model Input Primitive represents a single
inbound DataFlow value passed in from a calling

The ModelOutput Primitive represents a single
outbound DataFlow value passed from the subject
application IRM to another application IRM.
The Text Length Action counts the number of
characters in the single data values connected on the
inbound DataFlow. The count number is the
outbound DataFlow value.
he Text Trim Action removes any leading or

ending space characters in the single data values
connected on the inbound DataFlow. The resulting
string is the outbound DataFlow value.
he Text Lowercase Action converts any

alphabetical characters in the single data values
connected on the inbound DataFlow to lowercase.
he resulting string is the outbound DataFlow value.
he Text Uppercase Action converts any

alphabetical characters in the single data values
connected on the inbound DataFlow to lowercase.
he resulting string is the outbound DataFlow value.
he Text Equals Action returns True if the first

(optional) DataFlow inbound connection value is
equal to the second (optional) inbound connection
value, otherwise returns <nulls.
he Text Noteaual Action returns True if the first

(optional) DataFlow inbound connection value is not
equal to the second (optional) inbound connection
value, otherwise returns <nulls.
he Text Add Action concatenates the optional

DataFlow inbound single values that are connected
o make one single String for the outbound
D ataFlow value.
he Text Substrng Action outputs the String value
or the Substring as specified by the starting and
ending count. The first inbound DataFlow
connection provides the single string, the second
inbound DataFlow value is the starting index and the
hird inbound DataFlow is the ending index. If no
inbound values are provided, <nulls is returned. If
no starting index is provided, then the string as it
was inputted will be returned. The first character in
he string is index 1.
The UserDefined Action allows the user to define a

constant value for any inbound or outbound
DataFlow connections that are made to the instance
of a UserDefined Action.

Jul. 19, 2007

US 2007/0168931 A1 Jul. 19, 2007
21

0142)
TABLE III-continued

TABLE III
IRML Prmitives and Allowed Containment Relationships

IRML Prmitives and Allowed Containment Relationships (C) 2002 Rise.
(C) 2002 Rise.

Class Primitive Allowed Containment Relationships Class Primitive Allowed Containment Relationships

User Interface Components - Tags Reference Embedded references in Pages can
occur in any location where the

Break Must be contained in a Page, can be Referent Primitive would be allowed
contained inside a TableCell, Form or based on its containment rules
a ConditionalHTML

Button Must be contained in a Form, can be Constant Constant None
contained inside a Table Cell, Action None
Dynamic Table or Conditional Html Data Create None
(inside a Form.) Data Delete None

Text Must be contained in a Page, can be Data Find None
contained inside a Form, TableCell,
Dynamic Table or ConditionalHTML Data FindOR None

Image Must be contained in a Page, can be Data Pack None
contained inside a Form, TableCell, Data Save None
Dynamic Table or ConditionalHTML Data Unpack None

User Interface Components - Input Tags Data Update None

RadioButton Must be contained in a Form, can be Session None
contained inside a TableCell, HTML, Href None
Dynamic Table or Conditional Htm HTML. Img None
(inside a Form.) HTML Link None

Select Must be contained in a Form, can be List Count None
containe inside a Tab eCell, List Range None
Dynamic Table or Conditional Htm
(inside a Form.) List Sequence None

TextArea Must be contained in a Form, can be List Sort None
contained inside a TableCell, Cast None
Dynamic Tab e or Conditional Htm Email None
(inside a Form.) Logic AND None

TextInput Must be contained in a Form, can be Logic OR None contained inside a TableCell,
Dynamic Table or Conditional Htm Logic NOT None
(inside a Form.) Logic FALSE None

CheckBox Must be contained in a Form, can be Logic TRUE None
CO aine inside a Tab eCell, Math Plus None
Dynamic Table or Conditional Htm Math Minus None
(inside a Form.)

User Interface Components - Container Tags Math Div None
Math Mult None

ConditionalHTML Must be contained in a Page, can be Math Min None
contained inside a Table, TableRow, Math Max None
TableCell, Form, Dynamic Table Math Remainder None
Note: ConditionalHTML can only Math Floor None
contain TableCell if it is contained in M Round N
a TableRow and can only contain 8 ROll Ole
TableRow if it is contained in a Table Math Abs None

Dynamic Table Must be contained in a Page, can be Math Ceiling None
contained inside a TableCell or Form. Math Random None
Can also be contained in a Math LT None
ConditionalHTML inside Math GT None
a TableCell. Math LE None

Form Must be con ained in a Page, can be Math GE None
contained inside a Form, TableCell or Math EQ None
ConditionalHTML M N. N

Page Page is not contained by any 8. Ole
Primitive, it can contain all visual Model Input None
Primitives. ModelOutput None

Table Must be contained in a Page, can be Text Length None
contained inside a TableCell, Form or Text Trim None
a ConditionalHTML Text Lowercase None

TableCell Must be contained in a TableRow. Text Uppercase None
TableRow Must be contained in a Table. Text Equals None

Comment Comment None Text Not N
Flow Label Flow Label None ext Notequa Ole
Decision Decision None Text Add None
References ModelEntry None Text Substrng None

ModelBxit None UserDefined None
ModelRef None

US 2007/0168931 A1

0143)

TABLE IV

IRML Primitives and Allowed Outbound Connections
(C) 2002 Rise.

Allowed outbound connections from the prinitives

Class Primitive Allowed Connections Outbound

User Interface Components - Tags

Break None
Button A button can be connected to

Page, Decision, Model Exit,
ModelRef and Reference with
Control Flow. Maximum of one
Control Flow connection can be
made from a button at one point in
time.

Text Text can be connected to a Page,
Decision, ModelExit, ModelRef and
Reference with Control Flow.
Maximum of one Control Flow
connection can be made from text at
one point in time.

Image An image can be connected to a
Page, Decision, Model Exit,
ModelRef and Reference with
Control Flow. Maximum of one
Control Flow connection can be
made from an Image at one point in
time.

User Interface Components - Input Tags

RadioButton A RadioButton can be connected to
Text, TextArea, TextInput,
RadioButton, Checkbox, Select,
Reference, Decision, Action and
ModelRef with DataFlow.
Although only one instance of a
primitive in the list above can be
connected directly to the checkbox
at one point in time, an unlimited
number of DataFlow connections
can be made from a data branch that
is connected from a RadioButton, to
any instance of the primitives listed
above.

Select A Select can be connected to Text,
TextArea, TextInput, RadioButton,
Checkbox, Select, Reference,
Decision, Action and ModelRef
with DataFlow. Although only one
instance of a primitive in the list
above can be connected directly to
the checkbox at one point in time,
an unlimited number of DataFlow
connections can be made from a
data branch that is connected from a
Select, to any instance of the
primitives listed above.

TextArea A TextArea can be connected to
Text, TextArea, TextInput,
RadioButton, Checkbox, Select,
Reference, Decision, Action and
ModelRef with DataFlow.
Although only one instance of a
primitive in the list above can be
connected directly to the TextArea
at one point in time, an unlimited
number of DataFlow connections
can be made from a data branch that
is connected from a TextArea, to
any instance of the primitives listed
above.

22

Class

Comment

Jul. 19, 2007

TABLE IV-continued

IRML Primitives and Allowed Outbound Connections
(C) 2002 Rise.

Allowed outbound connections from the prinitives

Primitive

TextInput

CheckBox

Allowed Connections Outbound

A TextInput can be connected to
Text, TextArea, TextInput,
RadioButton, Checkbox, Select,
Reference, Decision, Action and
ModelRef with DataFlow.
Although only one instance of a
primitive in the list above can be
connected directly to the TextInput
at one point in time, an unlimited
number of DataFlow connections
can be made from a data branch that
is connected from a TextInput, to
any instance of the primitives listed
above.
A checkbox can be connected to
Text, TextArea, TextInput,
RadioButton, Checkbox, Select,
Reference, Decision, Action and
ModelRef with DataFlow.
Although only one instance of a
primitive in the list above can be
connected directly to the checkbox
at one point in time, an unlimited
number of DataFlow connections
can be made from a data branch that
is connected from a checkbox, to
any instance of the primitives listed
above.

User Interface Components - Container Tags

ConditionalHTML
Dynamic Table
Form
Page
Table
TableCell
TableRow
Comment

Flow Label Flow Label

Decision

References

Decision

Model Entry

ModelBxit

ModelRef

Reference

None
None
None
None
None
None
None
Can connect to any primitive, is not
directional (inbound outbound)
Because a Flow Label simply
appears as a label on data flow
connections, its connection rules are
embodied in the rules for the
primitives that are to be connected:
I.e., the rules expressed in this
column of the appendix.
A Decision can be connected to a
Page, Decision, ModelExit,
ModelRef and Reference with
Control Flow. There is no
maximum on the number of Control
Flow connections that can be made
from a Decision at one point in time.
Each one of these outbound
ControlFlow connections is labeled
with a Condition identifier. The
condition can be user defined.
A required single ControlFlow
connection to Page, Decision or
Reference to Page or to Decision.
No outbound connections are
allowed
Multiple outbound DataFlow
connections are allowed up to the
same number of ModelOutputs
defined in the referenced IRM.
Multiple outbound ControlFlow
connections are allowed up to the
the referenced IRM.
NA

US 2007/0168931 A1 Jul. 19, 2007
23

TABLE IV-continued TABLE IV-continued

IRML Primitives and Allowed Outbound Connections IRML Primitives and Allowed Outbound Connections
(C) 2002 Rise. (C) 2002 Rise.

Allowed outbound connections from the prinitives Allowed outbound connections from the prinitives

Class Primitive Allowed Connections Outbound Class Primitive Allowed Connections Outbound

Constant Constant A Constant can be connected to outbound DataFlow connection can
Text, TextArea, TextInput, be made to a HTML Link instance
RadioButton, Checkbox, Select, at any point in time.
Reference, Decision, Action and List Count List Count requires an Outbound
ModelRef with DataFlow. An DataFlow connection. Only one
unlimited number of DataFlow outbound DataFlow connection can
connections can be made from a be made to a List Count instance at
constant to any instance of the any point in time.
primitives listed above. List Range List Range requires an Outbound

Action The outbound connections for DataFlow connection. Only one
actions are specific to each one as outbound DataFlow connection can
described below. Any outbound be made to a List Range instance at
connection can only be DataFlow. any point in time.

Data Create Data Create requires an outbound List Sequence Not required. There is no maximum
DataFlow to be connected. Only on the number of outbound
one outbound DataFlow connection DataFlow connections that can be
can be made at any point in time. made to a List Sequence instance at

Data Delete Not required. There is no maximum any point in time.
on the number of outbound List Sort List Sort requires an Outbound
DataFlow connections that can be DataFlow connection. Only one
made to a Data Delete instance at outbound DataFlow connection can
any point in time. be made to a List Sort instance at

Data Find Data Find requires an Outbound any point in time.
DataFlow connection. Only one Cast Cast requires an Outbound
outbound DataFlow connection can DataFlow connection. Only one
be made to a Data Find instance at outbound DataFlow connection can
any point in time. be made to a Cast instance at any

Data FindOR Data FindOR requires an Outbound point in time.
DataFlow connection. Only one Email Not required. There is no maximum
outbound DataFlow connection can on the number of outbound
be made to a Data FindCR instance DataFlow connections that can be
at any point in time. made to an Email instance at any

Data Pack Data Pack requires an Outbound point in time.
DataFlow connection. Only one Logic AND Logic AND requires an Outbound
outbound DataFlow connection can DataFlow connection. Only one
be made to a Data Pack instance at outbound DataFlow connection can
any point in time. be made to a Logic AND instance at

Data Save Not required. There is no maximum any point in time.
on the number of outbound Logic OR Logic OR requires an Outbound
DataFlow connections that can be DataFlow connection. Only one
made to a Data Save instance at any outbound DataFlow connection can
point in time. be made to a Logic OR instance at

Data Unpack Data Unpack requires an Outbound any point in time.
DataFlow connection. There is no Logic NOT Logic NOT requires an Outbound
maximum on the number of DataFlow connection. Only one
outbound DataFlow connections outbound DataFlow connection can
hat can be made to a Data Unack be made to a Logic NOT instance at

instance at any point in time. any point in time.
Data Update Not required. There is no maximum Logic FALSE Logic FALSE requires an Outbound

on the number of outbound DataFlow connection. Only one
DataFlow connections that can be outbound DataFlow connection can
made to a Data Update instance at be made to a Logic FALSE instance
any point in time. at any point in time.

Session Not required. There is no maximum Logic TRUE Logic TRUE requires an Outbound
on the number of outbound DataFlow connection. Only one
DataFlow connections that can be outbound DataFlow connection can
made to a Session instance at any be made to a Logic TRUE instance
point in time. at any point in time.

HTML. Href HTML. Hrefrequires an Outbound Math Plus Math Plus requires an Outbound
DataFlow connection. Only one MataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a HTML. Href instance at be made to a Math Plus instance at
any point in time. any point in time.

HTML Img HTML. Img requires an Outbound Math Minus Math Minus requires an Outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a HTML Img instance at be made to a Math Minus instance
any point in time. at any point in time.

HTML Link HTML Link requires an Outbound Math Div Math Div requires an outbound
DataFlow connection. Only one DataFlow connection. Only one

US 2007/0168931 A1 Jul. 19, 2007
24

TABLE IV-continued TABLE IV-continued

IRML Primitives and Allowed Outbound Connections IRML Primitives and Allowed Outbound Connections
(C) 2002 Rise. (C) 2002 Rise.

Allowed outbound connections from the primitives Allowed outbound connections from the primitives

Class Primitive Allowed Connections Outbound Class Primitive Allowed Connections Outbound

outbound DataFlow connection can
be made to a Math Div instance at outbound DataFlow connection can
any point in time. be made to a Math EQ instance at

Math Mult Math Mult requires an outbound any point in time.
DataFlow connection. Only one Math NE Math NE requires an outbound
outbound DataFlow connection can DataFlow connection. Only one
e made to a Math Mult instance at outbound DataFlow connection can

any point in time. be made to a Math NE instance at
Math Min Math Min requires an outbound any point in time.

DataFlow connection. Only one y p
outbound DataFlow connection can Model Input A required single outbound
be made to a Math Min instance at DataFlow connection is allowed
any point in time. ModelOutput No Outbound DataFlow connections

Math Max Math Max requires an outbound are allowed
DataFlow connection. Only one Text Length Text Length requires an outbound
outbound DataFlow connection can DataFlow connection. Only one
be made to a Math Max instance at
any point in time.

outbound DataFlow connection can

be made to a Text Length instance Math Remainder Math Div requires an outbound
DataFlow connection. Only one at any point in time.
outbound DataFlow connection can Text Trim Text Trim requires an outbound
be made to a Math Div instance at DataFlow connection. Only one
any point in time. outbound DataFlow connection can

Math Floor Math Floor requires an outbound be made to a Text Trim instance at
DataFlow connection. Only one any point in time.
outbound DataFlow connection can
be made to a Math Floor instance at
any point in time.

Text Lowercase Text Lowercase requires an
Outbound DataFlow connection.
Only one outbound DataFlow Math Round Math Round requires an outbound

DataFlow connection. Only one connection can be made to a Text
outbound DataFlow connection can Lowercase instance at any point in
be made to a Math Round instance time.
at any point in time. Text Uppercase Text Uppercase requires an

Math Abs Math Abs requires an outbound outbound DataFlow connection.
DataFlow connection. Only one Only one outbound DataFlow
outbound DataFlow connection can
be made to a Math Abs instance at
any point in time.

connection can be made to a Text
Uppercase instance at any point in

Math Ceiling Math Ceiling requires an outbound ime.
DataFlow connection. Only one Text Equals Text Equals requires an outbound
outbound DataFlow connection can DataFlow connection. Only one
be made to a Math Ceiling instance outbound DataFlow connection can
at any point in time. be made to a Text Equals instance at

Math Random Math Random requires an outbound any point in time.
Text Notequal Text Notequal requires an outbound

DataFlow connection. Only one

DataFlow connection. Only one
outbound DataFlow connection can
be made to a Math Random instance
at any point in time. outbound DataFlow connection can

Math LT Math LT requires an outbound be made to a Text Notequal instance
DataFlow connection. Only one at any point in time.
outbound DataFlow connection can Text Add Text Add requires an outbound
be made to a Math LT instance at DataFlow connection. Only one
any point in time. outbound DataFlow connection can

Math GT Math GT requires an outbound be made to a Text Add instance at DataFlow connection. Only one
any point in time. outbound DataFlow connection can

be made to a Math GT instance at Text Substrng Text Substrng requires an outbound
any point in time. DataFlow connection. Only one

Math LE Math LE requires an outbound outbound DataFlow connection can
DataFlow connection. Only one be made to a Text Substrng instance
outbound DataFlow connection can at any point in time.
e made to 8. Math LE instance at UserDefined Not Required. Any number of

any point in time.
Math GE Math GE requires an outbound outbound DataFlow connections Call

DataFlow connection. Only one be made to a UserDefined Action at
outbound DataFlow connection can any point in time.
be made to a Math GE instance at
any point in time.

Math EQ Math EQ requires an outbound
DataFlow connection. Only one 0144. In Table V, the permitted inbound connections for

the primitives are listed.

US 2007/0168931 A1

Class

Comment

25

TABLE V

IRML Primitives and Allowed Inbound Connections
(C) 2002 Rise.

Primitive Allowed Connections Inbound

User Interface Components - Tags

Break None
Button None
Text TextArea, TextInput, RadioButton,

Checkbox, Select, Constant, Action and
ModelRef can be connected to a Checkbox
with DataFlow. Only one inbound
connection can be made at any one point in time.

Image None
User Interface Components - Input Tags

RadioButton TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and ModelRef
can be connected to a
RadioButton with DataFlow. Two inbound
connections can be made at any one point
in time. The first connection is the list of
options, the second connection is the
default value selected. The second
connection is optional.

Select TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a Select
with DataFlow. Two inbound connections
can be made at any one point in time. The
first connection is the list of options, the
Second connection is the default value
Selected. The second connection is
optional.

TextArea TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a TextArea
with DataFlow. Only one inbound
connection can be made at any one point
in time.

TextInput TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a TextInput
with DataFlow. Only one inbound
connection can be made at any one point

CheckBox TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a Checkbox
with DataFlow. Only one inbound
connection can be made at any one point
in time.

User Interface Components - Container Tags

ConditionalHTML TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Checkbox with
DataFlow. Only one inbound connection
can be made at any one point in time.

Dynamic Table TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Dynamic Table with
DataFlow. Only one inbound connection
can be made at any one point in time.

Form Ole

Page Button, Image, Text, Decision,
ModelEntry, ModelRef using Control
Flow. There is no maximum on the
number of ControlFlow connections to a
page.

Table Ole
TableCell Ole
TableRow Ole

Comment Can connect to any primitive, is not
directional (inbound outbound)

Jul. 19, 2007

US 2007/0168931 A1

Class

Flow Label

Decision

References

Constant
Action

26

TABLE V-continued

IRML Primitives and Allowed Inbound Connections

Primitive

Flow Label

Decision

Model Entry
ModelBxit

ModelRef

Reference
Constant

Data Create

Data Delete

Data Find

Data FindOR

Data Pack

Data Save

Data Unpack

Data Update

(C) 2002 Rise.

Allowed Connections Inboun

Because a Flow Label simply appears as a
abel on data flow connections, its
connection rules are embodied in the rules
or the primitives that are to be connected;
.e., the rules expressed in this column of
he appendix.
TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Decision with
DataFlow. Only one inbound DataFlow
connection can be made at any one point
in time. ControlFlow can be used to
connect Images, Buttons and Text into a
Decision.
No inbound connections are allowed
nbound ControlFlow connections from
Text, Button, Image, or Decision are
required.
Multiple inbound DataFlow connections
are allowed up to the number of
ModelInputs defined in the reference
IRM. Multiple outbound
ControlFlow connections are allowed up
to the number of ModelExits defined in
the referenced IRM.
NA
Ole

The inbound connections for actions are
specific to each one as described below.
Any inbound connection can only be
DataFlow.
Data Create requires an inbound DataFlow
o be connected. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Data
Create instance at any point in time.
Data Delete requires an inbound DataFlow
o be connected. Only one inbound
DataFlow connection can be made to a
Data Delete instance at any point in time.
Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Data
Find instance at any point in time.
At least one inbound DataFlow connection
is required. There is no maximum on the
number of inbound DataFlow connections
hat can be made to a Data FindOR

instance at any point in time. If multiple
inbound connections are made, the
FindOR will return the OR of the values
connected.
At least one inbound DataFlow connection
is required. There is no maximum on the
number of inbound DataFlow connections
that can be made to a Data Pack instance
at any point in time.
One inbound DataFlow connection is
required. Only one inbound connection
can be made to an instance of a Data Save
at any point in time.
One inbound DataFlow connection is
required. Only one inbound connection
can be made to an instance of a Data
Unpack at any point in time.
Two inbound DataFlow connections are
required. There is no maximum on the
number of inbound DataFlow connections
that can be made to a Data Update
instance at any point in time.

Jul. 19, 2007

US 2007/0168931 A1

Class

27

TABLE V-continued

IRML Primitives and Allowed Inbound Connections

Primitive

Session

HTML. Href

HTML Img

HTML Link

List Count

List Range

List Sequence

List Sort

Cast

Email

Logic AND

Logic OR

Logic NOT

Logic FALSE

Logic TRUE

(C) 2002 Rise.

Allowed Connections Inbound

Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Session
instance at any point in time.
HTML. Hrefrequires an inbound
DataFlow to be connected. There is no
maximum on the number of inbound
DataFlow connections that can be made to
a HTML. Href instance at any point in
ime.
HTML. Img requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a HTML. Img
instance at any point in time.
HTML Link requires two inbound
DataFlow connections. Maximum of two
inbound DataFlow connections can be
made to a HTML Link instance at any
point in time.
List Count requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a List Count
instance at any point in time.
List Range requires two inbound
DataFlow connections. There is no
maximum on the number of inbound
DataFlow connections that can be made to
a List Range instance at any point in time.
The third inbound connection will be used
as the offset for the range, any more
inbound connections will be ignored.
List Sequence requires an inbound
DataFlow connection. There is no
maximum on the number of inbound
DataFlow connections that can be made to
a List Sequence instance at any point in
time.
The second (optional) inbound connection
can be used to set the value of the
sequence instance, any more inbound
connections will be ignored.
List Range requires two inbound
DataFlow connections. Only two inbound
DataFlow connections can be made at any
point in time.
Cast requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a Cast instance
at any point in time.
Email requires four inbound DataFlow
connections. Only four inbound DataFlow
connections can be made at any point in
ime.
Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Logic
AND instance at any point in time.
Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Logic
OR instance at any point in time.
Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Logic
NOT instance at any point in time.
Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Logic
FALSE instance at any point in time.
Not required. There is no maximum on
he number of inbound DataFlow

Jul. 19, 2007

US 2007/0168931 A1
28

TABLE V-continued

Class

IRML Primitives and Allowed Inbound Connections
(C) 2002 Rise.

Primitive Allowed Connections Inbound

Math Plus

Math Minus

Math Div

Math Mult

Math Min

Math Max

Math Remainder

Math Floor

Math Round

Math Abs

Math Ceiling

Math Random

Math LT

Math GT

COlleC

TRUE

COlleC

COlleC

COlleC

COlleC

COlleC

Max in

COlleC

COlleC

COlleC

1gnore

COlleC

Round

COlleC

Plus instance
Not require

le le O

Div instance
Not require

le le O

Multins
Not require

le le O

Min instance
Not require

le le O

Not require
le le O

Div instance
Not require

le le O

ions

ions

ions
Minus instance at any point in time.
Not require

le le O

ions

ions

ions

ions

ions

ions

tance at any point in time.

hat can be made to a Logic
instance at any point in time.

Not require
le le O

here is no maximum on
inbound DataFlow

hat can be made to a Math
at any point in time.
There is no maximum on
inbound DataFlow

hat can be made to a Math

There is no maximum on
inbound DataFlow

hat can be made to a Math
at any point in time.
There is no maximum on
inbound DataFlow

hat can be made to a Math

here is no maximum on
inbound DataFlow

hat can be made to a Math
at any point in time.

here is no maximum on
inbound DataFlow

hat can be made to a Math
at any point in time.
There is no maximum on
inbound DataFlow

hat can be made to a Math
at any point in time.
There is no maximum on
inbound DataFlow

hat can be made to a Math
Floor instance at any point in time, but any

ions other than the first one will be

Not required. There is no maximum on
he number of inbound DataFlow

ions that can be made to a Math
instance at any point in time, but

any connections other than the first one
ignore

Not required. There is no maximum on
he number of inbound DataFlow

ions that can be made to a Math
Abs instance at any point in time, but any
COlleC

ignore
ions other than the first one will be

Not required. There is no maximum on
the number of inbound DataFlow
COlleC

Ceiling
ions that can be made to a Math
instance at any point in time, but

any connections other than the first one
will be ignored.
Not required. There is no maximum on
the number of inbound DataFlow
COlleC ions that can be made to a Math
Random instance at any point in time, but
any connections will be ignored.
Not required. There is no maximum on
the number of inbound DataFlow
COlleC ions that can be made to a Math
LT instance at any point in time, but any
COlleC

ignore
ions other than the first two will be

Not required. There is no maximum on
the number of inbound DataFlow
COlleC

GT ins
COlleC

ignore

ions that can be made to a Math
ance at any point in time, but any
ions other than the first two will be

Jul. 19, 2007

US 2007/0168931 A1
29

TABLE V-continued

IRML Primitives and Allowed Inbound Connections
(C) 2002 Rise.

Class Primitive Allowed Connections Inbound

Math LE Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
LE instance at any point in time, but any
connections other than the first two will be
ignored.

Math GE Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
GE instance at any point in time, but any
connections other than the first two will be
ignored.

Math EQ Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
EQ instance at any point in time, but any
connections other than the first two will be
ignored.

Math NE Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
NE instance at any point in time, but any
connections other than the first two will be
ignored.

ModelInput No inbound DataFlow connections are
allowe

ModelOutput A required single Inbound DataFlow
connection is allowed

Text Length Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text
Length instance at any point in time, but
any connections other than the first one
will be ignored.

Text Trim Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a TeX
Trim instance at any point in time, but any
connections other than the first one will be
ignored.

Text Lowercase Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a TeX
Lowercase instance at any point in time,
but any connections other than the firs
one will be ignored.

Text Uppercase Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a TeX
Uppercase instance at any point in time,
but any connections other than the firs
one will be ignored.

Text Equals Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a TeX
Equals instance at any point in time, but
any connections other than the first two
will be ignored.

Text Notequal Not required. There is no maximum on
he number of inbound DataFlow
connections that can be made to a Text
Notequal instance at any point in time, but
any connections other than the first two
will be ignored.

Text Add Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text
Add instance at any point in time.

Text Substrng Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

Jul. 19, 2007

US 2007/0168931 A1
30

TABLE V-continued

IRML Primitives and Allowed Inbound Connections
(C) 2002 Rise.

Class Primitive Allowed Connections Inbound

Substrng instance at any point in time, but
any more than two DataFlow input
connections will be ignored.
Not Required. Any number of inbound
DataFlow connections can be made to a
UserDefined Action at any point in time.

UserDefined

0145 There are nine classes of primitives in IRML in the
preferred embodiment of the present invention: (1) user
interface components referred to as "tags”; (2) user interface
components referred to as "input tags'; (3) user interface
components referred to as "container tags' or “containers';
(4) comments; (5) flow labels; (6) decisions; (7) references,
(8) constants and (9) actions.
0146 The first three classes of primitives, the user inter
face tags, input tags and container tags are similar. The
variation in their functions is readily apparent from their
descriptions in Tables I-V and from the detailed discussions
of the control flow and data flow visitation algorithms below.
These user interface components and the relationships
among them define how the interactive representation will
appear to the user, as will be described in regard to the
simulator component. The relationships among the user
interface components represents information that is impor
tant to how the interactive representation will appear to the
user. The definition of a primitives itself is not sufficient to
represent all of the information necessary to explain its
function. The relationships between user interface compo
nents and other types of primitives is often required to fully
describe the interactive representation.

0147 The user interface components in the preferred
embodiment represent a Subset of conventional user inter
face components that are available to developers to program
a proposed application that is represented by an interactive
representation model. These include Such components as
“page,”“form,”“table,”“button,”“text,”“text input' and
“image.” Specifically, in the preferred embodiment, the user
interface components are derived from, and function in a
manner similar to a Subset of the user interface components
defined in Hypertext Markup Language, a standard pro
gramming language commonly known as HTML. HTML is
typically used by programmers to develop Subject applica
tions. Alternatively, the user interface components could be
derived from and function in a manner similar to those
defined by other languages, such as Microsoft Windows,
Visual Basic or the Apple Macintosh OS.

0148. The fourth class of primitives, “comments, pro
vide the user with the ability to annotate the IRM. Com
ments are not processed by the simulator and do not impact
the behavior of the interactive representation. They can be
viewed in the Studio component.

0149 The fifth class of primitives, “flow labels,” allows
users to label data flow relationships between other primi
tives. Their function is similar to that of variable names in
other computer languages, as would be evident to a person

Jul. 19, 2007

skilled in the art. The detailed processing of flow labels is
described in regard to the simulator component of the
present invention.
0150. The sixth class of primitives, “decisions, defines
the conditional execution of other primitives. In the pre
ferred embodiment, decisions function in a manner similar
to that of “IF . . . THEN’ and “CASE Statements found in
conventional computer languages. Alternatively, decisions
could be based on other conditional or branching structures
found in conventional computer languages, or derived from
common behaviors found in conventional computer appli
cations.

0151. The seventh class of primitives, “references.”
allow the reuse of portions of an IRM, or of other IRMs. The
attributes of a reference include a unique identifier for one
or more instances of other IRML primitives elsewhere in an
IRM. Using a reference primitive is similar to copying one
or more instances of primitives but is more efficient, from a
maintainability perspective. For example, common behavior
that occurs in several places within an IRM can be specified
once and referenced from the places where it occurs. This
reference feature of the present invention allows specifica
tion of a single, simultaneous change to the common behav
ior, rather than a serial or sequential change to the behavior
wherever it occurs. In this sense a reference primitive
functions to permit simultaneous, global changes to an IRM.
0152 The eighth class of primitives, “constants.” provide
a method of storing data that is commonly used and is
relatively static in an interactive representation. For
example, days of the week, a company's product types, and
valid Zip-code/State combinations are constants.
0.153 Finally, the ninth class of primitives, “actions.”
define how data will be transformed, derived, stored,
retrieved, sorted or otherwise manipulated by the interactive
representation. In the preferred embodiment, actions include
typical ways that computer systems manipulate data, and are
not specific to any particular computer programming lan
guage. Alternatively, the actions could be closely based on
one or more existing computer languages.
0154) Unlike most known computer software program
ming languages, the preferred implementation of the IRML
of the present invention does not explicitly designate the
order in which actions are executed or user interface com
ponents are rendered. Instead, the order of execution is
inferred by the simulator component of the present invention
from the relationships among primitives, as will be
described in detail below. This advantageous feature of the
present invention relieves the user of the task of specifying

US 2007/0168931 A1

order of execution and significantly simplifies the process of
creating and maintaining an IRM. Alternatively, a language
similar to IRML could be implemented in a form that did
require explicit ordering of execution.
0155 Also unlike most computer implemented software
programs, programs using an IRML in accordance with the
principles of the present invention preferably do not require
the explicit definition of data records separately from how
the data contained in those records is manipulated. For
example, in a typical, conventional computer Software pro
gram a user would need to define to the database Subsystem
or Subroutine that an “invoice record contained an invoice
number, a total amount, a vendor identification,” and, typi
cally, other data. Separately, the user would need to define in
that computer application or program that an invoice record
contained the same data in the code used to manipulate this
data from the database. However, because the simulator
Software component of the present invention, working in
combination with the music Software component, is capable
of storing and retrieving data without reliance on a static
definition of the data contained in a data record, the pre
ferred IRML of the present invention enables the user to
specify only the manipulation of the data and enables
inferring of data record definition from this specification.
This advantageous feature of the present invention relieves
the user of the task of explicitly describing the definition of
data records and relieves the users of the task of ensuring
that the same definition is required for each time the corre
sponding record in the application is manipulated. Alterna
tively, although not preferred, the IRML of the present
invention could be implemented utilizing a separate static
definition of data records.

0156 Additionally, unlike most computer languages, the
preferred IRML of the present invention does not require
explicit designation of the type of data that is manipulated by
the IRM. Instead, all data is considered to be of type “string
and the implementation of certain actions that manipulate
this data include logic to behave in a predictable manner,
regardless of the true type of the data contained within the
“string.” The term “string is well-known to those skilled in
this field. For example, an action named “math:add” will
produce the sum of two numbers if it is supplied with two
strings that contain numbers. If the math:add action receives
either two alphanumeric strings or one alphanumeric string
and a string that contains a number, it will produce the string
“NaN' indicating that one of the inputs is “Not a Number.”
This feature relieves the user from specifying the type of
data being manipulated by the system and eliminates the
need for the user to ensure agreement between the type of
data provided to actions and the type of data that actions
expect and/or require when processing. Alternatively, and
although not preferred, an IRML in accordance with the
principles of the present invention could be implemented in
a form that required explicit typing of data.
0157 The fourth computer application included in the
preferred embodiment of the present invention provides
users with a browser-based program that maintains a record
of the requirements for a subject application, that adminis
ters the implementation of the present invention, maintains
a record of defect reports related to the subject application
and its requirements and maintains a record of task per
formed, or to be performed, by users of the present inven
tion. For convenience this fourth application is referred to as

Jul. 19, 2007

“ION. For purposes of the present invention, administration
of the implementation consists of activities necessary for the
efficient functioning of the overall invention but not includ
ing frequently performed activities Such as creation of the
IRM, presentation of interactive representations or recording
and editing of requirements. For example, administration of
the implementation includes establishing user names and
passwords, creation of files to store IRM information, and
definition of the range of valid values for attributes of
requirements. A detailed discussion of the functions and
features provided by ION is provided under Use of the
Invention below.

0158 ION is also, preferably, written in Java RTM using
the J2EE (Java R 2 Enterprise Edition(R) framework. Pref
erably, ION is constructed utilizing standard industry prac
tices for the construction of web-based applications and,
therefore, its detailed processing can be inferred from the
description of its functions and features described under Use
of Invention below, by an individual skilled in the art.
0159. In operation, the ION program utilizes the music
client to retrieve and update requirements that are stored at
the music server. As alternative embodiments in accordance
with the principles of the present invention, the fourth
Software application could be written in other languages,
Such as for example, C++, C# or Visual Basic. Also, as yet
another alternative, the fourth application could be written
with one of several proprietary web application development
environments, for example the BroadvisionTM or ATG
Dynamo TM brands of environments. Also, as yet another
alternative, ION could be replaced by a commercially avail
able requirements management system, such as Rational
Software's RequistiePro. However, drawbacks of this alter
native embodiment include a lack of integration with other
components of the invention and additional costs required to
acquire, configure and administer a commercially available
requirements management system.
0.160 The fifth software application used in the preferred
embodiment of the present invention, referred to for conve
nience as "simulator, is a computer program that renders
interactive representations of prospective computer applica
tions by accepting requests from the user's browser, inter
preting the IRM, composing an HTML response to the user's
requests and communicating its response to the user's
browser. This fifth application is also, preferably, written in
Java R language. Alternate embodiments of this fifth com
puter software application within the principles of the
present invention could be written in any of the C++, C# or
Visual Basic languages.
0.161 The process embodied by the simulator 78 is
depicted in further detail in FIG.4, and described below. The
simulator processes using a request/response cycle similar to
that of other conventional computer applications that inter
act with standard browsers. During the simulation process,
a user's browser generates several types of requests, includ
ing but not limited to requests to display pages, requests to
display images and requests to process data entered by the
user. These requests are referred to as a “form submit
requests. The simulator, in turn, composes a response in the
form of an HTML page and sends this to the browser. This
request/response cycle is repeated and results in the inter
active representation.
0162 The simulator process starts when the simulator
receives a request, shown at 124 from the user's browser.

US 2007/0168931 A1

Upon receipt of the request, the simulator determines if there
is a valid session, shown at 126, for the specific user that
made the request. If the user does not have a valid session,
the request is redirected at 128 by the simulator component
to the ION component 76 where the user is authenticated to
the system, a session is initiated, and the simulator process
ends. In the present invention, the term “session” refers to a
set of variables stored in the server computer's memory and
that contain information regarding a user and the user's
interactions with the ION and/or simulator components of
the present invention. This information is maintained for a
period between the receipt of an initial request from the
user's browser and the termination of the session when the
user has chosen to log off the system, or when the session
has been terminated due to exceeding the maximum time
allowed for a session.

0163. If the user has a valid session, the simulator process
begins to determine the type of request that has been
received from the user by determining if an image was
requested, as shown at 130. If an image was not requested,
the process continues to determine if a page or decision was
requested, as shown at 132. Otherwise, the process contin
ues to “process image request, as shown at 134. Process
image request retrieves the appropriate image stored with
the IRM and returns it to the browser, and enables the
browser to present this image to the user. Typically, this
variant of request is communicated to the simulator after the
simulator has already serviced requests for one or more
pages. This is because the simulator's response to a page
request may include one or more references to images that
the browser will automatically request from the simulator
upon receipt of the page. After returning an image, the
simulator process ends.

0164. The simulator continues to ascertain the type of
request by determining if a page or decision was requested,
as shown at 132. If a page or decision was requested, the
simulator process evaluates if a specific page was requested,
as described in the next paragraph and shown at 134.
Otherwise it continues to ascertain the type of request by
determining if a “form” was submitted, as shown at 146.

0165 If a page or decision was requested, the simulator
evaluates the request to determine if a specific page was
contained in the request, as shown at 134. If a specific page
was not requested, the simulator interprets this as a request
136 for a list of the pages that exist in the current IRM, and
proceeds to find all pages in the current IRM. It then returns
a list of them to the user's browser and ends processing.

0166 If the simulator had determined that a specific page
or decision was requested at 134, the simulator continues by
determining if the requested page can be found in the current
IRM at 138. If the page cannot be found, the simulator
returns a “page not found' message to the browser at 140
and ends processing. Otherwise the simulator proceeds to
execute the control flow visitation algorithm, shown at 142,
beginning at the specified page or decision. The control flow
visitation algorithm, as will be described in detail below,
proceeds to evaluate the IRM and accumulate HTML to be
returned to the user's browser in the subsequent step, “return
accumulated HTML to browser,” as shown at 144. The
control flow visitation algorithm recursively collects all of
the user interface components that are contained within the
page, and constructs HTML representing these components.

32
Jul. 19, 2007

If a decision is specified, then the control flow visitation
algorithm at 142 first evaluates the decision to identify the
correct page and then proceeds as described above.
0167. After the control flow visitation algorithm has
completed, the simulator proceeds to return accumulated
HTML to the browser and ends.

0168 If a page or decision was not requested at 134, the
simulator continues to ascertain what type of request was
Submitted, by determining if a form was submitted, as
shown at 146. If this is the case, the simulator process
continues to process form Submit, as shown at 148, and
described in regard to FIG. 7. The simulator extracts all
values Submitted inform and packages them into data tokens
at 145 and invokes the data flow visitation algorithm in push
mode at 147. Upon completion of the data flow visitation
algorithm, the simulator determines if a page or decision has
been requested at 149 in connection with the form submit
request and invokes the control flow visitation algorithm at
151 for the page or decision. Upon completion of processing
of the form submit, the simulator returns accumulated
HTML to browser, as shown at 150, and ends processing. If
a form has not been Submitted, the process continues to row
selection from dynamic table requested at 152.
0.169 Process row selection, depicted at 152, from a
dynamic table is a specialized process implemented by the
simulator and that functions to support the IRML primitive
named “dynamic table' that is an advantageous feature of
the best mode of the present invention. A dynamic table is
an IRML primitive that can be used to emulate common
behavior of computer applications wherein a list of data
separated into rows is presented to a user and the user is
allowed to select one of the rows for further processing.
After the dynamic table has been presented to the user on a
previous iteration of the simulator request/response cycle,
the user may choose a row presented in the table that is then
handled by this process. For example, a proposed applica
tion may present a list of orders placed by a client or a list
of reservations made by a frequent flyer. The proposed
application user may then select one of these orders or
reservations for further processing. The corresponding com
puter processing that would be necessary for the Subject
application to understand which order or reservation was
selected by the proposed application user may be compli
cated and not intuitive. This feature of the simulator is
advantageous because it handles this processing automati
cally, by removing the necessity that it be specified in the
IRM. Once the simulator has completed processing of the
dynamic table row request at 154, it returns accumulated
HTML to the user's browser at 156, otherwise it ends
processing at 158.
0170 The simulator 78 repeats the process described
above upon receiving additional requests from the browser,
until the user makes no more requests.

Control Flow Visitation Algorithm
0171 In general, the preferred embodiment of the control
flow visitation algorithm is a computer program based on a
pattern found in conventional Software designs and com
monly known as a “visitor pattern.” It functions to construct
the simulator's response to a request from a browser. This
response appears in the browser in a manner similar to how
it would appear in the completed proposed application. This

US 2007/0168931 A1

response is composed of nested HTML tags, which the
browser uses to present a page to the user. The control flow
visitation algorithm is an automated process that constructs
this nested set of HTML tags based on the IRM.
0172 Understanding the function of the control flow
visitation algorithm is facilitated by understanding that the
IRM is a collection of primitives and the relationships
between and among them. In the context of the control flow
visitation algorithm, important relationships include those
that designate the flow of data, i.e., "dataflow”, those that
designate containment of user interface components, i.e.,
“containment’, those that designate references and those
that designate the flow of the interactive representation, i.e.,
“control flow”. Thus, an IRM can be characterized or
depicted as a series of circles representing primitives and
arrows representing relationships. Such a depiction is pre
sented and described in detail in regard to FIG. 5.
0173 The control flow visitation algorithm begins pro
cessing at the primitive representing the page requested by
the user, shown at 160. The control flow visitation algorithm
begins to accumulate HTML at this point by adding a tag
that represents the beginning of a page into a temporary
space used to accumulate HTML. The simulator process
continues by examining the properties of the page primitive
and appending additional HTML code to the temporary
space based on these properties, including, for example, the
name of the page. The simulator then follows the contain
ment relationships represented by the arrows between the
page primitive and the primitive contained by the page, in
this case, the form primitive shown at 162. The simulator
then appends a tag representing the beginning of the form
into the temporary space. The simulator then examines the
properties of the form primitive and adds additional HTML
codes to the temporary space. Continuing in its recursive
process, it then “visits each of the contained primitives at
164, 166 and 168, in order from left to right, sequentially
processing each primitive and adding more HTML codes to
the temporary space. The primitives depicted at 164, 166 and
168 have no containment arrows leading from them, and
therefore the simulator process recognizes these as “tags.”
When processing tags, the simulator performs several func
tions before appending HTML to the temporary area. For
example, the simulator determines if there are any data flow
arrows pointing into the primitive. If so the simulator begins
another process, called the “data flow visitation algorithm.”
which will be described in detail below. In the case of a
constant primitive, the data flow visitation algorithm follows
the arrow backwards to the constant primitive depicted at
176, where it obtains the value of the constant, and ends
processing. The control flow visitation algorithm can then
complete adding the necessary HTML code to present this
constant value in the text input field specified by the text
input primitive, as shown at 164, and append this HTML
code to the temporary area. This tag processing continues to
process the primitives shown at 166 and 168.
0.174. After having processed all of the contained objects,
in the form primitive, shown at 162, the control flow
visitation algorithm then returns to the form primitive itself.
Because it has encountered this form primitive before, the
control flow visitation algorithm now appends closing
HTML code to the temporary space, indicating the end of the
form. Similarly, the control flow visitation algorithm returns
to the page primitive at 160 and appends the closing HTML

Jul. 19, 2007

code for the page to the temporary area. This temporary area
is then returned to the process that called the control flow
visitation algorithm, and, in general, this accumulated
HTML is returned to the user's browser.

0.175. The interactive representation experienced and
seen by the user for this example is depicted in FIG. 6 In this
example, a page with two text input fields is shown. One
field has a default value equal to the value stored in the
constant, and a button, as depicted in FIG. 6.
0176 While performing the process described above, the
control flow visitation algorithm assigns a unique cross
reference number to a subset of the user interface component
primitives that it encounters. When the simulator is operat
ing in Meta Mode, the control flow visitation algorithm
automatically inserts HTML code into the temporary area
that causes these cross reference numbers, and their accom
panying text to be displayed on the user's browser to the
immediate right of each user interface component.

Data Flow Visitation Algorithm
0177. In general, the preferred embodiment of the data
flow visitation algorithm is a computer program based on the
conventional “visitor pattern, much like the control flow
visitor algorithm. It functions to provide a facility for the
interactive representation to simulate the processing of data
common in proposed applications.
0.178 The data flow visitation algorithm relies on a
feature provided by the Music Client 84, another software
component of the present invention that has been previously
described, in which the IRM being executed by the simulator
is kept in the memory of the computer on which the
simulator and music client are running. The data flow
visitation algorithm processes a Subset of the primitives
contained in the IRM, and which are held in the computer
memory, and appends data records to this memory that
represents the partial results of its computation. With respect
to the preferred embodiment of the present invention, these
data records are referred to as “tokens.” Because they are
intermediate results of the processing of a single request
from the user's browser to the simulator, tokens are only
stored in memory, and the music client is not used to store
them in the music server. Tokens are stored in memory and
associated to specific primitives. This relationship is referred
to as “tokens stored at a primitive.” In the context of the
present invention, to "cache' a token means to store it
temporarily in the computer memory at a particular primi
tive.

0.179 The data flow visitation algorithm begins process
ing when it is invoked by the simulator, either from the
control flow visitation algorithm as previously described or
from the process form submit process 148, shown in FIG. 4.
or the process row selection from dynamic table process
152, also shown in FIG. 4. In the detailed description that
follows, it will be shown that the data flow visitation
algorithm, in several cases, may also be invoked by itself.
This is a common computer programming technique
referred to as “recursion” as would be understood by an
individual skilled in the art. For the purpose of the present
invention, “recursion is defined as “an algorithmic tech
nique where a function, in order to accomplish a task, calls
itself with some part of the task.” This is also the definition
found at the National Institute of Standards and Technology

US 2007/0168931 A1

web site at http://www.nist.gov/dads/HTML/recursion.html.
The preferred embodiment of the simulator utilizes the
advantageous recursion features inherent in the JavaTM lan
gllage.

0180. At the time the data flow visitation algorithm is
invoked it is directed to begin its processing at a specific
primitive in the IRM and it is invoked in one of two modes,
referred to as “push” and “pull, with their meanings implied
as each is individually described in detail below. In general,
the data flow visitation algorithm process moves data, in the
form of tokens, entered by the user during simulation, of the
IRM, as well as causing primitives of the class “action’ to
process the data. The data flow visitation algorithm moves
the data along relationships between primitives called data
flow relationships. Each data flow relationship can be
thought of as an arrow connecting two primitives. When the
data flow visitation algorithm is processing a primitive and
needs to get data from a different primitive from which an
arrow points, the pull mode of the data flow visitation
algorithm is used. When the data flow visitation algorithm
has completed processing a primitive and needs to send this
data along the data flow relationship arrows emanating from
the processed primitive, the push mode of the data flow
visitation algorithm is used.
0181. The push mode of processing of the data flow
visitation algorithm is depicted at 200 in FIG.8. Beginning
the process, the data flow visitation algorithm evaluates
what class of primitive it has been asked to process through
a series of steps depicted at 202, 204, 230, 232 and 234.
Primitive classes are described above. If it cannot identify
the type of primitive it has been asked to process, the data
flow visitation algorithm returns an error at 236 and ends
processing.
0182) If the data flow visitation algorithm has been asked
to process a decision or tag primitive, it temporarily caches
the token at the current primitive, shown at 206. In the
context of the present invention, to "cache' a token means
to store it temporarily in the computer memory that also
contains the IRM. After caching the token, the process ends.
0183 The data flow visitation algorithm may also be
asked to process a flow label primitive at 204. To process a
flow label primitive, the data flow visitation algorithm first
determines if there is a token already cached at the flow label
primitive, at step 208. Since the data flow visitation algo
rithm can be called multiple times in the processing of a
single request from the user's browser to the simulator, it is
possible that the current primitive may have already been
visited by a previous execution of the data flow visitation
algorithm. This initial check performed by the data flow
visitation algorithm when processing flow label primitives
prevents duplicate tokens from being cached. If a token is
already present the process ends, otherwise the token is
labeled with the name of the flow label primitive at 210 and
the token is cached for further processing by another execu
tion of the data flow visitation algorithm at 212. The process
then continues as the simulator examines the IRM to deter
mine all data flow exits at 214. "Data flow exits” in the
context of the current invention are primitives that have data
flow relationships directed to them from the current primi
tive in the IRM. For each of the data flow exits that exist, the
data flow visitation algorithm process 200 is invoked again.
0184 If the data flow visitation algorithm has been asked
to process an input tag primitive, for example at 164 or 166

34
Jul. 19, 2007

in FIG. 5, or a container tag primitive, the simulator checks
to see if a token is currently cached at the primitive at 216.
If not, the data flow visitation algorithm process ends. If so,
the data flow visitation algorithm process removes the token
from the cache and proceeds to find all data flow exits, at
214, as described in detail previously. For example, the
primitives depicted at 164 and 166 both have a data flow exit
to the primitive at 174 in FIG. 5. Typically, this processing
of input tag primitives and containers occurs during the
execution of the data flow visitation algorithm process when
it is called from the process from submit step 145. Because
step 145 has already cached the data submitted by the user,
this process simply has the effect of advancing the tokens to
the data flow exits that are related in the IRM to the primitive
being processed.
0185. If the data flow visitation algorithm has been asked
to process an action primitive at 232, the data flow visitation
algorithm first determines if the action has already been
executed at 220, and if it has the data flow visitation
algorithm ends processing. If the action has not yet been
executed, the data flow visitation algorithm caches the
current token at the action primitive, at Step 222 and
proceeds to find all inputs to the action that have not yet had
tokens stored at the primitive for them, at step 224. Actions
cannot be executed by the data flow visitation algorithm or
simulator unless all of the needed inputs to the action have
been cached at the action primitive by the data flow visita
tion algorithm, therefore, the data flow visitation algorithm
evaluates all data flow inputs at step 226 before continuing.
In the context of the present invention, “data flow inputs'
refer to primitives that have data flow relationships directed
to the current action primitive in the IRM. If no token is
cached for one or more of the data flow inputs, the process
continues to step 228, where the data flow visitation algo
rithm is invoked in pull mode to obtain the needed tokens.
This step 228 is bypassed if all necessary tokens are cached
at the action primitive. The process continues by executing
the action at step 238. Execution of the action is performed
by placing all of the tokens that have been cached at the
action primitive by the data flow visitation algorithm and
invoking a java Sub-routine that handles the actual process
ing of the action. The behavior of each action primitive, i.e.,
the behavior of its specific java Sub-routine, is discussed in
Table II. After the Java sub-routine has completed process
ing, the execute action step 228 continues by collecting the
data token(s) that has(have) resulted from the execution.
This(these) data token(s) are then passed along for addi
tional processing by the find all data flow exits step 214, and
subsequently by another invocation of the data flow visita
tion algorithm, as was previously described in the context of
processing flow label primitives.
0186 If the data flow visitation algorithm has been asked
to process a model reference at 234, the data flow visitation
algorithm first caches the current token at the model refer
ence primitive 242. Similar to the processing for actions
described in detail above, the data flow visitation algorithm
evaluates if all data flow inputs for the model reference have
cached tokens at 244 and 240. If so, the process ends.
Otherwise, the data flow visitation algorithm 246 is invoked
in pull mode for each of the primitives for which no token
was cached. Note that the data flow visitation algorithm does
not cause the primitive referenced by the model reference
primitive to be executed; this invocation is left to the control
flow visitor process described in detail above.

US 2007/0168931 A1

0187. The other mode of processing embodied in the data
flow visitation algorithm is the pull mode, which is depicted
at 300 in FIG. 9. To begin the pull process, the data flow
visitation algorithm evaluates what class of primitive it has
been asked to process through a series of steps depicted at
302, 304,306, 308 and 310. Primitive classes are shown in
the first column of Tables II-V. If it cannot identify the type
of primitive it has been asked to process, the data flow
visitation algorithm returns an error at 312 and ends pro
cessing.

0188 If the data flow visitation algorithm operating in
pull mode has been asked to process a constant primitive at
302, the data flow visitation algorithm examines the constant
primitive and extracts the value(s) stored with the constant
primitive in the IRM, at step 314. These values are then
placed in a token which is returned, at 316, to the process
that invoked the data flow visitation algorithm in pull mode.
The process then ends.

0189 If the data flow visitation algorithm operating in
pull mode has been asked to process a flow label primitive
at 304, the data flow visitation algorithm first determines if
there is a token already cached at the flow label primitive, at
step 318. If there is a token cached, it is returned at 316, to
the process that invoked the data flow visitation algorithm in
pull mode. The process then ends. If there is not token
cached, the process continues by invoking the data flow
visitation algorithm in pull mode at 320 for the data flow
input associated with the current flow label primitive. Note
that IRML connection rules, as detailed in Tables IV and V.
ensure that only one and only one data flow input will be
present. When the data flow visitation algorithm process
invoked at 320 completes, the returned token is labeled with
the name of the data flow label primitive at 322. The data
flow visitation algorithm continues by caching the returned
and named token at the data flow label primitive at 324 and
finding all data flow exits, as was previously described, at
326. The data flow visitation algorithm is then invoked in
push mode at 328. After the data flow visitation algorithm
invoked at 328 completes, the token cached at 324 is
returned to the process that called the data flow visitation
algorithm in pull mode, and the data flow visitation algo
rithm process ends.

0190. If the data flow visitation algorithm operating in
pull mode has been asked to process an input tag primitive
at 306, the data flow visitation algorithm first determines if
a token is cached at the input tag primitive at 330. If no token
is cached, an empty token, i.e., a token containing no data,
is returned to the process that invoked the data flow visita
tion algorithm, depicted at 332. If a cached token is found at
the input tag primitive, it is removed from the cache at the
input tag in step 334, returned to the calling process at 336
and the data flow visitation algorithm process ends.

0191) If the data flow visitation algorithm process oper
ating in pull mode has been asked to process an action
primitive at 308, the data flow visitation algorithm first
determines last primitive “visited' by the process that
invoked the data flow visitation algorithm in pull mode, as
depicted at 336. The last visited primitive's identifier,
referred to as the origin, is stored temporarily at step 336 to
allow the correct token to be returned to the process that
invoked the data flow visitation algorithm in the later step
346, which shall be described in detail below. The process

Jul. 19, 2007

continues by finding all data flow inputs to the action
primitive being processed for which a token has not been
cached, which is depicted at step 338. If the data flow
visitation algorithm determines that all data flow inputs have
not already been cached at 340, it invokes the data flow
visitation algorithm in pull mode for each of the missing
tokens, at 342. After the data flow visitation algorithm
invoked at 342 has returned the necessary token(s), or if the
data flow visitation algorithm had determined that all data
flow inputs had already been cached at 340, the data flow
visitation algorithm continues to step 344. In step 344, the
data flow visitation algorithm determines if the action primi
tive it has been asked to process has already been executed.
If the action has already been executed, the data flow
visitation algorithm, using the identifier stored in step 336,
returns the appropriate token for the origin at step 346 to the
process that invoked the data flow visitation algorithm in
pull mode. If the action has not been executed, the data flow
visitation algorithm process continues to 354, “execute
action.” Execution of the action is performed by placing all
of the tokens that have been cached at the action primitive
by the data flow visitation algorithm and invoking a java
Sub-routine that handles the actual processing of the action.
The behavior of each action primitive, i.e., the behavior of
its specific java sub-routine is discussed in Table II. After the
Java Sub-routine has completed processing, the execute
action step 354 continues by collecting the data token(s) that
has(have) resulted from the execution. This (these) data
token(s) are then passed along for additional processing by
the find all data flow exits step 356, and subsequently by
another invocation of the data flow visitation algorithm in
push mode at 358. After the invocation of the data flow
visitation algorithm at 358 has completed, the process pro
ceeds to return the appropriate token to the process that
invoked the data flow visitation algorithm at 346, as was
previously described.
0.192 If the data flow visitation algorithm operating in
pull mode has been asked to process a model reference
primitive, as depicted at 310, the data flow visitation algo
rithm determines the origin for the request at 348 as previ
ously described in the context of processing action primi
tives. After completing step 348, the data flow visitation
algorithm determines if the current model reference primi
tive has already been executed, and, if so returns the
appropriate token for the origin at step 352, which is
identical to the previously described step 346. The data flow
visitation algorithm process then ends. If the data flow
visitation algorithm determines that the model reference
primitive has not been executed at 350, it proceeds to collect
the necessary inputs to the action at steps 360, 362 and 364.
The processing performed by these steps is identical to that
previously described for steps 338, 340 and 342 respec
tively. After step 364 has been completed, the data flow
visitation algorithm returns an empty token to the process
that had called it in pull mode and ends processing.

Use of the Invention

0193 With reference to FIGS. 10-43 use of the present
invention will be described, particularly in regard to the
preferred embodiment as described above. In this regard it
is the people who participate in the application definition
process by managing requirements, building the IRM, or
validating an IR of the application to whom the following
description of the invention is directed. Also, this description

US 2007/0168931 A1

of how to use the invention is presented in two sections, the
first section directed to the interactive, network online
interface, and the second directed to the interactive repre
sentation model creation and modification interface.

0194 Referring to FIG. 2, the web-based interface appli
cation 76 and simulator application 78 of the present inven
tion is installed on server 90 and communicates with a
browser 70. Each user accesses the interface and/or simu
lator applications to manage the requirements and access the
interactive representation, sometimes referred to as the
'simulation,” for a prospective application. In accordance
with terms accepted in the art, individual screens presented
by the web-based interface are sometimes referred to as
'pages.”

Accessing the Online Interface
0.195 The web interface of the present invention is
accessed in a conventional fashion through a convention
web browser that has access to a server that is hosting the
Software of the present invention. After completing conven
tional log-on procedures, the user will be presented with a
default screen 400, sometimes referred to as a dashboard,
similar to that shown in FIG. 10. A typical screen will have
a main menu, an application selector and a logout button.

Using the Dashboard Screen
0196. The dashboard 400 contains filtered requirement

lists for example “My Requests'402, “My Discussions'404,
and a filtered list of tasks, labeled “My Tasks” and shown at
406 as shown in FIG. 10. The dashboard also contains search
functionality that allows the user to search the requirements
repository for a word, phrase or requirement identifier. The
requirements listed in each of the filter sections on the
dashboard are ordered with the most recently updated
requirement at the top. To view all the requirements in a list,
the name of the list is clicked, for example “My
Requests'402. To collapse the requirements list, the down
arrow link is clicked, for example arrow 408 for the “My
Requirements’ list. A second click on the arrow is used to
expand the requirements list.
0197) The repository may be searched, through use of the
search feature 410 located at the top of the dashboard. The
word, phrase, or identifier for the requirement(s) for the
desired search is typed, and one of the radio buttons 412
(any), 414 (all), 416, (phrase) or 1418 (identifier) that
corresponds to the type of search criteria desired is clicked.
The server will then present a page (not shown) containing
the results of the search.

Creating and Modifying Requirements

0198 There are two ways to create requirements in the
repository through the web-based interface. One way,
described in Adding Requirements in Meta mode below,
allows users to add requirements in context during simula
tion operating in Meta mode. Alternatively, users can add
requirements to the repository by using the Requirements/
Create Requirements main menu option, in conventional
fashion, to create a new requirement. Similarly, users can
modify existing requirements in the repository by using the
Requirements/Modify Requirement main menu option, in
conventional fashion. The screen or page used to create or
modify a requirement is sometimes referred to as the

36
Jul. 19, 2007

“requirement edit page.” In addition to the name and text
description of the requirement, the attributes listed in Table
VI below can be assigned to the requirement. The table also
describes the meaning of the attribute and its allowable
values.

TABLE VI

Requirement Attributes

Attribute Description Allowable Values

Subtype The subtype assigned Selected from a drop-down lis
to the requirement. containing the range of potential

Subtype values established by
the system administrator.

Scope Indicates if the Selected from a drop-down lis
requirement is containing the values
considered in Scope. Undecided, "In Scope and

“Out of Scope.
Release The Release of the Selected from a drop-down lis

prospective containing the releases
application that will established by the administrator.
meet the requirement. A release can only be assigned if

the Scope attribute is set to
Something other than
Undecided.

Requestor The person who Selected from a drop-down lis
requested the containing all the users that have
requirement. access to the current application.

Assigned To The person who is Selected from a drop-down lis
responsible for the containing all the users that have
next workflow step for access to the current application.
the requirement.

Priority The priority or Selected from a drop-down lis
importance of the containing the values established
requirement. by the administrator

Estimate The estimated amount Any alphanumeric text.
of effort required to
implement the
requirement.

Modeled Designates if the True or False, as represented
requirement is by a checkbox.
represented in the
IRM.

Locked Designates if the True or False, as represented
requirement has been by a checkbox.
locked (i.e. marked
read only)

Teting Describes a test Any alphanumeric text.
Scenario scenario that will

verify that a particular
requirement has been
net.

Implementation Describes a Any alphanumeric text.
Notes recommended

implementation
approach.

Creating and Modifying Tasks
0199 Users acting in a project or team management
capacity can use tasks to manage and track the activities and
responsibilities of individuals involved in the process of
collecting and validating requirements for the prospective
application. A task represents a unit of work that may have
a start date, end date, assignee and a list of associated
requirements. There are two ways to create a task, using the
TaskS/Create Task main menu option, where by the user can
create an isolated task that has no association to any require
ment or defect report; and using the Create Task button on
the requirement edit or defect report edit pages, whereby the
user can create a task that is automatically associated to the
requirement or defect report being edited. In either case, the

US 2007/0168931 A1

create task page is presented, which allows the user to record
the name, description and other attributes for the task.
Similarly, users can modify existing tasks in the repository
by using the TaskS/Modify Task main menu option, in
conventional fashion. The screen or page used to create or
modify a requirement is sometimes referred to as the “task
edit page.” In addition to a task name and description, the
following Table VII lists task attributes available in the
preferred embodiment, describes attributes and the range of
acceptable values for these attributes.

TABLE VII

Task Attributes

Attribute Description Values

Action The action that the Selected from a drop-down list
assignee is responsible containing: Implement, Model,
for completing. Review, Release, Resolve, Revise,

Schedule Implementation, Test or
Other.

Status The status of the task Selected from a drop-down list
containing Complete and
Incomplete.

Build The build that the task Selected from a list of all builds
will affect. created by the administrator.

Assigned By The user that assigned Selected from a list of all users
the task. with access to the application.

Assigned To The user that is selected from a list of all users
responsible for with access to the application.
completing the task.

Planned The planned start and Any date in MM/DDYYYY
Start, End end date for the task format.
Actual Start, The actual start and Any date in MM/DD/YYYY
End end data for the task format.
Associations The associations that N/A

exist between the task
and other
Requirements in the
repository

Creating and Modifying Defect Reports
0200. There are two ways to create a defect report, using
the Defect/Create Defect main menu option, whereby the
user can create an isolated defect that has no association to
any other requirement; and using the Create DR button on
the requirement edit page, whereby the user can create a
defect that is automatically associated to the requirement
being edited. In either case, the create defect report page is
presented, which allows the user to record the name,
description and attributes for the defect report. Similarly,
users can modify existing defect reports in the repository by
using the Requirements/Modify Requirement main menu
option, in conventional fashion. The screen or page used to
create or modify a defect report is sometimes referred to as
the “defect report edit page.” The attributes that can be
entered for a defect report are listed in Table VIII, below,
along with the description of the attribute and the range of
allowable values for the attributes.

TABLE 8

Defect Report Attributes

Attribute Description Values

Subtype The subtype for the
defect.

Selected from a drop-down
containing the Subtype values

37
Jul. 19, 2007

TABLE 8-continued

Defect Report Attributes

Attribute Description Values

established by the administrator.
Described in the Administrators
Guide.

Defect The defect status. Selected from a drop-down
Status Note: this is separate containing the Defect Status values

from the requirement established by the administrator.
status attribute. Described in the Administrators

Guide.
Severity The severity of the Selected from a drop down

defect. containing Critical, High, Medium
and Low.

Discovered The code build that Selected from a drop-down
in Build produced the bug. containing a list of builds defined

by the administrator. Described
in the Administrators Guide.

Scope Determines if the Selected from a drop-down
efect fix is in scope. containing In Scope and Out of

Scope
Release In Scope, Selected from a drop-down

etermines which containing a list of releases defined
release will contain the by the administrator. Described in
bug fix. the Administrators Guide.

Reported By The user who reported Selected from a drop-down
he defect. containing a list of users with

access to the current application.
Assigned To The user who is Selected from a drop-down

currently responsible containing a list of users with
or the defect. access to the current application.

Priority The priority associated Selected from a drop-down
o the defect repair containing a list of priorities
effort. defined by the administrator.

Described in
the Administration Guide.

Estimate The effort or time Text Input.
required fixing the
efect.

Modeled Determines if the Checkbox.
proper functionality
has been modeled.

Classifications

0201 Requirements and defect reports can be organized
into appropriate hierarchical classifications for additional
context and organization in conventional fashion. An advan
tageous feature of the current invention is that a requirement
may be designated to more than one classification simulta
neously. Classifications can be used organize lists of require
ments on pages and printed reports, in conventional fashion.

Notifications

0202) Notifications refers to a feature that allows users to
receive email messages when a requirement, defect report,
or task is changed. These email messages, which are auto
matically generated by the invention, include the informa
tion previously recorded for the requirement, the new infor
mation recorded and the user that made the change. A user
may be added to the notification list when creating or editing
a requirement, defect report or task, by selecting the user
names that should be notified from a list of the users with
access to the system that are not currently designated to
receive notifications, and moving it to the list of users that
are currently designated to receive notifications. Users
names may also be moved from the list of users that are
currently designated to receive notifications and moved to

US 2007/0168931 A1

the list of users with access to the system that are not
designated to receive notifications.

Relationships

0203 Users may designate a list of requirements that are
related to a particular requirement by selecting said require
ments from a list of the requirements in the repository in
conventional fashion. Similarly, relationships between and
among requirements, defect reports and tasks can be estab
lished.

Change History

0204. A complete change history is maintained automati
cally for every requirement, change request and defect report
in the repository. To view the change history the user opens
the requirement, change request, or defect report in edit
mode, clicks on the “History” tab. A list of all changes, the
modifying user, and the modification dates is then displayed.
Optionally the Select View drop down to filter may be used
to filter the change history by a particular type of change, for
example, to show only changes to the status attribute.

Discussions

0205 The Discussion feature allows users to converse
regarding a particular requirement, defect report or change
request, in the form of an on-line threaded discussion, as
would be understood by an individual skilled in the art. The
record of such a conversation are stored in the repository so
they can be referred to at any point for decisions, opinions
and general information Submitted by the discussion par
ticipants.

Attachments

0206 Attachments allow you to add supporting docu
ments to the repository. This can be useful, for example,
when a diagram clarifies a requirement or a screen image
Supports a defect report. To add an attachment to a require
ment, or defect report:
0207 1) Click on the Attachments tab.
0208. 2) In the Create New Attachment area, click on
the Browse button.

0209) 3) Pick the attachment to upload from the local file
system.

0210 4) Click on the Attach File button to upload the
file.

0211. Once the file has been uploaded, it is part of the
attachment pool in the repository that contains all the files
that have been uploaded for the current prospective appli
cation.

0212 Alternatively, a requirement can be tied to any file
that exists in the attachment pool instead of uploading the
same file twice. This is useful if the user has a number of
requirements that are Supported by one document.
0213 To attach a requirement to a file in the attachment
pool:

0214) 1) Click on the View List button in the “Create
New Attachment area. The Attachment page will
refresh showing the attachment pool.

Jul. 19, 2007

0215 2) Click on the file name to attach a file in the
pool to the current requirement. The page will refresh
and the file name will be listed in the Current Attach
ments’ list.

0216) If a requirement has an attachment, then an attach
ment icon will be displayed on the Attachment tab. Typi
cally, the icon will appear to be a sheet of paper with a corner
folded over and a paperclip on the top of the paper.
0217. To delete an attachment from a requirement:
0218 1) In the Current Requirements list, select the
Delete checkbox for the attachments to delete.

0219. 2) Click on the Delete button and the checked
attachments will be removed from the current require
ment. Note: if no other requirement is attached to the
deleted file, then it will also be remove from the
attachment pool.

Viewing Requirements, Defect Reports and Tasks
0220 Existing requirements and defect reports can be
viewed in a variety of conventional manners using the
Requirement/View Requirements main menu option Tasks
can be viewed in a similar conventional fashion using the
Task/View Tasks main menu option. The View Require
ments page is organized into two major areas: the filter area
and the list area. The filter area contains a set of conventional
filters that allow the user to view a subset of all the
requirements and defect reports in the repository. The list
area contains the Subset of the requirements or defect
reports. Once any filter, or variety thereof is selected,
pressing the “Go' button will apply the filters and refresh the
list. The format of the requirement list is can be presented in
a variety of fashions by selecting a format from the drop
down list named “Format. The preferred options are
described in Table IX below.

TABLE IX

List Format Options

Format Description

List Organizes the requirement list by classification in a non
hierarchical manner, i.e. all classifications are presented in
a flat list.
Expanding the classification reveals a list of requirements,
change requests, and defect reports, displaying the identifier,
Status, and Name attributes

Detail Organizes the requirements list by classification in a non
hierarchical manner, i.e. all classifications are presented
in a flat list.
Expanding the classification reveals a list of requirements,
change requests, and defect reports, displaying the identifier,
Type, Subtype, Status, Scope, Release, Requestor,
Modification Date, Modifier, Name
and Requirement Text attributes

Hierarchy Organizes the requirement list according to the
classification hierarchy.
Expanding a particular classification reveals all the
children classifications, requirements, change requests,
and defect reports.

Grid Organizes the requirement list by classification in a non
hierarchical manner, i.e. all classifications are presented
in a flat list.
Expanding a classification reveals a list of requirements,
change requests, and defect reports, and allows you to
edit the following attributes: Locked
Assigned To

US 2007/0168931 A1

TABLE IX-continued

List Format Options

Format Description

Priority
Status
Estimate
Subtype
Severity
Scope
Release

Custom and Quick Filters
0221 Custom Filters define a predefined, customizable
set of conditions that can quickly filter the list as desired.
They can be used to apply, delete or edit an existing custom
filter, as well as create a new custom filter. These actions are
accomplished in a conventional fashion and the selection of
particular filter criteria is considered to be within the ordi
nary skill of the art.
0222 Quick filters allow the user to apply and combine
attribute-based filters to the requirement list. When multiple
quick filters are selected, the result set includes all require
ments that meet ALL of the specified filter criteria. For
example, if the Requested By quick filter is set to user1 and
the Status quick filter is set to approved, then all the results
shown in the requirements will be requested by user1 and
approved in status.

Classification Filter

0223 The classification filter allows the user to filter out
requirements that are not contained by the classification
selected in the classification filter drop-down. To filter by
classification the user selects the classification that contains
the requirements desired, and their requirements will be
recursively included in the list.

Search Filter

0224. The search filter allows the user to search the entire
repository or the filtered requirements currently presented on
the list for a word, phrase, or requirement identifier. To
search for a requirement, the word, phrase or identifier of the
requirement desired is typed in the search criteria prompt.
Then the radio button that represents type of search criteria
being used is clicked and the Go' button is clicked to
execute the search. When the page is refreshed, only require
ments that contain the specified search criteria are included
in the list.

The List Area

0225. The list area displays a set of requirements that
meet the filter criteria specified in the Filter Area of the View
Requirements page. The requirements are organized by
classification, and formatted according to the Format drop
down in the filter area.

Expanding and Collapsing Classifications

0226. The default view for the lists area shows a list of
the classifications that contain requirements that meet the
filter criteria. Each classification is collapsed by default. To

39
Jul. 19, 2007

expand a classification and examine its contents, the user
clicks on the (+) symbol to the left of the classification name.
Alternatively, the user may click the Expand All button to
expand all collapsed classifications. Similarly, to collapse a
classification, the (-) symbol is clicked or the Collapse All
button is used.

Deleting Requirements or Defect Reports
0227 To remove a requirement or defect report from the
repository:

0228. 1) Use the Requirements View Requirements
main menu option to display a list of requirements and
defect reports.

0229. 2) Find the requirement to delete in the require
ment list (using the filters if necessary).

0230 3) Click on the requirement text or title to edit
the requirement.

0231. 4.) Use the classification drop-down to select the
"Trash' classification.

0232 Requirements designated to the Trash classification
are automatically filtered out of all requirements lists, so
they are essentially stored in a deleted state. To remove a
requirement out of the trash, open the Trash classification in
the View requirements list, find the requirement to revive,
and use the classification drop down to put the requirement
into a classification other than Trash.

Using Reports

0233. The reporting feature of the preferred embodiment
includes two pre-built reporting templates that the user can
use to produce electronic reports of data contained in the
repository that can be Subsequently printed; the Functional
Specification Report, sometimes referred to as the “FSR’
and the Requirements Inventory Report, sometimes referred
to as the “RIR. These reports are described in detail below.
0234. By default, both reports draw on the data that exists
in the repository at the time report is generated. However,
the user can produce historical reports using by specifying a
previously created version tag, as described below.

Functional Specification Report
0235. With reference to FIGS. 11-14, the Functional
Specification Report contains at least one image of a page
from the interactive representation rendered by the simulator
depicted in FIG. 11 at 502. The image is identical to what a
user would see when executing the interactive representation
using the simulator component, as previously described, in
Meta mode, also as previously described. In addition the
functional specification report contains, with reference to
FIG. 12, a list of the requirements associated with the page
presented at 502 and/or the user interface components
contained therein. Only requirements that are associated to
the pages included in the report will be printed in the FSR.
Additionally and with reference to FIG. 13, the FSR may
optionally contain a Summarization of the control flow
connections that originate from the primitives contained on
the page(s) included in the report at 508. This section
includes the name and an icon indicating the type of the
primitive from which the control flow connection originates
and the name and an icon indicating type of the primitive at

US 2007/0168931 A1

which the control flow terminates. If the control flow ter
minates at a decision, this section of the report shows the
name of the decision, the labels on its branches (e.g., T. F.
0, 1, 2, 3), and the name and an icon representing the type
of the primitive at which the control flow from these
branches terminate. Additionally, the FSR shows the name
of all decision primitives and pages that have contained
primitives with control flow connections terminating at the
page that is the Subject of the report, along with an icon
indicating their type.

0236 Furthermore, with reference to FIG. 14, the FSR
optionally includes a list of all primitives contained on the
page that have data flow connections terminating at them at
510, along with primitives name, an icon indicating the type
of primitive, the data flow label for the connection, an icon
representing the type of the primitive that is the source of the
data flow connection and the name of the primitive that is the
Source of the data flow connection.

0237) Furthermore, with reference to FIG. 14, the FSR
optionally includes a list of primitives contained on the page
that have data flow connections originating from them at
512, along with an icon indication the type of the primitive.
In addition the name of the connecting data flows label, and
the name and an icon representing the type of the primitive
at which the data flow terminates. If the data flow terminates
at a primitive, and that primitive has data flow connections
originating from it, the reports continues listing connection
information, with new primitives starting a new line, until all
primitives that are connected by data flow are encountered
and listed on the report. In the preferred embodiment, the
studio component includes a feature that would prevent
users from creating an IRM that would cause the FSR's
process to experience an endless loop. Furthermore, in
practice, most regions of interconnected dataflow are not
more than 5 levels deep.
0238. These report sections are advantageous features of
the present invention, because they communicate the
requirements in the context of static images extracted from
the interactive representation, as well as control and data
flow connection information that is useful the individuals
that will be designing and programming the prospective
application.

0239). In the preferred embodiment, the FSR is delivered
as an HTML document that can be displayed and printed by
a browser. To generate the FSR:

0240 1) Click on Reports/Generate Reports in the
main menu.

0241) 2) Optionally pick a version tag to produce a
historical report.

0242 3) Select the Functional Specification Report
radio button.

0243 4) Click on the “Customize Report button. The
server will present the FSR parameter screen.

0244 5) Type a Title and a Header for the report.
0245 6) Select the pages to include in the report by
clicking on the page name in the Available list and
clicking on the (>) button to move the selected pages to
the Selected Pages list. Use Ctrl and Shift to select
multiple pages.

40
Jul. 19, 2007

0246 7) Set the Modeled filter to include Modeled,
Not Modeled, or all requirements associated to the
Selected pages.

0247) 8) Optionally pick the Number Elements on
Page Images. This will produce the screen shots in
Meta mode so the requirements can be easily tied to
their associated widget.

0248 9) Optionally pick Show all Requirement
Attributes to include attributes for each requirement
included in the report.

0249) 10) Optionally pick Dataflow On to include a
data flow section for each page in the report.

0250) 11) Optionally pick Navigation On to include
the navigation flow section for each page in the report.

0251)
0252)

12) Select the desired print orientation option.
13) Click on the Create Report button.

Requirement Inventory Report
0253) The Requirement Inventory Report (RIR) contains
the set of requirements that meet filters applied on the report
parameter page. The report is produced in PDF format,
making it easy to distribute. To generate the Requirement
Inventory Report:

0254 1) Click on Reports/Generate Reports in the
main menu.

0255] 2) Optionally pick a version to produce a his
torical report.

0256 3) Select the Requirement Inventory Report
radio button.

0257 4) Click on the “Customize Report button. The
server will present the RIR parameter screen.

0258 5) Use the filter area at the top of the RIR
parameter page to determine what requirements should
be included in the report.

0259 6) Type a Title, Header, and Footer for the report.
0260 7) Optionally elect to Include Table of Con
tents.

0261) 8) Select the print orientation.
0262 9) Select the preferred sorting options.
0263. 10) Optionally elect to also print associated
requirements, change requests, or defect reports.

0264. 11) Click on the “Create Report button.
0265). The server will present the RIR report in PDF
format in a new browser window. FIG. 17 shows a sample
of the RIR content.

Creating Version Tags
0266 Version tags are bookmarks in the history of an
application simulator application. The reporting feature can
use version tags to generate historical reports. To generate a
version tag:

0267 1) Select Reports/FFFRRSVersion Tags from the
main menu.

0268 2) Click on the “Create a New Version button.

US 2007/0168931 A1

0269. 3) Type in a Version Number, Name and
Description.

0270 4) Click on the “Create Button. The server will
attach the current date and time to the version tag.

0271 Reports can now be optionally run against the
version tag to produce historical views of the database.

Simulating the Proposed Application
0272. As the project team iteratively builds the IRM in
concert with the requirement data for a proposed application,
all users with access to the application may view and
validate the simulation for that proposed application through
the online interface. To simulate the proposed application
the menu option Simulate/Simulate from the main menu is
selected. The system will display a browser window con
taining a list of pages in the IRM. Clicking on the name of
a page initiates a simulation session. The interactive repre
sentation of proposed application can be viewed in one of
two modes: Clean or Meta. The buttons at the top of the
simulation page can be used to toggle between Clean and
Meta mode.

Meta Mode

0273 With reference to FIG. 20, The Meta mode shows
the simulated page with Superscript enumerations uniquely
identifying all the visible user interface components in the
simulation area 437. The Meta mode also includes an add
requirement area 435 that allows users to add and view
requirements that describe the simulated page, without need
ing to return to the create requirements page, and a list of the
requirements associated with the visible user interface com
ponents at 439, enumerated with corresponding numbers.

Adding Requirements in Meta Mode
0274 Users can add requirements to the repository using
the Add Requirement section of the Meta mode page. To
add a requirement:

0275 1) Click on the superscript number of the widget
that you want to create a requirement for.

0276 2) Type the name and requirement text for the
new requirement.

0277 3) Optionally fill out the other requirement
attributes.

0278 4) Optionally select the classification that will
contain the requirement.

0279 5) Click on the “Add Requirement button.

Viewing Associated Requirements in Meta Mode
0280 All requirements that are currently associated to the
simulated page or elements on the simulated page are shown
in a list below the simulated page 439. The requirements are
organized into groups labeled according to the element to
which they are associated. FIG. 20 shows the simulation in
Meta mode and highlights the relationship between the
requirements and their associated user interface compo
nents. For example line 432 highlights the relationship
between the list page (with Superscript 1) and the require
ment numbered 1. Similarly, for example, line 433 high

41
Jul. 19, 2007

lights the association between the user interface element
superscripted 13 with the requirement number 13.

Clean Mode

0281. The Clean mode allows users to view the simulated
application in its purest form, and an example screen is
shown in FIG. 21. The buttons 434 and 436 in the upper
right area of the simulation window allow the user to toggle
between clean mode 436 and Meta mode 434. Clean mode
displays the pure prototype HTML without any superscripts
or requirement data. This allows users to get a more realistic
feel for the application being defined.

Simulcasting a Simulation Session
0282. The simulcastor component allows multiple users
to follow a leading user who is exiting an interactive
representation model. Any user may lead or follow a simul
cast session. To start and lead a simulcast session:

0283) 1) Click on Simulate/Simulcast in the main
menu. The server will present the Simulcastor page in
a new browser window.

0284. 2) Pick the subject application to use in the
simulcast session.

0285) 3) Click on the Lead Simulation button. The
server will present a page confirming that that user is
leading the simulcast. Any users following the simul
cast will be listed in the Participants list.

0286 4) Click on the Simulation Home Page' to go to
the page directory for the application that is simulcast
ing. As the lead user clicks through the application, the
users following the simulcast session will see the same
pages.

0287 5) When finished, click on the Stop Leading
button.

0288 To follow a simulation session:
0289 1) Click on Simulate/Simulcast in the main
menu. The server will present the Simulcastor page in
a new browser window.

0290 2) Pick the application that will be simulcast.

0291 3) Click on the Follow Simulation button. The
prototype pages presented to the leader as the leader of
the simulcast session uses the simulation will also be
presented to each follower.

0292 4) During the simulcast session, the simulation
seen as a follower is live, meaning that the user may
use the pages as desired, until the session leader
changes pages. At that point the server will present the
leader's new page to all the simulcast followers.

The StudioTM Interface Software Application
0293. The StudioTM interface allows the user to build the
proposed applications interactive representation that is
iteratively validated through simulation. The Studio client is
started by double-clicking on the Studio icon on the client
computer. When the login window appears, the user may or
must provide the data listed in Table X below, before
beginning a Studio session.

US 2007/0168931 A1

TABLE VIII

Studio Login Window Data

Data Description

Username The users username, must be provided.
Password The user's password, must be provided
Server The hostname or IP address, must be provided.
Port The port on which the music server is running,

must be provided.
SSL A checkbox signifying whether the music server

should be communicated with using the HTTP or the
HTTPS protocols.

Proxy A checkbox signifying whether the music server
should be contacted through a proxy.

Address The hostname or IP address of the proxy server
Port The port on which the proxy server is running

Building the Interactive Representation Model
Adding Primitives

0294 Primitives are the building blocks that allow the
user to rapidly build the IRM. In general, primitives can be
added to the IRM in three different ways, depending on user
preference:

0295) 1) Using the toolbar
0296 2) Using the right-click menu options
0297 3) Using the Insert main menu options

Adding a Primitives from the Toolbar
0298 To add primitives from the toolbar, two options are
available. The drag-and-drop approach allows the user to
drag an element from the toolbar area and drop it at the
desired location in the IRM. The insertion point approach
allows the user to place the insertion point where the user
wants the element to be located on the whiteboard The raised
buttons on the toolbar that represent the element wanted are
simply clicked to add.

Adding a Primitives from the Right Click Menu
Options

0299 To add a primitive from the right click menu:
0300 1) Right click on the location where the new
primitives is wanted.

0301) 2) Follow the New submenu to find the primi
tives that is to be added.

0302 3) Click on the desired primitive. The elements
that cannot be inserted at the selected location will be
disabled in the menu.

Adding a Primitives from the Insert Main Menu
Options

0303 To add a primitive from the Insert main menu
option:

0304 1) Place the insertion point where the user wants
to insert the new primitive.

0305 2) Click on the Insert main menu option.
0306 3) Follow the submenu to find the primitives to
add.

42
Jul. 19, 2007

0307 4) Click on the desired primitive. The elements
that cannot be inserted at the selected location will be
disabled in the menu.

Adding Pages
0308 Pages are special primitives. They are used
throughout the application as references and organizational
structures. Pages are top level primitives: They can only be
inserted directly on the gray area of the whiteboard. The
Page icon is typically an illustration of a sheet of paper, not
shown, in vertical orientation and with a corner folded over.

Adding Primitives to Pages
0309 User interface primitives are pages and any other
primitives as identified in Table II above primitives that can
be contained in a page. User interface primitives are shown
as Toolbar Icons. In general, a user can add a primitive to a
page by following the process described in the adding
primitives section. However, some user interface-tag
primitives, e.g. the select primitive, text input primitive, etc.,
must be contained by the form primitive.

Using the Radio Button Primitive
0310. The radio button primitive allows the simulation
user to pick one value from a set of options. The options are
defined by the first data flow connected to the radio button
primitive. Additionally, the second data flow connected to
the radio button primitive can be used to define the radio
button option that is selected by default when the simulator
presents the page. To create a radio button set:

0311)
0312 2) Define the name of the radio button primitive.
0313 3) Select the layout of the radio button set
(vertical or horizontal).

0314. 4) Click OK.
0315 5) Add the first data flow line leading to the radio
button primitive to define the domain values (i.e.
options) available in the radio button set. This can be
accomplished using a Constant or data flow from
another action (e.g. unpack, session or find). During
simulation, one option will appear in the radio button
set for each data object or element that is available
through the data flow.

0316. If there is only one data flow input for the radio
button primitive, then by default no option will be selected
when the page is displayed in simulation. However, the user
can use a second data flow input to define the default value.
If the value of the second data flow matches one of the
values in the first data flow input, then that value will be
selected be default. If the value of the second data flow does
NOT match one of the values in the first data flow input, then
the second data flow value will be added to the radio button
set and set as the default.

1) Add a radio button primitive into a form.

Using the Select Primitive
0317. The select primitive allows the user to add drop
down lists, also known as selects to the IRM. Like a radio
button primitive, the select primitive allows the simulation
user to pick one value from a set of options. The list of
options available to the simulation user is defined by the first

US 2007/0168931 A1

data flow input connected to the primitive. The second
(optional) data flow input connected to the primitive can be
used to set a default value that appears when the page
containing the select primitive is simulated. To add a select
primitive:

0318) 1) Drop a select primitive into a form.

0319 2) Define the name of the select primitive.

0320 3) Optionally define the size of the select primi
tive. The size attribute determines how many options
are visible simultaneously in the simulation.

0321) 4) Click OK.
0322 5) Add the first data flow input to the select
primitive to define the domain values (i.e. options)
available in the simulated drop-down set. This can be
accomplished using a Constant or data flow from
another action (e.g. unpack, session or find). During
simulation, one option will appear in the drop-down set
for each data object or element that is available through
the first data flow.

0323 If there is only one data flow input line connected
to the select primitive, then by default the first value in the
data flow input (e.g. the first value listed in the Constant)
will be the default value when the drop-down is displayed in
simulation. However, the user can use a second data flow
input to define a different default value. If the value of the
second data flow matches one of the values in the first data
flow input, then that value will be selected be default. If the
value of the second data flow does NOT match one of the
values in the first data flow input, then the second data flow
value will be added to the select options and set as the
default.

Using Button Primitives

0324 Button primitives allow the user to represent
HTML button inputs. They primarily exist to submit form
data and allow page navigation. To create a button:

0325 1) Drop a button primitive into a form.

0326 2) Define the name and the value of the button.
The name will be shown in the Studio application
whiteboard and the Value will be shown on the face of
the button in the simulation. Click OK.

0327 3) Alternatively create navigation flow from the
button to the appropriate page or navigation decision. If
the button does not have outgoing navigation flow, then
when the user presses it in simulation, the parent form
will be submitted but the same page will be repre
sented.

0328 To use an image as the face of a button:
0329. 1) Access the properties of the button to change.
0330 2) Change the Type property to Image.
0331 3) Click on the Set button to set the image source.
0332 4) Pick an image from the local drive and click
open.

0333 5) Click OK in the property editor.

Jul. 19, 2007

Using Conditional HTML Primitives
0334 Conditional HTML (CHTML) primitives allow the
user to add dynamic presentation logic to the interactive
representation. Depending on the single data flow input, the
CHTML displays one of its numerous branches. Similar to
navigation decisions, CHTML primitives can exist in Bool
ean or integer mode. In Boolean mode, the CHTML logic is
based on the existence of incoming data flow. In integer
mode, the CHTML logic is based on the value of the
incoming data flow. ACHTML primitive is in Boolean mode
until a third branch has been added, at which time the
primitive is transformed automatically assumes integer
mode. To create display logic:

0335) 1) Drop a conditional HTML primitive into a
page on the whiteboard.

0336 2) Define a name for the CHTML primitive.
0337 3) Click OK.
0338 4) Add the first branch to the CHTML primitive
by dropping a primitive into the CHTML primitive. A
F will appear in the upper right corner signifying
creation of the False branch of the CHTML.

0339) 5) Drop another primitive into the CHTML
primitive, but outside the boundary of the primitive
contained in the F branch A T will appear in the
upper right corner representing the new True branch.

0340 6) Add a data flow input line to the CHTML that
will determine what branch the CHTML will display
during simulation.

0341 The interactive representation IRM now includes
conditional HTML logic that displays the T branch if the
data flow input contains any value other than 0 (zero).
Otherwise, the F branch is displayed.
0342. The user can turn a CHTML primitive into integer
mode to IRM more than two display alternatives. To create
an integer-mode CHTML primitive:

0343 1) Drop a conditional HTML primitive into a
page on the whiteboard.

0344) 2) Define a name for the CHTML primitive.
0345 3) Click OK.
0346) 4) Add the first branch to the CHTML primitive
by dropping a primitive into the CHTML primitive. A
F will appear in the upper right corner signifying
creation of the False branch of the CHTML.

0347 5) Drop another primitive into the CHTML
primitive, but outside the boundary of the primitive
contained in the F branch. A T will appear in the
upper right corner representing the new True branch.

0348 6) Add a third branch by dropping another
primitive into the CHTML primitive but outside the
existing branch. When this is completed, the branch
labels (in the upper right corner) will change from T.
F to 0,1,2), signifying that the CHTML is now in
integer mode.

0349 7) Repeat step 6 as necessary until CHTML
branches represent all logical display options.

US 2007/0168931 A1

0350) 8) Add a data flow input line to the CHTML that
will determine what branch the CHTML will display
during simulation.

0351. The interactive representation model IRM now
includes display logic that shows one of numerous branches
depending on the VALUE of the incoming data flow. If the
value of the data flow is an integer value corresponding to
one of the CHTML branches, then that branch will be
displayed in simulation. If the value is null, 0 (zero) or
anything else not represented by the CHTML branches, then
the 0 (zero) branch will be displayed by default.

Using Dynamic Table Primitives
0352 Dynamic Table primitives allow the user to create
interactive representations of lists of data, typically data
base-driven lists. In simulation, a dynamic table primitive
appears as a table that contains one row for each data token,
or row, passed to it during the processing of the simulator.
The column names shown in the interactive representation
and the data to be displayed from each of the tokens of the
dynamic table are defined by the primitives placed in the
dynamic table.

Displaying Data in a Dynamic Table
0353. The data tokens that are displayed in a dynamic
table typically come from a several actions related to each
other using data flow. Typically these actions are find and
unpack. action chain. The data flow outputs from the unpack
action usually flow into the primitives contained in the
dynamic table. To create a dynamic table:
0354 Add a dynamic table to a page in the IRM.
0355 Put one primitive into the dynamic table to repre
sent each column that should appear in the interactive
representation.

0356) Connect data flow from an unpack action to one or
more of the primitives contained in the dynamic table.

Linking from a Dynamic Table
0357 Dynamic table columns may be designated as
Sources of control flow, allowing simulation users to click on
a link in a row of data to navigate to another page, as shown
in FIG. 22. When navigation flow is established from a
primitive in a dynamic table, that link will be present on
every row in the simulated table. Dynamic tables also have
a specialized feature that allows the user to IRM simulate the
behavior of a subject application wherein a data token is
selected from a dynamic table. When a user clicks on a link
in a dynamic table, the data token represented by the row
containing the link is passed out of the dynamic table as
output data flow, and used in Subsequent processing.

Using Dynamic Tables for Batched Updates
0358. Furthermore, dynamic tables can be used for
batched updates. This feature allows the user to simulate a
common function of Subject applications wherein a editable
list of data tokens is presented. To add this functionality to
the IRM, the dynamic table must be contained in a form
primitive and the dynamic table receive data flow input from
an unpack action. Furthermore, the primitives contained
within the dynamic table must be of the class user interface
components—input tags. During simulation, when a button

44
Jul. 19, 2007

primitive that is contained in the same form as the dynamic
table is clicked, all data tokens containing the values entered
by the simulation user are submitted to the simulator for
processing. Typically, in the context of using dynamic table
for batched updates, the contained primitives in the dynamic
table are each related to an update action primitive, while the
origin of the set of data tokens is related to the first input of
the update action primitive. The specialized dynamic table
processing in the simulator ensures that the appropriate data
token(s) is(are) updated by the update action primitive. A
typical usage of a dynamic table in this respect is shown in
FIG. 23

Using an Image Primitive
0359 The image primitive allows the user to add images
to the interactive representation. The user can specify the
Source file for the image and connect the image to other
primitives with control flow. To add an image to the IRM:

0360)
0361) 2) Name the image appropriately and set any
other desirable attributes.

0362 3) Click on the Set image button.
0363 4) In the file selection dialog, pick the image file
you want to use in the IRM and press Open.

0364 5) Click OK.
Using Actions

1) Drop an image primitive into a page.

0365. As previously described, action primitives define
how data will be transformed, derived, stored, retrieved,
sorted or otherwise manipulated by the interactive represen
tation. In the preferred embodiment, actions include typical
ways that computer systems manipulate data, and are not
specific to any particular computer programming language.
The example illustrated in FIG. 24 shows the user of a
“text.add action. The "text.add action appends each of its
inputs to each other, resulting in a single String containing
the characters found in its inputs. Its function is similar to
that of a concatenation operator found in conventional
programming languages. In this case the text.add action is
being used to concatenate the first name provided by the
simulation user with a space and the last name, also supplied
by the user during simulation. The inputs to the action in this
example are the are data flow connections labeled firstName
and lastName originating from text input primitives labeled
fnameInput and lnameInput respectively, and the unlabeled
data flow connection from the constant primitive labeled.
When the user simulates the page labeled “My Page, the
page containing the text input primitives labeled finameInput
and lnameInput is presented to the user, whereupon they
may enter values into each of these fields and click the
button primitive labeled “Go Button. After the simulator
completes processing the form Submit that was triggered
when the user clicked the button, the values that were
entered by the user are passed in the form of data tokens to
the text.add action as described above. The text.add primi
tive executes its internal concatenation routine and returns a
data token labeled fullName. Then the page labeled “My
Page' is redisplayed with the computed full name displayed
at the text field labeled “full name.’

Adding Decisions
0366 Decisions define the conditional execution of other
primitives. In the preferred embodiment, decisions function

US 2007/0168931 A1

in a manner similar to that of “IF . . . THEN and “CASE
statements found in conventional computer languages.
Alternatively, decisions could be based on other conditional
or branching structures found in conventional computer
languages, or derived from common behaviors found in
conventional computer applications.
0367 For example, the following behavior could be
represented by through the use of a decision in an IRM:

0368 If the subject application user has a savings
account record, clicking on, the my account link
should cause the page named My Account Home Page
to be displayed by the Subject application, otherwise,
the page named Account Registration should be dis
played.

Using a Decision Connected in Boolean Mode
0369 Decisions process in either Boolean or integer
modes, depending on the number of control flow outputs that
are connected to them in the IRM. A decision with less than
three control flow outputs evaluates in Boolean mode. When
connecting the control flow outputs, the first control flow
connection made by the user designates the path of process
ing if the boolean data token it receives from its input data
flow has the value of "False', whereas the second connec
tion made by the user designates the path of processing if the
data token it receives from its input data flow has the value
of “True.” The example illustrated in FIG. 25 shows a
decision named “Check Login Status' that evaluates based
on whether or not a profile data token is available in the
session as follows:

0370. If there is any profile data object in session, then
the decision evaluates to true and the simulator's processing
follows the T branch, and hence, the My Account Page
constructed by the simulator and returned to the user for
display. If there is no profile data token in session, then the
decision evaluates to false and the simulator's processing
follows the F branch, and, hence, the Login Page is
displayed.

Using Decision Connected in Integer Mode
0371. A decision with three or more control flow outputs
evaluates in integer mode. An integer navigation decision
evaluates on the integer value of the data flow input. If the
value of the data flow input is null or anything other than the
integers specified by navigation flow output labels then the
navigation flow defaults to follow the 'O' branch. The
example illustrated in FIG. 26 shows a decision named
“access level check” that evaluates based on the access
Level data token of the profile data token stored in session,
as follows:

0372) If the access level data token contains a to 0, 1, or
2, then the simulator will present the pages labeled "Access
Level Zero”, “Access Level One' or the “Access Level
Two.' respectively.

Using Flow Filters
0373) Interactive representation Flow filters help control
the whiteboard area by allowing the user to show and hide
various interactive representation primitives and flow lines.
Model filters can be applied to the entire whiteboard using
the options available in the view main menu option. The user

Jul. 19, 2007

can also apply filters to selected primitives using filter
buttons in the toolbar area, with six such buttons included in
the preferred embodiment having the names and functions
listed in Table XI, below. This allows the user to show and
hide flow lines and primitives that directly related to the
selected primitives. To apply the filters available in the
toolbar:

0374 1) Select the primitive(s) to apply the filter to.
The filters act recursively on containers and applies to
all of the contents of the selected container as well.

0375 2) Select the filter button to apply from the six
buttons shown below in Table XI:

TABLE XI

MODEL FILTERS

Button Description

Show all This model filter button exposes all primitives that are sources
inboun for data flow or navigation flow that lead to the selected
primitives primitives.
Show all This model filter button exposes all primitives that are
outbound destinations for data flow or navigation flow that lead from
primitives the selected primitives.
Show all This model filter button exposes all the flow lines that lead to
inboun the selected primitives as well as all the primitives that are the
flows and sources for these flow lines.
primitives
Hideal This model filter button hides all the flow lines that lead to the
inboun selected primitives.
OWS

Show all This model filter button exposes all the flow lines that lead
outbound from the selected primitives as well as all the primitives that
flows and are the destinations for these flow lines.
primitives
Hideal This model filter button hides all the flow lines that lead from
outbound the selected primitives.
flows and
primitives

Collapsing and Expanding Containers
0376. As an interactive representation model grows, the
value of whiteboard real estate increases. Collapsing and
expanding containers allows the user to minimize the
amount of whiteboard space occupied by the user's pages.
To collapse a container:
0377 Double click on a container name. This collapses
an expanded container. Collapsed containers only display
their italicized primitive name. The contents of the container
and the flow lines leading in and out of the container are
hidden from the whiteboard view.

0378 Double-clicking on the italicized name of a col
lapsed container will expand the container to its previous
state, showing all of its contents.

Hiding Interactive Representation Primitives
0379 Similar to collapsing and expanding containers,
any interactive representation primitives can be suppressed
from the whiteboard view using the show and hide options
available in the right-click menu. To hide a primitive, right
click on the element to hide and select Hide from the menu
options. Whenever a container directly contains a hidden
primitives, the container name becomes italicized. Double
clicking on an italicized primitives name exposes its hidden

US 2007/0168931 A1

relationships. Additionally, the user can select Show All
from the View main menu option to show all hidden
primitives across the entire whiteboard.

Finding Primitives in the Whiteboard
0380 The user can search the whiteboard area to find
primitives based on name. To find an element in the white
board:

0381
0382 2) In the find dialog, enter the text to search for.
0383 3) Click OK to search for a primitives name that
contains the given text.
0384 4) Optionally click F3 to find next.

1) Press Ctrl-F or select Find from the edit menu.

Locking Primitives
0385) When a primitive is locked, the user can view the
primitives and its properties, but can't modify it. The user
who locked the primitives is allowed to unlock it. However,
if another user locked the primitives, then only that may
unlock it. Locking and unlocking are applied recursively to
containers. Therefore, if a user locks a container primitive,
for example, a table, form, or page, all the contents of that
container are also locked. The same rule applies to the
unlock operation except that primitives that were locked by
another user will remain locked. To lock a primitive:

0386 1) Right click on the primitive to lock.
0387 2) Select Lock from the context menu.
0388 3) To unlock a primitive:
0389 4) Right click on the primitives to unlock.
0390 5) Select “unlock form the context menu. If
unlock is not available, then the primitives was prob
ably locked by another user.

Selecting Multiple Primitives
0391) Selecting multiple primitives allows the user to
apply most whiteboard operations, for example, copy, move
and hide, or to edit primitives properties simultaneously. To
select multiple primitives on the whiteboard, the user can
use the lasso or Ctrl-left-click. Use the lasso to select
multiple primitives by left clicking on the gray area of the
whiteboard and dragging the mouse to create a rectangle that
contains the desired primitives. Alternatively, hold down the
Ctrl key while clicking on the primitives to be selected.

Centering on Pages
0392 The user may quickly scroll the whiteboard coor
dinates to focus on a particular page by using the center on
feature. To center on a page:
0393 1) Right click on the page name in the project
browser page list.
0394 2) Select center on from the context menu.

Simulating Pages from the Studio Client
Application

0395. The user can use the Simulate toolbar button or
the right click menu to simulate a particular page from the
Studio application. To use the toolbar:

46
Jul. 19, 2007

0396 1) Select the page to be simulated by clicking on
the bar, colored blue in the preferred embodiment, at
the top of the page in the whiteboard.

0397), 2) Click on the Simulate button in the toolbar
area. The selected page will be simulated on the user's
browser.

Using the Property Editor
0398 Properties allow the user to control the details of
any primitives. The property editor allows the user to adjust
these properties, making the interactive representation
model more realistic. The property editor pane is displayed
on the right side of the Studio application window. The user
can drag the left border to adjust the width. When a
primitives in the whiteboard is selected, the properties for
that element will be displayed in the property editor pane. If
the user would rather use the property editor pop-up, F7 is
pressed to toggle between pane and pop-up modes. In
pop-up mode, the user can access the properties for a
primitive by selecting the Properties option from the right
click menu or by shift-right-clicking on a primitives, as
shown in FIG. 37.

Using the Project Browser
0399. With reference to FIG. 38, the user can use the
project browser to access the list of requirements and the
interactive representation model pages for the current appli
cation. The tabs at the top of the project browser can be used
to switch between lists. The user can use F5 to toggle the
project browser between on and off. Common activities
executed in the project browser area include:
04.00
0401)
0402
0403)
04.04

1) Simulating a Page
2) Centering the whiteboard on a page
3) Associating requirements to primitive
4) Finding requirements associated to a primitive
5) Filtering the requirements list.

Simulating a Page from the Project Browser
0405
0406)
0407
04.08
04.09 Centering the Whiteboard on a Page from the
Project Browser To center the whiteboard on a particular
page:

0410
0411) 2) Right click on the page to be centered
0412 3) Select Center On from the right click menu

To simulate a page in project browser:
1) Click on the Pages tab in the project browser
2) Right click on the page to be simulated
3) Select Simulate from the context menu.

1) Click on the Pages tab in the project browser

The whiteboard will automatically scroll to center on the
selected page.

Associating Requirements to Primitives
0413. A requirement is typically associated to a primitive
when the requirement describes a needed or desired behav
ior of the subject application that the primitive represents in
the interactive representation model. This association con

US 2007/0168931 A1

trols the presentation of requirements in the simulation Meta
mode as well as their inclusion and placement on the
functional specification report. This association is reflected
on both the Meta mode page and the functional specification
report through the use of automatically generated SuperScript
numbers, as was previously described. To create an asso
ciation between a requirement and a primitive:

0414. 1) Click on the Requirements tab in the project
browser

0415 2) Click on the desired requirement, using the
(+) symbol to expand the parent classifications if nec
essary.

0416) 3) Right click on the primitive to be associated
with the requirement.

0417 4) Select Associate from the context menu.
0418 To remove an association between a requirement
and a primitive:

0419 1) Click on the Requirements tab in the project
browser

0420 2) Click on the desired requirement, using the
(+) symbol to expand the parent classifications if nec
essary.

0421 3) Right click on the primitives to be removed
from association with the requirement.

0422 4) Select Associate from the context menu.

Finding Requirements Associated to a Primitives
0423 To find the requirements associated to a particular
primitive:

0424)
browser

0425 2) Check the checkbox labeled “for selected
objects only'

0426) 3) On the whiteboard, click the primitives of inter
est

1) Click on the Requirements tab in the project

0427. The requirements tab will only display the require
ments associated to the selected primitives. FINDING
PRIMITIVES ASSOCIATED TO A REQUIREMENT
0428 To find the primitives associated to a particular
requirement:

0429
browser

1) Click on the Requirements tab in the project

0430) 2) Right click on the requirement that of interest
0431 3) Pick Find Associated from the context menu.
0432. The whiteboard will highlight and center on the

first primitives that is associated to the requirement. If there
is more than one primitives associated to the selected
requirement, pressing F3 will find find next.

Filtering the Requirements List
0433. The filters under the List main menu option allow
the user to filter the requirement list according to the
Modeled attribute. To filter out requirements that are not
modeled:

47
Jul. 19, 2007

0434 1) Click on List in the main menu
0435 2) Uncheck the “not modeled' option
0436 To filter out requirements that are modeled:
0437 1) Click on List in the main menu
0438 2) Uncheck the “modeled' option
0439 While the present invention has been described in
connection with what is presently considered to be the most
practical and preferred embodiments, it is to be understood
that the invention is not to be limited to the disclosed
embodiments, but to the contrary, is intended to cover
various modifications and equivalent arrangements included
within the spirit of the invention, which will be set forth in
claims in a corresponding utility application and to be
accorded the broadest interpretation so as to encompass all
Such modifications and equivalent structures.

What is claimed is:
1. An interpreted interactive representation modeling

apparatus that is executable in an interactive graphical user
interface, the apparatus comprising:

a user interface component displayed in the interactive
graphical user interface, where the user interface com
ponent includes at least two visible branches, where the
visible branches are visible at least during configuration
of the instruction for the interpreted interactive repre
sentation modeling language, wherein a Boolean con
dition is associated with at least a first branch and a
second branch of the at least two visible branches,
where the first branch is associated with a first state of
the Boolean condition, and where the second branch is
associated with a second State of the Boolean condition,
where the association of the Boolean condition is
visibly displayed in the interactive graphical user inter
face at least during configuration of the instruction; and

an interactive component responsive to user interaction
during execution of the instruction, where the interac
tive component monitors data flow inputs to the inter
active graphical user interface for a selection of a state
of the Boolean condition, wherein the interactive com
ponent is configured to execute at least a first execut
able instruction associated with the first branch, where
the first executable instruction is activated upon the
detection of a selection of the first state of the Boolean
condition such that the first executable instruction is
conditionally executed, and wherein the interactive
component is configured to execute at least a second
executable instruction associated with the second
branch, where the second executable instruction is
activated upon the detection of a selection of the second
state of the Boolean condition such that the second
executable instruction is conditionally executed.

2. The apparatus as defined in claim 1, wherein the
interactive graphical user interface is rendered by a browser.

3. The apparatus as defined in claim 1, wherein the first
state associated with the first branch and the second state
associated with the second branch are automatically deter
mined upon configuration of the instruction.

4. The apparatus as defined in claim 1, wherein the first
executable instruction and the second executable instruction
are programmed via interaction with the interactive graphi
cal user interface.

US 2007/0168931 A1

5. The apparatus as defined in claim 1, wherein the first
executable instruction and the second executable instruction
comprise hypertext markup language (HTML) statements.

6. The apparatus as defined in claim 1, wherein the first
state is false and the second state is true.

7. The apparatus as defined in claim 1, wherein the
interactive component is further configured to execute a
predetermined one of at least the first executable instruction
or the second executable instruction by default when the
interactive component responsive to user interaction does
not detect a data flow input corresponding to a selection of
a state of the Boolean condition.

8. The apparatus as defined in claim 1, wherein the
interactive component is further configured to enter an
integer mode upon the adding of a third branch, the first
branch is associated with a first integer value of an integer
mode condition, the second branch is associated with a
second integer value of the integer-mode condition, the third
branch is associated with a third integer value of the integer
mode condition, and wherein the association of the integer
mode condition is visibly displayed.

9. An interpreted interactive representation modeling
apparatus, the apparatus comprising:

a user interface component displayed in an interactive
graphical user interface, where the user interface com
ponent includes at least three visible branches, where
the visible branches are visible at least during configu
ration of the instruction for the interpreted interactive
representation modeling language;

an integer-mode condition associated with at least a first
branch, a second branch, and a third branch of the at
least three visible branches, wherein:
the first branch is associated with a first integer value of

the integer-mode condition;
the second branch is associated with a second integer

value of the integer-mode condition;
the third branch is associated with a third integer value

of the integer-mode condition;
wherein the association of the integer-mode condition

is visibly displayed at least during configuration of
the instruction;

48
Jul. 19, 2007

an interactive component responsive to user interaction
during execution of the instruction, where the interac
tive component monitors for a selection of a value for
the integer-mode condition, wherein the interactive
component is configured to activate at least a first
executable instruction associated with the first branch
upon detection of a value corresponding to the first
integer value of the integer-mode condition, wherein
the interactive component is configured to activate at
least a second executable instruction associated with
the second branch upon the detection of a value cor
responding to the second integer value of the integer
mode condition, wherein the interactive component is
configured to activate at least a third executable instruc
tion associated with the third branch upon the detection
of a value corresponding to the third integer value of
the integer-mode condition.

10. The apparatus as defined in claim 9, wherein the
interactive graphical user interface is displayed via a
browser.

11. The apparatus as defined in claim 9, wherein the first
executable instruction, the second executable instruction,
and the third executable instruction are programmed via
interaction with the interactive graphical user interface.

12. The apparatus as defined in claim 9, wherein the first
executable instruction, the second executable instruction,
and the third executable instruction comprise hypertext
markup language (HTML) statements.

13. The apparatus as defined in claim 9, wherein the first
value corresponds to 0, the second value corresponds to 1,
and the third value corresponds to 2.

14. The apparatus as defined in claim 9, wherein the
interactive component is further configured to execute a
predetermined one of at least the first executable instruction,
the second executable instruction, or the third executable
instruction by default when the interactive component
responsive to user interaction does not detect a data flow
input corresponding to a value for the integer-mode condi
tion.

