wo 2010/051344 A1 I AKX

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 AN 0000 1.0 D OO 0
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
6 May 2010 (06.05.2010) WO 2010/051344 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/445 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS i CBRB’ CBI(J}, g;l’ DB]IE{ > DBI\(V ’];313[{ >]];é’
PCT/US2009/062494 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
29 October 2009 (29.10.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,

TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

61/109.380 29 October 2008 (29.10.2008) ys (84) Designated States (unless otherwise indicated, for every
12/551,498 31 August 2009 (31.08.2009) us kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(71) Applicant (for all designated States except US): QUAL- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
COMM INCORPORATED [US/US]; ATTN: INTER- TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
NATIONAL IP ADMINISTRATION, 5775 Morehouse ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Drive, San Diego, California 92121 (US). MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,

(72) Tnventor; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(75) Inventor/Applicant (for US only): MAGER, Michael ML, MR, NE, SN, TD, TG).
[US/US]; 5775 Morehouse Drive, San Diego, California Declarations under Rule 4.17:

92121 (US). . .
— as to applicant’s entitlement to apply for and be granted
(74) Agent: HAGLER, James T.; ATTN: INTERNATION- a patent (Rule 4.17(i1))
AL IP ADMINISTRATION, 5775 Morehouse Drive, San

Diego, California 92121 (US). — as fto the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: FLEXIBLE HIERARCHICAL SETTINGS REGISTRY FOR OPERATING SYSTEMS

(57) Abstract: Various embodiments include methods and systems pro-

vide a distributed settings registry with access protection definable by ap-

plication developers. Distributed settings registry may be implemented

across different technologies with customizable privileges and the dynamic

_ ability to plug different nodes into the registry tree. The settings registry
niﬁisa‘;‘v’zrfs“;?m‘gw may exist under a registry interface so the applications invoking the reg-

Application
performs operation
on SettingsReg for
setting data

implementation istry need not be concerned with where or how the settings data is stored.

l Each node in the tree of the registry may define its own privilege require-

" ments and storage technology. Nodes may be "native" (i.c., fully supported
72

Pass operation to
singleton service to —
obtain data

Rféﬂgeft?ggg{ g:‘a — within the setting registry system software) or "non-native" (i.e., detined
by developers for specific applications).

l

Return setting data | —/
to application

87

Return
denial
to caller

Application
match object
Privileges?

Retum setting data |~/
to SettingsReg

l

Retum setting data |~/
to application

Fig. 6

WO 2010/051344 A1 W00 0)00 N0 AR 000 0

Published:
— with international search report (Art. 21(3))

WO 2010/051344 PCT/US2009/062494

FLEXIBLE HIERARCHICAL SETTINGS REGISTRY FOR
OPERATING SYSTEMS

RELATED APPLICATIONS

[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application No. 61/109,380 entitled “Flexible Hierarchical Settings Registry for
Operating Systems” filed October 29, 2008, the entire contents of which are hereby

incorporated by reference.

FIELD OF INVENTION

[0002] This invention generally relates to computer operating systems, and more
particularly to registry systems implemented on operating systems for mobile

computing devices.

BACKGROUND

[0003] A registry is a directory for storing settings and options for software operating
within an operating system. For example, the Windows® operating systems by
Microsoft Corporation includes a directory file known as the Windows registry which
contains the information and settings that are required by hardware, operating system
software, and application software, as well as storing user preferences and settings. A
registry file serves to locate all program and hardware settings and constant values in a

single file structure.

[0004] The Windows registry contains two basic elements: keys and values. Registry
keys are similar to file folders. In addition to values, each key can contain subkeys
which may contain further subkeys. Keys are referenced in a syntax similar to
Windows path names using backslashes to indicate levels of hierarchy. Registry
values are name/data pairs stored within keys. Values are referenced separately from
keys. In the Windows registry, values can be string values, binary data, unsigned 32-
bit integers, UNICODE values, multi-string values, lists and 64-bit integer values (in
Windows 2000 and later). The Windows registry is constructed as a database offering

database-type functions.

WO 2010/051344 PCT/US2009/062494
2

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The accompanying drawings, which are incorporated herein and constitute part
of this specification, illustrate exemplary embodiments of the invention, and, together
with the general description given above and the detailed description given below,

serve to explain features of the invention.

[0006] Fig. 1 provides example code blocks for implementing settings objects within

an embodiment.

[0007] Fig. 2 provides further example code blocks for implementing native settings

objects within an embodiment.

[0008] Fig. 3 is a process call diagram illustrating process calls for a native settings

object by two applications.

[0009] Fig. 4 provides example code blocks for implementing non-native settings

objects within an embodiment.

[0010] Fig. S is a process call diagram illustrating process calls for a non-native

settings object by two applications.

[0011] Fig. 6 1s a process flow diagram illustrating processing of setting object calls

within an embodiment.

[0012] Fig. 7 is a component block diagram of mobile handsets suitable for

implementing the various embodiments.

DETAILED DESCRIPTION

[0013] The various embodiments will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative purposes, and are not

intended to limit the scope of the invention or the claims.

WO 2010/051344 PCT/US2009/062494
3

[0014] In this description, the terms “example” and “exemplary” are used to mean
“serving as an example, instance, or illustration.” Any implementation described
herein as an “example” or “exemplary” is not necessarily to be construed as preferred

or advantageous over other implementations.

[0015] As used herein, the terms “mobile handsets” and “mobile devices” are used
interchangeably and refer to any one of various cellular telephones, personal data
assistants (PDA’s), palm-top computers, laptop computers with wireless modems,
wireless electronic mail receivers (e.g., the Blackberry®™ and Treo® devices), cellular
telephones, and multimedia Internet enabled cellular telephones (e.g., the Blackberry
Storm™), and similar personal electronic devices. A mobile device may include a
programmable processor and memory as described more fully below with reference to

Fig. 7.

[0016] Modern mobile devices can store vast quantities of digital information and
users typically use their mobile devices as information and entertainment appliances.
Consequently the complexity and sophistication of applications developed for mobile
devices now rivals those developed for personal computers. The various
embodiments facilitate the development of mobile device applications by providing a

tlexible settings registry with definable access protection.

[0017] The various embodiments provide a distributed settings registry with access
protection definable by application developers. Distributed settings registry provides
across different technologies with customizable privileges and the dynamic ability to
plug difterent nodes into the registry tree. The settings registry may exist under a
registry interface so the applications invoking the registry need not be concerned with
where or how the settings values are stored. Each node in the tree of the registry may
define its own privilege requirements and storage technology. Nodes may be “native”
(i.e., fully supported within the setting registry system software) or “non-native” (i.e.,
defined by developers for specific applications). Settings objects register themselves

with the settings registry via the module information file (mif) which is referred to

herein as the .mif file.

WO 2010/051344 PCT/US2009/062494
4

[0018] As is well known, applications resident on mobile devices may be defined by
two files; the module information file, with extension .mif, and the module file, with
extension .mod. If the application requires settings information, such settings values
may be stored within the settings registry for access by the application when it is
started or running. As an example, settings may be stored in an initialization file with
a .ini file extension. In such an implementation, a developer must provide the .mod
file containing the compiled application code, the .mif file containing the compiled
module information (including the settings registration information), and the .ini file

containing the settings values.

[0019] The various embodiments provide an application programming interface (API),
sometimes referred to herein as ISettings, and a settings registry implementation of the
API, sometimes referred to herein as “SettingsReg,” which enable getting/setting
named keys with string values, support hierarchical key structures, allow enumerating
over trees of keys, and support notifications when values change. Data may be stored
in the settings registry as text files which simplifies read, write and enumeration
operations. An embodiment of the SettingsReg provides two types of functionality,
public settings and private settings. Public settings are setting files that an application
or component wishes to make available to the rest of the system via a global settings
registry. Public settings are generally available to all applications running within the
operating system. Private settings are setting files that are available to selectively

identified applications, or types or classifications of applications.

[0020] The settings registry of the various embodiments utilizes a URI-based settings
tree, e.g. “/path/to/a/setting.” Instead of being a large, monolithic registry such as is
the case for the Windows registry, the settings registry of the various embodiments is
comprised of several smaller sub-registries provided by any number of modules that
simply “plug in” to the top-level registry, where each sub-registry “owns” a specific
part of the tree. This structure enables the settings registry to be easy to maintain as
each sub-registry manages its own data store in a customizable manner. The structure
also allows various types of data storage mechanisms to be scalable as it is easy to add

new sub-registries. The structure also provides for definable security as each sub-

WO 2010/051344 PCT/US2009/062494
5

registry can manage its own privileges convention. Further, the structure supports

change notifications across apps/domains.

[0021] The settings registry has the notion of native and non-native data stores. Native
stores are those for which the ISetings registry has built-in support. For example, in
an embodiment, the settings registry supports .ini file based data stores, which are
settings that live in .ini files and are persisted in the extended file systems (EFS), and
heap based data stores, which are settings that live in heap memory and are not
persisted across power (i.e., system on/off) cycles. Non-native stores are standalone
implementations that use a different storage technology or file type than those
supported by native settings object data stores. Developers are free to define non-

native settings objects including enforcement of privileges for those objects.

[0022] With native stores, components claim ownership of a particular node of the tree
in their .mif file, where they also provide some information to the registry about their
store (e.g. for a .ini file-based store, the component would specify the store type —in
this case .ini-based — and the EFS path to the .ini file). The registry will manage all
operations on the data store (in the case of a .ini file, the registry is the only
component that ever reads/writes the file), so there is a separate mechanism, such as a
settings access control list (ACL) by which a component may define privileges to
allow or deny access to their store. A settings ACL (access control list) works exactly

the same as a file system (FS) ACL.

[0023] With native stores there is no code to write to define/manage the store. In a
native store, the registry process has the ability to create and interact with the store. A
developer can simply register the store in the .mif file and provide the storage media
(e.g. an .ini file). In other words modules “register” themselves with the settings
registry via the .mif file. Applications using the store can then use the ISettings
interface along with the defined keys to access the data (assuming the application has
the privilege to do so). All accesses to individual native settings objects are then
performed by a singleton service 18 (see Fig. 3). In other words, the same service

accesses all native settings objects 20 are accessed by the same service in a process

WO 2010/051344 PCT/US2009/062494
6

that is separated by a process boundary from the application10, 14 and the API 12, 16

called to obtain the information.

[0024] Setting data are stored as setting objects. An object generating API, referred to
herein as a settings store factory may be used to create a native setting registry object
around a particular storage technology. For example, in a first embodiment two
settings store factories are provided, one for generating .ini file setting objects, and
one for generating heap storage setting objects. As is well known, .ini files are
initialization files which are used by applications to store configuration data that is
read as the program is starting, and heap storage are files stored in temporary memory

which are deleted whenever the mobile device is powered down.

[0025] Settings store factories may be used in particular when the information to be
stored is to be given limited access, i.e., is “private,” with access limited to named
applications, or types or families of applications. As used herein, the term “public”
refers to any setting that is available in the setting registry, regardless of the access
privileges, is considered public, and the term “private” refers to settings or objects that
are created in an application using the factory. In this regard, “private” settings refer
to an instance of an object that is created in the context of a single application, which
is then a “private” instance to that application. So if two applications both open the
same .ini file using the settings .ini factory, each application now has a private
instance of that object (in this case the applications that have access to the file may be
defined by some mechanism other than the settings registry, e.g. a file system ACL).
When one application makes a change, there may be no way of notifying the other
application that a change has occurred. On the other hand, if that .ini file was
registered with the settings registry, which makes it “public,” then both applications
could access the data in that .in1 file by going through the settings registry, and when
one application makes a change, the other application could be notified. Thus, there
may be three classifications of settings objects: public, available to all; public, with

limited access; and private.

WO 2010/051344 PCT/US2009/062494
7

[0026] FIG. 1 illustrates a sample of example code that can be used to implement an
.ani file for the program “foo”. In this example, the information to be stored in a
foo.ini at the tree and file fs:/~Oxdeadbeef/foo.ini is the name “Mike” to be stored in
the “name” node (see code 2). The script used to implement a settings store factory
for generating this f0o.ini setting file is illustrated in code block 4. In the line
beginning with “ISettingsStoreFactory Create” the developer specifies the node name

to be used (“foo.ini” in the example).

[0027] During the generation of the native settings object the developer can also
designate whether the object is private or public, as those discussed above. If the
developer designates the object as private, the developer may also designate the
object’s access privileges, 1.e., the particular applications or application types that may
access the settings object. In example code illustrated in Fig. 2, the line of code
“ISettings Get(pSettings, ‘Genera/name’, buf, sizeot (buf), NULL)” will return the
data stored in the foo.ini file at node “name”, which in this example is “Mike.” Such
.1ni files may be subject to FS ACLs which are privileges specified in the settings
object in the form of a list of applications to which the registry system can permit
access to the settings value. Privileges can be specified within a settings object such
that some settings values within the object are public (i.e., accessible by any
application) while other settings values within the same object are private and
accessible only by applications or application types identified in the corresponding

ACL.

[0028] Having generated a native node setting object using the script shown in Fig. 1,
a developer can register the object 2 with the settings registry by implementing the
script shown in the .cif file block 6 in Fig. 2. The .cif file is compiled to generate the
.mif file for an application. Thus, the code in block 6 defines the information that will
be present in the .mif file for application “fooApp” which defines the settings object
“f00.1n1” that will hold the initialization settings including the word “Mike” in the
“name” node. The system can enumerate the .mif files stored on the mobile device to
determine the key for the settings file. In particular, the .mif file (defined by the code
in the .cif file 6) needs to define the owner, the key and the file (see the third through

WO 2010/051344 PCT/US2009/062494
8

fifth lines in block 6). Once the object is registered, the information can be accessed

by an application by implementing the script shown in block 8 in Fig. 2.

[0029] As mentioned above and as illustrated in Fig. 3, the settings registry
implements a singleton service 18 for accessing all native settings objects 20. This
enables the establishment of a process boundary (illustrated as a dashed line) between
the processing of applications 10, 14 and registry 12, 16 (above the dashed line) and
the accesses to the settings objects 20. The native settings access API 12, 16 called by
applications 10, 14 need not specity the file location or include specifics related to the
file structure implemented with the settings objects; such details are handled by the

singleton service 18.

[0030] Non-native stores are data storage mechanisms for which the registry does not
have native support (i.e., there is no settings factory provided and the singleton service
18 is not configured to access the settings object file type). The various embodiments
of the settings registry allow non-native stores to install themselves into the tree and
handle any operations that occur on the nodes within that tree. Depending on the non-
native store implementation, the operations on the store may be performed in-process

or across a process boundary.

[0031] Like native stores, non-native stores register in their .mif file to “own” a
particular node of the tree. The difference is that non-native stores provide a class 1D
for a custom ISettings class. With non-native stores, the caller first instantiates the
registry class. When an operation is made on a key in the tree owned by the non-
native store, the custom class is instantiated (assuming the caller has the appropriate
privilege) and the operation 1s delegated to it. In this case, the registry essentially
operates as a “pass-through.” Technically, the caller could get the same functionality
by instantiating the custom class directly instead of the registry, but using the registry
simplifies the usage, especially when the caller is interested in both native and non-

native stores.

[0032] A developer can register a non-native node by implementing scripts such as the

example illustrated in Fig. 4 for the non-native “BMPSettings.” A non-native settings

WO 2010/051344 PCT/US2009/062494
9

object can be defined in a .cif file such as illustrated in the code in block 22. The
processing for the defined non-native settings object may be implemented by
including code such as illustrated in block 24. Upon instantiation, the registry process
in an embodiment (e.g., SettingsReg) builds a list of registered non-native nodes in the
system. Once defined and implemented, a non-native settings object can then be
accessed within an application by including code similar to that illustrated in block 26.
Upon an access call to a non-native node, the implementation is created and the

operation delegated to that implementation.

[0033] Since non-native settings objects are defined by developers and thus cannot be
handled by the settings registry, their access calls may be handled in-process or across
a process boundary, depending on the non-native store implementation. This is
illustrated in Fig. 5. When any application 30, 38 calls the settings API 32, 40 for a
non-native settings object 36, 42 (e.g., BMPSettings), the API implements the non-
native objects access code 36, 42 to obtain the requested information in-process (i.e.,
within the same process boundary without implementing the registry’s singleton
service 18). In this manner, developers have full freedom to define new settings

objects in whatever manner and file type desired for particular applications.

[0034] Processing of application calls for settings information under the various
embodiments is illustrated in Fig. 6. During initialization (or any other time) an
application may request settings information by performing an operation on the
settings registry via the ISettings API, step 60. For example, as illustrated in Figs. 3
and 5, the application may access “SettingsReg” via the ISettings API as illustrated in
Fig. 2 code block 8 and Fig. 4, code block 26. SettingsReg determines whether the
requested settings object is to a native or non-native node, test 62. If the request is for
information at a native node (i.e., test 62=“Yes”), SettingsReg passes the operation to
the singleton service, step 64, which accesses the indicated settings object and returns
the data to SettingsReg, step 66. In an embodiment the singleton service may
compare the access privileges specified in the called settings object to determine if the
calling application is authorized to access the settings information, test 65. If the

calling application does not satisty the settings object privileges list (i.e., the

WO 2010/051344 PCT/US2009/062494
10

application or application type does not match the privileges specified in the settings
object and thus test 65 = “No”), the singleton service may return an ‘access denied’ or
similar message to the caller, step 67. If the calling application satisfies the settings
object privileges list (i.e., test 65 = “Yes”), SettingsReg then returns the requested data
to the application, step 68. However, if the request is for information at a non-native
node (i.e., test 62=“No”), the SettingsReg creates the setting object for the called non-
native node in-process which returns the requested data, step 72. SettingsReg then

returns the requested data to the application, step 74.

[0035] Developers can use the various embodiments to simplify the development of
applications. The following paragraphs describe steps and example code that
developers can include in applications to implement the various embodiments of

setting registry.

[0036] In order to differentiate the sub-registries at the root level of the registry, each
must have a unique string identifier. This simplest way to achieve this 1s to require a
class ID, e.g.

"/~0x12345678/fo0/..." <--- settings sub-registry for component 1

"/~Oxdeadbeef/bar/..." <--- settings sub-registry for component 2

[0037] However, class IDs are not required; more human-readable Uniform Resource
Identifiers (URIs) are allowed as well, though care must be taken to avoid overlap. If
overlap occurs, the behavior may be undefined.

"/componentl/foo/..."

"/component2/bar/..."

[0038] Private settings are settings that are available to an application or component on
a per-instance basis. These settings are not exposed to any other component in the
system. The ISettings support for private settings simply provides a convenient

mechanism for organizing settings.

WO 2010/051344 PCT/US2009/062494
11

[0039] Private settings are created using a factory. The caller specifies some
information about the medium from which to create the settings and the factory

returns an ISettings object that can be used to access the settings.

[0040] For private settings, no modification to the .mif file is required. The

component simply uses the factory to create the ISettings object of interest at run time.

[0041] In an embodiment, the settings registry includes factories that return ISettings

objects which do not support the ISettings OnChange() method.

[0042] To add a public store of a public .ini file developers can perform the following
steps to add and access a public .ini file-based settings store to their component. First
developers can copy the following into a file called mysettings.ini and place it into
their component's module directory in EFS:

[sectionl]

settingl=valuel

[0043] Second, developers can register the store with the system by adding the
following to the component’s .cif file using script such as:
local s = require 'SettingsCIFHelpers'
-- register the settings at "/myApp/mylniSettings/..."
s:RegisterIniFile {
owner = 0x12345678, -- class ID of the component
key = "/myApp/mylniSettings",
file = "mysettings.ini",

acls=1{...} -- optional

[0044] Third, developers can, optionally, define ACLs to allow other apps access to
the settings:
acls = {

{ -- grant everyone read access to my settings but write access to only

-- those modules belonging to the Oxdeadd00d group

WO 2010/051344 PCT/US2009/062494

12
{
groups = { 0},
perms = "r/r",
}s
{
groups = { Oxdeadd00d},
perms = "rw/rw",
}s

path = "/myApp/mylniSettings"

}

[0045] Fourth, developers can use the following code within an application to access
the setting:
{
ISettings *piSettings = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv, AEECLSID SettingsReg,
(void**) &piSettings)) {
char outbuf] 32];
int result;
result = ISettings Get(
piSettings,
"/myApp/mylniSettings/sectionl/setting1",
outbuf,
sizeof(buf),
NULL
)
if (SUCCESS == result) {
// outbuf will contain "valuel"

}

ISettings Release (piSettings);

WO 2010/051344 PCT/US2009/062494
13

pSettings = NULL;

[0046] The steps that developers take to add and access a public heap-based settings
store to a component is very similar to the .ini file-based store. The main difference is
the absence of the .ini file. Instead, heap-based settings require a quota value that
determines the maximum amount of heap that may be used by the store. First,
developers may register the store with the system by adding the following to a
component's .cif file:
local s = require 'SettingsCIFHelpers'
-- register my settings at "/myApp/myHeapSettings/..."
s:RegisterHeap {

owner = 0x12345678, -- class ID of my component

key = "/myApp/myHeapSettings",

quota = 0x1000,

acls={... }

[0047] Optionally developers may define ACLs to allow other apps access to their
settings as follows:
acls = {
{ -- grant everyone read access to my settings but write access to only

-- those modules belonging to the Oxdeadd00d group

{
groups = { 0},
perms = "r/r",
5
{

groups = { Oxdeadd00d},

perms = "rw/rw",

WO 2010/051344 PCT/US2009/062494
14

path = "/myApp/myHeapSettings"

[0048] Third, developers can use the following code within an application to access
setting. Note that a heap-based setting does not exist until ISettings Set() is called on
it.
{
ISettings *piSettings = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv, AEECLSID SettingsReg,
(void**) &piSettings)) {
char outbuf] 32];
int result;
(void) ISettings Set(piSettings, "/myApp/mylniSettings/foo", "bar");
result = ISettings Get(
piSettings,
"/myApp/mylniSettings/foo",
outbuf,
sizeof(buf),
NULL
)
if (SUCCESS == result) {
// outbut will contain "bar"
}
ISettings Release (piSettings);
pSettings = NULL;

[0049] In an embodiment developers can define a custom setting for an application
that is public (i.e., accessible by all allocations) by perform the following to add a

custom ISettings implementation into the settings registry: First, developers write a

WO 2010/051344 PCT/US2009/062494
15

component that implements the embodiment registry. Second, developers register the
component with the system by adding the following to the component's .cif file:
local s = require 'SettingsCIFHelpers'
s:RegisterClass {
class = Oxdeadbeef,
key = "/myApp/myCustomSettings",

[0050] Next, developers use the following code in the application to access the setting.
Note that any ISettings operations performed on the registry class will be delegated to
the custom class.
{
ISettings *piSettings = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv, AEECLSID SettingsReg,
(void**) &piSettings)) {
int nChildren = 0; int result;
result = ISettings GetNumChildren(piSettings,
"/myApp/myCustomSettings", &nChildren);
if (SUCCESS == result) {
// do something
}
ISettings Release (piSettings);
pSettings = NULL;

[0051] In an embodiment developers can define a private .ini file setting store for an
application (i.e., accessible only be allocations specifically given permission to access
the file) by perform the following. First developers copy the following into a file
called mysettings.ini and place it into the component's module directory in EFS:
[sectionl]

settingl=valuel

WO 2010/051344 PCT/US2009/062494
16

[0052] Second, developers include the following code in the application to enable it to
access the setting:
{
ISettingsStoreFactory *piSSF = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv, AEECLSID SettingsIniFactory,
(void**) &piSSF)) {
ISettings *piSettings = NULL;
int result;
result = ISettingsStoreFactory Create(
piSSF,
"owner=0x12345678,path=mysettings.ini",
&piSettings
)
if (SUCCESS == result) {
char outbuf] 32];
result = ISettings Get(
piSettings,
"sectionl/settingl",
outbuf,
sizeof(buf),
NULL
)
if (SUCCESS == result) {
// outbuf will contain "valuel"
}
ISettings Release (piSettings);
pSettings = NULL;
}
ISettingsStoreFactory Release (piSSF);
piSSF = NULL;

WO 2010/051344 PCT/US2009/062494
17

[0053] Note that unlike public settings, access to the private store does not require the

prefix "/myApp/mylniSettings".

[0054] The steps that developers take to implement a private heap-based settings store
in an application component are very similar to the .ini file-based store except that
there is no reference to an .ini file. Instead, heap-based settings require a quota value
that determines the maximum amount of heap storage that may be used by the store.
Developers can use the following code in an application to access the setting. Note
that a heap-based setting does not exist until ISettings Set() is called on it.
{
ISettingsStoreFactory *piSSF = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv,
AEECLSID_SettingsHeapFactory, (void**) &piSSF)) {
ISettings *piSettings = NULL;
int result;
result = ISettingsStoreFactory Create(
piSSF,
"quota=0x1000",
&piSettings
)
if (SUCCESS == result) {
char outbuf] 32];
(void) ISettings_Set(piSettings, "foo/bar", "Hello world");
result = ISettings Get(piSettings, "foo/bar", outbuf, sizeof(buf),
NULL);
if (SUCCESS == result) {
// outbuf will contain "Hello world"
}
ISettings Release (piSettings);
pSettings = NULL;

WO 2010/051344 PCT/US2009/062494

18
}
ISettingsStoreFactory Release (piSSF);
piSSF = NULL;

[0055] In an embodiment developers can define a private custom setting store by
performing the following to access a custom ISettings implementation. First,
developers write a component that implements ISettings. Second, developers include
the following code in an application to access the private custom setting.
{
ISettings *piSettings = NULL;
if (SUCCESS == IEnv_Createlnstance(piEnv, <classid>, (void**)
&piSettings)) {
int nChildren = 0;
int result;

result = ISettings GetNumChildren(piSettings, "/path/to/my/settings",

&nChildren);
if (SUCCESS == result) {
// do something }
ISettings Release (piSettings);
pSettings = NULL;
}
}

[0056] The embodiments described above may be implemented on any of a variety of
mobile devices, such as, for example, cellular telephones, personal data assistants
(PDA) with cellular telephone, mobile electronic mail receivers, mobile web access
devices, and other processor equipped devices that may be developed in the future. In
addition, the embodiments described above may be implemented on any of a variety
of computing devices, including but not limited to desktop and laptop computers. Fig.

7 depicts various components of a mobile device 200 capable of supporting the

WO 2010/051344 PCT/US2009/062494
19

various embodiments disclosed herein. A typical mobile handset 200 includes a
processor 201 coupled to internal memory 202 and a user interface display 203. The
mobile handset 10 may include an antenna 204 for sending and receiving
electromagnetic radiation that is connected to a wireless data link and/or cellular
telephone transceiver 205 coupled to the processor 201. In some implementations, the
transceiver 205, and portions of the processor 201 and memory 202 used for cellular
telephone communications are referred to as the air interface since the combination
provides a data interface via a wireless data link. Mobile handsets typically include a
key pad 206 and menu selection buttons or rocker switches 207 for receiving user

nputs.

[0057] The processor 201 may be any programmable microprocessor, microcomputer
or multiple processor chip or chips that can be configured by software instructions
(applications) to perform a variety of functions, including the functions of the various
embodiments described above. In some mobile devices, multiple processors 201 may
be provided, such as one processor dedicated to wireless communication functions and
one processor dedicated to running other applications. Typically, software
applications may be stored in the internal memory 202 before they are accessed and
loaded into the processor 201. In some mobile devices, the processor 201 may include
internal memory sufficient to store the application software instructions. For the
purposes of this description, the term memory refers to all memory accessible by the
processor 201, including internal memory 202 and memory within the processor 201
itself. The memory 202 may be volatile or nonvolatile memory, such as flash

memory, or a mixture of both.

[0058] The hardware used to implement the foregoing embodiments may be
processing elements and memory elements configured to execute a set of instructions,
wherein the set of instructions are for performing method steps corresponding to the
above methods. Alternatively, some steps or methods may be performed by circuitry

that is specific to a given function.

WO 2010/051344 PCT/US2009/062494
20

[0059] Those of skill in the art will appreciate that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, computer
software, or combinations of both. To clearly illustrate this interchangeability of
hardware and software, various illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their functionality. Whether
such functionality is implemented as hardware or software depends upon the
particular application and design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in varying ways for each particular
application, but such implementation decisions should not be interpreted as causing a

departure from the scope of the present invention.

[0060] The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. The software module
may reside in a processor readable storage medium and/or processor readable memory
both of which may be any of RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or
any other tangible form of data storage medium known in the art. Moreover, the
processor readable memory may comprise more than one memory chip, memory
internal to the processor chip, in separate memory chips, and combinations of different
types of memory such as flash memory and RAM memory. References herein to the
memory of a mobile handset are intended to encompass any one or all memory
modules within the mobile handset without limitation to a particular configuration,
type or packaging. An exemplary storage medium is coupled to a processor in either
the mobile handset or the theme server such that the processor can read information
from, and write information to, the storage medium. In the alternative, the storage

medium may be integral to the processor. The processor and the storage medium may

reside in an ASIC.

[0061] The foregoing description of the various embodiments is provided to enable

any person skilled in the art to make or use the present invention. Various

WO 2010/051344 PCT/US2009/062494
21

modifications to these embodiments will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments
without departing from the spirit or scope of the invention. Thus, the present
invention is not intended to be limited to the embodiments shown herein, and instead
the claims should be accorded the widest scope consistent with the principles and

novel features disclosed herein.

WO 2010/051344 PCT/US2009/062494
22

CLAIMS

What is claimed is:

1. A method for storing and accessing software settings within a registry, comprising;:

generating a native settings object containing a settings value, and storing the
native settings object in memory with a key;

receiving a call for the settings value from an application in the form of an
application programming interface (API) call;

implementing a singleton service associated with the registry to obtain the
settings value;

obtaining the settings value from the native settings object within the singleton
service;

returning the settings value to the API from the singleton service; and

returning the settings value to the application from the API.

2. The method of claim 1, wherein the singleton object controls all accesses to native

settings objects.

3. The method of claim 1, further comprising:

receiving a non-native settings object defined in software other than within the
singleton service;

determining whether the API call for the settings value from the application
calls for a native or non-native settings object, wherein the steps of implementing a
singleton service, obtaining the settings value within the singleton service and
returning the settings value to the API function from the singleton service are
performed when it is determined that the API calls for a native settings object; and

implementing a non-native process for obtaining the called settings value when

it is determined that the API calls for a non-native settings object.

4. The method of claim 1, further comprising:
determining whether the application satisfies a privilege specified in the called

settings object; and

WO 2010/051344 PCT/US2009/062494
23

denying access to the settings value when it is determined that the application

does not satisfy the privilege specified in the called settings object.

5. The method of claim 4, further comprising detining the privilege when the native

object is generated.

6. A mobile device, comprising:
a processor;
a memory coupled to the processor;
wherein the processor is configured with processor-executable instructions to
perform steps comprising:
generating a native settings object containing a settings value, and
storing the native settings object in memory with a key;
receiving a call for the settings value from an application in the form of
an application programming interface (API) call;
implementing a singleton service associated with the registry to obtain
the settings value;
obtaining the settings value from the native settings object within the
singleton service;
returning the settings value to the API from the singleton service; and

returning the settings value to the application from the API.

7. The mobile device of claim 6, wherein the processor is further configured with
processor-executable instructions such that the singleton object controls all accesses to

native settings objects.

8. The mobile device of claim 6, wherein the processor is further configured with
processor-executable instructions to perform steps further comprising:
receiving a non-native settings object defined in software other than within the

singleton service;

WO 2010/051344 PCT/US2009/062494
24

determining whether the API call for the settings value from the application
calls for a native or non-native settings object, wherein the steps of implementing a
singleton service, obtaining the settings value within the singleton service and
returning the settings value to the API function from the singleton service are
performed when it is determined that the API calls for a native settings object; and

implementing a non-native process for obtaining the called settings value when

it is determined that the API calls for a non-native settings object.

9. The mobile device of claim 6, wherein the processor is further contigured with
processor-executable instructions to perform steps further comprising:

determining whether the application satisfies a privilege specified in the called
settings object; and

denying access to the settings value when it is determined that the application

does not satisfy the privilege specified in the called settings object.

10. The mobile device of claim 9, wherein the processor is further configured with
processor-executable instructions to perform steps further comprising defining the

privilege when the native object is generated.

11. A tangible storage medium having stored thereon processor-executable software
instructions that cause a processor of computing device to perform steps comprising:

generating a native settings object containing a settings value, and storing the
native settings object in memory with a key;

receiving a call for the settings value from an application in the form of an
application programming interface (API) call;

implementing a singleton service associated with the registry to obtain the
settings value;

obtaining the settings value from the native settings object within the singleton
service;

returning the settings value to the API from the singleton service; and

returning the settings value to the application from the API.

WO 2010/051344 PCT/US2009/062494
25

12. The tangible storage medium of claim 11, further having stored thereon
processor-executable instructions such that the singleton object controls all accesses to

native settings objects.

13. The tangible storage medium of claim 11, further having stored thereon
processor-executable instructions to perform steps further comprising:

receiving a non-native settings object defined in software other than within the
singleton service;

determining whether the API call for the settings value from the application
calls for a native or non-native settings object, wherein the steps of implementing a
singleton service, obtaining the settings value within the singleton service and
returning the settings value to the API function from the singleton service are
performed when it is determined that the API calls for a native settings object; and

implementing a non-native process for obtaining the called at least one settings

value when it is determined that the API calls for a non-native settings object.

14. The tangible storage medium of claim 11, further having stored thereon
processor-executable instructions to perform steps further comprising:

determining whether the application satisfies a privilege specified in the called
settings object; and

denying access to the at least one settings value when it is determined that the

application does not satisty the privilege specified in the called settings object.

15. The tangible storage medium of claim 14, further having stored thereon
processor-executable instructions to perform steps further comprising defining the

privilege when the native object is generated.

16. A mobile device, comprising:
means for generating a native settings object containing a settings value, and

storing the native settings object in memory with a key;

WO 2010/051344 PCT/US2009/062494
26

means for receiving a call for the settings value from an application in the form
of an application programming interface (API) call;

means for implementing a singleton service associated with the registry to
obtain the settings value;

means for obtaining the settings value from the native settings object within the
singleton service;

means for returning the settings value to the API from the singleton service;
and

means for returning the settings value to the application from the API.

17. The mobile device of claim 16, wherein means for implementing the singleton

object includes means for controlling all accesses to native settings objects.

18. The mobile device of claim 16, further comprising:

means for receiving a non-native settings object defined in software other than
within the singleton service;

means for determining whether the API call for the settings value from the
application calls for a native or non-native settings object, wherein the steps of
implementing a singleton service, obtaining the settings value within the singleton
service and returning the settings value to the API function from the singleton service
are performed when it is determined that the API calls for a native settings object; and

means for implementing a non-native process for obtaining the called settings

value when it is determined that the API calls for a non-native settings object.

19. The mobile device of claim 16, further comprising:

means for determining whether the application satisfies a privilege specified in
the called settings object; and

means for denying access to the settings value when it is determined that the

application does not satisty the privilege specified in the called settings object.

WO 2010/051344 PCT/US2009/062494
27

20. The mobile device of claim 19, further comprising means for defining the

privilege when the native object is generated.

WO 2010/051344 PCT/US2009/062494
1/7

fs:/~Oxdeadbeef/foo.ini

[General] ,._12

name=Mike

4

~J

ISettings *pSettings = NULL;
char buf[32];

ISettingsStoreFactory Create(pFactory, “owner=0xdeadbeef;file=fco.ini”, &pSettings);
ISettings Get(pSettings, “General/name”, buf, sizeof(buf), NULL);

Fig. 1

WO 2010/051344
217
fs:/mod/foo/foo.ini
2
[General] _J
name=Mike
foo.cif
local s = require 'SettingsCIFHelpers'
s:RegisterIniFile {
owner = 0Oxdeadbeef,
key = "/fooRpp", 5
file = “foo.ini",
acls = { f‘J
{ == ACLs for the root node
{
groups = {AEECLSID BarApp},
perms = "rw/rw",

by
path = "/fooApp"
b,
b,

8
L

PCT/US2009/062494

char buf[32];
ISettings Get (pSettings,
NULL) ;

“/fooRpp/General /name”, buf,

sizeof (buf),

Fig. 2

WO 2010/051344

3/7

PCT/US2009/062494

10 14
fooApp barApp —

Y 12 v 16
SettingsReg — SettingsReg —

Singleton Service

A 4

foo.ini

Fig. 3

WO 2010/051344

PCT/US2009/062494
a/7
bmpsettings.cif
local s = require 'SettingsCIFHelpers' 22
s:RegisterClass { .
class = AEECLSID BMPSettings,
key = "/bmp",
1
bmpsettings.c
int BMPSettings Get (...)
{
if (0 == std strcmp (cpszKey, "/bmp/version™)) {
char version[] = "1.0 rev 01.05"; 24
if (pnValuelenReq != NULL) { y
*pnValuelenReq = sizeof (version);
1
if (pszValue != NULL && nValuelen >= sizeof (version)) {

std memmove (pszValue, version, sizeof(version));

}
return AEE SUCCESS;

26
char buf[32];
ISettings_ Get (pSettings, “/bmp/version”, buf, sizeof (buf), NULL);

Fig. 4

WO 2010/051344 PCT/US2009/062494

5/7
30 38
fooApp [~ barApp [~
A 4 32 A 4 40
SettingsReg — SettingsReg —
y 36 y jZ
BMPSettings [BMPSettings |

Fig. 5

WO 2010/051344

67
—~/

6/7

Application
performs operation
on SettingsReg for

setting data

ettings key in
native node?

Pass operation to
singleton service to
obtain data

Return
denial
to caller

Application
match object
Privileges?

Return setting data
to SettingsReg

l

Return setting data
to application

Fig. 6

PCT/US2009/062494

Pass operation to
non-native 1Settings —~
implementation

l

— Return setting data [

to SettingsReg

l

Return setting data j—/
to application

WO 2010/051344 PCT/US2009/062494

717
N\
r—J
204
ﬁo
V
203
|
O
O’—O O 207
O O O 206
O0O
\O O O/
205
201
202

Fig. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/062494

A. CLASSIFICATION OF SUBJECT MATTER
I /445

NV. GO6F9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Dacumentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

column 7, lines 33-36
-column 1, Tines 19-36

XP002560894

[retrieved on 2009-12~17]
the whole document

Retrieved from the Internet: .
URL:http://en.wikipedia.org/w/index.php?ti
tle=Access_control_list&ol1did=248183235>

X | US 6 779 179 B1 (ROMM AMNON [CA] ET AL) 1-20
17 August 2004 (2004-08-17) =
column 2, Tine 10 - column 3, Tine 29

A ANONYMOUS: "Access Control List"[Online] 1-20
28 October 2008 (2008-10-28), pages 1-2,

Further documents are listed in the continuation of Box C.

E See patent family annex.

* Speclal categories of cited documents :

'A" document defining the general state of the art which is not
considered to be of particular relevance

E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priarity -claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

'0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in confiict with the _application but
;:ited to understand the principle or theory underlying the
nvention -

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
Involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed Invention,
cannot be considered 1o involve an inventive step when the
document Is combined with one or more other such docu-
Im?rr)\ts, ﬁuch combination being obvious to a person skilled
nthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

17 December 2009

Date of malling of the international search report

04/01/2010

Name and mailing address of the 1SA/

European Patent Office; P.B. 5818 Patentlaan 2
——— NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Dieben, Marc

Form PCT/ISA/210 (second sheet) {April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/062494

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2005/050084 A1l (ATM SHAFIQUL KHALID
[US1) 3 March 2005 (2005-03-03)
paragraphs [0011], [0012]

paragraphs [0013] - [0020]

paragraphs [0034], [0049]

US 5 903 753 A (BRAMNICK ARNOLD H [US] ET
AL) 11 May 1999 (1999-05-11)

abstract

figure 2

column 3, Tines 4-55

1-20

1-20

Form PCT/ISA/210 (continuation of second shest) {April 2005)

INTERNAﬂONALSEARCHREPORT

International application No
Information on patent family members

PCT/US2009/062494
" Patént document Publication Patent family Publication
cited in search report date member(s) date
usS 6779179 Bl 17-08-2004 "NONE
US 2005050084 Al 03-03-2005 CN 1601465 A 30-03-2005
EP 1536333 A2 01-06-2005
JdP 2005078628 A 24-03-2005
KR 20050022304 A 07-03-2005
US 5903753 A 11-05-1999 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

