
(19) United States
US 2004.0024720A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0024720 A1
Fairweather (43) Pub. Date: Feb. 5, 2004

(54) SYSTEM AND METHOD FOR MANAGING
KNOWLEDGE

(76) Inventor: John Fairweather, Santa Monica, CA
(US)

Correspondence Address:
Kendall I. Thiessen
Gibson, Dunn & Crutcher LLP
Suite 4100
1801 California Street
Denver, CO 80202 (US)

(21) Appl. No.: 10/357,286

(22) Filed: Feb. 3, 2003

Related U.S. Application Data

(60) Provisional application No. 60/353,487, filed on Feb.
1, 2002.

Publication Classification

(51) Int. Cl. G06F 17/00; G06N 5/02;
G06F 17/30; G06F 7/00

(52) U.S. Cl. ... 706/46; 707/3

(57) ABSTRACT

An intelligence system is provided that is comprised of the
following basic components. First, a System for converting
incoming unstructured data into a well described normalized
form. Since the incoming data is multimedia and may
represent Some data type for which Support is provided by
the underlying OS platform, this normalized form include
the ability to fully describe and manipulate arbitrarily com
plex native or non-native binary Structures and collections.

This Support is preferably provided by a dedicated mining
language tied intimately to a System ontology. Second, a
System for accessing and manipulating data held either in
memory or in persistent Storage in its normalized binary
form So that Small executables, or widgets, within the
System can freely and effectively operate on data types they
have never before encountered simply by knowledge of the
type of data involved. Third, an “ontology or world model
that represents and contains the items and fields necessary
for the target System to perform its function. The ontology
would preferably fully specify the form of the normalized
binary data. Fourth, a memory System, tied to the ontology,
which defines the Structure of and access to any persistent
Storage containers that are required to contain the data. Fifth,
a memory management System for splitting incoming data
into those portions to be directed to each container. Sixth, a
query System for querying each container to retrieve por
tions of Such a composite object. Preferably, all database
tables and queries are auto-generated from the ontology,
thereby eliminating the role of the conventional Database
Administrator (DBA). Seventh, a UI to display and interact
with data within the system. In the preferred embodiment,
the UI is automatically generated and its behaviors auto
matically handled by the underlying Substrate thus removing
this programming burden from the developer (thereby
largely eliminating the role of the GUI programmer).
Finally, a memory System that forms collections of datums,
and enables manipulation and eXchange of these collections
both within the local machine as well as across the network.
In the preferred embodiment, Such collections Support the
ability to attach arbitrary tags or annotations to the binary
data they contain without in any way altering the binary
representation itself. Additionally, the System Supports the
concept of either null or dirty (i.e., has been changed locally)
datum.

US 2004/0024720 A1

SYSTEMAND METHOD FOR MANAGING
KNOWLEDGE

BACKGROUND OF THE INVENTION

0001. Historically, a major problem with designing com
plex knowledge representation Systems has been the diffi
culty of acquiring the necessary data in a structured form
that algorithms representing the Specific application can
process, and thus produce useful results. The traditional
Solution has been to restrict Such Systems to applications
where the data is available within a database, normally
relational and accessed using Structure Query Language
(SQL). By applying these restrictions, the System design
problem becomes tractable, and many useful but limited and
localized calculations can be performed.
0002. In the overwhelming majority of cases, data gets
into Such a database by manual data entry. This requires a
highly Structured environment where an operator is led
through the process of entering all the necessary fields of the
database tables by a user interface (UI) component that has
been tailored to the particular application, and which thus
embodies the know-how necessary to ensure correct data
entry.

0003. In recent years, however, technologies such as B2B
Suites and XML have emerged to try to facilitate the
eXchange of information between disparate knowledge rep
resentation Systems by use of common tags that may be used
by the receiving end to identify the content of Specific fields.
If the receiving System does not understand the tag involved,
the corresponding data may be discarded. These Systems
Simply address the problem of converting from one nor
malized representation to another, (i.e., how do I get it from
my relational database into yours?) by use of a tagged,
textual, intermediate form (e.g. XML). Such text-based
approaches, while they work well for simple data objects,
have major shortcomings when it comes to the interchange
of complex multimedia and non-flat binary data. At a
minimum, an interchange language designed to describe and
manipulate binary data must be implemented, but current
approaches fail to take this crucial Step. Systems that operate
in a domain where the Source and destination have explicit
or implicit knowledge of each other, or in which endpoints,
to facilitate and enable interchange, comply with a Standard
ized exchange format, we shall call Constrained Systems
(CS). The vast majority of Systems in existence today are
constrained Systems. Despite the buZZ associated with the
latest data-interchange techniques, Such Systems and
approaches are totally inadequate for addressing the kinds of
problems faced by a System, Such as an intelligence System,
which attempt to monitor and capture Streams of unstruc
tured or Semi-structured inputs, from the outside World and
derive knowledge, computability, and understanding from
them.

0004. Once the purpose of a system is broadened to
acquisition of unstructured, non-tagged, time-variant, mul
timedia information (much of which is designed specifically
to prevent easy capture and normalization by non-recipient
Systems), a totally different approach is required. In this
arena, many entrenched notions of information Science and
database methodology must be discarded to permit the
problem to be addressed. We shall call systems that attempt
to address this level of problem, 'Unconstrained Systems

Feb. 5, 2004

(UCS). An unconstrained system is one in which the
Source(s) of data have no explicit or implicit knowledge of,
or interest in, facilitating the capture and Subsequent pro
cessing of that data by the System.

0005 Nowadays, the issue faced by any unconstrained
system is not the lack of data but rather the flood of it.
Digital information, mountains of it, is available every
where. It floods the Internet (whose information contents by
some estimates doubles every few months now), it fills the
airwaves as phone calls, radio and Video transmissions,
e-mails, faxes, dedicated data feeds, databases, data Streams,
chat rooms, corporate networks, banking Systems, peer-to
peer networks, bulletin boards, web pages, Stock markets,
telexes, etc. The problem now is that no System can handle
the torrent of data that flows through the digital world we
have created. The best that can be achieved is to Sample
Some of the current as It washes by, and look for items of
interest or significance within it. Even a Small Sample of
Such a stream represents a torrent that would overwhelm a
conventional constrained System within Seconds.
0006 The basic configuration of an intelligence system is
that digital data of diverse types flows through the intake
pipe and Some Small quantity is extracted, normalized, and
transferred into the System environment and persistent Stor
age. Once in the environment, the data is available for
analysis and intelligence purposes. Any intercepted data that
is not sampled as it passes the environment intake port, is
lost.

0007 The information to be monitored is not just simple
text, it is multimedia Sounds, images, videos, compound
documents etc. It is unstructured. It is multilingual. Most of
what occurs in the World, does not do So in English.
Information quality varies widely. Much of what is trans
mitted is garbage, wrong, or simply represents rumor or
uninformed opinion. Knowledge of the Source of the infor
mation must dictate its interpretation. The conventional
assumption that the value of a field is exact and can be Stored
in a Single box or cell Simply does not apply. Even if the
captured data can be regarded as absolute, its interpretation
is a matter of opinion among those analysts using the
System, and thus its value can be modified depending on the
domain or perspective of the user of the data.

0008 Most of the information available on the web is
low-grade, unreliable information placed there to further
Somebody's agenda, not to provide truth. Indeed, most
reliable or high grade open-Source information comes from
publishers of one Sort of another, and these people have little
or no incentive to place Such information on the web given
the lack of any workable busineSS model for making money
from information So posted. As a result, worthwhile infor
mation must be intercepted, or for open-Source data mined,
from a multitude of other Sources, many designed to make
Such extraction more difficult in order to preserve the
publisher's intellectual property. Thus, Lexis/Nexus for
example has thousands of high grade databases totaling
more than 25 times the total data content of the web at this
point, which can be accessed and Searched (in a limited
manner) only via a Subscription account. News and report
ing Services all have different delivery formats, equipment,
and media. An intelligence System must accommodate this
diversity of Sources as well as providing for custom, inter
cepted, and private feeds available only to a specific orga

US 2004/0024720 A1

nization. Crawling the web, while enlightening, and cer
tainly an important capability, is not a complete answer to
intelligence, to in-depth research and analysis, or to the
extraction of meaning. A datum coming from a given Source
must maintain a reference to that Source Since this will later
determine the reliability placed on that datum should it
contribute in any way to an analytical conclusion.
0009. To further complicate the issue of data sources, in
intelligence applications, the identity and reliability of the
perSons involved in an intercept is frequently unknown or
questionable. Additionally, the true identity and nature of
entities referred to via key phrases or aliases in the intercept
may be unknown, and may indeed be the Subject of the
analysts investigation. Even known entities are frequently
referred to via aliases. Thus, to perform analysis the System
must Support the concept of partially resolved references to
data. That is, aliases to entities or things that have not yet
been assigned to a known datum in the System. Thus, if the
participants in an exchange refer to the client, it becomes
important to establish who that client is. However, since the
word 'client may appear in a myriad of different contexts
where it actually refers to completely different entities, we
must extend the concept of a Source to incorporate the
concept of a Source domain identified either by the perSons
involved in the intercept, or by other means. Within this
domain the word client is assumed to correspond to a
given entity, possibly still unresolved. Outside this domain
the word will have other connotations. The underlying
architectural Substrate must provide for and Support this type
of ambiguity
0010. In a UCS, information is transitory. Once it has
been transmitted, intercepted, and has flowed through the
pipe, it is gone. It cannot be retrieved later from a web page
or database engine. Because the information is transitory, it
is essential that any monitoring System be able to identify it
as important as it passes through the System intake pipe So
that it can be Selectively captured from the Stream for
Subsequent analysis. Due to the huge Volumes involved, not
all data can be Stored persistently and So reliable and
automated Sampling of the passing Stream is a prerequisite.
Moreover, the answer to any given question varies with
time, and Spotting these variations and the patterns they
represent is the essence of intelligence. Again a conventional
database is ill-Suited to the demands of Such time-variant
data.

0.011 Rich multimedia data is full of subtleties, contex
tual overtones, and fine detail that cannot be captured as
fields, thus it is essential that data captured for Storage and
analysis be preserved in its entirety. The integrity of the
original data must not be compromised by the conventional
process of Shredding it into Standardized relational fields. To
do So may remove the most important ingredient of the data.
On the other hand, without some kind of field-like parti
tioning, no useful computation can be done, So a System
must do both. That is, the data may be stored multiple times
in different forms and containers. Furthermore, in multime
dia data, each aspect of the data is best Suited to analysis,
Search, Storage, and distribution by different containers.
For example large bodies of text are best handled and
Searched by inverted file type text engines whereas fixed
numeric or descriptive fields rightly belong in a relational
database. Image, Video, maps, Sounds, and other multimedia
fields must be Stored, distributed and Searched using

Feb. 5, 2004

engines, processes, and hardware that are best Suited to the
needs of the particular type, and thus the System must
Support a variety of containers targeted at different media
types and processes. A fingerprint or face recognizer capa
bility obviously belongs in a different container than rela
tional fields relating to Specific fingerprints or imageS. To
attempt to force all Such tools into the framework of a
common container, presumably a relational database, would
be cost-prohibitive and extraordinarily inefficient.
0012 Having taken the step of dispersing aspects of a
given data item to the various containers that most effec
tively deal with those aspects, it becomes obvious that the
System must now have the ability to Seamlessly and trans
parently re-assemble those aspects back into the appearance
of a unified whole for presentation to the user. Furthermore,
the System must now provide a unified framework for
querying the Various aspects according to the querying
concepts that make Sense for the aspect involved, reassem
bling the results of various aspect Specific portions of a
query into a unified hit-list of results. Thus, for example, a
fingerprint query would be specified and then routed to an
entirely different container and engine than would other
aspects of the same query Such as the time period involved,
or the physical region within which the Search is to be
constrained. These latter two aspects should be routed to
relational and geographic container/query engines respec
tively. The need for a unified and extensible, distributed
query language becomes readily apparent, as does the need
for an auto-generated UI environment capable of Smoothly
Stitching together the various components of whatever data
is finally retrieved.
0013 The nature of the intelligence problem is that most
of the time you do not know what you are looking for until
you find it, often much later. However, when you have
identified the Significant aspect, it Suddenly becomes nec
essary to do a detailed analysis of all past data to examine
the newly Significant aspect to see if there are similarities or
trends. Thus, the data-model for the system is subject to
continuous change on-an analyst-by-analyst basis as they
pursue divergent lines of inquiry into finding the key to Some
event of interest. What is needed, then, is a System designed
for intelligence purposes that accommodates this behavior.
Again, conventional Systems fail to address this dynamic
data-model issue.

0014 Supposing one could automate the capture of large
quantities of the digital world's data Stream and deliver it to
many analysts whose task was to Search the Stream for
Significance and meaning, Still the Volume of data would
overwhelm all but the largest installations. This is because
human beings have evolved Sensors and mental apparatus to
deal with the unique characteristics of information as it is
presented to us in the analog World in which we live. In this
World, the relevance of information generally falls off expo
nentially with distance from the observer (both in space and
time), and as a consequence all of our Senses exhibit a
similar falloff. We take advantage of this fact to limit the
amount of data we need to process. Furthermore, the same
is true of our minds; that is, we are able to apply logical
thought only to the one thing that is our current focus. Our
Senses compete to filter everything we observe (based for the
most part on distance or apparent magnitude) So that the
most important item is brought to our attention at any given
time for processing. When asked to give a description of

US 2004/0024720 A1

what has happened to us in the last few minutes, each
observer will give a different answer, and that answer
actually corresponds to a listing of the mental models that
were triggered by the focus, and the order in which they
occurred. This frequently yields a very different history to
what occurred in actual reality, and accounts for the noto
rious unreliability of most witnesses.
0.015 Unfortunately, in the digital domain, there is no
exponential relevance decay phenomenon. Events occurring
anywhere in the World may be as relevant to us as those
occurring nearby. The analyst is forced to consider anything
that may be potentially relevant regardless of Spatial, tem
poral, or conceptual proximity. The result, given the Volume
of data, is information overload. Moreover, digital informa
tion environments Such as the web are designed to capture
and lead the focus of the perSon using them, primarily to
garner advertising dollars. Thus, we have all experienced the
problem of Searching for the answer to Something on the
web, only to be forced into the focus of the web sites we look
at, with the result that eventually, hours later we give up,
having failed to find what we were looking for, or more
likely, having forgotten entirely what it was in the first place.
Again, this effect occurs because the digital domain is not
constrained by the same falloff law that our analog World is.
Each navigation Step may be arbitrarily large, and our minds
are poorly equipped to maintain focus, and thus Search for
meaning or relevance in this environment. Thus, a primary
goal of any UCS must be to help the analyst maintain focus
and empower him to direct his inquiries based on his
analytical goals (see Patent ref. 8). To do this, the System
must gather and pre-filter information to present only the
most relevant portions while accentuating and visualizing
the relationships between adjacent data (spatially, tempo
rally, or conceptually) So that the Sensors and mental models
we all use can be applied to best advantage to analyze that
data for patterns, trends, or anomalies. Such pre-filtering
must be completely tailored on a per-analyst basis Since the
filters must be digital representations of the mental models
that particular analyst has built up in order to categorize and
thus process events.
0016. In effect, such a UCS must enable the analyst to
construct or Specify, over time, a digital alter ego which he
empowers to be his representative in the torrent of informa
tion passing through Such a System, and which is authorized
to Some level to filter and pre-process information, thus
leaving the analyst free to make the non-linear leaps and
connections that So uniquely characterize human thought.
Many attempts have been made in the past to create Such
avatars, bots, or intelligent agents, mostly by the application
of artificial intelligence techniques to Specify a rule base that
represents, in Some way, the thought process of the analyst.
Except in restricted domains, all Such attempts have largely
failed because human thought is not simply the repetitive
application of a rule Set. Indeed, we still have little idea how
to model what we do when we Solve a problem, and certainly
the techniques we use are unique to each individual and
more a result of experience, prejudices and judgment than
they are the application of internal rule Sets. This inevitably
leads us to the conclusion that an architecture for a UCS
must through Some easy, presumably graphical means, allow
each analyst to specify his personal analytical techniques out
of whatever building blocks from whatever technical
domain or technique he deems relevant. Some kind of Visual
wiring language where the information passing through the

Feb. 5, 2004

connecting flows represents data gleaned from the captured
flow, and the blocks being connected represent limited and
Specialized processing blocks, is required. Once So Speci
fied, an analytical technique must be able to be launched on
an automated basis into the intake Stream in order to look for
matching data to be brought to the attention of interested
analysts.

0017 Central to the ability to analyze new information as
it passes by us, is the fact that we are essentially the Sum of
our experiences. It is our ability to build mental models that
allow categorization and processing of new information that
constitutes what we call intelligence. A critical aspect of this
ability is the need for a large and related experience base that
can be used to mentally model and predict the outcome of
potential actions in order to choose between alternatives. In
the digital domain, if we are to analyze a deluge of data, the
Same is true, that is, only by building up a vast and
encompassing history of past events and their consequences
can we begin to understand the potential relevance and
consequences of new events appearing in the intake pipe.
For even a moderately sized UCS, this represents a Storage
requirement in the Terra-byte or Peta-byte range given the
multimedia nature of the inputs. More important however is
the fact that due to the diverse nature of the feeds, and
because in any practical System for monitoring global
events, feeds must be acquired globally, at the Source. It
becomes apparent that this Storage must be distributed, and
must be closely tied to the architecture of the acquisition
intake. This acquisition Server architecture must, of neces
sity, be distributed given the physical separation of feeds.
Further, given the demanding Storage and isochronous
retrieval requirements of rich media types Such as Video, it
is apparent that deep Storage architecture and access must be
tailored to exactly match Such a distributed Server architec
ture on a per data-type and per-feed basis.
0018. The concept of using the sum of our experiences as
a kind of lens with which we view the world is key to
understanding why Systems claiming to provide Such
buzzword capabilities as “Asset Management” or “Knowl
edge Management” are only peripherally related to the
intelligence problem itself. An asset or knowledge manage
ment (KM) system is engaged in the process of looking
inwards into an organization to understand and control what
is within. An intelligence System does this also, but then uses
the knowledge gained by this experience and examination as
a lens to allow interpretation of new information coming
from the outside world. In effect, we use what we know and
learn about ourselves to help us interpret what we See. In the
KM case, the data pool is largely Static, Structured, and
controllable. In the intelligence System case, the pool is
Simply an eddy in a rushing torrent where control of the
torrent is out of the question. KM Systems are in reality
nothing more than thin Veneers over relational databases, an
approach that is wholly inadequate to the needs of an
unconstrained intelligence architecture.
0019. The purpose of an intelligence system is to facili
tate the analysis of captured data and allow the rapid and
effective distribution of Such analyses to the intelligence
consumers (i.e., clients) of Such a System. Once the System
involves multimedia information, the conventional Solution
of printing out a paper report and hand delivering it to the
client becomes wholly inadequate. Multimedia information
cannot be well represented on paper, and yet as the Saying

US 2004/0024720 A1

goes, a picture is worth a thousand words. What then is a
video segment or sound recording worth'? The truth of the
matter is that multimedia data types are able to convey a
much richer and more impactful presentation than words
alone can. Thus, it is incumbent on Such a System to design
in the ability to easily create and electronically deliver full
multimedia reports to its clients. This means that the report
must actually be a working application capable of full
interaction with the client, and when necessary retrieval and
playback of any multimedia and other components from
archival Storage within the System. Creation of Such reports
must be a relatively trivial matter for the analyst(s) involved.
Delivery of multimedia reports without the ability for those
reports to access data from System Storage would not be
nearly as effective. Furthermore, by taking this approach,
one opens the door to regarding the report as a custom portal
for the information consumer client to examine the details of
a particular issue, review the backup data that lead to the
reports conclusions, and to draw additional conclusions
regarding, or obtain additional details relating to, the Subject
matter as necessary. Thus, an intelligence architecture
should be designed to be end-to-end; that is, it must handle
every Stage of the proceSS from capture, Storage, indexing,
Search, analysis and finally to presentation. Often decision
makers or information consumers are unskilled in the use of
computers, and So a simpler (possibly hands-off) kiosk or
web-portal like end-user mode, in addition to the more
extensive normal analytical mode, must be provided. This
mode must anticipate the needs for projection on large
screens and the likelihood that multiple individuals will be
in the audience. Access Security, possibly using biometrics is
an issue.

0020. In adopting an architectural, rather than an appli
cation driven approach to Solving the problem of uncon
Strained Systems, a prerequisite is that the architecture
provide a complete Suite of tools to allow the end user to
customize and extend the System by adding new tools and
analyses as desired. Any approach to implementing a UCS
that is not predicated on allowing the System Staff to extend
and modify the environment in arbitrary ways will not only
be forced to severely constrain what is possible, but will also
be So complex to define and Subsequently implement that it
may never work. Therefore, given that Such customization is
not only allowed, but encouraged, it is quickly apparent that
a matching Set of debugging tools must also be provided in
order to make Such customization practical. The System
itself must expose a large and complete Applications Pro
gramming Interface (API) to allow development at the low
level. Development however, must be possible on at least
two levels. For the purposes of Software engineers, whose
goal is to integrate new capabilities Seamlessly into the
existing environment, code level Support and APIs with
detailed documentation is required. AS much as possible of
the detailed and housekeeping work must be handled auto
matically within the environment So that code level pro
grammerS can focus purely on the algorithm they wish to
implement, not on Such things as UT, communications, data
access etc. For the purposes of analysts, who generally are
not programmers, but who nonetheless need to express and
Specify analytical processes in terms of data flowing
between a set of computational blocks, a visual program
ming language must be provided.
0021. The issue of multilingual data is also a key hurdle
to be overcome in any practical intelligence and monitoring

Feb. 5, 2004

System. The reality is that most interesting events first
appear in Some local, probably non-English Source and only
later after capture and refinement by others does the infor
mation appear in English from another Secondary, tertiary, or
more indirect Source. At each Step of this process, integrity
and nuances of the original Source are degraded and lost.
Any practical System must thus be capable of capture at the
Source and in the language/format of the original. Mecha
nisms must be developed to handle and process the infor
mation in a productive and Speedy manner despite the fact
that the associated text may not be in English. There may be
no time for a full translation during the brief transit period
of the data through the System intake pipe. Failure to address
this issue would mean all data must be centralized for formal
translation prior to processing, and this requirement would
obviously clog the intakes of any installed System targeted
at even a moderate sized multi-lingual Stream.

0022 Non-English languages pose many problems that
are trivially addressed in English. Foremost among these
problems is the issue of Stemming or finding the root word
or meaning of a given word. In English, Stemming to extract
the root word is trivial. One simply chops off common
trailing modifiers to obtain the root word. Thus, in an
English language Search “Teachers' and “Teaching” are
both trivially and automatically stemmed to yield the root
word “Teach” and it is this that is actually searched (at least
in non-trivial text search engines). In other languages, for
example Arabic, each word may represent a mini-Sentence.
Thus, in Arabic “he taught them” or "they taught us' might
be represented by single but very distinct words. The root
word is not immediately apparent by examining the actual
characters Since even the characters involved in Such mini
Sentences are different. Meaningful Search in many non
English languages is thus a Subject of research Since the
Roman Script derived language concept of a “key Word” has
little meaning in many other Scripts. A key problem that
must be addressed by a practical intelligence architecture is
therefore how to Stem foreign language inputs to allow
meaningful word associations and “concept’ queries to be
made, while Still allowing exact match Searches where
necessary or appropriate. Failure to address this problem
makes the System virtually useless for many foreign Script
Systems.

0023 Multilingual requirements impact not only intake
processing, but more obviously the user interface to the
System, which must have the inherent ability to translate
dynamically and on the fly between languages and appear
ances depending on the language or wishes of a particular
user. The process of modifying a Software program to appear
and behave correctly in another language or Script System is
known as localization, and is a multi-billion dollar industry
and a major headache for all developerS of Software who
wish to target foreign markets. Localization of a Software
product can take months, requires extensive Source code
changes or accommodations, and must be repeated (at vast
expense) every time a new upgrade is released. One require
ment of an unconstrained intelligence System is the ability
reduce this localization process to an automatic and instan
taneous behavior which is not in any way tied to the code
that is generating or handling a particular aspect of the UI.
If such a tie in did exist, the ability of the system to adapt
globally (i.e., in a multilingual manner) to changes would be

US 2004/0024720 A1

hampered by the rate at which localization could take place,
and inevitably portions of the System would become incon
Sistent with other portions.
0024. In any large collection of disparate data, the prob
lem of how to navigate around it effectively becomes
critical. We See that in the only Successful example of a truly
complex System, the Internet, the approach taken to navi
gation was to implement embedded hyperlinks which tran
sition the users focus to the referenced URL. This works
effectively, but is an incredibly manual, restrictive, and error
prone busineSS. The web-site designer must hand-insert the
chosen hyperlink to the URL, thereby enforcing his per
Spective on the user rather than that of the user himself.
Worse yet, URLS change continuously and the referencing
link then becomes out of date and useless. What is needed
in a UCS is the ability to define and enable/disable hyperlink
domains on a per-user basis, and to have those hyperlinks
automatically applied to every bit of textual data present in
the System or displayed to the user. In other words, we need
a dynamic hyperlinking architecture under the control of
each user, not of the information Source. This directly
addresses the loSS-of-focus issue discussed earlier by allow
ing the user to define and modify his own hyperlinking
environment. The architecture and the UI it presents must
provide and automate this facility. When a hyperlink is
clicked, the architecture must be able to identify the nature
and location of the datum to which that hyperlink refers, and
to automatically launch the appropriate display behaviors to
show the target datum to the user in the most appropriate

C.

0.025 Given a distributed UCS through which large quan
tities of data will be passing, not only as it is ingested, but
also as it is passed between various analytical processes, it
is apparent that efficient representation of that data and its
relationships in binary form must be Supported by the
environment. Most data is not flat, that is it comprises
many chunks of variable sized memory which refer to each
other via pointer or similar references. AS it becomes nec
essary to pass Such data from one process or machine to
another, the data must be flattened into a single contiguous
chunk for transmission and then “unflattened at the other
end into its original form. This process is known as Serial
ization (and de-Serialization). All present data interchange
environments are forced to perform Serialization and de
Serialization every time data is exchanged between pro
cesses. AS the amount of data involved increases, the pro
cessing overhead of the Serialization/de-Serialization cycle
begins to dominate until one reaches a practical limit in the
amount of data that can be exchanged and the rate of Such
eXchange. Unfortunately, with present day machines this
limit is far below what is required for even a moderate UCS.
Any architecture for unconstrained Systems must therefore
find a way to eliminate the Serialization problem in its
entirety.

0026. The basic questions that are asked of an intelli
gence system can be summarized as “who”, “what”, “why”,
“when”, and “where”. The answers to most of these ques
tions cannot be expressed as a column of numbers or text
Since the answer itself may not be in the data but must
instead be deduced or visualized by the analyst. An uncon
Strained environment must Support the pervasive use of a
large and ever expanding Set of Visualization tools. Certain
visualizers should clearly be built into the environment and

Feb. 5, 2004

have commonly accepted appearances. The Visualizer to
answer the question “where' for example is generally a map
and associated Geographic Information System (GIS). The
environment must provide such a GIS built-in. Going back
to basics, the Standard Visualizer for displaying the results of
a database query is the list, though we may not normally
think of this as a visualizer. The environment must provide
a basic list capability including the ability to display arbi
trary, possibly media rich columns, and to Sort on those
columns. The basic list must be capable of handling data
organized in arbitrary hierarchies. Other environment (or
underlying OS) Supplied visualizers must exist for the
common rich media types (i.e., images, Sounds, and Video).
Complex graph and chart plotting is of course a basic
Visualization capability and must be built into the environ
ment. The ability to define arbitrary exotic visualizers to aid
in detecting patterns, trends, and anomalies must be Sup
ported. Since many Such visualizers (including any truly
useful GIS visualizer), require a 3-D world to express as
many connections and nuances as possible, we are lead to
the conclusion that the UI environment for the architecture
should be based on (or support) a 3-D standard. Given the
fact that gaming demands are pushing computer equipment
manufacturers to incorporate faster and faster 3-D graphics
chips, we must conclude that the UCS UI environment
would preferably be based on a 3-D software standard such
as OpenGL that, like gaming engines, can take advantage of
this hardware.

0027) Focusing for a moment on the needs of a general
ized GIS visualizer, consistent with our general UCS prin
cipals, it must permit the Visualization of positional data in
a variety of ways. Unfortunately, most, if not all, Standard
GIS systems Suffer from a Serious shortcoming in this
regard. The problem is, that in order to be able to render
maps in a reasonable time, GIS environments must eliminate
the incredibly compute intensive process of performing the
necessary projection calculations on every point in the map.
These calculations involve 3-D transformations using tran
Scendental functions that for a detailed large Scale map are
Slow on present day commercial hardware. To overcome the
problem, GIS Systems pre-project their maps, and all map
overlays, into a given projection (usually Mercator) So that
the rendering of the maps to a client window does not
involve the projection calculations. Unfortunately, there are
large numbers of possible map projections and each of them
has particular utility for visualizing different aspects of the
information being projected. High end mapping Systems
may hold map data in multiple projections, but this requires
Storage many times that of the basic map data, and cannot in
any case cover all possible projections or vantage points.
This means for example that when one wishes to Switch
projections on the fly, or alternately to overlay data in one
projection (a satellite image perhaps) on another (Mercator
Say), one is forced to go through a lengthy re-mapping
process first. If multiple overlaid projections are involved
the situation becomes untenable. The ideal UCS GIS system
should find a way to store/render the data in its raw latitude/
longitude format and do the projections on the fly.
0028. In intelligence, the analyst needs the ability to
Visualize relationships between data, not only along well
defined axes (e.g., Space and time), but also along arbitrary
axes defined by the analyst himself. Examples of Such axes
might be “Adverse actions towards the US', or “Activity
relating to drugs’’. Clearly, the analyst must be provided with

US 2004/0024720 A1

a way to define new arbitrary axes, and to Specify through
Some arbitrary computational means, how one should deter
mine the intercepts for a given datum on each of these axes.
Once this information is known for a given collection of
data, it is relatively easy to See how graphical visualization
tools can be used to good effect to look for patterns, trends,
and anomalies appearing along or between a particular Set of
Such axes. The architecture must therefore Support the
ability to define Such axes and rapidly determine coefficient
vectors for any arbitrary Set of data being visualized.
Because Such axis computation may be computationally
expensive, doing it on the fly would drastically reduce
Visualizer responsiveness. For this reason, the architecture
would preferably provide and Support the concept of a
“vector Server' responsible for continuously maintaining
and updating coefficients for all data in persistent Storage
along whatever axes are currently defined. AS data is fetched
for Visualization, the required coefficients can also be rapidly
fetched from Such a vector server by the visualizer. These
coefficients would also form a key part of the Solution to
maintaining, examining, and acting upon non-explicit rela
tionships between different System datums. It is important to
understand that unlike conventional graphing axes, these
arbitrary axes are non-Orthogonal, each axis may be in Some
way related to many others. This fact can be taken advantage
of to address the basic intelligence problem of not knowing
exactly what one is looking for. If we imagine two related
axes, one known (A) and one unknown (B), then as part of
un-related work, an analyst may see the shadow of a trend
or anomaly related to B on the A axis, and may then be
motivated to examine the causes behind this shadow, thereby
discovering the existence and Significance of the hitherto
unexplored Baxis. By Subsequently defining a B axis to the
System and then re-examining data in this light, new insights
and relationships may become clear. This is a key aspect of
the intelligence process that is not well Supported by existing
Systems.
0029. It is essential that the system user interface pro
vided to the analyst take the form of a multimedia portal
which can be reconfigured and changed on a per-analyst
basis using a simple graphical metaphor. Each analyst may
in fact use multiple portals depending on the nature of the
task at hand. This capability must be Supported by the
environment. Portals can be assembled out of any of the
building blockS registered with, or provided by, the envi
ronment. The imageS presented above and in other patents
referenced by this one combined with the technology
revealed in patent ref. 11 make it clear how this portal
capability can be implemented. The image below is of an
executive mode variant of the same basic portal illustrated
elsewhere in order to show that UI appearance can be
drastically varied without any impact on the underlying
implementation or building-blockS.
0030 Given the scale of the problem, it is clear that we
are talking about a highly distributed architecture, even
individual Servers must clearly be implemented as distrib
uted clusters. Equipment changes (and breaks), the environ
ment changes, users move and change, as do the preferences
of each user over time. It is clear then that the environment
must provide extensive Support for the reconfiguration of
any System parameter that might change. Such preferences
span the range from the numbers and location of machines
making up a given Server cluster and the equipment to which
they are connected, to the font a user preferS or the color he

Feb. 5, 2004

likes to see buttons displayed in the UI. APIs and interfaces
to access, distribute, and manipulate these preferences must
also be provided. The goal of an environment should be to
Support dynamic and on-going reconfiguration of any target
installation all the way from a Single machine portable demo
(if practical), to a worldwide distributed System and all its
connected equipment, without the need to change a single
line of compiled architectural code. Obviously, this goal is
unattainable with most conventional approaches.

0031 Having determined that we need an architecture
that supports distributed server clusters, we should further
ask ourselves what do we mean by a Sever, and what is a
client, in Such a System. In conventional client/server archi
tectures a Server is essentially a huge repository for Storing,
Searching, and retrieving data. Clients tend to be applica
tions or veneers that acceSS or Supply Server data in order to
implement the required System functionality. In an uncon
Strained intelligence architecture, Servers must Sample from
the torrent of data going though the (virtual) intake pipe.
Thus it is clear that unlike the standard model, we will
require our Servers to automatically and in an unattended
manner create and Source new normalized data gleaned from
the intake pipe and then examine that data to see if it may
be of interest to one or more users. We need every server to
have a built in client capable of Sampling data in the pipe and
instantiating it into the Server and the rest of persistent
Storage as necessary. Thus we have little use for a Standard
server but instead our minimum useful block is a server
client pair. AS to the nature of the Server portion itself, Since
each server will specialize in a different kind of multimedia
data, and because the handling of each and every multimedia
type cannot be defined beforehand, we see that we need a
server architecture where the basic behaviors of a server
(e.g., talking to a client, access to storage, etc.) are provided
by the architecture but at any point where customization to
Server behaviors may be required, the Server must call back
to a plug-in API that allows System programmers to define
these behaviors. Certain specialized servers will have to
interface directly to legacy or Specialized external Systems
and will have to utilize the capabilities of those external
Systems while Still providing behaviors and an interface to
the rest of the environment that hides this fact. An example
of Such an external System that must be masked behind our
modified definition of a Server might be a face, Voice, or
fingerprint recognition System. Thus the classic model of a
big fat predefined server (a la Oracle etc.) that is purchased
“as is from a vendor, and wherein only the clients to that
Server can be changed by customer Staff, does not apply to
a UCS. Furthermore, at any time new servers may be
brought on line to the system and must be able to be found
and used by the rest of the System as they appear. This
requirement combined with Our Server-client building block
starts to blur the line between what is a server and what is
a client. Why shouldn't any client machine be able to
declare its intent to serve data into the environment, indeed
in a large community of analysts, over time this ability is
essential if analysts are to be able to build on and reference
the work of others. Thus every client must also potentially
be a server. The only real distinction we can draw between
a mostly-Server and a mostly-client is that a Server tends to
Source a lot more data on an on-going basis than does a
client. An unconstrained network architecture must therefore
be more like a peer-to-peer network than it is a classic
client/server model. Application code running within the

US 2004/0024720 A1

System should remain unaware of the existence of Such
things as a relational database or Servers in general if Such
code is to be of any general utility. What we need then is
Some kind of automatic environment mediated and
abstracted tie-in between the definition of the data within the
System, and the need to route and access all or part of that
data from a distributed set of servers.

0032) Given the intense computational and processing
requirements represented by a UCS, it is clear that we cannot
afford the overhead or limitations of Such cross-platform
interpreted languages as Java. The System must therefore be
based on one or more underlying OS platforms which are
accessed from the environment Via direct, efficient, com
piled code. Since platforms may change, and differ from
each other, the architecture must provide, wherever possible,
a platform independent abstraction layer to which API level
application programmerS can write. The UCS architecture in
effect becomes its own operating System (OS), layered on
top of a conventional operating System and targeted Specifi
cally at providing OS type features related to the require
ments of unconstrained Systems. Since we must break com
putation up into large numbers of Smaller, autonomous,
computing blocks, which exchange data (and messages)
through the Substrate, it is clear that a highly threaded
environment is required. This cannot be a monolithic deter
ministic application (see Patent ref. 11). Because we must
pick a given OS architecture, the System should Support the
ability to deliver to, and interact with, its UI on a variety of
client platforms perhaps via a less extensive UI Set (Such as
a web page) or alternatively by interacting through a cross
platform GUT layer.
0033. The analyst workload will of course require the use
of a number of other commercial off-the-shelf (COTS)
packages. Things like word processors, spreadsheets, Inter
net browsers, e-mail, Sound and Video editors, image analy
sis tools etc. The analyst needs all the same tools that a
normal computer user does as well as, and in close conjunc
tion with, the UCS environment. As a practical matter, it is
clear then that the choice of platform on which to build an
architecture is thus limited to the two consumer level OS
platforms available, namely Windows and Macintosh. Any
useful UCS architecture must be capable of treating COTS
Software applications as building blocks in the creation of
processes within the System, we do not want to re-invent
everything that is provided by all the COTS applications.
Thus it must be possible in the architecture to wrapa COTS
application in a proxy process that exists within the envi
ronment So that the functionality that application provides
can be utilized in an automated and Scripted manner within
the environment. Ease of Such application Scripting is a
consideration in choosing the underlying OS. Given the
multimedia nature of the information in an intelligence
UCS, excellent and pervasive multimedia capability in the
underlying OS platform is obviously crucial. Another con
sideration is the level and pervasiveness of that OS's (and its
COTS applications) Support for foreign languages and
Scripting Systems. OS level Security is another key factor.
Finally, we must consider the range of COTS solutions
available on the platform. In the preferred embodiment of
the system of this invention, the Macintosh platform is
considered to be the most appropriate.
0034) While the ability to utilize COTS packages is
essential, there are often Severe limitations caused by the

Feb. 5, 2004

narrow Scripting interface available between distinct appli
cations. For this reason, it is far more desirable to incorpo
rate functionality from existing object libraries providing a
rich and complete API. Such commercial object libraries (as
well as open-source code) are available to cover a wide
range of techniques and capabilities. The need to integrate
object-code libraries implies Several constraints on the
approach taken by the UCS environment as far as encapsu
lating blocks of compiled functionality (widgets). In par
ticular, because such libraries are built on the underlying OS
Toolbox, it is essential that the UCS threaded environment
appear to Such code as if it were within a Stand-alone
application. The principal impact of this requirement is on
the need for a toolbox abstraction and patching layer, as well
as the approach taken to providing a UI windowing envi
ronment. Since object libraries involving UI are unaware of
the UCS and yet must be integrated into UCS windows, a
number of otherwise viable approaches to providing a GUI
environment will not work. Given that changes to object
libraries are not possible, the UCS GUI environment must
take all Steps necessary to ensure that non-UCS aware UI
code, works un-modified within the UCS windowing envi
ronment. This UI sharing environment would preferably be
implemented by associating dynamic and overlapping UI
regions with Small executables Such that the Scheduling
environment Switches all UI parameters necessary whenever
a given UI-related widget is running.
0035) Security is obviously a major concern in most
intelligence-related applications. Given the need to deliver
reports and multimedia data to individuals, possibly beyond
the confines of the System it is clear that reliance on Security
via access control alone (i.e., logging on to a Database) is not
enough. Security must be built into the data itself. Given the
nature of the intelligence cycle where the same item of data
may be handled and annotated by many individuals, each of
which may have different Security privileges, we see that a
Sophisticated, data-centric approach to Security must be
Supported by the environment.
0036) The analytical process is frequently collaborative,
that is it involves the need for multiple analysts to review
each others work and interact with a given visualizer or
display in order to discuss possible meanings for patterns
found. For this reason, it is highly desirable that the UI for
the UCS architecture inherently support collaboration such
that users of the System residing on different machines can
View and interact with a single display/portal in a coordi
nated manner, perhaps marking it up in a whiteboard-like
manner as part of their discussions. Additionally, the ability
to perform video-conferences during Such Sessions greatly
enhances the utility of the environment. A System wherein an
intelligence consumer can contact the analyst responsible for
a given report and interact with both that analyst and the
report is obviously far more useful than one that does not.
This close interaction is critical to closing the intelligence
system OODA loop (see below). Network level support for
Such conferencing and collaboration will be necessary.
0037. On the subject of change, it is obvious that in any
UCS connected to the external world, change is the norm,
not the exception. The outside world does not stay Still just
to make it convenient for us to monitor it. Moreover, in any
System involving multiple analysts with divergent require
ments, even the data models and requirements of the System
itself will be Subject to continuous and pervasive change. By

US 2004/0024720 A1

most estimates, more than 90% of the cost and time spent on
Software is devoted to maintenance and upgrade of the
installed System to handle the inevitability of change.
0038. Over and above the Bermuda Triangle effect,
another Software paradigm related phenomenon contributes
to our inability to implement complex unconstrained SyS
tems. In object oriented programming (OOP) Systems (the
current wisdom), key emphasis is placed on the advantages
of inheriting behaviors from ancestral classes. This removes
the need for derived classes to implement basic methods of
the class, allowing them to simply modify the methods as
appropriate. This technique yields significant productivity
improvements in Small to medium sized Systems, and is
ideally Suited to addressing Some problem domains, notably
the problem of constructing user interfaces. However, as
size, complexity, and rate of environmental change are
scaled beyond these limits, the OOP technique, rather than
helping the situation, Serves only to aggravate it. Because
the implementation of an object becomes a non-localized
phenomenon, tendrils of dependency are created between
classes, and the ability of others to rapidly examine a piece
of code during the maintenance and upgrade portion of the
development (the bulk of the actual effort) is made more
difficult. OOP systems generally introduce the concept of
multiple inheritance to handle the fact that most real world
objects are not exactly one kind of thing or another, but are
rather mixtures of aspects of many classes. Unfortunately,
multiple inheritance only makes the Scaling problem worse.
The maintainer is forced to examine and internalize the
operation of all inherited classes before being able to under
Stand the code and being Sure that his change is correct.
Worse than this, the right change generally involves
changes to the assumptions and implementation of Some
ancestral class, and this in turn often has a ripple effect on
other descendent classes. Eventually, Such Systems max out
at a level of complexity represented roughly by what can fit
into a single programmer's brain. While this may be large,
it is not large enough to address the complexity of a System
for understanding World events, and thus an object oriented
approach to attacking Such a massive problem is essentially
doomed to failure. OOP techniques still rely on the notion of
one controlling top-down design. No Such design exists in a
complex UCS. Since we have Said that change is fundamen
tal to the nature of an unconstrained intelligence System, it
is obvious that in addition to all the problems detailed above,
we must also move to a totally new Software paradigm and
methodology if we are to Succeed in this endeavor.
0.039 To summarize the principal issues that lead one to
Seek a new paradigm to address unconstrained Systems, they
are as follows:

0040 a) Change is the norm. The incoming data
formats and content will change. The needs and
requirements of the analysts using the data will
change, and this will be reflected not only in their
demands of the UI to the system, but also in the data
model and field Set that is to be captured and Stored
by the system.

0041 b) An unconstrained system can only sample
from the flow going through the pipe that is our
digital world. It is neither the Source nor the desti
nation for that flow, but simply a monitoring Station
attached to the pipe capable of Selectively extracting
data from the pipe as it passes by.

Feb. 5, 2004

0042 c) The system cannot control the data that
impinges on it. Indeed we must give up any idea that
it is possible to control the system that the data
represents. All we can do is monitor and react to it.
This Step of giving up the idea of control is one of the
hardest for most people, especially Software engi
neers, to take. After all, we have all grown up to learn
that Software consists of a 'controlling program
which takes in inputs, performs certain predefined
computations, and produces outputs. Every installed
System we see out there complies with this world
view, and yet it is obvious from the discussion above
that this model can only hold true on a very localized
level in a UCS. The flow of data through the system
is really in control. It must trigger execution of code
as appropriate depending on the nature of the data
itself. That code must be localized and autonomous.
It cannot cause or rely upon tendrils of dependency
without eventually clogging up the pipe. The concept
of data initiating control (or program) execution
rather than the other way is alien to most program
mers, and yet it becomes fundamental to addressing
unconstrained Systems. See patent ref. 11 for details.

0043 d) We cannot in general predict what algo
rithms or approaches are appropriate to Solving the
problem of understanding the world, the problem is
Simply too complex. Once again we are thus forced
away from our conventional approach of defining
processing and interface requirements, and then
breaking down the problem into Successively Smaller
and Smaller Sub-problems. Again, it appears that this
uncertainly forces us away from any idea of a
control based system and into a model where we
must create a Substrate through which data can flow
and within which localized areas of control flow can
be triggered by the presence of certain data. The only
practical approach to addressing Such a System is to
focus on the requirements and design of the Substrate
and trust that by facilitating the easy incorporation of
new plug-in control flow based widgets and their
interface to data flowing through the Substrate, it will
be possible for those using the System to develop and
evolve it towards their needs. In essence, the users,
knowingly or otherwise, must teach the System how
they do what they do as a Side effect of expressing
their needs to it. Any more direct attempt to extract
knowledge from analysts to achieve computability,
has in the experience of the author been difficult,
imprecise, and in the end contradictory and unwork
able. No two analysts will agree completely on the
meaning of a set of data, nor will they concur on the
correct approach to extracting meaning from data in
the first place. Because all Such perspectives and
techniques may have merit, the System must allow
all to co-exist Side by Side, and to contribute, through
a formalized Substrate and protocol, to the meta
analysis that is the eventual System output. It is
illustrative to note that the only Successful example
of a truly massive Software environment is the Inter
net itself. This Success was achieved by defining a
rigid set of protocols (IP, HTML etc.) and then
allowing Darwinian-like and unplanned develop
ment of autonomous but compliant Systems to

US 2004/0024720 A1

develop on top of the Substrate. A Similar approach
is required in the design of unconstrained Systems.

0044 Any data substrate that is intended to model and
understand the real world must, of necessity, imitate it in
order to represent it. Just as for our own mental models,
Simulation must be an integral part of analysis in order to
evaluate potentials. This immediately implies that Some data
can be artificial or predictive while other data may be real.
Both must be represented and behave identically within the
environment. Furthermore, all data objects within the System
must have the potential to have a Spatial and temporal
position. Many patterns evolve along the time axis and most
events involve, or are precipitated by, physical proximity
in both space and time between the actors involved. This
means that it must be possible to reconstruct the State of a
captured datum at any point in time. Failure to embody this
concept at the datum level would prevent the Substrate from
faithfully representing reality, and thus would involve the
need to re-introduce complex control programs to Supply
this aspect. These control based edifices would naturally
tend to diverge and thus leach and/or dissipate utility out of
the environment rendering it non-uniform and leSS useful as
an interchange medium. A simulation in an unconstrained
environment should just be an evolving Set of data in which
Some portion (but not by any means all) is predictive or
program generated. Once Such artificial data outlives its
utility, it must be easily purged from the environment to
make way for a new Simulation run. It is this failure to treat
Simulations as an integral part of a UCS that makes them So
difficult to develop, and once developed, makes their results
out of date, irrelevant and difficult to apply back to the real
world. A well designed UCS architecture, in addition to all
its other benefits, provides a means whereby simulations can
become useful, relevant, and pervasive parts of the intelli
gence cycle (or indeed any application). This is a radical
departure from current day Simulation practice.

SUMMARY OF INVENTION

004.5 The present system and method meets each of these
requirements and provides a robust and flexible System for
Storing, parsing, analyzing and typed data that is Stored in a
Virtual ontological tree and is later available for retrieval
from offline, nearline, or cache based Storage and is viewed
and processed in the language, interface and with the desired
hyperlinks associated with the given User over a P2P or
client-Server architecture in a dynamic fashion and/or based
on one or more user profiles. The issueS presented herein are
fully detailed in the patent application that have filed relating
to the architecture described and attached hereto as appen
dices. This application details to the System level approach,
in which each of these features are provided in a single UCS
System.

0046) The present invention provides the following:
0047 1. A system for converting incoming unstruc
tured data into a well described normalized form.
Since the incoming data is multimedia and may
represent Some data type for which Support is pro
vided by the underlying OS platform, this normal
ized form include the ability to fully describe and
manipulate arbitrarily complex native or non-native
binary Structures and collections. This Support is
provided by a dedicated mining language tied inti
mately to the current System ontology (See appendi
ces 6 and 7).

Feb. 5, 2004

0048 2. A system for accessing and manipulating
data held either in memory or in persistent Storage in
its normalized binary form So that Small executables,
or widgets, within the System can freely and effec
tively operate on data types they have never before
encountered simply by knowledge of the type of
data involved (See appendix 4).

0049. 3. An ontology or world model that repre
Sents and contains the items and fields necessary for
the target System to perform its function. The ontol
ogy would preferably fully specify the form of the
normalized binary data.

0050. 4. A memory system, tied to the ontology,
which defines the Structure of and access to any
persistent Storage containers that are required to
contain the data.

0051 5. A memory management system for splitting
incoming data into those portions to be directed to
each container.

0052 6. A query system for querying each container
to retrieve portions of Such a composite object.
Preferably, all database tables and queries are auto
generated from the ontology, thereby eliminating the
role of the conventional Database Administrator
(DBA).

0053 7. A UI to display and interact with data within
the system. In the preferred embodiment, the UI is
automatically generated and its behaviors automati
cally handled by the underlying substrate thus
removing this programming burden from the devel
oper (thereby largely eliminating the role of the GUI
programmer).

0054 8. A memory system that forms collections of
datums, and enables manipulation and exchange of these
collections both within the local machine as well as acroSS
the network. In the preferred embodiment, Such collections
Support the ability to attach arbitrary tags or annotations to
the binary data they contain without in any way altering the
binary representation itself. Additionally, the System Sup
ports the concept of either null or dirty (i.e., has been
changed locally) datum.

0055 9. The means (preferably implemented in soft
ware running on a processor) to specify, investigate
and manipulate the inheritance of behaviors and
fields from ancestral types described in the System
ontology.

0056 10. Support for incremental changes to the
ontology and automated handling of the implemen
tation and impact of those changes both on persistent
Storage as well as the UI and other dependant areas.

0057 11. Inherent and pervasive support for the
concept of units and their interchangeability. In other
words, this System does not leave unit handling to the
application logic. Such an approach would make it
very difficult to meaningfully and easily exchange
data.

0058 For the purposes of this discussion, various appen
dices will be referenced and are fully incorporated herein.
Each of these appendixes describe in detail one embodiment

US 2004/0024720 A1

for the various pieces of the UCS system. As will be
appreciated, various other functions and approaches could
also be used.

0059) The reader is referred to these lower level building
block patent applications as follows:

0060) 1) Appendix 1-Flat Memory Model
0061) 2) Appendix 2-Lexical Analyzer
0062)
0063)
0.064
0065
0.066)
0067
0068 9) Appendix 9-User Interface Localization
0069) 10) Appendix 10–Client/Server and MSS
Architecture

0070) 11) Appendix 11-Data-Flow
0071 Process Flow and Related Issues
0.072 It is important to understand the intelligence pro
ceSS in more detail before attempting to describe the Soft
ware architecture to address the problem. A conventional
description of the intelligence process would lead one to
define a System as a linear flow from inputs (feeds) to
outputs (reports) having the following basic stages:

3) Appendix 3-Parser
4) Appendix 4-Run-time type System
5) Appendix 5-Collections
6) Appendix 6-Ontology
7) Appendix 7-MitoMine
8) Appendix 8-User-centric Hyperlinks

0073) 1) Capture
0074 2) Storage, Retrieval & Indexing
0075 3) Search & Monitoring
0.076 4) Analysis
0.077 5) Presentation

0078 While this is a wholly inappropriate way to design
a System, and does not reflect the reality of the intelligence
process, nonetheless this breakdown gives us a useful frame
work in which to further examine Some of the issues.

0079 Capture
0080. The main issue here is the large number of sources
and types of data, each with its own unique requirements.
Some of these Sources and the associated issues are dis
cussed below:

0081 Video
0082 The robust capture and use of video information
presents one of the biggest challenges to a multimedia
intelligence architecture. High quality Video digitization,
Storage, and playback places the ultimate test on the Server
architecture and its associated mass Storage Subsystem. A
great deal of external capture equipment is required includ
ing (but not limited to) Satellite dishes, tuners, receivers
(PAL, SECAM and NTSC-all variants), format converters,
video switches, VCRs (multi-format), digitizers, CODECs,
Satellite tracking Systems, de-Scramblers, cable feeds etc. It
is clear that the System must provide a framework for the
definition, reconfiguration, and Statusing of all the equip
ment connected to it. All equipment must be under automatic

10
Feb. 5, 2004

and transparent control of the System based on capture
requests from the users. To this end, the System must provide
Some kind of TV guide capability with the ability to request
programs of interest. Additionally, a Snapshot view show
ing all currently captured channels at the client WorkStations
is required with the means to click on Such a Snapshot image
and immediately request live view and/or capture of the
material involved. Video (live or captured) must be streamed
acroSS the network to client WorkStations where it can be
Viewed and/or edited. This represents not only a massive
network load, but also due to the CPU intense nature of the
capture, Storage, and Streaming process, it is clear that a
Video Server cluster will require large numbers of machines
to act in unison in order to Support realistic client loads. Such
a Server architecture does not exist in the commercial Space
and thus must be developed and provided by the UCS
architecture. Given a limited pool of equipment available for
the capture process, and the differing costs of using a given
equipment item to Satisfy a user request, it is clear that the
environment must provide Some form of equipment Sched
uling capability which attempts to map present and future
requests onto the available capture equipment by means of
Some kind of weighted graph. Equipment item usage cost is
determined by how much the available Stream capture
capacity will be degraded by the use of that item. For
example, many older Satellites 'wobble’ So these and other
Satellites require active tracking using a moveable dish.
Most commercial Satellites can be captured by fixed dishes.
ASSuming that a Smaller number of mobile dishes exist than
fixed, it is obvious that allocating one Such dish to a given
capture reduces remaining capacity far more than does the
use of a fixed dish with multiple feed-horns and a splitter.
The same effect is repeated through the equipment chain that
must be created (e.g., format converters, Switches etc.) in
order to meet any given request. Capture equipment design
and wiring needs to anticipate this problem and minimize
this degradation effect. For example, use of a cable TV
head-end to distribute captured Video, removes the blocking
implied by use of an analog Switch to connect Source to
digitizer. This is a complex issue and must be closely
coordinated with the System design and capabilities. Much
equipment relating to Video processing is not designed for
computer control, and thus the System may have to provide
the ability to control such equipment via IR links or what
ever other means is provided. A generalized and fully
programmable (from within the System) controller interface
is required in this case. Massive Storage capacity is needed
to handle Video. A key aspect of making use of Video is to
be able to determine what is being Said during a given
Segment (e.g., a news report). There are a number of
approaches to this problem, firstly, at least of a large number
of NTSC transmissions, closed captioned text is provided
and equipment is available to capture this. Since we wish to
maintain the correspondence between a particular portion of
a video and what is being Said (to aid in Search, retrieval, and
playback), we can see that this text track must be stored in
parallel with, and using the same time code as, the Video
itself. The QuickTime TM architecture is ideal for this pur
pose, Since it defines movies to be comprised of one or more
tracks each of which can contain different media types. Thus
the present System creates as an output to the capture process
a movie containing not only the Video and Sound tracks, but
also a text track, and quite possibly later one or more
Voice-over tracks.

US 2004/0024720 A1

0.083 Text to speech, although in its infancy is another
approach although this applies less well to foreign lan
guages. The choice of video CODEC is determined by the
quality required as well as by the need for real-time Sym
metric capture and playback, preferably using CPU
resources alone, not dedicated cards (which rapidly become
obsolete). Storage of multiple video resolutions can signifi
cantly reduce the required Server resources. Video Sources,
especially those derived from terrestrial transmissions, must
be captured locally, thus it is clear that a logical Video
Subsystem is likely to be physically distributed, possibly
globally. Given the Streaming nature of Video, this implies a
number of other challenges relating to Streaming, load
balancing, and Storage. The UCS architecture must Support
mechanisms whereby all these requirements can be tailored
and handled. Much of the video captured (especially in PAL
and SECAM formats) will not have a text track and therefore
a key aspect of Video capture (and indeed any multimedia
capture) is the ability to tag the video with other related
items (such as news stories) which are more easily associ
ated. The environment must Support arbitrary tagging of any
datum with any other datum(s) in order to render it com
putable'. A distributed video server and client(s), video
Snapshot server and client(s), equipment server and client(s),
and various other video related technology have been fully
implemented based on the technologies revealed in the
referenced patents, particularly patent ref. 10. The details of
these implementations and Some of the unique features
involved will be fully revealed in future patents.

0084 News Feeds
0085 News stories and reports form one of the most
useful, timely, and easily leveraged forms of open-Source
feed. NeWS feeds are available in many languages and come
in both localized (national) and global varieties. Examples
are Reuters, API, BBC etc. Feeds are delivered in a variety
of ways including Satellite downlinks, analog land-lines,
Internet sites, dial-up access, and CD-ROM based delivery.
Archival news feeds are usually available for purchase from
the publishers although delivery media can be archaic. There
is little standardization in format between the feeds although
an XML standard for Internet delivery is in its infancy.
Multilingual issues abound and normalization can be quite a
challenge. Many local feeds have poor quality control over
Syntactic Structure. NewS feeds are characterized by a rela
tively low bandwidth with a high Semantic content. Storage
issues are minimal. For these reasons, the present System
provides a news Server based on the technologies revealed in
appendiX 7 and appendix 10 has been fully implemented
under the System of this invention.

0086) PhotoWire Feeds
0087 Photowire feeds are available from many of the
Same global Sources as are news feeds, and delivery plat
forms span a Similar range. Images come in a huge variety
of Standard (and not So Standard) formats and the System
must natively handle all of these, or at a minimum convert
losslessly to one of them. Images can be quite large and an
asSociated mass Storage Subsystem is required. Unlike Video,
isochronous delivery to the client is not required. The
concept of an image preview or picon is key to ensuring
that full image retrieval is only required for analysis or
editing. Images from these Sources can form a powerful part
of any multimedia presentation. Many Sources of photoWires

Feb. 5, 2004

also provide graphics and illustrations which are intended
for use in publications Supported by the feed. These graphics
(e.g., Stock charts, topical maps, etc.) can be very helpful in
understanding issues and in presenting conclusions. Support
for the capture, Storage, and retrieval/use of these graphics
must also be provided by the environment. Graphic formats
are generally different from image formats Since they are
intended to allow editing of the graphic for incorporation
into page-layout and Similar applications. The Adobe Illus
tratorTM format appears to be the most widespread. An
Image Server based on the technology revealed in patent
reference 10 and which is capable of handling all image
types discussed herein, has been fully implemented under
the system of this invention.
0088 Satellite Imagery
0089 Satellite Imagery is an important part of the intel
ligence process. Satellite images are essentially just high
resolution imageS which contain additional Semantic mean
ing by virtue of the fact that the where for the image can
be computed by knowledge of the Satellite parameters and
position involved. Thus it is clear that there is a close tie-in
between Satellite imagery, and the mapping and GIS facility
that must be provided by the environment. The environment
must be able to automatically project/overlay the image with
respect to a map background So that the information it
contains can be related back to other data in the System.
Satellite images generally contain multiple bands of data
for different frequencies and Sensors, and these bands can be
used or combined to extract additional knowledge regarding
the contents of the image. Tools for this purpose must be
provided. Commercial Satellite imagery comes from a vari
ety of sources including weather satellites, LandSat, SPOT
etc. Delivery mechanisms for Some (e.g., weather) involve
the use of receiving dishes. For others, the imagery is
delivered on a variety of media (often tape) or by FTP
download. For the most part, Satellite imagery is a non-real
time feed. Government agencies may have access to a
number of other forms of Satellite imagery whose nature and
content is not discussed herein.

0090 Specialized Imagery
0091 Particular applications may require Support for
other specialized forms of imagery with additional Semantic
meaning. Examples include fingerprints, identification,
X-ray images, astronomy, etc. Each of these types essentially
requires its own Server Subsystem to provide extraction and
Support for the additional Semantics. The environment pro
vides for the easy creation of such servers. Most such
Sources will require a connection to Some external equip
ment or System to provide capture and possibly Storage and
Search of the imagery. In all other ways however, Such
Subsystems are similar to the generic imagery Subsystem.

0092) Sounds
0093. Like video, recorded sound can convey a richness
and subtlety far beyond that possible with other media types.
Because video often includes Sound, there is an obvious
overlap between the two data types. Sounds come in a
number of formats and have widely varying quality levels.
Like video, Sound must be delivered isochronously to the
client, however, data rates are significantly lower though Still
high enough to require a clustered Server and associated
mass Storage Subsystem. Sound Sources include phone

US 2004/0024720 A1

recordings, covert intercepts, and published media. Like
Video, a key consideration with Sound in order to attain
computability, is the ability to convert it into one or more
asSociated text tracks. For this reason, the Sound architecture
of the present System, like Video, uses a time based media
framework Such as QuickTimeTM. As with video, voice
overs (or translations) are Supported as distinct tracks. Text
tracks are, in parallel, routed to the text Subsystem to allow
asSociative Search. A Sound Server based on the technology
revealed in referenced patent 10 is the preferred embodiment
of Such a Server.

0094) Internet

0.095 This source is perhaps the most widespread and the
easiest to capture of any of the Sources described. Unfortu
nately, with the exception of a few trusted Sites, it is also one
of the lowest grade and most misleading Sources on which
to base any automated calculations. Techniques to crawl or
Spider the web are widespread and readily available, often
built into the underlying OS (e.g., the Macintosh Sherlock
facility), and because it is web data (i.e., HTML or even
better tagged XML) it is designed to facilitate easy capture
and use by digital Systems. The web contains many invalu
able trusted Sources for real time data Such as news, Stock
feeds, weather etc. and provided one Sticks to these, it forms
a key part of monitoring what is going on in the World. The
rest of the web data, i.e., the un-trusted bulk of it, must be
treated with Skepticism much in the manner needed for a
covert intercept. That is a discriminator phase is required
to determine usefulneSS and relevance. This having been
Said, much valuable insight can be obtained from Such data,
especially if one includes e-mail capture into the equation.
Storage requirements for web capture are relatively man
ageable, and like news feeds it is characterized by high
Semantic content (once filtered). The key issue for any
Secure installation, is that mining the web on an automated
basis implies a connection between the System and the web
itself. This is dangerous and often totally unacceptable,
especially in government installations. For this reason, the
System provides the ability to control a 'drone insecure
capture capability which then uploads its finds, via a Secure
path, to the System itself (which may not be physically
connected to the web in any way). Such an Internet Server
based is prefereable based on the technology disclosed in
appendiX 7 and appendiX 10.

0096 Published Data Sources
0097 Perhaps the highest grade and most reliable of all
non-covert Sources, published data also comprises the larg
est Single Source of any described. There are literally tens of
thousands of different database and information publishers,
each specializing in particular areas. The total amount of
data available is immeasurably larger than the total content
of the Internet. Few publishers post any high grade data on
the web due to the lack of a business model to do so. Many
that have done So have now gone out of busineSS and this
proceSS is on-going. Because the livelihood of Such Sources
is predicated on their continuing completeneSS and quality,
published data provides Some of the best Supplies of back
ground information necessary to populate a System's lens
of understanding. Published data Sources come in many
forms and tend to be expensive. CD-ROMs are now becom
ing the dominant distribution media although on-line data

Feb. 5, 2004

bases Such as Lexus/Nexus contain vast amounts of infor
mation that can be easily accessed and incorporated into the
environment.

0098. The extraction of information from these sources
tends to be a non-real-time batch proceSS and requires a
parsing process that can parse data on a per-Source basis.
Because publishers have no interest in facilitating the auto
mated extraction of their intellectual property, this data tends
to be in Semi-structured formats with all kinds of inconsis
tent usage, even within the same data Source. On-line
Sources tend to have built-in defenses against automated
mining. To extract useful normalized data from these
Sources therefore, the present invention provides a very
powerful, generalized, and robust data mining framework
tied to the system data models. The ability to rapidly absorb
a new published Source and Seamlessly integrate it into the
System enables the System to react in a focused and informed
manner to on-going events. When a particular new issue
Suddenly becomes critical, as they always do, it is likely that
very little information exists in the system on the subject. To
empower the analysts to rapidly come up to Speed on the
issue and make analyses relating to it, the System provides
a turnaround time measured in hours or at the most days, to
acquire and integrate new published Sources. Classic mining
techniques and System architectures cannot meet this
requirement. The preferred technology for enabling this
aspect of the System is described in AppendiX 7.
0099 Legacy Systems
0100 All large organizations utilize as part of their
operations a number of legacy information processing
environments both internal and external. Much of what an
organization is, has, and knows is encapsulated in these
Systems. Such legacy Systems do not go away, and often tend
to be based on old or antiquated equipment. The present
System makes use of the information contained within these
Systems as part of its operation. Generally Such legacy
Systems present themselves as databases, usually relational.
The ability to access, mine, and Source/sink data to/from
these legacy Systems is often essential to System operation.
More specifically, the architecture provides a generalized
framework for interfacing to and using Such Systems through
the Specification of Scripts utilized via an encapsulating
UCS server. Ideally, the implementation of a connection to
Such a legacy System would involve little more than defi
nition of the necessary logical Scripts. The SQL language
makes this relatively easy although it is often the case that
custom code is required in order to implement Such a
connection. AS the, UCS architecture also provides the
means whereby plug-in modules, defined on a per applica
tion, per legacy System basis, can be registered within a
Standard UCS Server. In legacy Systems, external containers
may also be grouped by providing customized functionality
Specific to a given data type. Thus for example, a connection
to a fingerprint recognition System would be treated as a
legacy System requiring an encapsulating UCS Server. The
System and methods disclosed in AppendiX 7 and Appendix
10 are Sufficient to implement Such a custom legacy inter
faces.

0101 Manual Data Entry
0102) In certain cases, this may be the only practical
means of capturing data, especially data that does not yet
exist in the digital domain. The UCS environment also

US 2004/0024720 A1

Supports the ability to perform manual data entry based on
a System ontology. One refinement of this is the provision of
a programmable UI Scripting capability to provide for the
possibility that a process can be written to obtain the data
Somehow, and enter it not by ontology based mining, but
rather by Scripted data entry. Once any data (manually
entered or otherwise) is in the System, it is also possible to
edit and change it and thus the auto-generated UI to the
System Supports data entry, complete with Some level of
validity checking, based directly on the System ontology
definitions. The preferred ontological framework of the
present invention is described in AppendiX 6.

0103) Documents
0104. Much textual data exists in the form of word
processing documents and this is a legitimate Source of data
for the System. Word processing documents are generally
not just Simply plain text, but rather contain embedded
formatting and Style information mixed in with the actual
content. These formats are often proprietary. The final
appearance of the document may have more information
content to it than would be represented by the textual content
alone, and for this reason a compliant System must have the
ability to Store and retrieve these documents in their original
form, possibly for additional modification using the appro
priate COTS application. Text held in these proprietary
formats may not be directly useable for System functions.
For these reasons, the System is able to Strip the plain text
content out of Such documents and normalize it. The exist
ence of Scriptable COTS applications, capable of import/
export of a variety of text formats makes this practical by
creating UCS wrapper Servers that Script Such applications,
extract the normalized information by Scripting COTS appli
cations (or by dedicated plug-in code), and store/retrieve the
full document contents as required. Some of the more
common formats include PDF, Word, RTF and others. See
appendix 7 for further details of this aspect of the system.
01.05) Maps

0106 Full support for the capture, visualization, and
creation of maps is also provided by the System. Sources of
Such mapping data include Such government agencies as
NIMA, USGS, the US Census and others. Custom specialize
maps are often created by dedicated COTS mapping envi
ronments. Such environments generally Support import/
export to/from a number of Standard map interchange for
mats and the UCS map support also includes the ability to
input and output from/to Some number of Such formats. In
the case of more global and extensive data Such as that from
government agencies, the System provides the inherent
ability to mine and normalize Such data for System mapping
purposes. NIMA maps can be obtained for the entire world
on CD-ROM sets formatted according to MIL-STD-2407
(Vector map 0 and 1) and the ability to mine and interpret
this format is basic to System operation. Targa and Similar
data are also be natively Supported. Detailed World maps
require significant amounts of Storage at the map server(s)
but not more than can be accommodated on the large disks
(or raid arrays) available today. Speed of random access to
the data Stored on these disks is absolutely critical to map
Server rendering performance and in the most demanding
Situations, budget permitting, massive fronting RAM disks
and preferably also large amounts of System RAM at the
Server (to allow data internalization) will be required. A

Feb. 5, 2004

compliant map and GIS Server is preferably based upon the
technology described in Appendix 5 and AppendiX 10.
0107 Covert Digital Intercepts
0.108 Few organizations outside government intelligence
agencies have the resources or legal rights to engage in this
kind of activity. For this reason, let us assume the existence
of equipment and Systems capable of taking a digital Stream
off a Satellite or 'tapped communications path, de-multi
plexing it into its constituent parts, and delivering those parts
to the intelligence System either as text or Standard multi
media data. A number of Significant issueS occur once the
Source of data is an intercept, and these need to be antici
pated by the architecture. Firstly, the Syntactic and Semantic
quality of the data is likely to be much lower than for other
forms of capture. This is partly because the data was not
intended for capture, but also because the de-multiplexing
and re-assembly processes will be less than perfect and So
Some of the data may be partial, corrupt, or unusable. This
implies a far greater burden on the robustness of the process
used to convert data into its normalized form. If the
approach taken is to parse the input in Some manner, it now
becomes essential that the parser have error recovery and
fallback Strategies, rather than simply aborting following a
Syntax error. In this manner, it remains possible to extract
and possibly use those portions of the item that are valid
while retaining corrupt portions for possible Subsequent
interpretation by human beings or other processes in the
environmnent. The variety of forms that are likely to be
encountered in covert intercepts is significantly greater than
for most other feeds and as a result the present invention
provides a robust mechanism to decide what a given item
represents prior to invoking a parser or parsers to attempt to
normalize it. Generally with other feeds, this identification
phase is relatively simple. With non-covert feeds (other than
the Internet), it is frequently the case that all or most
incoming data is captured to persistent Storage. With covert
feeds, this is seldom the case. Much of the content of a
covert feed may be irrelevant, thus the System provides an
additional phase in the capture process that is responsible
for determining if the item should be kept or discarded. This
determination is preferably under the control of the analysts
using the System and the Specific algorithm used will differ
between analysts, data types, and over time. This discrimi
nator phase is closely tied with the concept of Interest
Profiles or alerts defined by the analysts and running
autonomously in the System servers. See referenced appen
diX 7 and appendix 10 for details on the technology that is
preferably used to implement this functionality.

0109) Others
0110. There are of course an almost infinite number of
other possible media types and Sources. Examples might
include Seismic data, monitoring Systems of all kinds, Stock
feeds, Scientific experiments etc. The intrinsic ability to add
these data types to the ontology and rapidly implement an
encapsulating server(s) for acquisition, Search and retrieval,
is fundamental to the present invention.
0111 Storage, Retrieval & Indexing
0112 The issue of Storage and the Strategies necessary to
effectively index items in Storage for rapid retrieval takes on
a whole new level of complexity. The main problem is that
each different multimedia type implies a different Storage

US 2004/0024720 A1

and indexing requirement. This means that the conventional
approach, i.e., Store everything in a relational database
system (RDBMS), does not work well.
0113 RDBMS storage is essentially based on the use of
grids or matrices to Store information. Because each cell in
the matrix has a known size, efficient indexed acceSS is
possible. An RDBMS system is therefore best Suited to the
Storage, Search, and retrieval of Small fixed sized fields,
especially those that are numeric. For this reason in a UCS
environment, RDBMS storage makes most sense when
applied to these kinds of fields, not to large text fields or
multimedia content. More specifically, because Storage is
distributed across a number of dissimilar 'containers of
which a RDBMS/SQL container is just one, it is clear that
in order to re-assemble a complete multimedia item for
display, we need a common unique ID number that can the
applied to all containers to retrieve content for an item (see
patent ref. 6). The RDBMS system is ideal for defining these
ID numbers and retrieving the basic fixed sized fields of an
item. In the preferred embodiment, RDBMS data tends to be
relatively Small, and generally fits easily onto a Single large
disk.

0114 Variable sized text fields are best stored and
Searched via an inverted-file text engine. In the inverted file
approach, for each Significant word in the dictionary, the
inverted file Stores a list of all documents containing that
word and the position(s) of that word within the document.
Search and retrieval in this System therefore occurs via the
inverted file list which is far more efficient than the corre
sponding brute force keyword scan in an RDBMS. Addi
tionally, because of the inverted file organization, Statistical
word relationships can be built up from the full set of data
in the System and this allowSpowerful concept type Searches
which are poorly supported under RDBMS systems. Text
Stored in an inverted file container tends to be moderately
large and may require a RAID array. Furthermore, the
inverted file itself is generally best placed on a separate fast
disk (array) preferably fronted by a large RAM disk/cache to
increase search and query performance (See appendix 10 for
additional details).
0115 Video information requires Storage capacities many
orders of magnitude larger than those described above.
Terabyte or petabyte capacities are not uncommon. In addi
tion, the nature of video is that it must be delivered to the
client as an isochronous (i.e., constant data rate) stream at a
relatively high bandwidth. Furthermore, the CPU load rep
resented by the actual Streaming process is considerable, and
thus conventional desktop computers are capable of deliv
ering only a Small number of high quality Video streams at
a time. Another key aspect of Video is that any given Video
Segment contains a time axis and thus to find and view a
relevant portion of the video the ability to tie searchable/
indexed information to this time axis is required. For all
these reasons, Video probably represents the worst case
Scenario for any UCS Storage, indexing and delivery archi
tecture. To address the Storage capacity, the present System
Supports robotic autoloader mass Storage using fast random
access media (to minimize wait time to start a play). Media
types like CD-ROM and DVD are a natural match. Obvi
ously because these media types have limited Sustained
data-rates by comparison with fast disk, but more impor
tantly have a relatively long Seek period, it is not practical
to Sustain multiple Streams from a single Such disk. For this

Feb. 5, 2004

reason, the System also provides automatic disk caching
during playback and Supports large numbers of media drives
into any given area of robotic Storage and media duplication.
Automated, unattended burning of media and migration
from capture cache is also provided and is preferably
implemented. Finally, because of the CPU load and the need
for isochronous playback, the Video Server is implemented
as a large cluster of machines tightly integrated with the
robotic Storage So that the master machine can Select a
drone machine on the basis of current loading (or other
wise), load the media into a drive connected to that drone,
and then commands the drone to perform playback. See
patent appendix 10 for additional details. Indexing implica
tions have been discussed previously under “Capture”
above.

0116 Image data can be relatively large and generally
requires a robotic autoloader component, however, unlike
the Video case, there is no isochronous requirement (since
image files can be downloaded entirely when accessed)
and the need for a large image cluster is reduced. As a result,
in the preferred embodiment, the image Storage consists of
a low resolution picon, accessible immediately from Server
disk Storage. This is then combined with a high resolution
full image which may require robotic access to retrieve.
Many client uses of images can be handled using the picon
alone thus avoiding excessive robotic accesses. Indexing in
the case of images is Straightforward Since they are simply
referenced via the common unique ID shared between all
containers (See appendix 6 and appendix 10).
0117 The storage requirements for Maps have been
discussed previously under “Capture'. Map indexing is
totally different form all other forms above in that it is
Spatial, that is that the map is accessed mainly by Spatial
position. Unlike other data types described above, maps can
be constructed on-the-fly from a map database, and thus the
map container is capable of responding to map requests
without the need for an 'id. Specialized maps can also be
Saved and then referenced, and in this case the unique
overlays that customize the default base map overlays are
probably best be stored either in the RDBMS container or in
other ontology derived Storage along with details of the map
projection, Scale, and other legend elements.
0118. The Internet presents another unique storage situ
ation. In the case of the Internet, indexing is via URL, and
the storage device is the Internet itself. Nonetheless, this
variant is transparently fitted into the Same abstraction as all
others described above. Other data types may imply yet
more variants of the Storage and indexing problem.

0119) It should be noted that the product of many feeds to
the System is not a single type as discussed above, but rather
Some combination of multimedia parts each of which must
be routed to the appropriate container but tied back to each
other by use of a common unique ID. This dispersal aspect
is further discussed in AppendiX 6.
0120 Search & Monitoring
0121 One of the primary issues with searching over
multiple dissimilar containers is the need to create a
framework within which the necessary Search plug-ins can
be registered with the environment and the corresponding
GUI necessary to easily Specify Such a Search can be tied-in
to match. AS described above, each container presents a

US 2004/0024720 A1

different Set of Search capabilities varying from Standard
SQL and text Searches to Such things as Voice and image
recognition.
0122) The present System provides a two-layer approach
to querying and query Specification. The lower layer repre
Sents the registered Search capabilities of each specific
container. The language Supported by this lower layer is
completely open ended in order to permit new media types
and Search engines to be easily added to the environment.
The result of a Search conducted at the lower layer is a list
of hits (i.e., unique ID, together with relevance and other
details if appropriate) that is then passed to the upper query
layer. This upper layer has a well defined and preferably
limited language, the primary purpose of which is to Specify
logical combinations of the hit-list results returned by the
lower layer modules. Thus the language contains Such
Boolean operations as AND, OR and NOT. In addition, to
Support query optimization based on knowledge of the query
domain, operators like AND THEN are also supported. The
AND THEN operator implies that the query appearing
before the operator is performed first and the resulting
hit-list is then passed along with the query appearing after
the operator. This allows efficient pruning of the Search
Space in the container(s) implementing the Second portion of
the query. Other operators that would preferably be Sup
ported at the upper level include Such things as MAX (limit
of hits returned), RELEVANCE (limit relevance returned),
ORDER BY GROUP BY etc. Further details of a system
that can provided this functionality is Set forth in Appendix
6.

0123. In the preferred embodiment, a querying GUI
whose Outermost aspect relates to the upper query layer, and
within which Specialized UI pages can be displayed in
order to Specify container Specific lower level queries is
provided. The nature of these UI plug-in modules for well
known querying engines Such as SQL or inverted text files
is fairly straightforward. When the list is broadened to
Sounds, Videos, images, maps etc., however, the variety of
UI components embedded within the querying interface in a
unified manner becomes quite large. AS Such, querying and
Selection via Visualizers is tied into the present invention.
0.124 Examples of plug-in Search engines (accessed via
corresponding GUI) include:

0125 a) SQL-basic numerical, date, range, key
word, Boolean etc. Search criteria.

0126 b) Text-statistical relatedness, stemming,
proximity, multilingual, fuzzy and concept Searches.

0127 c) Images-Face recognition, pattern recog
nition, fingerprints, clustered and Similar Searches.

0128 d) Video-Searches based on text track, voice
recognition, Scene analysis, close caption etc.

0129 e) Maps-topological queries (within, next to,
etc.), spatial relationships, terrain features, range,
distances, routes, measured paths etc.

0130 AS to the issue of monitoring new inputs to the
System for compliance with certain criteria, this can be
treated as Simply an automated query applied to new input.
For example, a multi-container query can be defined that
returns only those hits that meet our desired criteria and then
launches this query into the System to be automatically

Feb. 5, 2004

applied to all new input. This type of automated query will
be referred to as an “Interest Profile” (see Appendix 10). The
benefits of the two layered query approach now becomes
clear because this Same 38>mechanism may be applied by
combining the hits from parts of an interest profile in order
to determine if a globally compliant hit has occurred.
0131. Unfortunately, the business of monitoring new
inputs can be considerably more complicated because of the
fact that not all algorithms to define a match can be
expressed directly to the querying layer. Often, to determine
a match the analyst may need to combine a number of
different functions. For this reason, the System provides
widgets, each of which is capable of performing part of the
analysis using whatever techniques are appropriate. This
means that in addition to distributed queries in the querying
language, widgets are preferably distributed that form part of
the matching algorithm. The System of the present invention
allows as large a range of widgets as possible to be used in
defining these analyses. AS Such, the System provides a
distributed framework whereby arbitrary algorithms
expressed either as Searches or via widget wiring can be
placed into the input pipe of the UCS and can result in
automated notification of the analyst when the desired match
is found. See appendix 10 and 11 for additional details.
0132) Notification to the analyst may be as simple as
beeping (or speaking) at his terminal and maintaining a list
of pending hits to be viewed. Alternatively, notification
could be handled via automated e-mail delivery. Finally, the
present invention Supports the ability to initiate execution of
arbitrary widgets Supplied by the user to perform whatever
action in necessary when a match occurs. By using this
facility, the System can now trigger automated but targeted
responses to the occurrence of any given situation. Obvi
ously the nature and Scale of these responses is limited only
by the imagination of those configuring a particular UCS
System. See appendix 10 for details.
0133) Analysis

0134) The thrust of this invention is the infrastructure and
architecture necessary to Support any combination of ana
lytical tools, and to allow those tools to interact between
each other over a common Substrate. There are literally
thousands of effective analytical tools out there, most of
them operating in Splendid stovepipe isolation, Some Small
fraction of them available as COTS applications. Such tools
can be integrated into a UCS and used in conjunction with
others which, in combination with the other features pro
Vided by the present invention, can be used with devastating
effect. The only analytical tools that would preferably be
built in to any UCS is a suite of visualizers, the basic
querying tools, and the ability to "wire” these tools and
others together into ever more elaborate domain specific
algorithms. The UCS architecture preferably facilitates and
captures this process using the System and method disclosed
in Appendix 11.

0135 Presentation
0.136 AS discussed previously, the final stage of the
intelligence proceSS is to deliver analyses to the intelligence
consumer in a form that is multimedia rich, and which can
allow that consumer to interact with the analysis in order to
examine assumptions and determine if more information is
needed. Reports must themselves be active and interactive

US 2004/0024720 A1

custom portals relating to a given Subject. The creation of
Such reports must be made easy enough that analysts them
Selves can accomplish this step. More importantly, reports
are not Static, that is, once an intelligence consumers needs
are Sufficiently well understood and algorithms designed to
meet those needs have been expressed, it is essential that the
system be able to deliver today's report on . . . to the
consumer on an automated basis with no further analyst
involvement. This trend is already being Seen in web portals
that allow limited customization on a per user basis. Obvi
ously, an intelligence System must take this approach to a
whole new level. AS mentioned previously certain end users
will require a simplified executive interface and the present
invention provides Such an interface. A goal, at least for
Some consumers, is to allow them to directly express their
own interest profiles and to have these (as well as those from
analyst initiated profiles) appear in their portals immediately
any hit occurs. This closes the intelligence OODA loop
(see below) and allows the consumer to determine what
additional analyses he needs in a much more timely manner.
Through this approach the System can manage the informa
tion overload problem that is experienced by the intelligence
consumer himself, not just that of the intelligence profes
Sionals he taskS. See appendix 10 and 11 for details.
0137) The Intelligence Cycle
0.138. In the traditional intelligence cycle, the intelligence
consumers make known their needs for information via
requests that are passed to the organization that assigns
priorities to information requirements. Determination of
priorities leads to tasking which results in the various
collection mechanisms or agencies taking Steps to gather the
raw information necessary to pass on to the analysts. After
performing whatever analyses best fit the problem domain,
the analysts prepare reports, which are then reviewed and
coordinated and finally disseminated back to the original
intelligence consumer.
0.139. The cycle described above represents the best
thinking on how intelligence should work from the 1940's
and 1950's. The cycle is still utilized today by the govern
ment intelligence community. In today's fast moving and
information rich environment, Such a cycle is unfortunately
inadequate to the task of tracking the complexities of
unfolding world events. A full description of the problems
with Such a cycle is beyond the Scope of this document,
however, the basic problems can be Summarized as follows:

0140) a) The cycle is too slow. Indeed it is not clear
that it is a cycle at all, Since most requests result in
just one iteration. The existence of various organi
Zations bureaucracies in the cycle combined with the
time taken for information to pass through the
bureaucratic interfaces in the loop mean that the
cycle cannot keep up with evolving events.

0141 b) Because it is essentially command driven,
the cycle only allows looking into questions that the
intelligence consumer already knows to ask. AS
discussed previously, the reality is that the cycle
must Support the discovery of things you didn’t even
know were important. The September 11" attacks
provide a perfect example. This top-down approach
may have Suited a situation where the enemy was
known and stable (i.e., USSR), but it does not deal
well with today's world where enemies are small,

Feb. 5, 2004

distributed, loosely coupled, change constantly, and
can have impacts disproportionate to their size. The
intelligence consumer cannot anticipate all possible
threats and task the complete cycle to investigate
each.

0142 c) The lack of feedback in the cycle between
the consumer and the analyst, combined with the
inability of the consumer to directly acceSS and
examine the backup material leading to analytical
conclusions, tends to create a situation where the
final product may not meet the consumer's require
ments and thus redundant iterations through the
cycle with corresponding increases in time and cost
are required.

0.143 Modern competitive and business intelligence
cycles are now based on Some derivative of the Boyd cycle
(or OODA loop). This cycle was developed by Colonel John
Boyd as a result of his studies (and experience) of air-to-air
combat in the Korean war. What Boyd discovered was that
the main factors that enabled US pilots to consistently win
dogfights, were firstly that their F-86 fighter aircraft's
canopy was larger than that of the opposing Mig-15's, thus
giving a greater field of vision, and Secondly, that although
the F-86 aircraft was larger and slower, it was more maneu
verable (higher roll-rate) thus allowing US pilots to make
more frequent adjustments. Boyd was later largely respon
Sible for the design of the F-15 canopy and perhaps more
than anyone else, contributed to development and deploy
ment of the F-16. The result of formalizing and abstracting
Boyd's insight became a fundamental part of air-force
tactics and later of military tactics in general.
0144. The central idea behind the OODA loop is that all
thinking entities are executing OODA loops of their own
(consciously or otherwise), the key to Success in any conflict
or competition is therefore either:

0145 a) Being able to cycle around the loop faster
than your opponent.

0146 b) Disrupt the opponents OODA loop to cause
him to slow down or make mistakes.

0147 c) Alter the tempo and rhythms of your own
loop So that the opponent cannot keep up with you.

0148 For a full description of the OODA loop and how
it ties in with the intelligence problem, as well as a complete
bibliography in this area, See the paper “Avoiding Informa
tion Overload Through the Understanding of OODA Loops,
A Cognitive Hierarchy and Object-Oriented Analysis and
Design” by Dr. R. J. Curts, CDR, USN (Ret.), and Dr. D. E.
Campbell, LCDR, USNR-R(Ret.). This paper can be down
loaded from www.belisarius.com. This site deals with busi
neSS intelligence and is heavily focused on the work of
Boyd. While this author is not in complete agreement with
the paper's assertion that object oriented (OO) techniques
provide a practical approach to addressing the issue, the
paper does effectively describe the need for a ground-up
approach, and a consistent method for representing and
Storing data.
014.9 For this reason, the intelligence cycle itself needs
to become a Boyd cycle. The speed with which it is possible
to iterate through the loop is critical to Success. Moreover,
this same OODA loop would preferably be practiced at all

US 2004/0024720 A1

levels of the intelligence hierarchy. This need for rapid
iteration and recursive loop cycling is a key driver for the
end-to-end UCS approach described in this document. By
using the present System, the barriers between intelligence
consumers and those involved in the intelligence proceSS
itself can be broken down, and the rapid feedback loop
required can be implemented. Most importantly however,
the key lesson of Boyd's teachings is that the ability to

Feb. 5, 2004

rapidly adapt to change is the Single most important deter
minant in any competitive situation. The present System
provides a data-flow system that is driven entirely off
ontology, allowing almost instantaneous modification and
adaptation to changes in the environment. No other
approach currently offers this capability, and thus, no other
current approach Stands any chance of addressing today's
critical need in the intelligence community.

US 2004/0024720 A1 Feb. 5, 2004
18

A High-Level Intelligence Ontology
Country

System User
Organization

Entity Person

Widget

etC

- Equipment

Artifact

Actor

Action . Story

Image

Video
Stage

Event Sound

etc.
General Map.

/ etc.

W Note

Observation
Regarding CrossRef

Delta
Relating

Feed

Source

Query

US 2004/0024720 A1

0150. The ontology presented above is an example high
level ontology targeted at intelligence. This is an example
and in no way should Such an ontology be mandated by the
System architecture. A full discussion of this example ontol
ogy is given in Appendix 6. For the purpose of deriving
Some level of meaning from incoming observations, the
application of Such an ontology can be Summarized as
follows:

0151. 1) Over time, or by pre-loading from pub
lished or legacy Sources, the System builds up a Set
of known actors that can be identified by name (or
alias) in new input. In addition, the ontology for
actions must be populated. At the same time, System
input Sources are identified and the necessary Scripts
to convert the contents of those Sources into the
normalized system ontology (primarily as observa
tions) are developed.

0152 2) Once the stream of observations from feeds
is underway, the dictionary of actors and actions can
be used to identify which data in the system an
observation relates to (i.e., the actors involved), and
the kinds of interactions that are occurring between
those data (actions). Over time, the System builds up
Statistics on the relations between various elements
of the ontology.

0153. 3) Analysts define conceptual axes to the
System together with the algorithms necessary to
compute axis intercepts. These conceptual axes can
now be used to re-cast the data in the System in a new
light, looking for trends, relationships and anoma
lies.

0154) 4) Analysts build models for the motives of
various entities and to define algorithms for mapping
between motives and the actions available to those
entities. This allows modeling and prediction to be
used as part of the matching proceSS in the input
Stream. More importantly, System data can now be
re-cast and Visualized in light of the motive-action
models in order to look for patterns in the data that
Significantly correlate with meeting the motives of
Specific entities of interest. Since entities rarely
announce their intentions beforehand, this ability to
interpret incoming data in terms of how it maps to
entity motive models is key to finding insights to
answer the who and why questions.

0155 5) The process of “event reconstruction also
occurs. That is, given the observations the System
receives, knowledge of the actors involved and mod
els of those actorS motives and available action
Space, the System is able to perform a Surface-tension
type analysis looking for explanations of the event
described that most closely match the motives of one
or more of the initiating (i.e., Subject, not object)
actors involved. By postulating that this is in fact
what occurred in the event, it becomes possible to
define a pattern in the observations leading, up to the
event that represent an indicator that a given entity,
or entities, are attempting to cause a similar event to
occur. Much of this process involves the analyst
using the various visualization tools. Alternatively,
however, the proceSS can be automated as the analyst
expresses the algorithms he believes imply a given
motive vector is occurring.

Feb. 5, 2004

0156 6) Examination/visualization of instru
mented events occurring over a period of time
against entity-motive models allow the System to
reveal trends, patterns, and anomalies in those
events. This in turn yields the possibility of identi
fying hidden entity involvement, known entity
meta-intent, and ultimately in using that knowledge
to predict future behavior. Once future behavior can
be predicted to Some level of accuracy, the System
can allow the intelligence consumer to move from a
reactive to a proactive role in order to influence the
occurrence (or non-occurrence) of that behavior.
Once this point has been reached, the System allows
the Boyd-cycle described in the previous section to
be iterated over more quickly and thus gives the
intelligence consumer a significant advantage over
others, this is of course the ultimate goal of any
intelligence System.

O157 To present these ontology ideas in a more graphical
and perhaps more intuitive way, think of the problem as
though it were a particle-physics experiment occurring
within an accelerator. In this example, Suppose the experi
ment consists of a target into which is fired a particle beam.
The collisions between the beam and the target produce
events which emit a Set of Secondary particles which may be
observed using different Sensor devices each designed to
detect a particular particle type. The data Streams resulting
from each Sensor are fed into a computer for recording and
subsequent analysis. Since it is likely that not all particles
resulting from the collision are detected, the purpose of the
analysis is to use the data gathered to infer exactly what type
of event must have occurred during the collision and from
that to deduce the nature and behavior of the particles
involved. The next Stage is then to use this model to predict
other events and then Search for the Signatures of those
events in order to confirm the model.

0158. In an intelligence system the situation is very
Similar although the terminology changes. A number of
Sensors and other data capture devices capture aspects of an
event (or future event). The goal of the system is still to
reconstruct what event has occurred by analysis of the
observation data Streams coming from the various feeds. The
variety of feed and Sensor types is infinitely larger than in the
particle physics case, however, as for the particle physics
case, many effects of the event are not observed. The major
difference between the two systems is simply the fact that in
the intelligence System, the concept of an event is distributed
over time and detectable particles are emitted a long time
before what is considered “the event'. This is simply
because the interacting particles are intelligent entities, for
which a characteristic is forward planning, and which as a
result give off signals that can be analyzed via a UCS in
order to determine intent. In the recent September 11"
attacks, for example, there were a number of prior indicators
(e.g., flight training School attendance) that were consistent
with the fact that Such an event was likely to happen in the
future. The intelligence community failed to recognize the
emerging pattern, however, due to the magnitude of the
Search, correlation, and analysis task. This is exactly the
issue addressed using the UCS of the present invention
combined with a domain specific ontology and the other
capabilities.

US 2004/0024720 A1

0159 From the discussion above, it is clear that a radi
cally different approach is needed to Solving the problem of
unconstrained Systems. The architecture of the present
invention is based on the concept of a distributed data-flow
driven environment, rather than a conventional control-flow
based solution. The form, content, and behavior of the data
in the environment is described via an ontology that is
Specific to the given application. Control and/or data flow
based programs (known as widgets) are caused to begin
execution by virtue of a matching Set of data objects or
tokens appearing on the input data-flow pins of the widget.
When they complete, they produce a set of resultant data
tokens on their outputs that then become part of the envi
ronment (persistent or otherwise). Thus, a widget that is
capable of processing images would specify at least one
input pin of type image Such that when an image passed
through the intake pipe, it could appear at the widget's input
pin and cause it to execute. By contrast, conventional
Systems allocate execution time to a program without
knowledge of what it is actually doing, and it is up to the
program itself to Seek out and acquire its required inputs. To
do this, the program requires detailed knowledge of its
environment, and the need for this knowledge reduces the
generality of the program and increases the Overall rigidity
of the System thus making it resistive to change and more
likely to develop a stovepipe topology. By adopting the
radical approach to attacking the problem, the present inven
tion provides an open-ended architecture on which intelli
gence and Similar applications can be built.

1. A system for managing knowledge represented by an
incoming data Stream, comprising:

a. a System for converting incoming unstructured data into
a well described normalized form;

b. a types System for accessing and manipulating data held
either in memory or in persistent Storage in its normal
ized binary form;

20
Feb. 5, 2004

. One or more widgets within the System that can freely
and effectively operate on data types they have never
before encountered simply by knowledge of the type
of data involved as determined by the types System;

... an ontology or world model that represents and
contains the items and fields necessary for the target
System, wherein the ontology fully Specifies the form of
the normalized binary data;

... a memory management System, tied to the ontology,
wherein Such System splits any incoming data into one
or more portions directed to one or more data contain
erS and which defines the Structure of and access to any
persistent Storage containers that are required to Store
the data;

... a query System, wherein Such System may be used to
query each container to retrieve portions of Such a
composite object

... a Software creation System, wherein all database tables
and queries are autogenerated from the ontology;

... a user interface (UI) to display and interact with data
within the System;

i. a memory collection System that forms collections of
datums, and enables manipulation and eXchange of
these collections both within the local machine as well
as across the network, and

... an automated Storage System, wherein Such automated
Storage System is capable of Storing data in offline, near
line, or cache based Storage for automated retrieval.

