二ー株式会社 内 Tokyo (JP); 汐田 益己 (KUMITA Hideyuki) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP); 三田 洋樹 (MITA Hirofumi) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP). 藤田 育英 (HOSODA Yo-uhide) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP). 杉山 大喜 (SUGIYAMA Taiki) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP). 松本 隆平 (MATSUMOTO Ryuhei) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP).

(74) 代理人: 藤島 洋一郎, 外 (FUJISHIMA Youichiro et al); 〒1600022 東京都新宿区新宿1丁目9番5号大台ビル2階 Tokyo (JP).

(75) 発明者/出願人 体国についてのみ: 酒井 秀樹 (SAKAI Hideki) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP). 中川 育命 (NAKAGAWA Takaki) [JP/JP]; 〒1080075 東京都港区港南1丁目7番1号 ソーニー株式会社内 Tokyo (JP).

(76) 発明の名称: 燃料電池および酵素電極

(54) Title: FUEL CELL AND ENZYME ELECTRODE

(54) 発明の名称: 燃料電池および酵素電極

[図1]

(57) Abstract: Provided is a fuel cell having a high initial generation performance, a high volume output density, and a stable output. The fuel cell includes: a first cell unit formed by an anode (11a), a cathode (12a), and a proton conductor (18b) arranged between fixing plates (10a, 10b); and a second cell unit formed by an anode (11b), a cathode (12b), and a proton conductor (18b). A fuel solution is introduced into a space defined by air/liquid separation films (17a, 17b) arranged between the fixing plates (10a, 10b) and the cathodes (12a, 12b), cathode spacers (14a, 14b) arranged to surround the cathodes (12a, 12b), and an anode spacer (13) arranged between the anodes (11a, 11b).
初期発電性能および体積出力密度が高く、出力の安定した燃料電池を提供する。固定板10a、10bの間に、アノード11a、カソード12aおよびプロトン伝導体18bで構成される第1電池部と、アノード11b、カソード12bおよびプロトン伝導体18bで構成される第2電池部とを設ける。固定板10a、10bとカソード12a、12bとの間に配置された気液分離透過膜17a、17b、カソード12a、12bの周囲に設けられたカソードスペース14a、14b、およびアノード11a、11b間に設けられたアノードスペース13により囲まれる空区域内に、燃焼ガスが充填される。
明細書
発明の名称：燃料電池および酵素電極
技術分野
[0001]本発明は、酸化還元酵素を用いた燃料電池およびこれに用いる酵素電極に関する。
背景技術
[0002]電極上に触媒として酸化還元酵素を固定した燃料電池（以下、酵素電池ともいう。）は、グルコースおよびエタノールなどの通常の工業触媒では利用できない燃料から効率よく電子を取り出すことができるため、高容量でかつ安全性が高い次世代の燃料電池として注目されている。
[0003]グルコースを燃料とする酵素電池においては、図27に示した反応スキュームのように、負極でグルコース(Glucose)の酸化反応が進行し、正極で大気中の酸素(O2)の還元反応が進行する。負極では、グルコース(Glucose)、グルコース脱水素酵素(Glucose Dehydrogenase)、ニコチンアミドアデニジヌクレオチド(NAD+;Nicotinamide Adenine Dinucleotide)、ジアホラーゼ(Diaphose)、電子メディエータ、電極(カーポン)の順に電子が受け渡される。一方、正極では、負極から放出された電子が、電極(カーポン)、電子伝達メディエータ、ビリルビンオキシダーゼ(BOD)の順に受け渡され、この電子と外部から供給される酸素による還元反応が進行することにより電気エネルギーが発生する。
[0004]このような酵素電池などのバイオ燃料電池の実用化を進めるに際し、幾つかの課題がある。例えば、従来のバイオ燃料電池は、他の燃料電池に比べて出力が小さいため、高出力を得るためには、積層化を含めて電池容積を大きくしなければならない。また、バイオ燃料電池では、一般に、燃料が液体状でかつ粘度が高いために液漏れが発生しやすいため、この液漏れを防止するためには燃料保持容器の密封性を高めると、その粘度が高いことから燃料が電池内部にまで供給されにくくなるなどの問題がある。
そこで、近年、バイオ燃料電池に関するこれらの課題を解決するため、種々の検討がなされている（特許文献「、2 参照）。特許文献「に記載のボタン型のバイオ燃料電池は、正極、プロトン導電体および負極をこの順に積層し、この積層構造体を酸化剤供給口を有する正極集電体と燃料供給口を有する負極集電体とで挟み込む構造としている。この燃料電池では、正極集電体の外縁を、ガスケットを介して負極集電体の外周部にかしめることにより、各部材にかかる圧力を均一にすると共に、部材同士の密着度を高めて、出力のばらつきや燃料の漏出を防止している。

特許文献 2 に記載の酵素電池は、「つのセル内に複数の電池部を設けることにより、出力電流または出力電圧の向上を図るものである。図28はこの特許文献 2 に記載の従来の酵素電池の構成を表している。この酵素電池「00」は電池部「05」、「6」を備えている。電池部「05」は正極「03」、プロトン伝導体「04」および負極「05」により構成されている。電池部「06」は負極「09」、プロトン伝導体「00および正極「00」により構成されている。電池部「05」、「6」はスペーサ「07」を挟んで配置されている。負極「05」、「09」、負極集電体「06」、「08」およびスペーサ「07」を包み込むように、燃料保持容器「4」が設けられている。正極「03」、「0」の外側には、それぞれ正極集電体「02」、「2」が配置され、更にその外側には空気を透過可能なスペーサ「0」、「03」が設けられている。

この酵素電池「00」では、負極「05」、「09」に酵素が固定化されており、燃料保持容器「4」に燃料としてグルコース溶液を充填すると、負極「05」、「09」では、酵素によりグルコースが分解されて電子が取り出されると共に、プロトン（H＋）が発生する。正極「03」、「0」では、プロトン伝導体「04」を通って輸送されたH＋と、負極「05」、「09」で取り出され外部回路を介して送られた電子と、空気中の酸素とが反応して水が生成する。正極集電体「02」、「2」および負極集電体「06」の間に負荷を接続すると、この負荷には2つの電池部「05」、「6」の出力電流を合わせた電流が流れ。これにより従来よりも大きな出力電流および電圧を得ること
できる。
先行技術文献
特許文献
[0008] 特許文献1：特開2008—282586号公報
特許文献2：特開2007—8880号公報
発明の概要
[0009] しかしながら、特許文献1および2に記載されているような従来のバイオ燃料電池は、正極が大気暴露系の構造であるため、以下に示した問題があっ
た。すなわちこのような構造のバイオ燃料電池は、湿度などの外部環境の影
響を受けて、正極の性能が変化しやすく、これにより出力低下が生じるととい
う問題がある。また、供給された溶液が負極側から正極側に浸透するのに時
間を要するため、初期発電性能が低いという問題もある。更に、正極から大
気側に溶液の液漏れが発生しやすいといった問題もある。
[0010] 特に、高出力化を目的としてセルを積層した場合、外部環境および溶液の
浸透性の影響が大きく、電池全体の出力が大幅に低下することがある。この
ため多層セル構造のバイオ燃料電池では、溶液を染み込みやすい構造にする
ことが重要である。また、大気暴露構系セルを積層する場合、溶液の液漏れ
により、隣接するセル同士が繋がり、電池全体の出力低下を招くおそれがあ
るため、各セル間の隔間を十分にとる必要がある。このようなことから大気
暴露構系多層セル構造のバイオ燃料電池は、全体構造が複雑になり、体積効
率が低下するという問題があった。
[0011] 加えて、従来のバイオ燃料電池では、電極（酵素電極）の集電体としてエ
キスパンドメタルの圧延体が用いられているが、この集電体には電極に酵素
を固定するための酵素固定化膜が設けられるため、電極からの集電性が低下
し、これが出力の低下につながるという問題があった。
[0012] 本発明はかかる問題点に鑑みてなされたもので、その目的は、初期
発電性能および体積出力密度が高く、出力の安定した燃料電池を提供するこ
とにある。
本発明の第2の目的は、集電体の構造を改良することにより、本発明の燃料電池の出力をより高めることのできる酵素電極を提供することにある。

本発明に係る燃料電池は、正極と負極とがプロトン伝導体を間にして対向配置された複数のセルを有し、正極または負極の少なくとも一方の電極に触媒として酸化還元酵素が固定されると共に、燃料溶液が正極および負極のいずれにも接触する構成を有するものである。

本発明の燃料電池では、正極にも燃料溶液が接触する浸水系の多層セル構造としているため、酸素供給性は当然ながら、燃料や電解液の供給性能を向上し、更に、外部環境の影響を受けるくなる。これにより初期発電性能および体積出力密度が大幅に向上すると共に、出力が安定する。

本発明の酵素電極は、電極基材と、電極基材に酵素を固定するための酵素固定化膜と、酵素固定化膜の厚みより高い凸部を有する集電体とを備えたものである。この集電体の凸部と電極基材とはトルクの付加により、あるいはトルクなしで機械的に触れる。

本発明に係る燃料電池によれば、燃料溶液が正極および負極のいずれにも接触する浸水系多層セル構造としているため、初期発電性能および体積出力密度が高く、そのため出力が安定化する。

また、本発明に係る酵素電極によれば、集電体に酵素固定化膜の厚みより高い凸部を設け、この凸部により集電体と電極基材とが接触するようにしたので、酵素固定化膜が形成された電極基材と集電体間の接触抵抗が低減され、これにより燃料電池の出力をより高くすることが可能になる。

図面の簡単な説明

図1]本発明の第「の実施の形態に係る燃料電池の使用形態をを表す斜視図である。
[図2] 図「に示した各燃料電池の接続部の断面図であり、（B）は（A）に示したA－A線による断面図である。
[図3] 図「に示した各燃料電池の内部構造を表す断面図である。
[図4] 図3に示したカソードの構成を表す平面図である。
[図5] 図「に示した燃料電池の他の接続形態を表す斜視図である。
[図6] 本発明の第2の実施の形態に係る燃料電池を表す断面図である。
[図7] 図6に示した燃料電池の内部構造を表す断面図である。
[図8] 本発明の変形例に係る燃料電池の形態を表す斜視図である。
[図9] 図8に示した燃料電池の正面図である。
[図10] 同燃料電池の背面図である。
[図11] 同燃料電池の右側面図である。
[図12] 同燃料電池の左側面図である。
[図13] 同燃料電池の上面図である。
[図14] 同燃料電池の底面図である。
[図15] 図9に示したA〜A線による断面図である。
[図16] 同B〜B線による断面図である。
[図17] 同C〜C線による断面図である。
[図18] 酵素電極の変形例を表す断面図である。
[図19] 酵素電極の他の変形例を表す断面図である。
[図20] 酵素電極の更に他の変形例を表す断面図である。
[図21] 図18の酵素電極を用いた燃料電池を表す断面図である。
[図22] トルク付加装置の概要を表す図である。
[図23] 実施例2におけるトルクと抵抗値の関係を表す特性図である。
[図24] 実施例4におけるJSV測定結果（グルコース0〜4M）を表す特性図である。
[図25] 実施例4におけるJSVの-0〜3Vにおける電流密度のグルコース濃度依存性の比較（集電体（a）と集電体（b））を表す特性図である。
[図26] 比較例に係る酵素電極の断面図である。
[図27] 酵素電池の反応スキームを表す図である。
[図28] 従来の燃料電池の構成を表す断面図である。
発明を実施するための形態

[0020] 以下、本発明を実施するための形態について、添付の図面を参照して詳細
に説明する。説明は以下の順序で行う。

1. 第 1 の実施の形態 （浸水系多層セル構造の燃料電池）
2. 第 2 の実施の形態 （浸水系単層セル構造の燃料電池）
3. 変形例
4. 酵素電極の他の例 （電極集電体の改良）

[0021] 「第 1 の実施の形態」
[全体構造]
先ず、本発明の第 1 の実施の形態に係る燃料電池「について説明する。図 2 はこの燃料電池「の使用形態を模式的に示したものである。本実施の形態は例えば 4 個の燃料電池「を直列に接続したものである。図 2（A）、（B）は図 2 に示した各燃料電池の接続部の構成を示している。図 2（A）は図 2（A）の A－A 線に沿った断面構成を示している。本実施の形態の燃料電池「は、負極および正極に触媒として酸化還元酵素が固定されたバイオ燃料電池であり、容器 2 内に電池セルが収容されている。なお、ここでは負極および正極の双方に触媒として酸化還元酵素が固定された例を説明するが、負極または正極のいずれか一方の電極にのみ酸化還元酵素が固定されている場合においても本発明は適用可能である。

[0022] この燃料電池「では、容器 2 の上部が開口しており、その開口には上盖 5 が載設されている。上盖 5 には燃料供給用または排気用の複数の孔（燃料供給孔 6、排気孔 7）が設けられている。容器 2 の外側面には図 2 および図 2（A）に示したように端子 3、4 が設けられており、これら端子 3、4 により複数の燃料電池「が直列または並列に接続可能となっている。

[0023] [内部構造]
図 3 は図 2 に示した各燃料電池「の内部構造を示すものである。図 3 は図 2 に示した A－A 線による断面に相当するものである。燃料電池「は、その内部に複数の電池部（単セル）が設けられており、各電池部はアノード（負極）およびカソード（正極）がいずれも燃料溶液に接触する浸水系多層セル構造となっている。具体的には、固定板「0a、0bの間に第「電池部お
よび第2電池部が設けられている。第1電池部はアノード「a」、カソード「2a」およびプロトン伝導体「8b」により構成されている。第2電池部はアノード「b」、カソード「2b」およびプロトン伝導体「8b」により構成されている。

[0024] アノード「a」、「b」は、アノードスペース「3」を挟んで対向配置されている。アノード「a」、「b」とアノードスペース「3」の間には、それぞれアノード集電体「5a」、「5b」が配置されている。プロトン導電体「8a」、「8b」、「2a」、「2b」との間には、それぞれカソード集電体「6a」、「6b」が配置されている。アノード集電体「5a」、「5b」およびカソード集電体「6a」、「6b」は、それぞれ容器2の側面に設けられた端子3,4に接続されている。

[0025] 第1電池部と第2電池部とは並列に接続されている。具体的には、アノードスペース「3」内に貯留されている電解液を介して、第1電池部のアノード「a」と第2電池部のアノード「b」とが接続されると共に、カソード集電体「6a」、「6b」を介して、第2電池部のカソード「2a」と第2電池部のカソード「2b」とが接続されている。

[0026] カソード「2a」、「2b」の周囲には、それぞれカソードスペース「4a」、「4b」が配置されている。カソード「2a」、「2b」およびカソードスペース「4a」、「4b」と固定板「0a」、「0b」との間には、気液分離透過膜「7a」、「7b」が配置されている。

[0027] この燃料電池では、気液分離透過膜「7a」、「7b」、アノードスペース「3」およびカソードスペース「4a」、「4b」によって囲まれる空間内に、グルコース溶液などの燃料溶液が充填されている。以下、この燃料電池における各構成部材について、より詳細に説明する。

[0028] [アノード「a」、「b」]
アノード「a」、「b」は、導電性多孔質材料からなる電極の表面に酸化還元酵素が固定化されたものである。これらアノード「a」、「b」では、表面に固定化された酵素により燃料を分解して、電子を取り出すと共にプロ
トン（H⁺）を発生する。このアノード「a」，「b」を構成する導電性多孔質材料には、公知の材料を使用することができるが、特に、多孔質カーボン、カーボンベレット、カーボンフェルト、カーボンペーパー、炭素繊維または炭素微粒子の積層体などのカーボン系材料が好適である。アノード「a」，「b」の表面に固定化される酵素としては、例えば燃料がグルコースである場合には、グルコースを分解するグルコースデヒドログナーゼ（G DH）を使用することができる。

[0029] 燃料にグルコースなどの単糖類を用いる場合には、アノード「a」，「b」の表面に、G DHのような単糖類の酸化を促進して分解する酸化酵素と共に、補酵素酸化酵素や電子メディエータが固定化されていることが望ましい。補酵素酸化酵素は、酸化酵素によって還元される補酵素（例えば、N AD +，N AD P +など）と、補酵素の還元体（例えば、N AD H，N AD P Hなど）を酸化するものであり、例えば、ジアホラーゼなどが挙げられる。この補酵素酸化酵素の作用により、補酵素が酸化体に戻るとときに電子が生成され、補酵素酸化酵素から電子メディエータを介して電極に電子が渡される。

[0030] 電子メディエータとしては、キノン骨格を有する化合物を使用することが好ましく、特に、ナフタキノン骨格を有する化合物が好適である。具体的には、2−アミノ−4−ナフタキノン（AN Q）、2−アミノ−3−メチル−4−ナフタキノン（AN Q）、2−メチル−4−ナフタキノン（VK 3）、2−アミノ−3−カルポキシ‐4−ナフタキノン（AC N Q）などを使うことができる。また、キノン骨格を有する化合物としては、ナフタキノン骨格を有する化合物以外に、例えば、アントラキノンやその誘導体を用いることもできる。更に、必要に応じて、キノン骨格を有する化合物と共に、電子メディエータとして作用する「種または2種以上の他の化合物を固定化してもよい。

[0031] 燃料に多糖類を用いる場合には、上述した酸化酵素、補酵素酸化酵素、補酵素および電子メディエータに加えて、多糖類の加水分解などの分解を促進し、グルコースなどの単糖類を生成する分解酵素が固定化されていることが
望ましい。なお、ここでいう「多糖類」は、広義の多糖類であり、加水分解によって2分子以上の単糖を生じる全ての炭水化物を指し、二糖、三糖および四糖などのオリゴ糖を含む。具体的には、デンプン、アミロース、アミロペクチン、グリコーポン、セルロース、マルトース、スクロースおよびラクトースなどが挙げられる。これらは2以上の単糖類が結合したものであり、いずれの多糖類においても結合単位の単糖類としてグルコースが含まれている。

なお、ここでは「多糖類」としては、デンプン、アミロース、アミロペクチン、グリコーポン、セルロース、マルトース、スクロースおよびラクトースなどが挙げられる。これらは2以上の単糖類が結合したものであり、いずれの多糖類においても結合単位の単糖類としてグルコースが含まれている。

また、アミロースとアミロペクチンとはデンプンに含まれる成分であり、デンプンはアミロースとアミロペクチンとの混合物である。例えば、多糖類の分解酵素としてグルコアミラーゼを使用し、単糖類を分解する酸化酵素としてグルコースデヒドロゲナーゼを使用する場合には、燃料にはグルコアミラーゼによりグルコースにまで分解することができる多糖類を使用することができる。このような多糖類としては、例えばデンプン、アミロース、アミロペクチン、グリコーポンおよびマルトースなどが挙げられる。ここで、グルコアミラーゼは、デンプンなどのα-グルカンを加水分解しグルコースを生成する分解酵素であり、グルコースデヒドロゲナーゼは、旧−D−グルコースをD−グルコノ−δ−ラクトンに酸化する酸化酵素である。

[0032] そこで「2 a」、「2 b」は、導電性多孔質材料からなる電極の表面に酸化還元酵素および電子メディエーターが固定化されたものである。これらカソード「2 a」、「2 b」では、カソード「2 a」、「2 b」からプロトン伝導体「8 a」、「8 b」を通って輸送されたプロトンと、カソード「2 a」、「2 b」から外部回路を通って送られた電子と、例えば空気中の酸素により水を生成する。カソード「2 a」、「2 b」形成する導電性多孔質材料には、公知の材料を使用することができるが、特に、多孔質カーボン、カーボンペレット、カーボンフェルト、カーボンペーパー、炭素繊維または炭素微粒子の積層体などのカーボン系材料が好適である。

[0034] カソード「2 a」、「2 b」に固定化される酸素還元酵素としては、例えば、
ビリルピンオキシダーゼ、ラッカーゼおよびアスコルピン酸オキシダーゼなどが挙げられる。これらの酵素と共に固定化される電子メディエータとして、例えば、ヘキサシアノ鉄酸カリウム、フェリシアン化カリウムおよびオクタシアノタンギステン酸カリウムなどが挙げられる。

[005] 本実施の形態の燃料電池「においては、カソード「2a」「2bの表面の少なくとも一部を拡水性とすることが望ましい。これによりカソード「2a」「2bに含まれる水分量を最適範囲に維持することが可能となり、カソード「2a」「2bにおいて、極めて高い触媒電流値を得ることができる。ここで、アノード「a」「b、カソード「2a」「2bそれぞれの電極の表面とは、電極の外面と電極内部の空隙の内面との全体を含むものである。

[006] カソード「2a」「2bの表面の一部を拡水性とする方法としては、例えばカソード「2a」「2bの表面に拡水剤を塗布したり、カソード「2a」「2bを拡水剤に浸漬したりする方法がある。その際に使用する拡水剤としては、種々のものを使用することができるが、微粒子状の拡水材料が有機溶剤に分散されたものが好適である。拡水剤に含まれる有機溶媒は、酵素の溶解度が十分に小さいこと、例えば溶解度が「0mg/ml以下、好適には「mg/ml以下であることが望ましい。

[007] また、拡水剤には、ポリビニルブチラールなどのバインダー樹脂などが含まれていてもよい。拡水剤中のバインダー樹脂の割合は、例えば0・0「～「0質量％であるが、これに限定されるものではない。更に、バインダー樹脂が例えばPVDFなどの拡水性を有するものである場合には、バインダー樹脂自体を拡水材料として用いることもできる。拡水材料には、種々のものを用いることができるが、例えばカーポン系の材料、好適にはカーポン粉末を用いることができる。カーポン粉末としては、例えば、天然黒鉛などの黒鉛、活性炭、カーポンナノファイバー（気相法炭素纖維）およびケッチャレンブラックなどを用いることができる。

[008] 図4は図3に示したカソード「2a」「2bの平面構成を表すものである。本実施の形態の燃料電池「では、カソード「2a」「2bを複数個に分割
配置し、各電極間に隙間を設けている。電極間に隙間を設けることにより、空気と燃料溶液とが置換しやすくなるため、燃料溶液を電池内部に速やかに供給することができる。これにより初期発電性能を高めることが可能になる。燃料および電解液を供給した後、直ぐに効率的な発電を行うことが可能になる。

[0039] 本実施の形態の燃料電池で、カソード「2 a」、「2 b」をそれぞれ4分割しているが、分割数はこれに限定されるものではなく任意である。また、カソード「2 a」、「2 b」の形態は、分割配置に限定されず、例えば、中央部に燃料溶液が通過可能な貫通孔を設けたり、微細な孔を複数設けて毛細管現象により燃料溶液を通過可能にしたりすることも可能である。

[0040] [カソードスペーサ「4 a」、「4 b」]
図4に示したように、本実施の形態の燃料電池で、カソード「2 a」、「2 b」の周囲にカソードスペーサ「4 a」、「4 b」が配設されている。これらカソードスペーサ「4 a」、「4 b」は、セル内空気および燃料溶液の漏出を防止するシール材であり、例えばシリコーン樹脂やP TF (ポリテトラフルオロエチレン) などの気体および液体を透過しない高密度なプラスチック材料で形成されている。カソードスペーサ「4 a」、「4 b」の内側は、燃料溶液で満たされる。これらカソードスペーサ「4 a」、「4 b」にはアノードスペーサ「3」などに固定するための複数の孔が設けられていてもよい。

[0041] [プロトン伝導体「8 a」、「8 b」]
プロトン伝導体「8 a」、「8 b」は、アノード「a」、「b」で発生したプロトン（H^+)をカソード「2 a」、「2 b」に輸送するものであり、電子導電性がなくかつプロトン（H^+)を輸送することが可能な材料で形成されている。このような特性を持つ材料としては、例えば、セロハン、ゼラチンおよび含フッ素カーボンスルホン酸基を有するイオン交換樹脂などが挙げられる。プロトン伝導体「8 a」、「8 b」としては電解質を使用することもできる。その場合、不織布などをセパレータとして使用し、これに電解質を染み込むことにより、容易に電池内に組み込むことが可能となる。
[0042] [アノードスペーサ「3]
アノードスペーサ「3では、面方向に複数の貫通孔（図示せず）が形成されており、燃料や電解液が透過可能となっている。このアノードスペーサ「3の両端部は燃料溶液の漏出を防止するシール材として機能する。本実施の形態の燃料電池においては、このアノードスペーサ「3が燃料を保持する燃料タンクとしての役割も担っている。アノードスペーサ「3は、絶縁性であればよく、例えばアクリル樹脂などの硬質なプラスチック材料で形成することが可能である。

[0043] [気液分離透過膜「7a、「7b]
気液分離透過膜「7a、「7bは、液体は透過せずに気体のみを透過する膜であり、燃料溶液の漏出を防止しつつ、空気（酸素）が透過可能となっている。気液分離透過膜「7a、「7bとしては、例えば、ポリフッ化ビニリデン（Polyvinylidene fluoride : PVDF）やPTFEからなる膜、またはPVDFやPTFEを表面に塗布して多孔質膜化したものなどを使用することが可能である。気液分離透過膜「7a、「7bはこれに限定されるものではなく、公知のものを適宜選択して使用することができる。

[0044] [固定板「0a、「0b]
固定板「0a、「0bは、各部材を両側から挟み込むことで、各部材の位置を固定するものである。これら固定板「0a、「0bは表面をアルマイト加工したアルミニウム板などの硬質な材料で形成されている。固定板「0a、「0bの面方向には複数の貫通孔（図示せず）が形成されており、空気（酸素）が透過可能となっている。

[0045] [接続方法]
本実施の形態の燃料電池は、他の燃料電池と相互に接続可能となっている。接続方法としては、例えば、図2（B）に示したように、容器2の内側に「または複数の磁石8を配置し、その磁力により燃料電池「同士を引き寄せ、端子3と端子4とを接触させる方法がある。その際、磁石8の向きは、プラス端子3とマイナス端子4とが引き寄せられるように配置されている
ばよい。図2では、端子3・4のみが接触し、容器2と容器2との間には隙間が設けられているが、本発明はこれに限定されるものではなく、端子3・4と共に容器2自体も接触していてもよい。

図5は燃料電池「の他の接続形態を表すものである。容器2の端子3・4が設けていない側面にも、磁石8を配置することにより、接続されていない燃料電池「同士を隣接して配置することもできる。このように磁力によって端子3と端子4とを接続させることにより、誤接続を回避することがで

き、燃料電池「同士を、自己組織的に簡便に接続することができる。この接続方法では、端子3・4は接触しているだけであるため、接続された燃料電池「の一つに外部から力がかかっても、端子3・4やその他の部品にダメージを与えることなく、容易に接続を解除することができる。更に、磁石8にお

けるS極およびN極の配置を組み合わせることで、燃料電池「の位置出しが可能となる。

[0047] [燃料供給方法]

この燃料電池「では、容器2の上に、グルコースおよびエタノールなどの液体燃料を電池部に補給するための燃料供給孔6と、容器2内部の空気を外部に出して容器内の圧力上昇を防止するための排気孔7が設けられている。これら燃料供給孔6および排気孔7の大きさは、燃料保持容器の密閉性を確保するために、できるだけ小さい方が好ましい。その場合、例えば、燃料の注入はシャツなどを使用すれば容易に行うことができる。また、タンク内の気体と共に燃料溶液が容器外に漏出することを防止するため、排気孔7には漏だまりを設けることが望ましい。

[0048] この燃料電池「においては、上方から燃料を導入することもできるが、燃
料供給孔6から供給された燃料を、燃料タンクの所定の位置および／または所定の方向に導入するための燃料導入部を備えていてもよい。具体的には、燃料タンク内に管を配置し、電極の下方から燃料を導入する構成が挙げられ
る。これにより燃料タンクの内部に存在する空気を効率的に外部に排出することができるため、より多くの燃料をタンク内部まで注入することができる
と共に、反応により発生した気体（CO2など）を燃料タンクの上方に押し上げて、排気する効果も期待できる。また、燃料タンク内に毛細管構造を形成し、毛細管現象を利用して燃料を導入してもよい。これにより圧力や流れを加えなくても、燃料タンクの外にある燃料を、内部に注入することができる。

【0049】[効果]

このように本実施の形態の燃料電池「では、負極および正極がいずれも燃料溶液に接触する浸水系セル構造となっているため、酸素供給性は当然ながら、燃料や電解液の供給性能も向上し、更に、外部環境の影響も受けにくくなる。これにより初期発電性能が向上すると共に出力が安定化する。また、複数のセルで、燃料タンクを共通にすることができるため、タンク毎に液漏れ防止のためのパッキンなどを設ける必要がない。これにより体積出力密度を高め、小容積化を図ることが可能になる。

【0050】また、本実施の形態の燃料電池「では、カソード12a、12bを分割配置し、燃料溶液の通過性を向上させているため、燃料の供給性が良好となり、初期出力をより向上させることができる。更に、本実施の形態の燃料電池「では、容器2の外側面に他の燃料電池と接続するためのプラス端子3およびマイナス端子4を設けているため、複数の電池を容易に接続することができる。このため「個の電池では出力が足らない場合は、電池同士を連結するだけで、簡便に高い出力を得ることが可能になる。

【0051】更にまた、本実施の形態の燃料電池「では、燃料供給孔6および空気排出孔7を、端子3、4が設けられている面とは異なる面に設けているため、電池同士の連続性を向上させることができると共に、電池同士を連結した後でも、電池セル内に燃料を効率的に注入することができる。これにより短時間での燃料供給が可能となり、初期出力がより向上する。

【0052】なお、本実施の形態においては、2つの電池部を並列に接続した多層セルを例に説明しているが、本発明はこれに限定されるものではなく、複数の単セルを並列および／または直列に接続した種々の構成の積層セルに適用する
これが可能である。また、複数の電池を接続する方法も、直列に限定されるものではなく、複数の電池を並列に接続することも可能である。その場合は、プラス端子およびマイナス端子を配置する面を変更すればよい。すなわち、木発明の燃料電池における端子の数および位置は、接続形態に応じて適宜設定することができる。

[063] 同様に、燃料供給孔および排気孔も、端子と異なる面に配置されていれば、その数および位置は、電池の用途、接続形態および電池セルに応じて、適宜設定することができる。例えば、上面および下面にプラス端子およびマイナス端子を配置し、上下方向に積み上げるように複数の電池を接続することも可能である。その場合、燃料供給孔および排気孔は、いずれかの側面に配置すればよい。

[064] 更に、端子の接続方法も、磁力による方法に限定されるものではなく、例えばプラス端子 3 を凸状にすることでマイナス端子 4 を凹状とすれば、プラス端子 3 を他の燃料電池のマイナス端子 4 に嵌合させることで、燃料電池「同士を容易に連結することができる。あるいはプラス端子 3 を推ねじ形状に、マイナス端子 4 を離ねじ形状とし、プラス端子 3 をマイナス端子 4 に螺人する構造としてもよい。

[065] 2. 第 2 の実施の形態

[全体構造]

次に、本発明の第 2 の実施の形態に係る燃料電池について説明する。図 6 は本実施の形態の燃料電池 2 を模式的に表したものであり、図 7 はその内部構造を示している。本実施の形態の燃料電池 2 は、負極または正極の少なくとも一方の電極上に触媒として酸化還元酵素が固定されたバイオ燃料電池であり、容器 22 内に「つの電池部からなる電池セルが収容されている。この燃料電池 2 においても、第 1 の実施の形態と同様に、容器 22 の上部が開口しており、その開口部には上蓋 25 が設置されている。上蓋 25 には燃料供給用または排気用の複数の孔（燃料供給孔 26、排気孔 27）が設けられている。容器 22 の外側面には端子が設けられており、複数の燃料電池
2「が直列または並列に接続可能となっている。

[内部構造]
この燃料電池2「は、固定板20a、20bの間に、アノード（負極）「
、カソード（正極）「2およびプロトン伝導体「8で構成される電池部が
設けられている。具体的には、固定板20a、20bの間に気液分離透過膜
「7a、カソード「2、カソード集電体「6、プロトン導電体「8、アノー
ド」、「アノード集電体15、アノードスペース19、気液分離透過膜「7
bがこの順に配置されている。

カソード「2は、図4に示したカソード「2a、「2bと同様に、複数個
に分割配置されており、その周囲にはカソードスペース「4が設けられてい
る。カソード「2側の固定板20aには、面方向に複数の貫通孔（図示せず
）が設けられており、空気（酸素）が透過可能となっている。アノード「「
側の固定板20bには貫通孔は不要である。この燃料電池2「においても、
アノード集電体「5およびカソード集電体「6は、それぞれ容器22の側面
に設けられた端子に接続されている。本実施の形態の燃料電池2「において
は、気液分離透過膜「7a、「7b、アノードスペース「3およびカソード
スペース「4によって囲まれる空間内に燃料溶液が充填される。すなわちこ
の燃料電池2「は、アノード（負極）」「、カソード（正極）「2の両方が
燃料溶液に接触する浸水系学セル構造となっている。

[効果]
本実施の形態の燃料電池2「においても、正極にも燃料溶液が接触する浸
水系構造を採用しているため、外部環境の影響も受けにくく、安定した出力
が得られる。また、カソード「2を分割配置し、燃料溶液の通過性を向上さ
せているため、燃料の供給性が良好となり、初期出力が向上する。更に、容
器2の外側面に他の燃料電池と接続するためのプラス端子3およびマイナス
端子4を設けているため、複数の電池を容易に接続させることができ、簡便
に高い出力を得ることができる。更にまた、この燃料電池2「では、燃料供
給孔26および空気排出孔27を、接続用端子が設けられている面とは異な
面に設けているため、電池同士の連結性を向上させることが可能になる。

【0059】本実施の形態の燃料電池「における上記以外の構成および効果は第「の実施の形態の燃料電池「と同様である。

【0060】＜変形例＞

本発明の燃料電池は、上記実施の形態に限定されるものではなく、種々の形態をとることができる。例えば図8に示した変形例の燃料電池「のように、上蓋がない形態でもよく、燃料供給孔32や排気孔33が任意の位置にまとめて配置されていてもよい。更に、端子の形状も任意に設定することができ、例えば円錐状の端子34Aと逆円錐状の端子34Bとになっていてもよい。図9はこの燃料電池「の正面図、図「0は同背面図、図「1は同右側面図、図「2は同左側面図、図「3は同上面図、図「4は同底面図である。図「5は図9に示したA－A線による断面図、図「6はB－B線による断面図、図「7はC－C線による断面図である。

【0061】更に、本発明の燃料電池はコイン型および筒型とすることもできるものである。コイン型バイオ燃料電池の場合は、例えば、仮体を兼ねるアノード集電体とカソード集電体との間に、「または複数の電池部を設置し、各電池部の負極および正極がいずれも燃料溶液に接触するような構成にすればよい。その場合、カソード集電体に複数の貫通孔を設けて空気（酸素）を透過可能とすることが共に、このカソード集電体とカソードとの間に気液分離透過膜を設け、燃料溶液の漏出を防止することが望ましい。また、このコイン型バイオ燃料電池においても、燃料溶液の通過性を向上させるためにカソードを分割配置することが望ましい。

【0062】筒型の燃料電池とする場合には、アノード集電体の周囲に、アノード、プロトン伝導体およびカソードからなる「または複数の電池部を配置し、最外部に筒状のカソード集電体を配置して、各電池部の負極および正極が燃料溶液に接触するような構成にすればよい。その場合も、カソード集電体に複数の貫通孔を設けて空気（酸素）を透過可能とすることが共に、このカソード集電体とカソードとの間に気液分離透過膜を設け、燃料溶液の漏出を防止すること
とが望ましい。この筒型バイオ燃料電池においても、カソードを分割配置することにより燃料溶液の通過性を向上させることができる望ましい。

[0063] 以上、本発明の浸水系多層セル構造の燃料電池について説明したが、次に、これら燃料電池の出力をより高めることの可能な電極（酵素電極）について説明する。この酵素電極は、アノードやカソードの各電極を構成する集電体の構造を改良したもので、これにより電極からの集電性が向上し、燃料電池の高出力化を実現することができる。なお、以下の酵素電極は、上記本発明の浸水系多層セル構造の燃料電池に好適に用いることができるものであるが、後述のようなその他の構成の燃料電池にも用いることも可能である。

[0064] ＜酵素電極＞

図8はその酵素電極40を表したものであり、この酵素電極40は電極基材41、酵素固定化膜42および集電体43を備えている。以下、それぞれの構成、機能、効果等を説明する。

[0065] （1）電極基材41

電極基材41では、酵素を触媒として酸化還元反応が進行する。より具体的には、この酵素電極40をアノードとして用いる場合には、電極基材41上で燃料の酸化反応が進行することにより電子が放出される。酵素電極40をカソードとして用いる場合には、アノードで放出され、集電体43を通じて送り込まれる電子と、外部から供給される酸素を用いて還元反応が進行する。

[0066] 電極基材41に用いる材料は、外部と電気的に接続可能な材料であれば特に限定されるものではなく、公知のあらゆる素材を自由に選択して用いることができる。例えば、Pt、Ag、Au、Ru、Rh、Os、Nb、Mo、In、Ir、Zn、Mn、Fe、Co、Ti、V、Cr、Pd、Re、Ta、W、Zr、Ge、Hfなどの金属、アルミル、真ちゅう、ジュラルミン、青銅、ニッケリン、白金ロジウム、ハイバーコ、パーマロイ、パーメンダー、洋銅、リン鋼などの合金類、ポリアセチレン類などの導電性高分子、グラファイト、カーボンブラックなどの炭素材、HfB2、NbB、CrB2、B4Cなどのホウ化物、TiN、ZrNなどの窒化物、VSi2、 NbSi2
、MoSi₂、TaSi₂などのケイ化物、およびこれらの台対等を用いることができる。

(2) 酵素固定化膜４２

酵素固定化膜４２は電極基材４に酵素を固定するための膜である。

この酵素固定化膜４２において固定する酵素は特に限定されるものではなく、バイオ燃料電池に用いることが可能な酵素を「種または２種以上自由に選択して用いることができる。例えば、この酵素電極４をアノードとして用いる場合には、酸化酵素を固定するといよい。酸化酵素の一例としては、アルコールデヒドロゲナーゼ、アルデヒドレダクターゼ、アルデヒドヒドログナーゼ、ラクテートデヒドログナーゼ、ヒドロキシバルベートレダクターゼ、グリセレートデヒドログナーゼ、フォルメートデヒドログナーゼ、フルクトースデヒドログナーゼ、ガラクトースデヒドログナーゼ、グルコースデヒドログナーゼ、グルコネートデヒドログナーゼ、グルコネート２デヒドログナーゼなどが挙げられる。

酵素固定化膜４２には、上記の酸化酵素に加え、酸化型補酵素および補酵素酸化酵素を固定してもよい。酸化型補酵素としては、例えば、ニコチンアミドアデニンジヌクレオチド（niacinamide adenine dinucleotide、以下「NAD+」と称する。）、ニコチンアミドアデニンジヌクレオチドリン酸（nicotinamide adeninedinucleotide phosphate、以下「NADP+」と称する。）フラビンアデニンジヌクレオチド（flavin adeninedinucleotide、以下「FAD+」と称する。）、ピロロキノリンキノン（Pyrrollo-quinolme quinone、以下「PQQ2+」と称する。）などが挙げられる。補酵素酸化酵素としては、例えば、ジアツオラーゼが挙げられる。

酵素固定化膜４２には、上記の酸化酵素および酸化型補酵素に加え、電子伝達メディエータを固定してもよい。電子の電極への受け渡しを円滑にするためである。電子伝達メディエータとしては、例えば、2－アミノ－3－カルボキシ－「，4－ナフトキノン（ACNQ）、ビタミンK₃、2－アミノ－「，4－ナフトキノン（ANQ）、2－アミノ－3－メチル－「，4－ナ

フトキノン（AMNQ）、2、3-ジアミノ-4-ナフトキノンなどのナフトキノン骨格を有する化合物、オスミウム（Os）、ルテニウム（Ru）、鉄（Fe）、コバルト（Co）などの金属錯体、ベンジルピロロゲンなどのビオロゲン化合物、キノン骨格を有する化合物、アントラキノン骨格を有する化合物、ニコチンアミド構造を有する化合物、リポフラビン構造を有する化合物、スクレオチドリン酸構造を有する化合物などなどが挙げられる。

[0071]この酵素電極0をカソードとして用いる場合にも、酸素を反応基質とするオキシダーゼ活性を有する酵素を固定することができる。例えば、ラッカーゼ、ビリルビンオキシダーゼ、アスコルピン酸オキシダーゼ等を用いることができる。

[0072]また、上記の酵素に加え、電子伝達メディエータを固定してもよい。電子の受け取りを円滑にするためである。固定し得る電子伝達メディエータの種類は特に限定されるものではなく、必要に応じて自由に選択することができる。例えば、A B T S (2,2'-azonobis(3-ethylbenzoline-6-Sulfonate))、K 3[Fe(CN)6]等を用いることが可能である。

[0073]酵素固定化膜42の作製方法は、特に限定されるものではなく、通常のバイオ燃料電池に用いる酵素固定化電極の作製方法に準じて作製することができる。例えば、まず、電極基材4「に導電性塗料を塗布して乾燥させた後、その電極基材4「の表面をオゾン洗浄処理する。次に、前述の酵素、補酵素、電子伝達メディエータなどを含む溶液を塗布して乾燥させた後、その上からポリ-ジェリン（P J J）やポリアクリル酸（P A A C）などの固定化材料の水溶液を塗布し、乾燥させる。これにより酵素固定化膜42を作製することができる。

[0074]酵素固定化膜42の膜厚は、酵素等の固定ができれば特に限定されないが、40〜80μmであることが好ましい。

[0075]（3）集電体43
集電体43は、外部回路に接続されており、アノードで放出された電子を
外部回路を通じてカソードへ送り込む役割を担う。この集電休43には凸部43Aが設けられ、この山部43Aにより集電休43と電極基材4「とが接触している。これにより集電休43の電極基材4「からの集電性が著しく向上し、これにより得られる電気エネルギーの高出力化を実現できるようになっている。

なお、本明細書において「凸部」とは、スパイク状、針状、円柱状、多角柱状、円錐状、多角錐状など、凸状を有する形状であれば全て包含されるものであり、更には集電体43自体の形状が、波状、山折・谷折状などを呈することにより、凸状部を備えるものも包含される。

凸部43Aの集電休43の表面からの高さは、電極基材4「との接触のために酵素固定化膜42の厚みより高くなっている。具体的な高さは、酵素固定化膜42の厚みに合わせて自由に設定することが可能であるが、特に、0〜0.0 mmとすることが好ましい。確実に電極基材4「と接触可能にするためである。

更に、凸部43Aを酵素固定化膜42の厚みより高くすることにより、集電休43と酵素固定化膜42との間に空隙Sを確保することが好ましい。この空隙Sにより、集電休43と酵素固定化膜42との間の燃料等の物質供給が円滑となり、電極基材4「表面への均一な物質供給が可能となり、高出力を実現できる。特に、バイオ燃料電池においては、グルコースなど比較的粘度が高く、拡散係数が低い燃料を用いることが多いことから、空隙Sは非常に重要な役割を担うものである。

集電休43は、一つの酵素電極40に対して複数設けるようにしてもよい。例えば、図19に示したように、2枚の集電休43で電極基材4「を挟んだり、図20に示したように複数の電極基材4「の間に、複数の集電休43を挿通させたりすることも可能である。

集電休43に用いる材料は、外部と電気的に接続可能な素材であれば特に限定されるものではなく、公知のあらゆる素材を自由に選択して用いることができる。例えば、Pt、Ag、Au、Ru、Rh、Os、Nb、Mo、In、Ga、Zn、Mn、Fe
、Co、Ti、V、肝、Pd、Re、Ta、W、Zr、Ge、Hfなどの金属、アルメル、真ちゅう、ジュラルミン、青銅、ニッケリン、白金ロジウム、ハイパーコ、パーマロイ、パーメンダー、洋銀、リン青銅などの合金類、ポリアセチレン、パラフィン、脂肪酸等を含むものを燃料として用いることが望ましい。

0081 各酵素電極4aは、上記第6、2の実施の形態の燃料電池6、2、6、3に限らず、例えば図2、「に示した燃料電池5「などにも用いることができる。この燃料電池5「は、上記の電極基材4「、酵素固定化膜42および集電体43からなる酵素電極40を備えている。図2「中のAに示す部分が図8「に示した酵素電極40に相当している。燃料電池5「は必要に応じて、燃料タンク52、プロトン伝導体53などを備える。以下、それぞれの構成、機能、効果等を説明する。

0082 燃料タンク52
燃料タンク52は燃料を貯蔵するために用いる。燃料タンク52の形状は特に限定されるものではなく、アノード40a（酵素電極）に燃料を供給可能な形態であれば任意である。燃料タンク52からアノード40aへの燃料の供給方法も特に限定されるものではなく、公知の方法を自由に選択することができる。例えば、加圧注入、負圧注入、接触吸水、毛細管現象などの原理を用いて、燃料をアノード40aに供給することが可能である。

0083 この燃料電池5「の燃料は、酵素を触媒とした酸化還元反応により電子を放出し得る燃料であれば、特に限定されない。例えば、ジュース、スポーツ飲料、砂糖水、アルコール類などの飲料、化粧水などの化粧料等を用いることがができる。特に、糖質、タンパク質、糖たんぱく質、脂肪酸等を含むものを燃料として用いることが望ましい。

0084 (2) プロトン伝導体53
アノード40aとカソード40b（酵素電極）とは、プロトン伝導可能な
状態で接続する。接続方法は特に限定されないが、例えば、図2に示したように、アノード4aとカソード4bとをプロトン伝導体53を間にした対向配置することにより、アノード4aとカソード4bとをプロトン伝導可能な状態で接続させることができる。

[0085] プロトン伝導体53に用いる材料は、電子伝導性がなく、且つ、H+の輸送が可能な電解質であれば特に限定されず、公知のあらゆる材料を選択して用いることができる。例えば、緩衝物質を含む電解質を用いることができる。緩衝物質としては、リン酸ニ水素ナトリウム（NaH2PO4）やリン酸ニ水素カリウム（KH2PO4）などが生成するリン酸ニ水素イオン（H2PO4−）、2−アミノ−2−ヒドロキシメチル−3−プロパンジオール（略称トリス）、2−（N−モルホリノ）エタンスルホン酸（M=S）、カコジル酸、炭酸（H2CO3）、クエン酸水素イオン、N−（2−アセトアミド）イミノニ酢酸（ADA）、ビペラジン−N, N′−ビス（2−エタノールスルホン酸）（P1P=S）、N−（2−アセトアミド）−2−アミノエタンスルホン酸（AC=S）、3−（N−モルホリノ）プロパンスルホン酸（MOPS）、N−2−ヒドロキシエチルビペラジン−N′−2−エタノールスルホン酸（H=P=S）、N−2−ヒドロキシエチルビペラジン−N′−3−プロパンスルホン酸（H=P=PS）、N−[トリス（ヒドロキシメチル）メチル]グリシン（略称トリス）、グリシルグリシン、N,N−ビス（2−ヒドロキシエチル）グリシン（略称ビシン）、イミダゾール、トリアゾール、ピリジン誘導体、ピピリジン誘導体、イミダゾール誘導体（ヒステチジン、「−メチルイミダゾール、2−メチルイミダゾール、4−メチルイミダゾール、2−エチルイミダゾール、イミダゾール−2−カルボン酸エチル、イミダゾール−2−カルボキシアルデヒド、イミダゾール−4−カルボン酸、イミダゾール−4−5−ジカルボン酸、イミダゾール−2−アセチルベンズイミダゾール、「−アセチルイミダゾール、N−アセチルイミダゾール、2−アミノベンズイミダゾール、N−（3−アミノプロピロツ）のイミダゾール、5−アミノ−2−（トリフルオロメチル）ベンズイミダゾール
ル、4-アザベンズイミダゾール、4-アザー2-メルカプトンベンズイミダゾール、ベンズイミダゾール、「ベンジルイミダゾール、「ブチルイミダゾール」などのイミダゾール環を含む化合物などを挙げることができる。また、固体電解質であるナフィオン類等も用いることができる。

なお、本実施の形態では、2枚の集電体43でブロトン伝導体53を挟み込むようにしているが、これに限定されるものではない。例えば、集電体43を酵素電極4a, 4bのブロトン伝導体53の積層面と逆面側に配設することも可能である。また、複数の電極基材41の間に、複数の集電体43を挿通させたりすることも可能である。

＜電子機器＞

上記実施の形態の燃料電池は、大きな出力電流および電圧を得ることができるため、公知のあらゆる電子機器に好適に用いることができる。

電子機器は燃料電池を使用するものであれば、構造、機能等は特に限定されず、電気的に作動する機器を全て含有する。例えば、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、ゲーム機器、車載機器、家庭電気製品、工業製品等の電子機器、自動車、二輪車、航空機、ロケット、宇宙船等の移動体、検査機器、ペースメーカ用の電源、バイオセンサを含む生体内機器の電源等の医療機器、生ごみを分解し電気エネルギーを発電させるシステム等の発電システムおよびコジェネレーションシステム、等を挙げることがができる。

以下、上記酵素電極についての実施例について説明する。

実施例 ＂
実施例 ＂では上記酵素電極4 0を作製した。

「」集電体の作製

集電体の一例として、チタンを用いたエキスパンドメタルの圧延体を用いた。エキスパンドメタルの圧延体の随所を剝山により切断し、スパイク状の凸部を形成することで、凸部を備える集電休を作製した。凸部の高さは、平均 0.「〜「.0 mmであった。
酵素固定化膜の作製

最初に、以下のようにして各種の溶液（A）〜（三）と導電性塗料（カーボン系材料）を塗布した多孔体カーボン（PC）電極（F）を作製した。溶液調製用の緩衝溶液としては、50mMリン酸二水素カリウム（KH2PO4）緩衝液（I、S、= 0.3、pH= 7.5）と「00mMリン酸二水素ナトリウム（NaH2PO4）緩衝液（I、S、= 0.3、pH= 8.0）を用いた。

（A）GDH／DI酵素緩衝溶液

DI（E C：'.6.9'、天野エンザイム株式会社製）を47.6ml溶量し、50mMリン酸二水素カリウム緩衝液200μLに溶解させた（溶液（A）'）。この際、酵素を溶解させる緩衝溶液は直前まで4℃以下に冷蔵されていたものが好ましく、酵素緩衝溶液もできるだけ4℃以下で冷蔵保存しておくことが好ましい。本実施例においても、緩衝溶液および酵素緩衝溶液ともに、4℃以下で冷蔵保存していただいた。

（B）NADH緩衝溶液

NADH（シグマアルドリッチジャパン株式会社製、N－8「29」を4「ml溶量し、上記「00mMリン酸二水素ナトリウム緩衝液230μLに溶解させた。この溶液に溶液（A）'を20μL加え、よく混合してGDH／DI酵素緩衝溶液（A）とした。

（C）ANQアセトン溶液

2－アミノ－4－ナフトキノン（ANQ）合成品を6.2ml溶量し、アセトン溶液600μLに溶解させ、ANQアセトン溶液（C）とした。

（D）P 2水溶液

ポリ－L－リシン臭化水素酸塩（P 2）（シグマアルドリッチジャパン
株式会社製、P-「274、Mw=93K」を適量秤量し、2.0wt％と
なるようにイオン交換水に溶解させ、「P」と水溶液（D）とした。

[008] (iii) PAAC Na水溶液
ポリアクリル酸ナトリウム（PAAC Na）（シグマアルドリッチジャパ
ン株式会社製、04『-00595、Mw=30K』を適量秤量し、0.0
22wt％となるようにイオン交換水に溶解させ、PAAC Na水溶液（三）
とした。

[009] (F) 導電性塗料（カーボン系材料）を塗布した多孔体カーボン（P C）
電極
導電性塗料（カーボン系材料）であるバニーハイブ（日本黒鉛工業株式会
社製、バニーハイブソ27M）をニブタノン（和光純薬株式会社製、「3
3-02506」に体積5：「の割合で希釈し、多孔体カーボン電極（東海
カーボン株式会社製、「cm x cm x 2 mm、60％空隙率、約95〜98
mg）」に、乾燥後、約「05〜「08 mgになるように塗布し、一晩乾燥
した（約「05〜「08 mg）。

[010] 次に、導電性塗料を塗布した多孔体カーボン電極（F）の上面と底面を2
0分ずつオゾン洗浄処理を行った。前記で調整した溶液（A）〜（C）を下
記の表「に記載した量ずつ採取して混合し、この混合液をマイクロビペット
等を用いてオゾン洗浄処理を行った多孔体カーボン電極の上面と底面に半分
量ずつ塗布した。その後、40℃で「5分間オーブン中で乾燥を行い、
酵素補酵素電子メディエータ電極を作製した。

[表1]

<table>
<thead>
<tr>
<th>グァニ酸ディオキサ酸緩衝溶液 (A)</th>
<th>32μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH緩衝溶液 (B)</td>
<td>8.0μL</td>
</tr>
<tr>
<td>ANQアセトン溶液 (C)</td>
<td>74.8μL</td>
</tr>
</tbody>
</table>

[012] この酵素補酵素電子メディエータ塗布電極の上面と底面にPと水溶
液（D）を下記の表2に記載した量の半分量塗布した後、4℃で「5分間ドライオーブン中で乾燥を行った。そして、その電極の上面と底面にPAAc Na水溶液（N）を下記の表2に記載した量塗布した後、4℃で「5分間ドライオーブン中で乾燥を行い、酵素イ補酵素イ電子メディエータ固定化電極を作製した。

[表2]

<table>
<thead>
<tr>
<th>液</th>
<th>「0Ⅱ」</th>
<th>「2Ⅱ」</th>
</tr>
</thead>
<tbody>
<tr>
<td>P J水溶液(D)</td>
<td>P Jの総重量は200μgで投影面積当たりの質量は28.3μg/mm²</td>
<td>P Jの総重量は2.64μgで投影面積当たりの質量は374ng/mm²</td>
</tr>
<tr>
<td>PAAc Na水溶液(日)</td>
<td>(PAAc Na水溶液(日)の総重量は264μgで投影面積当たりの質量は374ng/mm²)</td>
<td></td>
</tr>
</tbody>
</table>

(3) 酵素固定化膜の膜厚の測定

板状のグラッシーカーボン電極の上に、シート状のシリコンゴム（厚さ3mm. 0mm）に直径6mmの丸い孔を開けたものをのせた。そして、前述の調整溶液（A）〜（C）を下記の表3に記載の量ずつ採取して混合し、この混合液をマイクロシリンジを用いて、そのシリコンゴムの孔の中に塗布した。その後、4℃で「5分間ドライオーブン中で乾燥を行い、シリコンゴムの孔の中に酵素イ補酵素イ電子メディエータ塗布膜を作製した。

[表3]

| GDH/ID酵素緩衝溶液(A) | 8.0μ |
| NADH緩衝溶液 | 2.0μ |
| ANGアセトン溶液(C) | 8.7μ |

シリコンゴムの孔の中に作製した酵素イ補酵素イ電子メディエータ塗布膜上に、P J水溶液（D）を記載表2に記載の量塗布した後、4℃で「5分間ドライオーブン中で乾燥を行った。そして、PAAc Na水溶液（N）を記載表2に記載の量塗布した後、4℃で「5分間ドライオーブン中で乾
燥を行い、酵素固定化膜を作製した。
[0007] このグラッシーカーボン電極の上（シリコンゴムの孔の中）に作製した酵素固定化膜が剥がれないように注意深くシリコンゴムを取り外し、触針式段差計（Dektak3、ST-LAOAN THUNDERHOLOGY）によりこの酵素固定化膜の膜厚測定を行った。その結果、得られた膜厚は約 40 〜 80 μmであった。
[実施例 2]

[0008] 実施例 2 では、単極評価セル中で締め付けるトルクの値を変化させて電極の抵抗値、酵素固定化膜によってどのように変化するのか検討を行った。

[0009] 実施例 3で作製した導電性塗料を塗布した多孔体カーボン電極（F）（本実施例では電極（1）とす）および、実施例 3で作製した酵素固定化膜電極（電極（1））を準備した。それぞれの電極「枚を単極評価セル 54A にセットし、電極の上面と底面に、チタンを用いたエキスパンドメタルの圧延体をひいて、図22に示したトルク付加装置において、上蓋 54B で締め付けるトルクを変化させながら、2 つの集電体 43 間の抵抗値をテスター 54C により測定した。その結果を図 23 に示す。

[0010] 電極（1）はトルクに対して抵抗値が減少することが分かった。それに対し、電極（1）は電極（1）よりもかなり抵抗値が大きくなるが、電極（1）と同様にトルクに対して抵抗値が減少することが分かった。この結果から、酵素固定化膜を備える電極を用いるバイオ燃料電池においては、通常の燃料電池に比べて抵抗値が大きくなることが分かった。
[実施例 3]

[0011] 実施例 3 では、電極基材表面と集電体の接触抵抗が、集電体の凸部によって軽減されるかどうかの検討を行った。すなわち実施例 3 のトルクと抵抗値の検討結果から、酵素固定化膜を備える電極基材を用いる際、その電極基材と集電体の間の接触抵抗が問題になることが分かった。そこで、凸部を備える集電体を用いることで、その接触抵抗を低減できないかの検討を行った。

[0012] 実施例 3で作製した酵素固定化膜電極「枚を、単極評価セルにセットし、電極の上面と底面に、平らなエキスパンドメタルの圧延体（集電休（a））
をひいたものと、実施例「で作成した凸部を有する集電体（b）をひいたものを利用した。これらを図2.2に示したトルク付加装置を用いて、上蓋をトルク20N·mで締め付けた。両者の抵抗値をテスト54により測定した。その結果を表4に示す。

[013]
表4に示した通り、通常のバイオ燃料電池で用いる集電体（a）を用いる場合に比べ、凸部を備えた集電体（b）を用いることで、電極基材の上面と底面間の抵抗値が著しく減少することが分かった。

[014] [表4]

<table>
<thead>
<tr>
<th>集電体</th>
<th>(a) 凸部なし</th>
<th>(b) 凸部あり</th>
</tr>
</thead>
<tbody>
<tr>
<td>抵抗値</td>
<td>5.5Ω</td>
<td>0.7Ω</td>
</tr>
</tbody>
</table>

[実施例4]

[015] 実施例4では、凸部を備えた集電体（b）を用いる場合の接触抵抗減少の効果を、電気化学的に検討した。

[016] まず、実施例「で作製した酵素固定化膜で電極「枚を、単極評価セルにセットし、電極の上面と底面に、平らなエキスパンダメタルの圧延休（集電体（a））をひいたものと、実施例「で作成した凸部を備える集電体（b）をひいたものを使用した。これらを図2.2に示した装置を用いて、上蓋をトルク20N·mで締め付けた。凸部を有する集電体（b）は図18に示したものであり、凸部を有しない集電体（a）は図2.6に示したものに相当する。

[017] 次に、燃料溶液として、2.0Mイミダゾール塩酸パッファー（pH7.0）に、0M, 0.2M, 0.4M, 0.6M, 1.0M, 2.0Mと濃度の異なるグルコースを溶解した溶液を用いて、JSV（リニアスイープポルタントメトリー）測定（+ 0.6 〜− 0.6 V, 「mV/s」）を行った。その結果を図2.4および図2.5に示す。

[018] 図2.4は集電体（a）と集電体（b）を用いた場合におけるJSV測定結果（グルコース0.4M）を表すものである。図2.5は、JSVの−0.3
Vにおける電流密度のグルコース濃度依存性の比較結果（集電休（a）と集電休（b））を表している。

図2-4から、凸部を備えた集電休（b）を用いた場合の方が、JS Vの立ち上がりの傾きが明らかに大きいことが分かった。図2-5からは、グルコース濃度0.2 M程度までは、集電休（a）と集電休（b）とに差は殆どないが、0.2 Mを超えると、凸部を備えた集電体（b）を用いた場合の方が、顕著に高い電流密度を表すことが分かった。

以上の結果から、凸部を備えた集電休（b）を用いることにより、酵素固定化膜が形成された電極基材と集電休間の接触抵抗が顕著に低減され、グルコースの物質輸送も向上するために高い電流密度を取ることが可能であることが分かった。
請求の範囲
[請求項1] 正極と負極とがプロトン伝導体を間にして対向配置された複数のセルを有し、
前記正極または負極の少なくとも一方の電極に触媒として酸化還元酵素が固定されると共に、燃料溶液が前記正極および負極のいずれにも接触する構成を有する、燃料電池。

[請求項2] 前記正極は、互いに隙間を設けて配置された複数の電極により構成されている、請求項「に記載の燃料電池。

[請求項3] 前記正極を構成する電極は、その表面の少なくとも一部に親水性を有する、請求項2に記載の燃料電池。

[請求項4] 他の燃料電池と接続するための端子と、
電池内に燃料を供給するための燃料供給孔と、
電池内の気体を排気するための排気孔と、を有し、
前記端子と前記燃料供給孔および前記排気孔とが、相互に異なる面に配置されている、請求項「乃至3のいずれか「項に記載の燃料電池。

[請求項5] 前記燃料供給孔から供給された燃料を、燃料タンクの所定の位置および／または方向に導入するための燃料導入部を有する、請求項4に記載の燃料電池。

[請求項6] 内部に「または複数の磁石を備え、前記端子同士を磁力により接続する、請求項4に記載の燃料電池。

[請求項7] コイン型または筒型の電池である請求項「に記載の燃料電池。

[請求項8] 前記電極は、
電極基材と、
前記電極基材に酵素を固定するための酵素固定化膜と、
前記酵素固定化膜の厚みより高い凸部を有し、前記凸部により前記電極基材と接触する集電体とを備えている、請求項「記載の燃料電池。
[請求項9] 前記酵素固定化膜と前記集電体との間に空隙を有する、請求項8記載の燃料電池。

[請求項10] 電極基材と、
前記電極基材に酵素を固定するための酵素固定化膜と、
前記酵素固定化膜の厚みより高い凸部を有する集電体と
を備えた酵素電極。

[請求項11] 前記集電体の凸部と前記電極基材とが接触している、請求項10記載の酵素電極。

[請求項12] 前記酵素固定化膜と前記集電体との間に空隙を有する、請求項10記載の酵素電極。
[図1]
図2

(A) (+)

(B) (+)
[図27]

負極

<table>
<thead>
<tr>
<th>電極</th>
<th>酵素固定化膜</th>
<th>燃料溶液</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Med_{red} ← D_{ox}</td>
<td>Glucose</td>
</tr>
<tr>
<td>e⁻</td>
<td>Med_{ox} ← D_{red}</td>
<td>Glucose Dehydrogenase</td>
</tr>
<tr>
<td></td>
<td>Diaphorase</td>
<td>GDH_{ox} ← GDH_{red}</td>
</tr>
<tr>
<td></td>
<td>NADH ← NAD⁺</td>
<td>Gluconolactone</td>
</tr>
</tbody>
</table>

正極

<table>
<thead>
<tr>
<th>電極</th>
<th>酵素固定化膜</th>
<th>大気</th>
</tr>
</thead>
<tbody>
<tr>
<td>e⁻</td>
<td>Med_{ox} ← BOD_{red}</td>
<td>O₂</td>
</tr>
<tr>
<td></td>
<td>BOD_{ox} ← Med_{red}</td>
<td>H₂O</td>
</tr>
</tbody>
</table>

[図28]

100

106

102

114

112

108

111

116

109

101

107

113

104

115

103

110

105
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2009/063936

A. CLASSIFICATION OF SUBJECT MATTER

H01M8/16 (2006.01)i., G01N2/32 7(2006.01)i., H01M4/86 (2006.01)i., H01M8/02 (2006.01)i., H01M8/10 (2006.01)n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01M8/16, G01N2/327, H01M4/86, H01M8/02, H01M8/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched


Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2007-280944 A (Sony Corp.), claim 9; paragraphs [0046], [0049], [0050]; fig. 7</td>
<td>~, 4, 5</td>
</tr>
<tr>
<td>Y</td>
<td>25 October 2007 (25.10.2007), paragraphs [00167] to [00181]; fig. 10, 11, 22</td>
<td>~, 3</td>
</tr>
<tr>
<td>A</td>
<td>(Family: none)</td>
<td>6</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2008/058165 A2 (AKERMIN, INC.), paragraph [00176] to [00181]; fig. 10, 11, 22</td>
<td>2, 3</td>
</tr>
<tr>
<td>A</td>
<td>15 May 2008 (15.05.2008), paragraphs [00167] to [00181]; fig. 10, 11, 22</td>
<td>1, 4-6</td>
</tr>
<tr>
<td></td>
<td>&amp; WO 2008/137846 A2 &amp; EP 2080243 A</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>WO 2006/057387 A1 (The University of Tokyo), paragraph [0058], [0067] to [0069]</td>
<td>2, 3</td>
</tr>
<tr>
<td>A</td>
<td>01 June 2006 (01.06.2006), paragraph [0058], [0067] to [0069]; fig. 2</td>
<td>1, 4-6</td>
</tr>
<tr>
<td></td>
<td>(Family: none)</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

A Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other especial reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 30 October 2009 (30.10.09)

Date of mailing of the international search report: 10 November 2009 (10.11.09)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>JP 2009-1584 66 A (Sony Corp .), 16 July 2009 (16.07.2009) , claims 1 to 7, 16; paragraphs [0014 ], [0061 ]; fig. 3 (Family: none)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>JP 2007-163185 A (Canon Inc .), 28 June 2007 (28.06.2007) , paragraphs [0131], [0132], [0248], [0254], [0287] to [0292]; fig. 9 &amp; US 2007/013154 6 Al</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-5828 9 A (Canon Inc .), 02 March 2006 (02.03.2006) , paragraphs [0024], [0025]; fig. 7 &amp; wo 2006/009328 Al &amp; US 2007/0056852 Al</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>wo 2007/088975 Al (Ube Industries, Ltd .), 09 August 2007 (09.08.2007) , paragraphs [0109], [0247] to [0254]; fig. 15 &amp; US 2009/01 92297 A</td>
<td>1-6</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

In order to satisfy the requirement of unity of invention, the inventions of the claims should be so linked as to form a single general inventive concept by a special technical feature. The inventions of claims 1-12 are linked only by "an enzyme electrode in which an enzyme is fixed."

However, the search has revealed that the technical feature cannot be a special technical feature since it is disclosed in Document 1: JP 2007-280944 A (Sony Corp.), 25 October 2007 (25.10.07), claim 9, paragraphs [0049], [0050].

Accordingly, it is obvious that the inventions of claims 1-12 do not satisfy the requirement of unity of invention.

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos. 1 - 6

Remark on Protest ☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
A. 発明の属する分野の分類（国際特許分類（IPC））

Int Cl H01M8/16 (2006. 01) i, G01N27/327 (2006. 01) i, H01M4/86 (2006. 01) i, H01M8/02 (2006. 01) i, H01M8/10 (2006. 01) n

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int Cl H01M8/16, G01N27/327, H01M4/86, H01M8/02, H01M8/10

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新型公報 1922-1996年
日本国公開実用新型公報 1971-2009年
日本国实用新型登録公報 1996-2009年
日本国登録实用新型公報 1994-2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

c. 関連することと認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する箇所の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2007-280944 A (ソニー株式会社) 2007.10.25, [請求項9], [図7] (ファミVーなし)</td>
<td>1, 4, 5</td>
</tr>
<tr>
<td>Y</td>
<td>[0046], [0049], [0050], [図7] (ファミVーなし)</td>
<td>2, 3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2008/058165 A2 (AKERMIN, INC.) 2008.05.15, [00167] - [00191]</td>
<td>1, 4-6</td>
</tr>
<tr>
<td>A</td>
<td>FIG.10, 11, 22 &amp; WO 2008/137846 A2 &amp; EP 2080243 A</td>
<td>4-6</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2006/057387 A1 (国立大学法人東京大学) 2006.06.01, [0058], [図2] (ファミVーなし)</td>
<td>2, 3</td>
</tr>
<tr>
<td>A</td>
<td>[0067] - [0069], [図2] (ファミVーなし)</td>
<td>1, 4-6</td>
</tr>
</tbody>
</table>

洋 C欄の続きにも文献が列挙されている。

ヴ パティントファミリーに関する別紙を参照。

引用文献のカテゴリ

IA 特に関連のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの
IL 優先権主張に疑義を含む出願が他の文献の発行 日若しくは他の特別な理由を考慮するために引用する文献（理由を付す）
IQ 口頭による開示、使用、展示等に言及する文献
rp 国際出願 日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 30.10.2009
国際調査報告の発送日 10.11.2009

国際調査機関の名称及び住所先

日本国特許庁（ISA/JP）
郵便番号 100-8915
東京都千代田区霞が関三丁目四番3号

特許庁審査官 権限のある職員

山内 達人
電話番号 03-3581-1101 内線 3477
国際調査報告

国際出願番号：PCT/JP2009/063936

C（続き）

<table>
<thead>
<tr>
<th>引用文献名</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する文献の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>请求项71、[请求项]16、[0014]、[0061]、[图]3（ファミリーなし）</td>
<td>2-6</td>
</tr>
<tr>
<td>P, A</td>
<td>JP 2009-117088 A (日産自動車株式会社) 2009.05.28, [特許請求の範囲]（ファミリーなし）</td>
<td>1-6</td>
</tr>
</tbody>
</table>
国際調査報告

第Ⅱ編 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)

第8条第3項 (PCT17条(2) (a) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. r 請求項 は、この国際調査機関が調査をするときには、所定の要件を満たしていな国際出願の部分に係るものである。

2. ピ 請求項 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。

3. r 請求項 は、従属請求の範囲であってPCT 規則6,4(a) の第2文及び第3文の規定に従って記載されていない。

第Ⅲ編 発明の単一性が欠如しているときの意見 (第1ページの3の続き)

次に述べるように本国際出願に次以上の発明があるときこの国際調査機関は作成した。

請求の範囲に記載されている一群の発明が単一性の要件を満たすには、その一群の発明を単一の一般的発明概念を形成するに連関させるため、特別な技術的特徴の存在が必要であるところ、請求項1-12に記載されている一群の発明は、酵素が固定されている酵素電極」という事項でのみ連関していると認められる。

しかしながら、この事項は、文献1: JP 2007-280944 A (ソニー株式会社) 2007.10.25, [請求項9], [0049], [0050]に記載されており、特別な技術的特徴とはならない。

そのため、請求項1-12に記載されている一群の発明が、発明の単一性の要件を満たしていないことは明らかである。

1. r 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求項について作成した。

2. r 追加調査手数料を要求するまでもなく、すべての調査可能な請求項について調査することをかえさせて、追加調査手数料の納付を求めてなかった。

3. デ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求項のみについて作成した。

4. ト 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求項について作成した。

1-6

追加調査手数料の異議の中立に関する注意

☑ 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。
☑ 追加調査手数料の納付と共に出願人から異議申立てがあったか、異議申立手数料が納付命令書に示した期間内に支払われなかった。
☑ 追加調査手数料の納付はあったか、異議申立てはなかった。

様式PCTノ1SAノ210（第1ページの続葉2）（2007年4月）