
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0070304 A1

CHEN et al.

US 20090070304A1

(43) Pub. Date: Mar. 12, 2009

(54)

(75)

(73)

(21)

(22)

(63)

LOW-OVERHEAD BUILT-IN TIMESTAMP
COLUMN FOR RELATIONAL DATABASE
SYSTEMS

Inventors: Yao-Ching Stephen CHEN.
Saratoga, CA (US); Curt L.
COTNER, Gilroy, CA (US)

Correspondence Address:
IBM STSVL
SAWYER LAW GROUP LLP
2465 E. Bayshore Road, Suite No. 406
PALO ALTO, CA 94.303 (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 12/272,718

Filed: Nov. 17, 2008

Related U.S. Application Data

Continuation of application No. 10/777,604, filed on
Feb. 11, 2004.

Data Page

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/3; 707/E17.014

(57) ABSTRACT

An improved automatically updated timestamp for database
systems is disclosed. The automatically updated timestamp
can be provided in a hidden timestamp column for a table,
where the value of the timestamp column can be retrieved
with a query that calls the column by name. Optionally, the
timestamp column can be provided for each table in the
database system to ensure its availability to applications. For
cases where a timestamp for each row in a table is not desired,
an automatically updated timestamp can be provided for a
data page. This timestamp can be retrieved from an update
timestamp recorded on disk and in the buffer pool or from a
log relative byte address. Although this is a page-level times
tamp, its use may be desirable for infrequently updated tables
or where space on the disk and buffer pool is at a premium.

2OO

Data Page
Timestamp

2O2

Patent Application Publication Mar. 12, 2009 Sheet 1 of 2 US 2009/0070304 A1

O1

TS Column,
ROW 1

TS Column,
ROW 2

TS Column,
Row N

FIG. 1

Patent Application Publication Mar. 12, 2009 Sheet 2 of 2 US 2009/0070304 A1

2OO

Data Page 2O1

Data Page
Timestamp

2O2

FIG 2

US 2009/0070304 A1

LOW-OVERHEAD BUILT-IN TIMESTAMP
COLUMN FOR RELATIONAL DATABASE

SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001 Under 35 USC S 120, this application is a continu
ation application and claims the benefit of priority to U.S.
patent application Ser. No. 10/777,604, filed Feb. 11, 2004,
entitled LOW-OVERHEAD BUILT IN TIMESTAMP
COLUMN FOR RELATIONAL DATABASE SYSTEMS,
all of which is incorporated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates to database systems,
and more particularly to providing timestamps in database
systems.

BACKGROUND OF THE INVENTION

0003. The need for data replication in a database system,
particularly a distributed database system, is well known in
the art. To ensure data consistency, modifications to different
copies of a table must be replicated across all copies. To
facilitate the updating of the table copies, timestamps are
typically used to indicate which rows have been modified
since the last update. Conventionally, a timestamp column
that is automatically updated each time a row is modified is
provided for this purpose. If the timestamp value in the times
tamp column is later than the time of the last update, then that
row has been modified since the last update.
0004. Applications commonly use this timestamp column
for controlling optimistic locking schemes as follows: the
application retrieves one or more rows from the table, includ
ing the timestamp column; the application logically or physi
cally disconnects from the database system; the application
makes updates to the rows that were retrieved from the data
base; and sometime later, the application reconnects to the
database so that it can record the updates in the database.
0005 Before sending each update, the application
retrieves the row from the database to validate that the times
tamp column has not changed since the data was originally
retrieved. If the timestamp column is unchanged, the appli
cation can safely record the update for that row. If the times
tamp column is not the same, the disconnected update fails,
and the application has to re-drive the update process using
the modified data row.
0006. As disconnected update models become more per
vasive, the value of having an automatically updated times
tamp column is growing. However, the addition of a times
tamp column has several drawbacks. First, it requires
additional CPU cost to maintain the timestamp column in
each data row. Second, Some tables may not be updated very
frequently, so it may not be worthwhile to require the addi
tional space for the timestamp in every row. Third, if the
timestamp column has to be explicitly added to the table by
the user, shrink-wrapped client applications cannot assume
that the timestamp column will necessarily be present, since
the user may have chosen not to add the timestamp column.
So, client applications will be reluctant to exploit this feature
of the database. Fourth, having an explicit column for the
timestamp is also inconvenient for cases where some appli
cations need the extra column while others do not. For
example, adding the extra timestamp column for one appli

Mar. 12, 2009

cation might cause problems for other existing applications
that didn't expect this extra column to be part of the table
schema.
0007 Accordingly, there exists a need for an improved
automatically updated timestamp for database systems. The
improved timestamp should require low overhead, be avail
able for all tables in a database system, and avoid problems
for applications that do not expect a timestamp column. The
present invention addresses Such a need.

SUMMARY OF THE INVENTION

0008. An improved automatically updated timestamp for
database systems is disclosed. The automatically updated
timestamp can be provided in a hidden timestamp column for
a table, where the value of the timestamp column can be
retrieved with a query that calls the column by name. Option
ally, the timestamp column can be provided for each table in
the database system to ensure its availability to applications.
For cases where a timestamp for each row in a table is not
desired, an automatically updated timestamp can be provided
for a data page. This timestamp can be retrieved from an
update timestamp recorded on disk and in the buffer pool or
from a log relative byte address. Although this is a page-level
timestamp, its use may be desirable for infrequently updated
tables or where space on the disk and buffer pool is at a
premium.

BRIEF DESCRIPTION OF THE FIGURES

0009 FIG. 1 illustrates a first preferred embodiment of an
automatically updated timestamp for database systems in
accordance with the present invention.
0010 FIG. 2 illustrates a second preferred embodiment of
an automatically updated timestamp for database systems in
accordance with the present invention.

DETAILED DESCRIPTION

0011. The present invention provides an improved auto
matically updated timestamp for database systems. The fol
lowing description is presented to enable one of ordinary skill
in the art to make and use the invention and is provided in the
context of a patent application and its requirements. Various
modifications to the preferred embodiment will be readily
apparent to those skilled in the art and the generic principles
herein may be applied to other embodiments. Thus, the
present invention is not intended to be limited to the embodi
ment shown but is to be accorded the widest scope consistent
with the principles and features described herein.
0012 To more particularly describe the features of the
present invention, please refer to FIGS. 1 and 2 in conjunction
with the discussion below.
0013 FIG. 1 illustrates a first preferred embodiment of an
automatically updated timestamp for database systems in
accordance with the present invention. In the first preferred
embodiment, a built-in hidden timestamp column 101 is pro
vided for each table in the database system that contains an
automatically updated timestamp. The timestamp column
101 is automatically updated with the last time that its corre
sponding row was modified. The timestamp column 101 is
“hidden' in that it does not appear in the database schema by
default. Application programs can specifically request that
the timestamp column 101 be returned by issuing a query
which calls the timestamp column 101 by name. This allows
the value of the timestamp column 101 to be returned when

US 2009/0070304 A1

required but avoids exposing the column 101 to queries that
do not call it by name. Thus, the timestamp column 101 does
not show up in queries by applications that have no need for
this column. This also allows the database administrator to
add the timestamp column 101 to an existing table without
worrying that the new column 101 will cause problems for
existing application programs that do not expect the column
to be present.
0014 Optionally, in order to ensure that applications can
depend upon the automatically updated timestamp being
present, the hidden timestamp column 101 can be made avail
able for all tables in the database system as a default. This
avoids situations where the customer neglects to add the extra
timestamp column 101 to a given table. However, in some
cases the customer may not want to expend the CPU time or
the disk space/buffer pool space required to have an automati
cally updated timestamp column on every row in every table.
In these cases, it can be left to the customer to explicitly add
the hidden timestamp column.
0015. Alternatively, the database system can obtain the
value of the timestamp in other ways. FIG. 2 illustrates a
second preferred embodiment of an automatically updated
timestamp for database systems in accordance with the
present invention. In the second preferred embodiment, the
database system obtains an automatically updated timestamp
from the data page 200. This can be accomplished in one of
two ways. In some cases, an update timestamp 201 is avail
able in the data page 200 that is recorded on disk or in the
buffer pool. This update timestamp 201 can be used to indi
cate the last time one of the rows in the data page was modi
fied. In the remaining cases, the database system will have a
log relative byte address (RBA) 202 associated with the last
update to the data page 200. The RBA value 202 can be
converted to a timestamp by taking periodic timestamp values
and associating those values with the matching log RBA
value. Given those periodic values, the timestamp for any
given RBA value can be calculated by interpolating between
the nearest periodic log RBA timestamps.
0016 Customers that choose to not create a timestamp
column for a given table will still have the functional ability to
retrieve a timestamp to determine if a row in the data page 200
has been changed or not. Since the timestamp is associated
with the data page 200 rather thana single row, this timestamp
will provide less granularity than the timestamp column 101
in the first preferred embodiment. However, this lesser granu
larity may be acceptable for tables that are updated infre
quently. Therefore, the customer is given the flexibility to
chose between using the hidden timestamp column 101 or the
page-level timestamp 201/202. In addition, the customer may
choose to use the hidden timestamp column for one table,
while using the page-level timestamp for another table.
0017. An improved automatically updated timestamp for
database systems has been disclosed. The automatically
updated timestamp can be provided in a hidden timestamp
column for a table, where the value of the timestamp column
can be retrieved with a query that calls the column by name.
Optionally, the timestamp column can be provided for each
table in the database system to ensure its availability to appli
cations. For cases where a timestamp for each row in a table
is not desired, an automatically updated timestamp can be
provided for a data page. This timestamp can be retrieved
from an update timestamp recorded on disk and in the buffer
pool or from a log relative byte address. Although this is a
page-level timestamp, its use may be desirable for infre
quently updated tables or where space on the disk and buffer
pool is at a premium.

Mar. 12, 2009

0018. Although the present invention has been described
in accordance with the embodiments shown, one of ordinary
skill in the art will readily recognize that there could be
variations to the embodiments and those variations would be
within the spirit and scope of the present invention. Accord
ingly, many modifications may be made by one of ordinary
skill in the art without departing from the spirit and scope of
the appended claims.
What is claimed is:
1. A computer readable medium with program instructions

for providing an automatically updated timestamp for data
base systems, comprising instructions for:

providing a table in the database system, the table includ
ing a plurality of rows of data;

providing a hidden timestamp column in the table of the
database system, the hidden timestamp column includ
ing a timestamp value for each row of data in the table,
the timestamp value indicating a last time a correspond
ing row of data in the table was previously modified,
wherein the hidden timestamp column does not appear
in the database schema by default and exposes the times
tamp value for a given row of data in the table only to a
query that calls the timestamp column by name;

receiving a query from an application to obtain a timestamp
value from the hidden timestamp column, the query
calling the timestamp column by name; and

in response to the query, the hidden timestamp column
returning the timestamp value to the application for use
by the application,

wherein the application uses the returned timestamp value
for controlling a locking scheme associated with record
ing data updates in the database system wherein the
locking scheme retrieves the hidden timestamp column.

2. The medium of claim 1, wherein the timestamp value
corresponding to a given row of data in the table is automati
cally updated each time data in the given row has been modi
fied.

3. A system, comprising:
a database system comprising at least one table, the at least

one table including a plurality of rows of data;
an application capable of querying the database system;
a hidden timestamp column in the at least one table in the

database system, the hidden timestamp column includ
ing a timestamp value for each row of data in the table,
the timestamp value indicating a last time a correspond
ing row of data in the table was previously modified,
wherein the hidden timestamp column does not appear
in the database schema by default and exposes the times
tamp value for a given row of data in the table only to a
query that calls the timestamp column by name; and

means for receiving a query from an application to obtain a
timestamp value from the hidden timestamp column, the
query calling the timestamp column by name;

wherein the application uses the timestamp value for con
trolling a locking scheme associated with recording data
updates in the database system wherein the locking
Scheme retrieves the hidden timestamp column.

4. The system of claim 3, wherein the timestamp value
corresponding to a given row of data in the table is automati
cally updated each time data in the given row has been
modified.

