一、发明名称
一种电化学发光免疫测定方法

二、摘要

本发明公开了一种电化学发光免疫测定方法，包含：将吡啶钌标记的待测蛋白第一抗体、生物素化合的待测蛋白第二抗体与待测样品充分反应；加入链霉亲和素包被的磁性微粒充分反应，将反应液吸入流动池，形成的抗原抗体磁性微粒复合体通过磁性微粒吸附于电极表面；加入二丁基醚溶液，加电压启动ECL反应，用光检测器采集扫描到的光信号；配制稀度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，确定待测蛋白浓度。本发明所述电化学发光分析方法灵敏度高，特异性好，测定范围宽，试剂稳定无毒害，反应时间短，具有推广前景。
1. 一种电化学发光免疫测定方法，包括以下步骤；
步骤 1：将吡啶衍生物化的待测蛋白第一抗体、生物素化物的待测蛋白第二抗体与待测样品充分反应，或将吡啶衍生物化的待测蛋白抗体、生物素化物的待测蛋白与待测样品下充分反应；
步骤 2：加入链霉亲和素包被的磁性微粒充分反应形成抗原抗体磁性微粒复合体，将反应液吸入流动池，所述抗原抗体磁性微粒复合体通过磁性微粒吸附于电极表面；
步骤 3：加入二丁基乙醇胺溶液，加电压启动 ECL 反应，用光检测器采集扫描到的光信号；
步骤 4：配制标准溶液，根据发光强度变化值对数与浓度对数绘制量反应曲线，用换算得出待测标本中的待测蛋白浓度。

2. 根据权利要求 1 所述的电化学发光免疫测定方法，其特征在于，所述待测样品为血清、尿液、组织液。

3. 根据权利要求 1 所述的电化学发光免疫测定方法，其特征在于，所述待测蛋白为肿瘤标志蛋白。

4. 根据权利要求 1 所述的电化学发光免疫测定方法，其特征在于，所述待测蛋白包括 T3、三碘甲状腺原氨酸、T4、甲状腺素、TSH、T4、甲状腺过氧化物酶抗体、T3、甲状腺素、T4、甲状腺素、ATB抗原抗体、Anti-TM 甲状腺微粒体抗体、ZP 抗透明带抗体、Anti-TG 抗甲状腺球蛋白抗体、抗 HCG 抗体、人胎盘催乳素、Anti-TPO 甲状腺过氧化物酶抗体、HCG、TOX 弓形虫抗体、FSH、AFP、甲胎蛋白、CEA、癌胚抗原、PSA 前列腺特异性抗原、FPSA 游离前列腺特异性抗原、CMV、巨细胞病毒抗体、HLA 人类白细胞抗原、HSV-1 单纯疱疹病毒抗体、PRL 催乳素、HSV-2 单纯疱疹病毒抗体、TES、UMP、RV、风疹病毒抗体、PRO、Ferritin 铁蛋白、TOX-Ag 弓形虫抗体、E2、E1、CA125、E3、E1、CA153、CA199、HBsAg、NSE 神经特异性烯醇化酶、HBsAg、CA50、HBsAg、β2 微球蛋白、HBeAb、柯萨奇病毒抗体、HBeAb、BGP、骨钙素、D-Pyr 脱氧吡啶酮、维生素 D、胰岛素、PCIII III 型前胶原、C-肽、IV、型胶原、胰岛素抗体、LN 层粘连蛋白、胰高血糖素、HA 透明质酸、GAD-AB 谷氨酸脱羧酶抗体、F1 纤维连接蛋白、流感病毒 B、甲肝病毒、EB 病毒、麻疹病毒、肺炎支原体、呼吸道合胞病毒、埃可病毒以及胃泌素前体释放肽、CYFRA21-1、AFP、APT、CA242、CA724、CA50、PSA、t-PSA、Free β -hCG、SCCA。

5. 一种电化学发光免疫测定试剂盒，包含以下组分：吡啶衍生物化的待测蛋白第一抗体、生物素化物的待测蛋白第二抗体、链霉亲和素包被的磁性微粒、二正丁基乙醇胺溶液。

6. 根据权利要求 5 所述的试剂盒，其特征在于，还包含洗涤液。

7. 根据权利要求 6 所述的试剂盒，其特征在于，所述洗涤液为 pH7.4、0.05mol/L 含 0.05% 的 Tween-20 的磷酸盐缓冲液。
一种电化学发光免疫测定方法

技术领域
[0001] 本发明涉及免疫学领域，特别涉及一种电化学发光免疫测定方法。

背景技术
[0002] 化学发光免疫分析是以标记发光剂为示踪物信号建立的一种非放射性标记免疫
分析法，具有灵敏度高、线性范围宽、分析速度快、操作简便、容易实现自动化的优点。
[0003] 目前在临床上常用的化学发光试剂为：
[0004] 1. 碱性磷酸酶和辣根过氧化物酶与鲁米诺大的反应体系。其主要缺点是碱性磷酸
酶和辣根过氧化物酶在温度变化下活性影响较大，实验结果受环境变化比较大。
[0005] 2. 吲哚肟和吲哚肟的衍生物与过氧化氢的碱性溶液中的发光反应。主要缺点是其
为闪光发光，发光时间短，只能在全自动的仪器中实现，结果计算方式复杂，且实验结果的
稳定性不易把握。
[0006] 3. 吡啶钌和三丙胺的电化学发光体系。
[0007] 电化学发光反应（electro-chemiluminescence，ECL）是一种在电极表面由电化
学引发的特异性化学发光反应，抗原抗体复合物与吡啶钌的结合物在三丙胺作用下用电化
学激发，发生氧化还原反应发出光子，可以经过光电倍增管采集。这一过程在电极表面周
而复始地进行，产生许多光子，使光信号得以增强。电化学发光分析中应用的常用标记物为，
可通过化学反应与抗体或不同化学结构抗原分子结合，制成标记的抗体或抗原。
[0008] 吡啶钌具有水溶性，且高度稳定，保证电化学发光反应的高效和稳定，而且避免了
本底噪声的干扰。吡啶钌与免疫球蛋白结合的分子比超过 20 仍不会影响抗体的可溶性和
免疫活性，且分子量小，空间位阻小，即便小分子的核酸也能标记。
[0009] 现有的电化学发光法多采用三丙胺 TPA 为反应物，三丙胺缺点为反应慢、浓度高、
受电极材料影响大，发光效率有限，不能做到成本最优化。

发明内容
[0010] 本发明要解决的技术问题为提供一种发光效率高、反应迅速、适用范围广的电化
学发光免疫测定方法。
[0011] 为了实现上述发明目的，本发明采用如下技术方案：
[0012] 一种电化学发光免疫测定方法，包含以下步骤：
[0013] 步骤 1：将吡啶钌标记的待测蛋白第一抗体、生物素化合的待测蛋白第二抗体与
待测样品充分反应，或将吡啶钌标记的待测蛋白抗体、生物素化合的待测蛋白与待测样品
下充分反应；
[0014] 步骤 2：加入链霉亲和素包被的磁性微粒充分反应形成抗原抗体磁性微粒复合
体，将反应液吸入流动池，所述抗原抗体磁性微粒复合体通过磁性微粒吸附于电极表面；
[0015] 步骤 3：加入二丁基乙醇胺溶液，加电压启动 ECL 反应，用光检测器采集扫描到的
光信号；
步骤 4：配制梯度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，通过换算得出待测标本中的待测蛋白浓度。

ECL 基本原理是发光底物及反应参与物在电极表面失去电子而被氧化。电子供体失去一个 H⁺ 而成为强还原剂，将发光底物还原为激发态，随即释放光子而恢复为基态的发光底物。这一过程在电极表面周而复始地进行，不断地发出光子而保持底物浓度的恒定。

三丙胺 TPA 缺点为反应慢、浓度高，受电极材料影响大，二丁基乙醇胺的发光效率明显好于 TPA，其在铂电极和金电极上的发光强度对比图如图 5 所示。本发明选择二丁基乙醇胺 DBAE 为底物反应物，以吡啶钌作为标记物，标记抗原或抗体、或核酸，通过免疫反应及 ECL 反应，即可进行电化学发光免疫测定。

本发明所述吡啶钌结构为：

二丁基乙醇胺的结构式为：

本发明以吡啶钌作为标记物，标记抗原或抗体，通过免疫反应及 ECL 反应进行电化学发光免疫测定。本发明所述方法分为化学反应和电化学反应两个部分，在本发明的具体实施方式中，化学反应部分在试管内进行，电化学反应部分在流动池内进行。

在电极表面由化学引发的特异性化学发光反应，用电化学发光剂吡啶钌标记 Ab，用抗原或抗体包被固相载体，与标本中相应抗原或抗体和标记的抗体或抗原通过一定模式的免疫学反应形成复合体，应用分离技术，将结合标记物的复合体和游离标记物进行分离，根据吡啶钌在电极上发出的光强度对待测的 Ag 或 Ab 进行定量/定性检测。

本发明选用磁微粒作为固相载体，由于固相载体有磁性，在游离标记物与结合标记物分离时，只需用磁铁吸引，操作方便迅速。在本发明的具体实施例中，所示固相载体是带有磁性的直径约 2.8 μm 的聚苯乙烯微粒。

以检测血清样品中 TSH 为例，本发明所述方法将结合了活化的吡啶钌的 TSH 抗体和结合了生物素的 TSH 抗体与待测血清进行孵育反应，再将被链霉素亲和素包被的磁性微粒加入，使生物素通过与亲和素的结合将磁性微粒/待测抗原、TSH 抗体连接为一体，形成“三明治”夹心。

在本发明的具体实施例中，蠕动泵将形成的吡啶钌－抗体－抗原－生物素化抗体－链霉素和亲和素磁性微粒复合体吸入流动测量室，复合体通过磁性微粒被工作电极下
面的磁铁吸附于电极表面，而游离的 TSH 抗体包括游离的生物素化抗体和游离的与标识物结合的 TSH 抗体被吸出测量室。

[0028] 通过蠕动泵打入二丁基乙醇胺 DBAE，加电压启动 ECL 反应，这一过程在电极表面反复进行，产生许多光子，用光电倍增管检测光强度，其光强度与标识物的浓度呈线性关系，据此测出待测样品 TSH 的含量。

[0029] 在具体实施方式中，本发明采用的固相载体是带有磁性的直径约 2.5 μm 的聚苯乙烯微粒，其特点是反应面积比板式扩大 20~30 倍，吸附效率高，且在液体中形成均匀的悬浮，以类似液相参与反应，大大加快反应速度。

[0030] 链霉素和素和生物素用来达到放大检测效果，一分子链霉素和素可与 4 分子生物素相结合。在本发明的具体实施方式中，链霉素和素均匀牢固地包裹在磁性微粒上，形成通用的能与生物素结合的固相载体。链霉素和素包裹的磁性微粒与生物素化的抗原或抗体接触，抗原或抗体即被包裹在磁性微粒上。利用磁性使用电磁场分离结合态与游离态，方便迅速，实现了精确的自动化，同时可实现标记物的再循环利用，发光时间更长、强度更高，便于测定。

[0031] 用于检测蛋白多肽类抗原的方法主要是双抗体夹心法和竞争法。蛋白大分子抗原测定多用双抗体夹心法，而对只有单个抗原表位的小分子激素、药物等，因其可能只有一个抗原表位，或因为分子太小，结合一个抗体后，因空间位阻，无法再结合另一个抗体，所以不适合使用双抗体夹心方法测定。

[0032] 本发明所述方法还可采用竞争抑制法对小分子抗原如游离三碘甲状腺原氨酸 FT3 进行检测，竞争抑制法的原理是标本中的抗原和一定量的标记抗原竞争与固相抗原结合，标本中抗原量含量愈多，结合在固相上的标记抗原愈少。

[0033] 本发明所述方法采用标记物的抗原和抗体复合物，链霉素和素和生物素系统以及二正丁基乙醇胺，应用免疫反应以及电化学反应进行蛋白含量的检测，具有灵敏度高，发光效率高的特点，是一种重要的非同位素标记免疫分析方法，适用于各种蛋白如肿瘤标志蛋白、激素的检测。

[0034] 作为优选，本发明所述方法可检测用以下人群：T3 三碘甲状腺原氨酸、ASA 抗精子抗体、肌钙蛋白 I、T4 甲状腺素、ACA 抗心磷脂抗体、CRMB、TSH、AEC 抗子宫内膜抗体、FT3 游离三碘甲状腺原氨酸、A0A 抗卵巢抗体、FT4 游离甲状腺素、ATB 抗滋养层细胞抗体、Anti-DM 甲胎蛋白抗体、ZP 抗透明带抗体、Anti-TG 抗甲状腺球蛋白抗体，抗 HCG 抗体、人胎盘催乳素、Anti-TPO 甲状腺过氧化物酶抗体、HCG、TOX 弓形虫抗体、FSH、AFP 甲胎蛋白、CEA 癌胚抗原、PSA 前列腺特异性抗原、FPSA 游离前列腺特异性抗原、CMW 巨细胞病毒抗体、LH 促黄体生成素、HSV-1 单纯疱疹病毒抗体、PRL 催乳素、HSV-2 单纯疱疹病毒抗体、TES 睾酮、RV 风疹病毒抗体、PRP 孕酮、Ferritin 铁蛋白、TOX-Ag 弓形体循环抗原、E2 雌二醇、CA125、E3 雌三醇、CA153、CA199、HbsAg、NSE 神经特异性蛋白、HbsAb、CA50、HBeAg、β 2 微球蛋白、HBeAb、柯萨奇病毒抗体、HBeAb、BGP 骨钙素、D-Pyr 脱氧吡啶醇、维生素 D、胰岛素、PCIII/H1 型前胶原、C-肽、IV 型胶原、胰岛素抗体、L.层粘连蛋白、胰高血糖素、RA 透明质酸、GAD-AB 谷氨酸脱羧酶抗体、Fn 纤维连接蛋白、流感病毒 B、副流感病毒、EB 病毒、麻疹病毒、肺炎支原体、结核杆菌、链球菌、腮腺炎病毒、HAV 病毒、流感病毒 A、HIV 艾滋病病毒、肺炎衣原体、腺病毒、RSV 呼吸道合胞病毒、埃可病毒以及胃泌素前体释放肽、CYFRA21-1、AFP、APT、
CA242、CA724、CA50、f-PSA、t-PSA、Free β-hCG、SCCA。

【0035】其中，AFP、APT 为肝细胞癌和生殖细胞癌标志物，也见于其它相关肿瘤如胚胎细胞癌、卵巢畸胎瘤、胃癌、胆道癌、胰腺癌等。

【0036】CEA 为广谱的消化道肿瘤标志物，也见于其它相关肿瘤如肺癌、乳腺癌、甲状腺癌样癌等。

【0037】CA242 为胰腺癌、胃癌、结肠癌标志物，也见于其它相关肿瘤如肝癌、食管癌、肺癌。

【0038】CA125 为卵巢癌标志物，也见于其它相关肿瘤如肺癌、胰腺癌、乳腺癌、肝癌、胃肠道恶性肿瘤、宫颈癌。

【0039】CA199 为胰腺癌、胆管癌、结直肠癌标志物，也见于其它相关肿瘤如肝癌、胆囊癌、胆管癌等。

【0040】CA153 为乳腺癌的首选标志物，在其它相关肿瘤如肺癌、卵巢癌、肺腺癌、结直肠癌等均可增高。

【0041】CA724 为胃癌的最佳肿瘤标志物之一，在其他其它相关肿瘤如胃肠道癌、乳腺癌、肺癌、卵巢癌等也有不不同检出率。

【0042】CA50 为胰腺癌和结、直肠癌的标志物，也见于其它相关肿瘤如胃癌、胆囊癌、肝癌、肺癌，乳腺癌。

【0043】NSE、胃泌素素前体释放肽的主要相关肿瘤为小细胞肺癌，也见于其它相关肿瘤如附腺癌、大细胞肺癌。

【0044】CYFRA21-1 的主要相关肿瘤为肺鳞癌、宫颈癌、食管癌，也见于其它相关肿瘤如膀胱癌、鼻咽癌、卵巢癌、胃肠道癌。

【0045】f-PSA 和 t-PSA 的主要相关肿瘤前列腺癌，也见于其它相关肿瘤如某些妇科肿瘤和乳腺癌。

【0046】Free β-hCG 的主要相关肿瘤为妇科肿瘤和非精原性睾丸癌，也见于其它相关肿瘤乳腺癌、精原性睾丸癌、肺癌、肝癌等。

【0047】SCCA 的主要相关肿瘤为宫颈鳞癌，也见于其它相关肿瘤如肺鳞癌、头颈部鳞癌、食管癌以及外阴部鳞状细胞癌等。

【0048】β-2-MG 为恶性肿瘤辅助性标志物，慢性淋巴细胞白血病、淋巴细胞肉瘤、多发性骨髓瘤等尤为明显，在肺癌、乳腺癌、胃肠道癌及子宫颈癌中也可见升高。

【0049】本发明还提供一种电化学发光免疫测定试剂盒，包含以下组分：吡啶钌标记的待测蛋白第一抗体、生物素化物的待测蛋白第二抗体、链霉亲和素白被的磁性微粒、二正丁基乙醇胺溶液。

【0050】作为优选，本发明所述试剂盒还包含洗涤液。

【0051】更优选地，所述洗涤液为 pH7.4、0.05mol/L 的磷酸盐缓冲液的 0.05% Tween-20。pH 值高时光化学反应的发光效率高，pH 值低检测结果稳定性好。本申请发明人实验发现，洗涤液 pH 值为 7.4 时，其发光效率高，稳定性好，满足临床样品检测要求。

【0052】本发明所述试剂盒大大节省抗原抗体的用量，三正丁基乙醇胺与吡啶钌的光化学反应的发光强度是三丙胺发光强度的六倍，因此通过光电倍增管的采集的光子数要多，使得试剂盒的灵敏度更高，即使使用很少的抗原抗体，依然可以测出数值，可以有效地减少抗体的使用量，试剂盒成本降低了 10% -30%。
与现有技术相比，本发明所述电化学发光法测定方法及试剂盒具有以下优点：

1. 链霉素和素与生物素的应用，使灵敏度大大高，可达 pg/ml 或 pmol 水平；
2. 特异性好，重复性好，CV < 5%。
3. 测定范围宽，可达 7 个数量级。
4. 试剂稳定，无毒害。
5. 反应时间短，20min 以内可完成测定。

附图说明

图 1 为本发明所述电化学发光法测定方法示意图；
图 2 为本发明所述电化学发光法测定方法示意图；
图 3 为夹心法鉴定 - 反应关系曲线；
图 4 为竞争法鉴定 - 反应关系曲线；
图 5 为二乙基乙醇胺与三丙胺在电极极和金电极上的发光强度对比图。

具体实施方式

本发明公开了一种电化学发光法测定方法，本领域技术人员可以借鉴本文内容，适当改进工艺参数实现。特别需要指出的是，所有类似的替换和改动对本领域技术人员来说是显而易见的，它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述，相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合，来实现和应用本发明技术。

为了使本领域的技术人员更好地理解本发明的技术方案，下面结合具体实施例对本发明作进一步的详细说明。

实施例 1：本发明所述试剂盒的组成

本发明所述试剂盒包括以下组分：

试剂 a. 电化学发光剂吡啶钌标记的待测蛋白第一抗体
试剂 b. 生物素化的待测蛋白第二抗体
试剂 c. 链霉素和素包被的磁性微粒，所述磁性微粒为直径约 2.8 μm 的聚苯乙烯微粒
试剂 d. 二乙基乙醇胺溶液

作为优选，也可包含洗涤液，优选为 pH 7.4、0.05mol/L 的磷酸盐缓冲液和 0.05% 吐温 (TWEEN-20)。所述洗涤液也可由本领域普通技术人员自行配制。

本发明所述试剂盒的使用时，结合了吡啶钌的抗体和结合了生物素的抗体与待测样品进行孵育反应，再将被链霉素和素包被的磁性微粒加入，使生物素通过与亲和素的结合将磁性微粒、待测抗原、抗体连接为一体，形成“三明治”夹心的复合体。

复合体通过磁性微粒被工作电极表面的磁铁吸附于电极表面，利用氧化铁的磁性，使用电极间分离将结合标记物的复合体和游离标记物进行分离，再加入二乙基乙醇胺 DBAE，加电压启动 ECL 反应，发光底物吡啶钌及反应参与物二乙基乙醇胺在电极表面失去电子而被氧化，电子供体二乙基乙醇胺失去一个 H+ 而成为还原剂，将氧化型的三价钌还原为竣化的三价钌，随即释放光子而恢复基态的发光底物。这一过程在电极表面而复
实施例2：用本发明所述方法进行人促甲状腺激素TSH检测
试剂盒包含以下组分：
试剂a、吡啶钌标记的TSH抗体
试剂b、生物素化的TSH第二抗体
试剂c、链霉亲和素包被的磁性微粒
试剂d、二丁基乙醇胺溶液
试剂e、洗涤液
具体检测步骤：
（1）在试管中加试剂a、b及待测样品血清，在液相条件37℃下反应8分钟。
（2）在上述反应液中加入试剂c，在接近液相的条件37℃下反应8分钟。
（3）将管内双反应结的反应液输入流动池。
流动池是电化学发光过程中所有电化学发光反应进行的场所。一个激发电极在流动池的下方，两个测定电极安装在激发电极上方的两侧，有一个光电倍增管的采集口以便于光信号采集和分析。在流动池下装置可移动的用以吸引磁性微粒的磁铁。反应液由蠕动泵送入流动池，由于磁铁吸引，磁性微粒被吸着在电极上，其余反应物流出流动池，完成游离的和结合的标记抗原的分离。
（4）将试剂d二丁基乙醇胺溶液送入流动池，并充满流动池。
（5）撤下磁铁，电极上通电，吡啶钌与二丁基乙醇胺发生电化学发光反应，发出的光被光电倍增管收集，测定光强度。
（6）在流动池中的反应示意图如图2所示。
（7）终止电压，移开磁性微粒，加入试剂e洗涤液冲洗流动测量室，则可进行下一个样品测定。
实施例3：用本发明所述方法进行甲胎蛋白的检测
在反应杯中，加入人血清、加入与亲和素结合的磁微粒、生物素结合的抗体1，加入与吡啶钌结合的抗体2，在37℃的环境下，温育9-17分钟，进行磁分离，即没有结合的物质被洗去，前述留下来的含有磁性微粒的抗原抗体复合液液进入流动池，加入二丙基乙醇胺，在电极的作用下，进行氧化还原的反应，在此过程中，发出光来，光电倍增管捕捉光子，电脑分析放大，配制梯度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，计算出结果。从而判断出待测血清中甲胎蛋白的含量。
实施例4：用本发明所述方法进行检测癌胚抗原检测
试剂盒包含以下组分：
试剂a、吡啶钌标记的癌胚抗原抗体
试剂 b. 生物素化牛的肺抗原第二抗体
试剂 c. SA 包被的磁性微粒
试剂 d. 二丁基乙醇胺溶液
试剂 e. 洗涤液为 pH 7.4、0.05mol/L 的磷酸盐缓冲液和 0.05% 脱温 20
具体检测步骤：
（1）在试管中加试剂 a、b 及待测标本血清，在液相条件下 37℃ 下反应 8 分钟。
（2）在上述反应液中加入试剂 c，在接近液相的条件 37℃ 下反应 8 分钟。
（3）将试管内两步反应结束的反应液输入流动池。
（4）将二丁基乙醇胺溶液送入流动池，并充满流动池。
（5）吸下磁铁，电极上通电，叮啶桃与二丁基乙醇胺发生电化学发光反应，发出的光被光电倍增管收集，测定光强度。
（6）配制梯度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，通过换算得出待测标本中的抗原浓度。
（7）在流动池中送入洗涤液，将反应物彻底冲洗，即可测定下一个标本。
实施例 5：用竞争法进行检测游离三碘甲状腺原氨酸 FT3 检测
用于检测蛋白多肽类抗原的方法主要是双抗体夹心法和竞争法。蛋白大分子抗原测定多用双抗体夹心法，而对单个抗原分子的小分子激素、药物等，因其可能只有一个抗原位点，故选择一个抗体后，再结合一个抗体，所以不适合使用双抗体夹心法测定。
本发明所述方法采用竞争抑制法对小分子抗原游离三碘甲状腺原氨酸 FT3 进行检测，竞争抑制法的原理是标本中的抗原和一定量的标记抗原竞争与固相抗体结合，标本中的抗原含量愈多，结合在固相上的标记抗原愈少。
试剂盒含以下组分：
试剂 a. 叮啶桃标记的 FT3 抗原
试剂 b. 生物素化牛的 FT3 抗体
试剂 c. SA 包被的磁性微粒
试剂 d. 二丁基乙醇胺溶液
试剂 e. 洗涤液为 pH 7.4、0.05mol/L 的磷酸盐缓冲液和 0.05% 脱温 20
具体检测步骤：
（1）在试管中加试剂 a、b 及待测标本血清，在液相条件下 37℃ 下反应 8 分钟。
（2）在上述反应液中加入试剂 c，在接近液相的条件 37℃ 下反应 8 分钟。
（3）将试管内两步反应结束的反应液输入流动池。
（4）将二丁基乙醇胺溶液送入流动池，并充满流动池。
（5）吸下磁铁，电极上通电，叮啶桃与二丁基乙醇胺发生电化学发光反应，发出的光被光电倍增管收集，测定光强度。
（6）配制梯度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，如图 4 所示，通过换算得出待测标本中的抗原浓度。通过换算得出待测标本中的抗原浓度。
（7）在流动池中送入洗涤液，将反应物彻底冲洗，即可测定下一个标本。
实施例 6：测定本发明所述方法灵敏度、检测限
使用 UDECL 电化学发光分析仪，设定光电倍增管的高压为 900V，扫描电压为 0.2-1.6V，扫描速度为 150mV/s，所用工作电极为 Pt 电极，缓冲溶液为 pH 为 7.4 的 0.05M 磷酸盐缓冲液和 0.05% Tween-20，检测溶液的发光信号，测定本发明所述方法的检测限。
配制梯度浓度的标准溶液，根据发光强度变化值对数与浓度对数绘制剂量反应曲线，发现两者呈良好线性关系。
化学发光免疫分析法检测如碱性磷酸酶和辣根过氧化物酶与鲁米诺大的反应体系的灵敏度，一般为 0.12mIU/L；常规的电化学法的灵敏度检测范围：0.005-100 μIU/ml，本发明所述方法检测范围：0.001-100 μIU/ml。电化学发光法电化学发光免疫法比酶联免疫法检测的范围更宽。
以上所述仅为本发明的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明原理的前提下，还可以做出若干改进和润饰，这些改进和润饰也应视为本发明的保护范围。
图 5