0 03/065174 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 August 2003 (07.08.2003)

PCT

(10) International Publication Number

WO 03/065174 A2

(51) International Patent Classification’: GO6F

(21) International Application Number: PCT/US03/03095

(22) International Filing Date: 3 February 2003 (03.02.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/353,239 1 February 2002 (01.02.2002) US
(71) Applicant (for all designated States except US): HAR-
VARD BUSINESS SCHOOL PUBLISHING [US/US];

300 North Beacon Street, Watertown, MA 02472 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): ELLSWORTH,
Amelia [US/US]; 700 Huron Ave., Apt. 7C, Cambridge,
MA 02138 (US).

(74) Agents: MORANO, Elizabeth, P. et al.; Bromberg &
Sunstein LLP, 125 Summer Street, Boston, MA 02110-
1618 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS AND METHOD FOR PROVIDING INFORMATION

Client Server and
Course Launch

Location Course Index file

{.PHP, .ASP, or
.HTML depending
on whether the
client system is
standards
compliant or not)

101

—

103

Client database
102

L

Course Exit file
(.PHP, .ASP, or
.HTML depending
on whether the

Client side
Cookie

105

—

Course Files, HTML & Clientside Javascript 108

client Database is
standards
compliant or not)

104

1

(57) Abstract: A computer product provides interactive content for use in a computer system that optionally includes a network
of computers. The computer product comprises: a digital storage medium, the storage medium encoded with computer readable
files as follows: a first set of files providing interactive content using a markup language format and a script format, the scripting
language for controlling data communication between a user and a program source; a second set of files providing compatibility
of the interactive content for use with a first e-learning standard environment; and a third set of files providing compatibility of the
interactive content for use with a second e-learning standard environment.

10

15

20

25

30

WO 03/065174 PCT/US03/03095

Apparatus and Method for Providing Information

Technical Field

The present invention relates to network based learning environments and, more
particularly to providing an apparatus and methods for distributing interactive content

regardless of particular access requirements.

Background Art

It is known in the art to provide Web browsers to display Web pages over a
network such as the Internet. While browsers are now so widely distributed that they can
be used as interfaces for various programs, Internet access constraints have traditionally
prevented the distribution of interactive content in one single universal format. Clients
with different types of access needs all want the same interactive content, and companies
who want to host a particular content have different server environments into which they
want to integrate the content. Maintaining multiple versions of the same interactive
content to cover distribution needs is typically messy and expensive.

In the HTML environment, it is known for a web server to utilize a short-form
message format, termed a “cookie”, for communication with a computer accessing web
pages via a web browser. The browser environment will store such a message, for
example, in a text file called “cookie.txt.” The message may then be sent back to the
server each time the browser requests a page from the server. Cookies may be used to
identify users and prepare customized Web pages for them. When a user enters a Web
site using cookies, he or she may be asked to fill out a form providing such information as
the user’s name and interests. This information is packaged into a cookie and sent to the
Web browser to store for later use. The next time the user enters the same Web site, the
browser will send the cookie to the Web server. The server can use the information to
present the user with a custom Web page. For example, instead of seeing just a generic
welcome page, the user might see a welcome page with his or her name on it. Cookies
are derived from UNIX objects called “magic cookies.” These are tokens that are
attached to a user or program which change depending on the areas entered by the user or

program. Cookies are sometimes called “persistent cookies” because they typically stay

10

15

20

25

30

WO 03/065174 PCT/US03/03095

in the browser for long periods of time. Cookie data can be associated with a user and
saved to a database. This allows the data to be written to the client machine the next time
a program is accessed, and compensates for the possibility that a cookie could be
overwritten by the browser. Information regarding cookies and their use may be found at

www.cookiecentral .com and specific programming details and usages appear at

www.cookiecentral.com/faqg/#3. The documents on this web site are hereby

incorporated herein by reference.

Integration flexibility now exists with the introduction of the AICC and SCORM
standards into the traditional interactive training and eLearning systems. AICC, the
Aviation Industry CBT (Computer Based Training) Committee, is an international
association of technology based training professionals. The AICC promotes
interoperability standards that software vendors can use across multiple industries. AICC
recommendations are fairly general to most types of computer based training, and for this
reason are widely used outside of the aviation training industry. Further details are
available at the web site of the AICC, www.aicc.org. Technical standards of the AICC
are accessible from the web site. At the time of this writing the technical standards could

be found at www.aicc.org/pages/down-docs-index htm#WHITE. SCORM, Sharable

Content Object Reference Model, is an XML-based reference model that defines a Web
based learning “content model.” The SCORM standards are distributed by Advanced
Distributed Learning Initiative Network, which has a web site setting forth these standards
at www.adlnet.org. See also, for example, “ R., Cover, “Shareable Content Object

Reference Model Initiative (SCORM)” in The XML Cover Pages at

http://xml.coverpages.org/scorm.html. The foregoing web-based documents are hereby

incorporated herein by reference.

Summary of the Invention

In a first embodiment, computer product provides interactive content for use in a
computer system that optionally includes a network of computers. The computer product
comprises:

a digital storage medium, the storage medium encoded with computer readable
files as follows:

a first set of files providing interactive content using a markup language format

10

15

20

25

30

WO 03/065174 PCT/US03/03095

and a script format, the scripting language for controlling data communication between a
user and a program source;

a second set of files providing compatibility of the interactive content for use with
a first e-learning standard environment; and

a third set of files providing compatibility of the interactive content for use with a
second e-learning standard environment.

In a related embodiment, the computer product also includes a fourth set of files,
which may be included in any of the other sets of files, for identifying the nature of an e-
learning environment in which interactive content has been placed, and invoking
processes for providing data pass consistent with the thus identified e-learning
environment, or providing no data pass at all.

In related embodiments of the invention, the first e-learning standard environment
may comply with AICC standards. In other related embodiments of the invention, the
second e-learning standard environment may comply with SCORM standards. In
additional related embodiments, the scripting language is selected from the group
consisting of JavaScript, ASP script, and PHP script.

In accordance with another embodiment of the invention, a method of providing
interactive content, for use in a computer system that optionally includes a network of
computers, includes:

providing interactive content using a markup language format;

along with the provided content, providing a first set of files providing
compatibility of the interactive content for use with a first e-learning standard
environment and a second set of files providing compatibility of the interactive content
for use with a second e-learning standard environment;

in the course of providing interactive content, identifying the nature of an e-
learning environment in which interactive content has been placed;

for each user experiencing the interactive content, using a cookie to provide a
record of the user’s place in experiencing of the interactive content.

In accordance with a related embodiment, the cookie may also provide a record of
the user’s data in experiencing of the interactive content. In accordance with another
related embodiment, the content is provided in a computing environment devoid of a

network of computers.

10

15

20

25

30

WO 03/065174 PCT/US03/03095

Brief Description of the Drawings

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying
drawings, in which:

Fig. 1 is a block diagram illustrating an apparatus for providing information in
accordance with one embodiment of the present invention_;

Fig. 2 is a flow chart illustrating a method for providing information when no
database is available;

Fig. 3 is a flow chart illustrating a method for providing information in accordance
with proprietary or non-standards based server access;

Fig. 4 is a flow chart illustrating a method for providing information in accordance
with standards based server access; and

Fig. 5 is an illustration of a graphical user interface for accessing files in

accordance with the embodiments of Figs. 1-4.

Detailed Description of Specific Embodiments

Definitions: For the purpose of the present description, the following terms shall have
the indicated meanings unless the context otherwise requires:

“Content” refers to information in an interactive format.

A “content package” refers to content and additional files that permit the content to be
compatible with a plurality of interactive content environments in accordance with
embodiments of the present invention.

Embodiments of the invention allow interactive content to be delivered to the widest
audience possible. In this manner, content remains the focus, and does not have to bend
to fit distribution needs.

In accordance with embodiments of the invention, one version of the same course
content is allowed to work with a plurality of different distribution methods. Such
distribution methods include, but are not limited to: Internet delivery from a server using
a standards compliant database or system; Internet delivery from a server using a non-
standards compliant database or system; firewall delivery from a server using a standards

compliant database or system; firewall delivery from a server using a non-standards

10

15

20

25

30

WO 03/065174 PCT/US03/03095

compliant database or system; Intranet/Internet delivery from a server with no database;
and distribution on CD or from any computer media with enough space to hold the
content. In this manner, embodiments of the invention may be used in a stand-alone
environment or in a network environment.

The course content itself has been separated from the technical implementation files,
allowing this process to apply to virtually any content. Embodiments of the invention
allow course content interaction to be the same for all access methods, provide a simple
implementation file package to fit all environments mentioned above, and enable the
course to detect its environment. Instrumentality may be constrained to degrade
gracefully so as to enable the experience of the content, regardless of client limitations.
Database systems here may hold data from client side cookies so the user identifier and
experience data (the interactive responses) can be saved and passed from machine to
machine.

Fig. 1 is a block diagram illustrating components for providing content in
accordance with one embodiment of the present invention. Such an embodiment may
be used with a course that provides interactivity through an interactive case and short
practice activities, along with expert feedback for self-evaluation. A section of the course
with interactive online tools also helps the user prepare, practice, and review key concepts
as they work. The interactive content is written in HTML, using client side JavaScript
and the appropriate server side scripts to go through the steps outlined below. (Although
JavaScript has been employed here, any other suitable scripting language for controlling
data commands may be employed, such as ASP (Active Server Pages}), PHP (short for
PHP: Hypertext Preprocessor) script.

In accordance with embodiments of the invention, a client server 101 may or may not
be in communication with a client database 102. The client server 101 and client
database 102, if present, have access to a content package which includes course Index
files 103, course content 104, course Exit files 106, SCORM and AICC files for standards
based server integration and PHP and ASP files for a proprietary server implementation.

The implementation files included in the content package 103, 104 and 106 for
this embodiment are shown in Fig. 5 and code pertaining to these files is included in
Appendix A attached hereto. This code implements some of following eleven steps

described in further detail below:

10

15

20

25

30

WO 03/065174 PCT/US03/03095

1. The client starts the content.

2. The content determines what data pass method, if any, is in place.

3. The content determines what identifiers and existing data exist, if any

4. If data pass is available, the content writes a cookie to the user’s hard drive using
traditional browser conventions. This cookie contains the updated information from
the database if the user is returning. If this is the first visit by the user, the cookie is
populated with default settings that will change as the experience continues.

5. If data pass is not available, the content checks for a cookie. If one already exists,
the user picks up where the cookie left them last. If no cookie is present, the content
writes a cookie with default settings to the user’s hard drive using traditional browser
conventions.

6. The user begins an interactive experience with the content.

7. The process uses client side cookies to hold user experience data as the user
proceeds through the content. If the content was launched from a server environment,
the content will periodically send data back to the server through the appropriate
method to maintain a connection and prevent data loss.

8. When the user exits the content, final data is written to the cookie on the hard
drive.

9. The content notes the data pass type initially detected

10. The content passes variable data and cookie text back to the parent database if it is
available. Once data pass has been successfully achieved, the cookie is erased to
prevent data overflow.

11. The course exits.

These implementation files are the content files, the standard AICC files, the
standard SCORM files, Oracle and MSSQL database scripts for those systems without a
standards compliant database, P3P example files for IE 6.0 privacy settings, and both
index and exit files for PHP, ASP and standard HTML.

The index and exit pages in the content package 103, 104 and 106 are the most
relevant to the embodiment outlined above. The Index.PHP and the Index.ASP do
basically the same thing, but for different environments. These files are designed to allow
integration of content to occur in a proprietary (or non-standards compliant) server

environment (described in detail below). At the end of each one, they point to the

10

15

20

25

30

WO 03/065174 PCT/US03/03095

Index. HTML file that finishes up the data detection process, and the course experience
begins.

At the end of the user experience, the Exit.PHP and Exit.ASP files are called by
the Exit. HTML file upon realization that a proprietary (or non-standards compliant)
server passed data into the content at the beginning of the experience. An example of
program code associated with these files is provided in the attached Appendix.

A client starts the content package 103, 104 and 106 via the server 101. The
content package 103, 104 and 106 will determine what data pass method, if any, is in
place. The content package 103, 104 and 106 will also determine what identifiers and
existing data exist, if any exist. If data pass to a data base 102 is available, the content
package 103, 104 and 106 writes a cookie 105 to the user’s hard drive using traditional
browser conventions. The cookie 105 contains the updated information from the database
102 if the user is returning. If this is the first visit by the user, the cookie 103 is populated
with default settings that will change as the experience continues.

If data pass is not available, the content package 103, 104 and 106 checks for a cookie
105. If one already exists, the user picks up where the cookie 105 left them last. If no
cookie 105 is present, the content package 103, 104 and 106 writes a cookie 105 with
default settings to the user’s hard drive using traditional browser conventions. The user
then begins an interactive experience with the content in the content package.

The content package 103, 104 and 106 uses client side cookies 105 to hold user
experience data as the user proceeds through the content. If the content package 103, 104
and 106 has been launched from a server environment, the content will periodically send
data back to the server through the appropriate method to maintain a connection and
prevent data loss. When the user exits the content, final data is written to the cookie 105
on the hard drive. The content package 103, 104 and 106 notes the data pass type initially
detected and passes variable data and cookie text back to the parent database 102 if it is
available. Once data pass has been successfully achieved, the cookie may be erased to
prevent data overflow. Then the course exits.

Fig. 2 is a flow chart illustrating a method for providing information when no
database is available. If no database 102 is available, the client calls 201 the course Index
file 103 in .HTML formal (Index.HTML) via a static Web link. The index.HTML does

not detect data pass, and so it searches 202 for a cookie 105 on the local disk drive. If a

10

15

20

25

30

WO 03/065174 PCT/US03/03095

cookie 105 is available, the index. HTML file loads the course at the location specified in
the cookie 105 as the last place visited and/or bookmarked. If no cookie 105 is available,
one is created, and the course content experience begins. The user has a course content
experience, and interactive choices and user specific text entries are saved to the client
side cookie 105 in process 203. The client calls, in process 204, the course Exit file 106
in . HTML format (Exit. H-TML). Data cannot be passed, thus the user will pick up again
where they left off as long as the cookie 105 is not overwritten and the next course
experience is on the same user machine.

Fig. 3 is a flow chart illustrating a method for providing information in accordance
with proprietary or non-standards based server access. Data base expansion scripts are
provided to create a table in the users existing MSSQL or Oracle database environment.
In accordance with this embodiment, the appropriate course Index file in .PHP or .ASP
format (Index.PHP or Index.ASP) is linked to a starting page. In process 301, the
program code in the Index.PHP or Index.ASP file tests database access and checks the
identification data passed from the proprietary server 101. If identification data exists, the
existing associated data in a “suspend_data” field is written to the client side cookie 10S.
If identification data does not exist, a record is created, and a cookie 105 with default
values is placed on the user’s machine.

In process 302, in this particular embodiment, program code contained in the
Index. HTML file causes checking of the client (or company) link in the cookie 105. If it
has not been set in the cookie 1085, or a different link exists in the cookie 105, the data in
the cookie 105 is updated to reflect the company link in an “includes_js” file. (This
particular implementation permits an optional company link, when present, to modify the
structure of the content presentation.) The content experience is then launched. The user
has a content experience, in process 303, and interactive choices and user specific text
entries are saved to the client side cookie 105.

In process 304, the user completes the content experience, and the Exit. HTML file
provides code that accesses the cookie 105 to determine the type of initial data pass that
was used. The Exit. HTML code then launches the appropriate exit file (either the
Exit.PHP file or the Exit. ASP file) and passes the cookie data to that file. The Exit.PHP
file or Exit.ASP file also includes code that sends data back to the fields in a table related

to the course, and the course exits in process 305.

10

15

20

25

30

WO 03/065174 PCT/US03/03095

Fig. 4 is a flow chart illustrating a method for providing information in accordance
with standards-based server access. In accordance with this embodiment, the
Index.HTML file is launched 401 from a standards-based server. The Index. HTML file
provides program code that checks to determine if communication is possible through the
AICC or the SCORM standard and identifies the API appropriate for the task. The
Index. HTML also provides program code that tests the data pass and checks the
identification data sent from the standards-based server. If a record exists, the
Index. HTML file provides program code to receive data and write a cookie 105 to the
client computer from a “suspend_data” field or a “core_lesson” field. If the identification
data does not exist, the Index. HTML file provides code to create a record and place a
cookie 105 with default information on the user’s computer. In this embodiment, the
Index.HTML file also provides code to check the company or client link. If a link has not
been sent to the cookie 105, or a different link exists in the cookie 105, the data in the
cookie 105 is updated to reflect the company or client link in an “includes_js” file. The
content experience is then launched.

The user has a content experience in process 402, interaction choices and user
specific text entries are saved to the client side cookie and content experience information
is periodically sent back to the system 105. In process 403, the user completes the content
experience, and the Exit. HTML file provides program code that searches the cookie 105
to determine the type of initial data pass. The Exit. HTML file also provides code to
address the appropriate API to pass data back to the standards-based server.

In a separate embodiment, a course engine uses XML or Winini to tie course
information during course creation to the proper AICC and SCORM terms, and generates
the same type of files as demonstrated above automatically, giving the course content the
ability to self detect its environment and integrate into a clients environment simply.

The apparatus and methods described above, enable those systems with or without
a database to provide an identical interactive experience to their users. They also allow
the same content and course version to address all client distribution methods, regardless
of their proximity to a central database.

There are differences in technical functionality in each implementation scenario,
but they are found in every instance of content delivery in the scenario and not

specifically a product of the invention.

10

15

20

25

30

WO 03/065174 PCT/US03/03095

Traditional Internet or Intranet delivery (Proprietary or Standards based environment)

This is a solution like a traditional hosting solution available via an on-line site.
Features and trade-offs:

(a) The server hosts the course.

(b) The server manages user data.

(c) Reports are easily made available

(d) Data is persistent from session to session.

(e) Data is persistent from computer to computer.

Non-database distribution through Internet/Intranet or CD/hard drive use

This version allows a company or client to run content from a database-free Intranet,
Internet, or hard drive installation or a CD distribution.
Features and trade-offs:
(a) The course lives on the client Intranet/Internet or user CD drive/desktop.
(b) Data is user specific and held on user machine.
(c) No completion reporting is possible.
(d) Data is persistent from session to session as long as the cookie is not over-written.
(e) Data is not persistent from computer to computer.

Fig. 5 is an illustration of a graphical user interface for accessing files in
accordance with the embodiments of Figs. 1-4. In accordance with this particular
embodiment, “Managing Direct Reports” is a course that provides interactivity through an
interactive case and short practice activities, along with expert feedback for self-
evaluation. An "@Work" section with interactive online tools also helps the user prepare,
practice, and review key concepts as they work. The content is written in HTML, using
client side JavaScript to go through the steps outlined above. The course package also
includes SCORM and AICC files for standards based server integration as well as PHP
and ASP files for a proprietary server implementation.

The implementation files included in the package for this embodiment are
provided in appropriate subfolders or stored directly in the directReportsFlat folder. Such
files include the content files in folders such as 511, 512, 513, 514, 515, 516 and 517 the
standard AICC files in folder 501, the standard SCORM files in folder 502, MSSQL
(folder 503) and Oracle database scripts for those systems without a standards compliant

database system, P3P example files in folder 504 for IE 6.0 privacy settings, and both

10

10

15

20

WO 03/065174 PCT/US03/03095

index (in pages 505, 507 and 509) and exit files (506, 508 and 509) for PHP, ASP and
standard HTML respectively.

The index and exit pages 509 and 510 in the package are the most relevant to the
invention outlined above. The Index.PHP 505 and the Index.ASP 507 do basically the
same thing, but for different environments. These files are designed to allow integration
of content to occur in a proprietary (or non-standards compliant) server environment. At
the end of each one, there is a pointer to the Index.html file 509 that finishes up the data
detection process, and the course experience begins.

At the end of the user experience, the Exit.php 506 and Exit.asp 508 files are
called by the Exit.html 510 file upon realization that a proprietary (or non-standards
compliant) server passed data into the content at the beginning of the experience. The
Index and Exit files and their associated code are also explained on the pages in Appendix
A attached hereto.

In a separate embodiment, a course engine may use XML or Winini to tie course
information during course creation to the proper AICC and SCORM terms, and generate
the same type of files as described in accordance with the embodiment of Fig. 5. This
automatically gives the content the ability to self-detect its environment and integrate into
a clients environment simply.

Although various exemplary embodiments of the invention have been disclosed, it
should be apparent to those skilled in the art that various changes and modifications can
be made which will achieve some of the advantages of the invention without departing

from the true scope of the invention.

02480/104WO 237626.1

11

WO 03/065174 PCT/US03/03095
APPENDIX A

Index.PHP

<?php

Error reporting turned on in order to test that content is
connecting properly to database

error_reporting(0);

Properties of Database are set

//HBSP Connect Code

PutEnv ("ORACLE_SID=[enter your SID]");

PutEnv ("ORACLE_HOME= [enter your Oracle home directoryl");

$db = "[enter your Oracle database address]";
$connection = OCILogon ("[enter your Oracle logon]","[enter
your Oracle password]", $db);

Connection to database is tested

if(!Sconnection)
{

}

Serror=0CIError();

Test to see if student_id was passed via POST or QUERYSTRING
method, if not, generate random username to ensure program
will run
1f (! SHTTP_GET _VARS["student_id"] '&&
| SHTTP_POST VARS["student_id"]) {
list(Susec, $sec) = explode(' ', microtime());
mt_srand((float) $sec + ((float) Susec * 100000));
Srandval = mt_rand();
Susername = S$randval;
}
set variable to student_id passed in
else{
1f (! $HTTP_POST_VARS["student_id"]) {
Susername = SHTTP_GET_VARS['"student_id"];
}
else {
$username = SHTTP_POST_VARS["student_id"];
}
-}

If there was no error in test connection with database,
connect to database and determine if there is information
for user already there - STEP 3
if (!Serror) {
//Check if user already exists, if not then add user
into the DB
SquerySearch = "Select student_id from
directreports_table where student_id = 'S$username'";
Scursor = OCIParse ($connection, SquerySearch);
$result = OCIExecute ($Scursor);
Test result of select statement to make sure no errors
occurred

12

WO 03/065174 PCT/US03/03095

if (!Sresult)
{

}

$error = OCIError{$cursor) ;
while (OCIFetchInto ($Scursor, S$values))
{

}
$strUserID = $sUser;

$sUser = $values([0];

if ($strUserID != '')

{

}

if user does not exist, create new entry for them in
database table

else{

//instantiate record

SstartDate = date('Y-m-d');

Squery = "INSERT INTO directreports_table
(student_id, lesson_status, suspend_data, started) values
('$Susername’, 'not
attempted', 'username~$username |mode~php | firstVisit~yes|
',to_date('S$startDate', 'YYYY-MM-DD'))";

Scursor = OCIParse($Sconnection, Squery);

Sresult = OCIExecute{S$cursor);

Test result of insert statement to make sure no

errors occurred

1f (!Sresult)

{

}

Serror = OCIError ($cursor);

Obtain user information from database and put into php
variables - STEP 3

Squery = "select lesson_status, suspend_data from
directreports_table where student_id='S$Susername'";
Scursor = OCIParse (S$connection, Squery);

Sresult = OCIExecute ($cursor);

Test result of select statement to make sure no errors

occurred
if (!Sresult)
{

Serror = OCIError ($cursor) ;
}

while (OCIFetchInto ($cursor, Svalues))
{
Sstatus
Scookie

Svalues[0];
Svalues[1l];

13

WO 03/065174 PCT/US03/03095

Close database connection
OCIFreeStatement (Scursor) ;
OCILogoff ($connection) ;

?2>
<html>
<head>
<script language="JavaScript"
src="jscript/scripts.js"></script>
<script language="JavaScript"
src="jscript/includes.js"></script>
</head>
<script language="JavaScript">
Set client side cookie to hold information obtained
from database -~ STEP 4
setCookie (mainCookieName, "", "<?php echo (Scookie);
>,/
setCookie (mainCookieName, "startStatus", "<?php
echo ($status); ?2>","/");

if a database error was detected, provide user with

error information

var errTest = "" + <?php echo($error); ?> + "";

if (erxrTest != "0") {

alert ("The Learning Management System is

experiencing problems and is unable to retrieve your data.
Please contact your system administrator for support. You
may continue on with the course but your data may not be
saved when you exit.");

}

Send user to standard index.html to proceed with course
- STEP 6

document.location.href = "index.html";
</script>
</head>

<body bgcolor="#ffffff">
</body>
</html>

Index.ASP

<%
Error reporting turned on in order to test that content
is connecting properly to database
on Error Resume Next
Dim errorvVal

Properties of Database are set

set cnObj=Server.CreateObject ("ADODB.Connection")

cnObj.ConnectionString="Provider=SQLOLEDB.1; Password=[e
nter your SQL Server password];Persist Security
Info=False;User ID=[enter your SQL Server user ID];Initial
Catalog=[enter your SQL Server database name] ;Data
Source=[enter your SQL Server data sourcel"

14

WO 03/065174 PCT/US03/03095

Connection to database is tested

cnObj .Open
if cnObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end if

Test to see if student_id was passed via POST or
QUERYSTRING method, if not, generate random username to
ensure program will run

if Request.QueryString("student_id") = "" AND
Request .FORM("student_id") = "" then
'generate random username
Randomize ()

username = Int((100000000000 * Rnd) + 1)

set variable to student_id passed in

elseif Request.QueryString("student_id") <> "" then
username = Request.QueryString("student_id")
else
username = Request.Form("student_id")
end if

connect to database and determine if there is
information for user already there - STEP 3
strSQL = "Select student_id from directreports_table "

& "where student_id = '" & username & "'"
set rs = cnObj.Execute (strSQL)

Test result of select statement to make sure no errors
occurred
if cnObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end if

if user does not exist, create new entry for them in
database table
if rs.EOF then

'new user

SQLstring = "INSERT INTO directreports_table
(student_id, lesson_status, suspend_data, started) "

SQLstring = SQLstring & " values ('" & username &
"', 'not attempted', 'username~" & username &
"|mode~asp | firstVisit~yes|','" & Date() & "')"

cnObj .Execute (SQLstring)

Test result of insert statement to make sure no
errors occurred

if cnObj.Errors.Count > 0 then

15

WO 03/065174 PCT/US03/03095

For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end if
end if

Obtain user information from database and put into asp
variables - STEP 3

strSQL = "Select lesson_status, suspend_data from
directreports_table " _
& "where student_id = '" & username & "'"

set rs = cnObj.Execute(strSQL)

Test result of select statement to make sure no errors
occurred
if cnObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end 1if

status = rs("lesson_status")
cookie = rs("suspend data")

%>

<html>

<head>

<script language="JavaScript"

src="jscript/scripts.js"></script>

<script language="JavaScript"

src="jscript/includes.js"></script>

<script language="JavaScript">

if a database error was detected, provide user with

error information

var errTest = "" + <%=errorVal %> +

if (errTest != 0) {

alert ("The Learning Management System is

experiencing problems and is unable to retrieve your data.
Please contact your system administrator for support. You
may continue on with the course but your data may not be
saved when you exit.");

}

wa o,
’

Set client side cookies to hold information obtained
from database - STEP 4

setCookie (mainCookieName, "", "<%$=cookie %>","/");
setCookie (mainCookieName, "startStatus", "<%=status
%>"/"/");
Send user to standard index.html to proceed with course
- STEP 6
document.location.href = "index.html";
</script>
</head>

<body bgcolor="#ffffff">
</body>

16

WO 03/065174 PCT/US03/03095
</html>

Index.html

<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="-1">
<html>
<head>
<script language="javascript"”
src="jscript/APIWrapper.js"></script>
<script language="javascript"
src="jscript/scripts.js"></script>
<script language="javascript"
src="jscript/includes.js"></script>
<script language="javascript">writeTitle();</script>
<script language="JavaScript">
function accessLMS() {
Tests to see if user came from php or asp index page, if
yes, continue on to proceed function, else test to see if
SCORM or AICC API exists - STEP 2
if (mode == "php" || mode == "asp") ({
proceed() ;
}
else {
Test to see if SCORM/AICC API exists, if not, set
mode variable to empty string and continue on to
proceed function, else access the API for user
information - STEP 2
var result = doLMSInitialize();

if (result == false) {
mode = "";
proceed () ;
}
else {
Set mode variable to "scorm"
mode = "scorm";

Check user’s lesson status value from
SCORM/AICC API, - STEP 3

var status = "" + doLMSGetValue(
"Cmi .core. lesson_status") + nwn ;
if (status == "") {

if no status is returned, provide user
with error information
alert ("The Learning Management System is
experiencing problems and is unable to retrieve your data.
Please contact your system administrator for support. You
may continue on with the course but your data may not be
saved when you exit.");
}
if (status == "not attempted") ({
if user has not attempted course, change
status in API to "incomplete" as user is
now starting course, also clear any
residual values from cookie - STEP 3
// the student is now attempting the
lesson

17

WO 03/065174 PCT/US03/03095

setCookie (mainCookieName, "","","/");
doLMSSetValue("cmi.core.lesson_status",
"incomplete");
}
else {
if user has already started course, get
Cookie info from API (suspend_data
field) and put info into main client-
side cookie - STEP 4
LMSCookieInfo = "" +
doLMSGetValue ("cmi.suspend_data") + "";
setCookie(mainCookieName, "",
LMSCookieInfo, "/");
}
Set mode variable in cookie to "scorm"
setCookie(mainCookieName, "mode", "scorm","/");
proceed() ;

}

function proceed() {
Test to see if mode already set to php,asp,or scorm. If
not set to any of these, check querystring to see if AICC
HACP information was passed through. - STEP 2
if (mode !'= "php" && mode != "asp" && mode != "scorm")
{
if (args.AICC_SID) {
set mode variable to "aicc",
mode="aicc";

}

The finishOpen function runs after the body of the page is
loaded. This makes sure that the AICC Java Applet, if
written to the page, has fully loaded

function finishOpen() {
if mode was set to aicc earlier, use the Java applet to
communicate with the server via the HACP method - STEP

3
if (mode=="aicc") {
if (args.AICC_URL.indexOf(':',0,7) == -1) {
args.AICC_URL = "http://" + args.AICC_URL;
}
body.document.aiccPoster.post (args.AICC_URL, "GetPa
ram", args.AICC_SID,"2.0","");
Check to make sure that no AICC error was returned
- STEP 3
var success = "" +
body.document .aiccPoster.getErrorCode() + "";
if (success == "0") {

If no AICC error is returned, check user’s
lesson status value returned from GetParam -
STEP 3
status =

body .document .aiccPoster.getLessonStatus () ;

18

WO 03/065174 PCT/US03/03095

status = status.tolLowerCase() ;
statusIndicator = status.substr(0,1);
if (statusIndicator == "n") {
if user has not attempted course, change
status in LMS to "incomplete" as user is
now starting course, also clear any
residual values from cookie - STEP 3
// the student i1s now attempting the
lesson
setCookie(mainCookieName, "","","/");
var aicc_data = "[core]l\r\nlesson_status
= incomplete\r\nlesson_location = O\r\nscore = \r\ntime =
00:00:00";
aicc_data = escape(aicc_data);

body.document .aiccPoster.post (args.AICC_URL,
"PutParam",args.AICC_SID,"2.0",aicc_data);
}

else {
if user has already started course, get

Cookie info from GetParam command
([core_lesson] field) and put info into
main client-side cookie - STEP 4
LMSCookieInfo =
body.document .aiccPoster.getLessonData() ;
setCookie (mainCookieName, "",
LMSCookieInfo, "/");
}
}

else {
if an AICC error is returned, provide user

with error information

alert ("The Learning Management System is
experiencing problems and is unable to retrieve your data.
Please contact your system administrator for support. You
may continue on with the course but your data may not be
saved when you exit.");

}

Input AICC querystring values into main client
side cookie - STEP 4
setCookie(mainCookieName, "mode", "aicc","/");

setCookie (mainCookieName, "aicc_sid",args.AICC_SID,
"/u)l,

setCookie (mainCookieName, "aicc_url",args.AICC_URL,
Il/ll);
}

Set currentCompanyLink value of client-side cookie to
javascript companyLink variable set in jscript/includes.js
file

setCookie (mainCookieName, "currentCompanyLink",
companyLink, "/");
Make sure student score has a numerical zero value if
previously empty.

var studentScore =

19

WO 03/065174 PCT/US03/03095

getCookieCrumb (mainCookieName, "user_score");
//zero out score
if (studentScore=="void") {
setCookie (mainCookieName, "user_score","0","/");
}
Send user to home page for the course - STEP 6
body.location.href="dr_home.html";

}

Function to set querystring values into an array
function getArgs() {
var args = new Object();
var query = parent.location.search.substring(l);
var pairs = query.split("&");
for (var 1=0; i<pairs.length; i++) {
var pos = pairs[i].indexOf('="');
if(pos == -1) {
continue;
}
var argname = pairs[i].substring(0,pos);
argname = argname.toUpperCasel() ;
var value = pairs[i].substring(pos+1);
args [argname] = unescape(value);
}
return args;

}

sets mode variable to current mode in cookie - STEP 2

var mode = getCookieCrumb (mainCookieName, "mode") ;

Get querystring arguments and put into args array cookie -

STEP 3

var args = getArgs();

execute initial accessLMS function before page has finished
loading to determine what method of datapass is being used.
- STEP 2

accessLMS () ;

</script>

</head>

<frameset cols="155,585" rows="*" border="0"
frameborder="NO">
<frame src="dr_rail.html" scrolling="NO" name="rail">
<frameset rows="80,420" cols="*" border="0"
frameborder="NO">
<frame src="dr_navtop.html" scrolling="NO"
name="navigation">
<frame src="dr_home.html" scrolling="AUTO" name="body">
</ frameset>
</frameset>
<noframes>
</noframes>
</html>

startlms.html

startlms.html page is called in the frameset of the

20

WO 03/065174 PCT/US03/03095

index.html page, and is used to load the AICC Java Applet,
if necessary -~ STEP 2
<meta http-equiv="Pragma" content="no-cache">

<meta http-equiv="Expires" content="-1">
<html>
<head>

<title></title>

<script language="javascript">
writeApplet function used to output html code for Java
Applet if AICC HACP method is used. Java Applet contains
all functions necessary to communicate with the LMS via the
AICC HACP method.
function writeApplet () {

document .write("<applet code=\"AICCApplet.class\"
codebase=\"classes\" name=\"aiccPoster\" id=\"aiccPoster\"
archive=\"hbspaicc.jar\" width=\"1\" height=\"1\"
mayscript>");

document .write{"<param name=\"cabbase\"
value=\"hbspaicc.cab\">");

document.write("</applet>");
}
</script>
</head>

body onload event calls finishOpen function on index.html
page once entire startlms.html page is loaded. This ensures
that if AICC Java Applet is needed, it is fully loaded
before its functions are accessed.
<body onload="parent.finishOpen() ;">
<script language="javascript">

If mode variable on index.html page was set to "aicc",
and the AICC querystring arguments are present, call the
writeApplet function to create the instance of the AICC Java
Applet. If the mode variable is set to "aicc", but no
querystring arguments are present, variable is a residual
value, and mode variable is set to "none" - STEP 2,3

if (parent.mode == "aicc" && parent.args.AICC_SID) ({

writeApplet();
}

else if (parent.mode == "aicc") {

parent.setCookie (parent.mainCookieName, "mode", "none", "/
")
parent.mode = "none";
}
</script>
</body>
</html>

Exit.html

<html>

<head>

<script language="javascript"
src="jscript/includes.js"></script>

21

WO 03/065174 PCT/US03/03095

<script language="javascript"
src="jscript/scripts.js"></script>

<script language="javascript"
src="jscript/APIWrapper.js"></script>

<script language="javascript"”
src="jscript/close.js"></script>

<script language="javascript">writeTitle();</script>
</head>

When page has loaded, body onLoad event fires off, executing
exitToLMS function in close.js file - STEP 8

<body bgcolor="#ffffff" onLoad="exitToLMS() ;">

If mode wvariable on close.js file was set to "aicc"
(obtained from the cookie), call the writeApplet function to
create the instance of the AICC Java Applet.

<script language="javascript">

if (mode == "aicc") {
writeApplet('');
}
</script>
</body>
</html>
Close.js

Retrieve method of datapass from cookie and set into mode
variable - STEP 9
var mode = getCookieCrumb (mainCookieName, "mode") ;

function exitToLMS () {
executes closeLMS function (below)
closelLMS() ;

}

closeProgram function loads closer.html file which

subsequently closes top level window - STEP 11

function closeProgram() {
document.location.replace("closer.html");

}

function closeLMS() ({

puts cookie info for score and course data into
variables

var courseScore =
getCookieCrumb (mainCookieName, "user_score");

var cookieToPass = getCookieData(mainCookieName) ;

sets courseStatus variable based on user score
if (courseScore >= 70) {

var courseStatus = "completed";
}
else {

var courseStatus = "incomplete";
}

22

WO 03/065174 PCT/US03/03095

Check to see if mode is SCORM, if so, test to see if API
for SCORM/AICC exists, if so, send the cookie data to the
LMS - STEP 9, 10

if (mode == "scorm") {
if (LMSIsInitialized()) {
doLMSSetValue("cmi.core.lesson_status",
courseStatus) ;

only set score.raw value if course status is

completed
if (courseStatus == "completed") {
doLMSSetValue("cmi.core.score.raw",
courseScore) ;

}

Test for errors in connection with LMS while
sending suspend_data. If successful, clear
cookie. If there are errors, do not clear cookie
and report error message to user.

var success =
doLMSSetValue ("cmi.suspend_data", cookieToPass);

if (success) {

setCookie (mainCookieName, "","","/");
}
else {
alert ("The Learning Management System is
experiencing problems and is unable to save your
data. Please contact your system administrator
for support. You may wish to print out any
information you wish to save.");
return;

}

execute doLMSFinish function which closes out
the API
doLMSFinish() ;

execute closeProgram function to close course
window down. - STEP 11
closeProgram() ;
}
}

check to see if mode is aice, i1f so, run hacp commands to
post user completion data - STEP 9, 10
else if (mode == "aicc") {
//code to fire off aicc commands

get aicc values from cookie
alcc_url =

getCookieCrumb (mainCookieName, "aicc_url");
alcc_sid =

getCookieCrumb (mainCookieName, "aicc_sid") ;

Test status of course and set variable to hold

aicc data to send to LMS, do not send score back
unless course is complete

23

WO 03/065174 PCT/US03/03095

if (courseStatus == "completed") {

aicc_data = "[core]\r\nlesson_status = " +
courseStatus + "\r\nlesson_location = 0O\r\nscore
" + courseScore + "\r\ntime =
00:00:00\r\n[core_lesson]\r\n" +
unescape (cookieToPass) + "\r\n";
}
else {

aicc_data = "[corel\r\nlesson_status = " +
courseStatus + "\r\nlesson_location = O\r\nscore
\r\ntime = 00:00:00\r\n{core_lesson]\r\n" +
unescape (cookieToPass) + "\r\n";

}

il

aicc_data = escape(aicc_data);

submit aicc data back to LMS via the Java Applet
document .aiccPoster.post (aicc_url,
"PutParam”,aicc_sid,"2.0",aicc_data);

Test for errors in connection with LMS while
sending aicc_data. If successful, clear cookie.
If there are errors, do not clear cookie and
report error message to user.
var success = "" +
document .aiccPoster.getErrorCode() + "";
if (success == "0") {
setCookie (mainCookieName, "","","/");
}
else {
alert("The Learning Management System is
experiencing problems and is unable to save your data.
Please contact your system administrator for support. You
may wish to print out any information you wish to save.");
return;

}

execute ExitAU function which closes out the HACP
connection

document .aiccPoster.post (aicc_url, "ExitAU",alcc_si
a,"2.0","");

execute closeProgram function to close course
window down. - STEP 11

closeProgram() ;

}

if the mode was php or asp, send the user to the
exit.php or exit.asp page with variables from cookie passed
in querystring - STEP 9
else if((mode == "php") || (mode == "asp")) {
var userName =
getCookieCrumb (mainCookieName, "username") ;
var prevStatus =
escape (getCookieCrumb (mainCookieName, "startStatus"));
document.location="exit." + mode + "?username=" +
userName + "&score=" + courseScore + "&status=" +
courseStatus +"&prevStatus=" + prevStatus;

24

WO 03/065174 PCT/US03/03095

}
else {
closeProgram(); - STEP 11

}

scripts.js

Only code pertaining to the exit.html page is included here
from the scripts.js file

function LMSIsInitialized tests to see if SCORM/AICC API is
initialized
function LMSIsInitialized() ({
var initialized = getAPI();
if (initialized == null) {
return false;
}
else {
return true;
}
}

writeApplet function used to output html code for Java
Applet if AICC HACP method is used. Java Applet contains
all functions necessary to communicate wit the LMS via the
AICC HACP method.
function writeApplet (addPath) ({

document .write ("<applet code=\"AICCApplet.class\"
codebase=\"" + addPath + "classes\" name=\"aiccPoster\"
id=\"aiccPoster\" archive=\"hbspaicc.jar\" width=\"1\"
height=\"1\" mayscript>");

document.write ("<param name=\"cabbase\"
value=\"hbspaicc.cab\">");

document .write ("</applet>");

}

Exit.PHP

<?php

Error reporting turned on in order to test that content is
connecting properly to database

error_reporting (0) ;

Properties of Database are set

//HBSP Connect Code

PutEnv ("ORACLE_SID=[enter your SID]");

PutEnv ("ORACLE_HOME=[enter your Oracle home directoryl");

$db = "[enter your Oracle database address]";
Sconnection = OCILogon ("[enter your Oracle logon]", "[enter
your Oracle password]", $db);

Connection to database is tested
if(!$Sconnection)

25

WO 03/065174 PCT/US03/03095

{
}

Serror=0CIError () ;

Variables set to hold values sent in QueryString
Susername = SHTTP_GET_VARS["username"];

Sscore = $HTTP_GET_VARS["score"];

$status = S$HTTP_GET_VARS["status"];

SprevStatus = S$HTTP_GET VARS|["prevStatus"];
$score=$score/100; .

Variables set to hold values from cookies

//read cookie, put into db

Scookie =
preg_replace("/\r\n|\n\r|\n|\x/", "$0A", SdirectReports) ;

vValues from cookies are put into database table - STEP 10
if (!Serror)

{
//write to db
$query = "UPDATE directreports_table SET
lesson_status='".$status."', suspend_data='".$cookie."'
Squery = $query."WHERE student_id = '".Susername."'";
Scursor OCIParse($connection, $query);

nn

Sresult OCIExecute($Scursor) ;

Test result of update statement to make sure no errors

occurred
if (!$result)
{

Serror = OCIError ($cursor);

}

Score is updated in table if it is at least 70
(completion) - STEP 10
if ($score >= .70) {

$query = "UPDATE directreports_table SET

score_raw='".$score."' ";
$query = Squery."WHERE student_id =
'" . Susername."'";
Scursor OCIParse($connection, S$Squery);

nu

Sresult OCIExecute (Scursor) ;

Test result of update statement to make sure no
errors occurred

if (!Sresult)

{

}

Serror = OCIError($cursor);

}

Completion date is set in db if course was just
completed - STEP 10
if (SprevStatus != "completed" && $status ==
"completed") {

$endDate = date('Y-m-4d');

26

WO 03/065174 PCT/US03/03095

Squery = "UPDATE directreports_table SET
completed=to_date('S$endDate', 'YYYY-MM-DD') ";
Squery = S$query."WHERE student_id =

'" Susername."'";
$cursor = OCIParse(Sconnection, S$query);
$Sresult = OCIExecute($cursor);

Test result of update statement to make sure no
errors occurred

i1f (!Sresult)

{

}

Serror = OCIError ($cursor);

}

//close up shop
OCIFreeStatement ($Scursor) ;
OCILogoff ($connection);

?>

<html>

<head>

<script language="JavaScript"
src="jscript/scripts.js"></script>

<script language="javascript">

Test for errors in connection with database while sending
course data. If successful, clear cookie. If there are
errors, do not clear cookie and report error message to
user.

var errTest = "" + <?php echo($Serror); ?> + "";
if(errTest != "0") {

alert ("The Learning Management System is experiencing
problems and is unable to save your data. Please contact

your system administrator for support. You may wish to
print out any information you wish to save.");
}
else {
document.write("Data saved. You must restart the
course from your LMS to have access to your data again.");
setCookie(mainCookieName, "","","/");
Window Closes - STEP 11
parent.close();
}
</script>
</head>

<body bgcolor="#ffffff">
</body>

</html>

Exit .ASP

<%

Error reporting turned on in order to test that content
is connecting properly to database

27

WO 03/065174 PCT/US03/03095

on Error Resume NeXxt
Dim errorval

Properties of Database are set
set cnObj=Server.CreateObject ("ADODB.Connection")
cnObj .ConnectionString="Provider=SQLOLEDB. 1; Password=[e

nter your SQL Server password];Persist Security
Info=False;User ID=[enter your SQL Server user ID];Initial
Catalog=[enter your SQL Server database name];Data
Source=[enter your SQL Server data source]"

10

Connection to database is tested
cnObj .Open
if cnObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end if

Variables set to hold values sent in QueryString
username = Request.QueryString("username")

score = Request.QueryString("score")

status = Request.QueryString("status")
prevStatus = Request.QueryString("prevStatus")
score=score/100

Variables set to hold value from cookie
'read cookies

cookie = Request.Cookies("directReports")
set objRegExp = new RegEXp
objRegExp.Pattern = "\r\n|\n\r|\n|\r"
objRegExXxp.Global = True

cookie = objRegExp.Replace(cookie, "%$0A")

vValues from cookies are put into database table - STEP

'update table with cookie values (for lesson_status,

suspend_data)

SQLstring = "UPDATE directreports_table SET
lesson_status='" & status & "', suspend_data='" & cookie &
SQLstring = SQLstring & "WHERE student_id = '" &

username & "'"

cnObj . Execute (SQLstring)

Test result of update statement to make sure no errors
occurred
if c¢cnObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number
Next
end if

Score is updated in table if it is at least 70
(completion) - STEP 10
if score >= .70 then

28

WO 03/065174 PCT/US03/03095

'update table with score_raw

SQLstring = "UPDATE directreports_table SET
score_raw='" & score & "' "
SQLstring = SQLstring & "WHERE student_id = '" &

username & "'"
cnObj . Execute (SQLstring)

Test result of update statement to make sure no
errors occurred
if cnObj.Errors.Count > 0 then

For Each objError in cnObj.Errors

errorVal = objError.Number

Next

end if
end if

Completion date is set in db if course was just
completed - STEP 10
if NOT prevStatus = "completed" AND status =
"completed" then
'write to db

SQLstring = "UPDATE directreports_table SET
completed='" & Date() & "' "
SQLstring = SQLstring & "WHERE student_id = '" &

username & "'"
set rs = cnObj.Execute(SQLstring)

Test result of update statement to make sure no
errors occurred
if ¢nObj.Errors.Count > 0 then
For Each objError in cnObj.Errors
errorVal = objError.Number

Next
end if
end If
%>
<html>
<head>

<script language="JavaScript"
src="jscript/scripts.js"></script>
<script language="javascript">
Test for errors in connection with database while sending
course data. If successful, clear cookie. If there are
errors, do not clear cookie and report error message to
user.
var errxTest = "" + <%=errorVal %> + "";
if (errTest != "0") {

alert ("The Learning Management System is experiencing
problems and is unable to save your data. Please contact
your system administrator for support. You may wish to
print out any information you wish to save.");
}
else ({

setCookie (mainCookieName,"","","/");

document .write("Data saved. You must restart the
course from your LMS to have access to your data again.");

29

WO 03/065174 PCT/US03/03095
window Closes - STEP 11

parent.close();
}

</script>
</head>

<body bgcolor="#ffffff">
</body>
</html>

02480/104W0 237626.1

30

10

15

20

25

30

WO 03/065174 PCT/US03/03095

What is claimed is:
1. A computer product for providing interactive content for use in a computer system
that optionally includes a network of computers, the computer product comprising:

a digital storage medium, the storage medium encoded with computer readable
files as follows:

a first set of files providing interactive content using a markup language format
and a script format, the scripting language for controlling data communication between a
user and a program source;

a second set of files providing compatibility of the interactive content for use with
a first e-learning standard environment; and

a third set of files providing compatibility of the interactive content for use with a
second e-learning standard environment.
2. A computer product according to claim 1, further comprising a fourth set of files,
which may be included in any of the other sets of files, for identifying the nature of an e-
learning environment in which interactive content has been placed, and invoking
processes for providing data pass consistent with the thus identified e-learning
environment, or providing no data pass at all.
3. A computer product according to claim 1, wherein the first e-learning standard
environment may comply with AICC standards.
4. A computer product according to claim 1, wherein the second e-learning standard
environment may comply with SCORM standards.
5. A computer product according to claim 1, wherein the scripting language is
selected from the group consisting of JavaScript, ASP script, and PHP script.
6. A method of providing interactive content, for use in a computer system that
optionally includes a network of computers, comprising;:

providing interactive content using a markup language format;

providing a first set of files providing compatibility of the interactive content for
use with a first e-learning standard environment and a second set of files providing
compatibility of the interactive content for use with a second e-learning standard
environment;

identifying the nature of an e-learning environment in which interactive content

has been placed;

31

WO 03/065174 PCT/US03/03095

using a cookie, for each user experiencing the interactive content, to provide a
record of the user’s place in experiencing of the interactive content.
1. A method according to claim 6, wherein the cookie provides a record of the user’s
data in experiencing of the interactive content.
8. A method according to claim 6, wherein the interactive content is provided in an

environment devoid of a network of computers.

02480/104WO 237626.1

32

PCT/US03/03095

WO 03/065174

Ol

(3ou 10 juendwon
splepue)s
S| asegeje(jualo
ay) Jayaym uo
Buipuadep JNLH-
10 'dSY" ‘dHd")
9|} 1X3 9s1IN0D

0l

yduosener spisjusi g TWLH ‘sl 8s1n0D

S0t

apjoo)
opis Jual|)

ot

(you 10 endwod
spiepue)s
S| WajsAs juaio e
ay} 1aylaym uo
Buipuadep JWLH
10 'dSY" ‘dHd’)
9|} Xepu| asino)

201

eseqelep Jusi|D

101

uoneosoT]
youne] asinoy
pue J1aAIag Jual)

1/5

WO 03/065174 PCT/US03/03095

Client points to
Index.HTML with
static web link

20

Index.HTML does not detect datapass, and so it looks for a
cookie on the local drive. If one is available, the index file
loads the course at the location specified in the cookie as the
last place visited/bookmarked. If no cookie is available, one is
created and the course experience begins.

02

User has content
experience - interactive
choices and user
specific text entries are
saved to the client side
cookie.

03

Exit. HTMI is called, but data can not be passed. User will pick
up again where they left off as long as the cookie is not
overwritten and the next experience is on the same machine.

20

Fig. 2

2/5

WO 03/065174 PCT/US03/03095

Index.PHP or Index.ASP is linked
as starting page - tests database
access, and checks ID passed from
Proprietary server. If ID exists, the
existing associated data in the
"suspend_data" field is written to
the client side cookie. If the data
does not exist, a record is created,
and a cookie with default values is
placed on the user machine.

301

A
Index.HTML checks the company link. If it has not been set in the cookie, or
a different one exists in the cookie, the data in the cookie is updated to
reflect the company link in the includes.js file. Then the content experience
is launched.

302

User has content
experience -
interactive choices

and user specific text

entries are saved to
the client side cookie.

303

User completes experience, and Exit. HTML looks in the cookie to determine
the type of initial data pass. It launches the appropriate Exit.PHP or
Exit. ASP file and passes the cookie data to that file.

304

i

This Exit file sends .
data back to the fields m_:;_
in the table related to

the course, and the

course exits.
305

3/5

WO 03/065174

PCT/US03/03095

Index.HTML is launched from the Standards based server. It
checks to determine if communication is possible through the
AICC or the SCORM standard, identifying the AP| appropriate for
the task. It tests the data pass, and checks the ID sent from the
standards based server. If a record exists, it writes a cookie to
the client computer from the "suspend_data" or “core_lesson”

field. If the ID does not exist, it creates a record and places a
cookie with default information on the user computer. It then
checks the company link. If it has not been set in the cookie, or a
different one exists in the cookie, the data in the cookie is updated
to reflect the company link in the includes.js file. Then the content

experience is launched.

01

User has content
experience - interactive
choices and user specific
text entries are saved to the
client side cookie. Content

experience information is
periodically sent back to the
system.

40

User completes experience, and Exit. HTML looks in the cookie to
determine the type of initial data pass. It then addresses the

appropriate APl or wrapper to pass data back to the Standards
based server.

40

Fig. 4

4/5

WO 03/065174 PCT/US03/03095

& directReportsFlat

5 0/ A AICC &) companylink, html
i Aatw &) dr_challenge.htm

. gL A cas @ dr_challenge_wint.html |
dlrectReportsFlat 513 A cki &) dr_help.html
4T = cko @ dr_home.htm! E

I

This Folder is Online. 55§ ~lene @ dr_map.html i
{75 Documentation @ dr_navtop.htm| §

| Select anitem to view its descnptchn AAfag &) dr_overview.html ;
See also: images @ dr_rail.html i
‘Q i =0 . ;3
i{ My Documents -”“mt EDdrupload.zip ’
My Network Places =] media 508 ~fm]exit.asp i
I3 My Computer 504 Ap3p - 50 /f;] exit.html ;

prc 9 b~ D exit.php

§1% ~THres o1 @mdex asp
502/{_:ISCORM 09 &) index.html
50 3 /=StQII. £0 5 /Dlndex php

[styles i

5/5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

