6/007498 A 1 | IV 200 RO OO

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

7 3
PO | 0000000 00O O

(10) International Publication Number

WO 2006/007498 Al

(51) International Patent Classification GO6F 17/30,
11/14
(21) International Application Number:
PCT/US2005/022930

(22) International Filing Date: 27 June 2005 (27.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/883,541 1 July 2004 (01.07.2004) US

(71) Applicant (for all designated States except US): APPLE
COMPUTER, INC. [US/US]; 1 Infinite Loop, Cupertino,
CA 95014 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SERLET, Bertrand
[FR/US]; 2078 Oberlin Street, Palo Alto, CA 94306 (US).

(74) Agent: BRUCCULERI, Lou; Wong, Cabello, Lutsch,
Rutherford & Brucculeri LLP, 20333 SH 249, Suite 600,
Houston, TX 77070 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T1, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: STATE BASED SYNCHRONIZATION

Ve 100 - 110
Desktop Portable
DB | ~101 DB | ~111
Desktop Portable
Snapshot | - 102
Desktop
Vs 120

PDA

DB L~ 121

PDA

(57) Abstract: A system for synchronization whereby metadata repository maintains information regarding the history and status of
& data items in a data repository. Data items are associated with states and such states changes (e.g. increment) in response to changes
& to the data items. History statements associated with the same states describe the changes in a generic enough fashion that multiple
data items may be associated with a single state (e.g. if multiple data items share a common history such as that they were all edited
by a user on the same device). The history repository is synchronized with other history repositories so as to reflect the states of data
items on multiple devices. The synchronized history stores are used during synchronization to identify and resolve data conflicts

through ancestry of data item history.

WO 2006/007498 PCT/US2005/022930

TITLE: STATE BASED SYNCHRONIZATION
INVENTOR: BERTRAND SERLET

COMPUTER PROGRAM LISTING
[0001] The following table shows the 22 source code files that are provided as
computer program listing on a compact disc in read only format and are hereby

incorporated by reference.

Table 1 Computer Program Listing Appendix

Date Last Time Bytes Name
Modified Created '
02/01/2004 12:14p 0 typeattributes.dict
01/25/2004 07:22p 436 clientnametransformer.h
01/25/2004 07:33p 1,255 clientnametransformer.m
03/11/2004 12:09a 1,819 extras.h
03/10/2004 11:56p 7,196 extras.m
03/10/2004 11:25p 2,018 mydocument.h
03/11/2004 12:21a 21,579 mydocument.m
03/10/2004 11:08p 1,015 myobject.h
03/10/2004 11:08p 6,987 myobject.m
03/10/2004 11:08p . 869 myobjectview.h
03/10/2004 11:47p 6,946 myobjectview.m
02/21/2004 02:33p 443 __syncsim.h
03/08/2004 08:38a 4,210 syncsim.m
05/18/2004 09:57a <DIR> syncsim.xcode
01/01/1601 12:00a <DIR>
01/01/1601 12:00a <DIR>
03/11/2004 12:26a 133,166 bserlet.pbxuser
03/09/2004 09:24a 14,568 bserlet0.pbxuser
02/01/2004 02:29% 53,220 gjf.pbxuser
03/11/2004 12:26a 15,359 project.pbxproj
03/11/2004 12:14a 4,537 tuple.h
03/11/2004 12:07a 16,862 tuple.m
03/11/2004 12:14a 2,885 tuples.h
03/11/2004 12:14a 27,603 tuples.m
01/18/2004 12:43p 257 main.m
22 File(s) 348,160
bytes

WO 2006/007498 PCT/US2005/022930

BACKGROUND OF THE INVENTION

[0002] Synchronizatjon is a function that provides or rhaintains consistency
between data sets. For example, a desktop computer may have desktop data sets
regarding personal information management (“PIM”). A user of that desktop
computer may desire to use that PIM data when she is away from her desktop
computer. Therefore, she may desire access to the PIM data while using a laptop
computer or a personal digital assistant (‘PDA”) such as a phone or other device like
a miniature device. In order to accommodate that desire, her laptop computer and
PDA may each carry PIM data sets that correspond to the PIM data sets on the
desktop computer. The role of the synchronization function is to give the user a
common view of her data on each device. This role is generally accomplished by
synchronization events when two or more of the devices synchronize.

[0003] A common technique for synchronizing devices is by using snapshots of
data at a point in time and comparing current data to the snapshot to determine what
has changed. For illustration purposes, refer to figure 1 where there is shown a model
for two devices, a desktop computer 100 and a portable computer 110. Desktop
computer has PIM database 101, which keeps current information for PIM data sets
that are edited or added on the desktop computer 100. Desktop computer 100 also has
desktop snapshot database, which is a snapshot of the PIM data sets taken at some
point in time but typically the time of a prior synchronization (perhaps, the most
recent synchronization). Similarly, portable computer 110 has portable database 111
for current PIM data. Having these structures in place, we may attempt to
synchronize desktop 100 and portable 110. Typical synchronization occurs by
comparing both portable database 111 and desktop database 101 with snapshot
database 102. During the compare operation, we can then assemble a list of data
items that are new or changed in the active databases 101 and 111 as compared to
database 102. Finally, to finish out the synchronization, the list of new and changed
data may be used to update all three databases 101, 102 and 111.

[0004] A problem occurs in the described synchronization process when
corresponding data is changed on both the desktop and the portable. For example, if
sometime prior to synchronization Jane Doe’s phone number was changed to 871-

555-5555 on the Desktop and 800-555-5555 on the portable. During the compare

WO 2006/007498 PCT/US2005/022930

operation (or at another time) the synchronizing system will notice this discrepancy
and identify a conflict. In the current art, there is generally no elegant way to resolve
this conflict with certainty. Some solutions present an interface to the user and ask
her to choose between the two options. Unfortunately, even the user may not
remember which piece of data is correct. Other solutions simply create duplicate
entries in each database (one with each of the possible data items).

[0005] The problem is exacerbated if there are more than two devices carrying the
corresponding data sets. For example, referring to figure 1, assume that after
synchronizing with portable 110, desktop 100 attempts to synchronize with PDA 120.
During synchronization, we may discover that PDA 120 carries Jane Doe’s phone
number as 888-555-555. Unfortunately, in the prior art, we once again have no
elegant solution for determining the correct result with certainty. Furthermore, even if
we could determine the correct result at this time (e.g. by the user, who remembers),
we may be unable to stop the system from having the same problem again the next
time portable 110 is synchronized.

[0006] Finally, the problem may be generalized for peer-to-peer systems with 3 or
more peers. That generalization is that, if peers may synchronize with each other 2 at
a time, and a conflict arises there is no way to know if one of the peers carries a more
up-to-date data. It is noteworthy, that a time stamp can not resolve the conflict with
certainty. This is because as a matter of practical human usage, if two corresponding
data items have been changed over the past days or months, that doesn’t necessarily
mean that the second change is correct. This is especially true if the second change
occurred as the result of synchronization with another peer (such “another peer” may
have received its data change long ago). Therefore, in the peer-to-peer situation, we
would be unable to deteﬁnine if a detected conflict is, on the one hand, a true conflict,
or on the other hand, an apparent conflict that could be verifiably resolved if we
understood the history of the data.

[0007] Other and related prior art techniques for synchronization may be found in
the following U.S. Patents: 5,710,922 Method for synchronizing and archiving
information between computer systems which is incorporated herein by reference. In
addition, the following pending applications “A Method of Synchronising Between

Three or More Devices” by Toby Paterson and Jerome Lebel , Serial No. ,

WO 2006/007498 PCT/US2005/022930

filed May 24, 2004 and “A Method of Synchronising” by Toby Patterson and Jerome
Lebel, Serial No. , filed May 24, 2004 are hereby incorporated by reference.
[0008] In view of the discussion herein as well as the other problems existing in
the prior art, certain embodiments of the invention propose a synchronization system
with three goals: (i) to properly synchronize all non-conflicting data; (ii) to detect true
conflicts and only present an interface to the user for resolving same if the conflict is
true; (iii) to avoid asking an user twice to resolve the same conflict for the same
datum.

[0009] Applying these goals to the prior art, we may observe that existing
synchronization systems meet the first goal in that they generally can accurately
synchronize non-conflicting data. However, to satisfy the second and third goals,
some type of meta-data must be retained, for example, our reference to a time stamp
above. While some prior art systems attempt to use meta-data to accomplish these

goals, none fully succeeds.
SUMMARY OF THE INVENTION

[0010] The embodiments described herein relate to the use of history information
as an aid to synchronization systems and methods. In a very simple embodiment,
history information is as little as generation count information that is retained on a per
datum basis (datum, in this context, referring to a data item or a collection of data
items). The generation count information is synchronized when data is synchronized.
The generation count may then be used during synchronization in order to gain a
better understanding over the priority of conflicting data.

[0011] Other embodiments of the invention use more rich foﬁﬁs of history
information regarding data items. In some embodiments, each data item stored on a
device is associated with a state. The state changes (e.g. increments) each time the
data item is changed. History information is maintained by associating the states with
the changes to the data. In some embodiments, the history information is generic in
nature so a single statement regarding history may associate with many data items that
have experienced the same increment of history. For example, if a user creates 10

data items, some embodiments use only one state to record this history (e.g. user

WO 2006/007498 PCT/US2005/022930

created data on device X). Therefore, each of the 10 created data items may be
associated with the same state. If one of the 10 data items were to change, its state
would change while the remaining nine items held the old state. The changed data
item would then have a state associated with another history statement regarding the
change (e.g. user edited data on device X). Furthermore, the first created state would
remain an ancestor of the second created state. In this manner, a comparatively few
states (and associated generic history statements) may be used to track changes in a
very large population of data items.

[0012] Assuming multiple devices exploiting the exemplified history maintenance
for corresponding data sets, the devices may synchronize history information so that
each device understands state information regarding data items on all devices (at least
in a temporal sense due to the time of synchronization). Once history information is
synchronized, it may serve as a basis for synchronizing data items because the
ancestry of a data item may be determined through reference to the history
information. For example, if data items conflict during synchronization, the conflict
may be resolved by examining history information to determine if one data item is the

ancestor or descendant of the other data item.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 shows devices that may synchronize.
foo14] Figure 2 is exemplary hardware.

[0015] Figure 3 is exemplary hardware.

[0016] Figure 4 is an exemplary software stack.

[0017] Figure 5 is a generation count example chart.

[0018] Figure 6 is a history data example chart

[0019] Figure 7A is an exemplary synchronization process.
[0020] Figure 7B is exemplary device synchronization.
[0021] Figure 7C is illustrative data structure arrangements.
[0022] Figure 8 is exempla{ry system for recursive application of state-based
synchronization.

[0023] Figure 9 is an exemplary process for synchronization.

WO 2006/007498 PCT/US2005/022930

10024] Figures 10A 10B, 10C and 10D are exemplary data and corresponding
history statements.

[0025] Figures 11A, 11B, and 11C are exemplary data and corresponding history
statements.

[0026] Figure 12 is a chart illustrating an embodiment for synchronizing histories.
[0027] Figure 12B is an illustration of history synchronization.

[0028] Figures 13A, 13B and 13C are sample uses of history statements.

[0029] Figures 14A, 14B, 14C, 14D and 14E are samples illustrating garbage
collection of history statements.

[0030] Figure 15 is an example of history usage.

DETAILED DESCRIPTION

I. Vocabulary and non-limitation
[0031] Throughout this disclosure, we shall use certain vocabulary to discuss
synchronization techniques and examples. Most of the illustrations discussed will
relate to PIM data and the synchronization of same. However, many embodiments of
the invention are expressly intended to apply to virtually any kind of data. Some
examples of data that may be synchronized using the techniques taught herein are the
following: text files; word processing files; files from a file system, media files such
as jpegs, mp3, mpeg2, mpegd4, or wav files; records from a database; or any other data
file type, whether or not associated with a specific applicatilons.
[0032] Retreating then to the language of most of our illustrative embodiments,
we shall primarily discuss the invention in terms of PIM data. Generally, we shall
discuss devices such as computers, PDAs, phones or other intelligent devices that are
used to access PIM data. Each device is generally associated with a synch client,
which is usually one or more processes resident on the device. In some instances, a
first device will have a synch client resident on another device (this is called a Proxy).
This may be because the first device is not sufficiently equipped to host a sync client.
Alternatively, in a multi-peer system, the synchronization system may use a local
proxy for each other peer in order to synchronize all peers even when many peers are

not present (the proxy stands in for the missing devices).

WO 2006/007498 PCT/US2005/022930

[0033] PIM data itself generally occurs as personal contacts, calendar entries,
notes, journal entries etc. When we discuss a record, we are generally referring to a
set of data items that has been interrelated. For example, a personal contact card for
John Doe may be viewed as a record wherein a phone number, street address, pager
number and a variety of other data items are interrelated by their common association
with John Doe. Each item of PIM data on a single device may have one or more
corresponding data items on one or more other devices. For example, John Doe’s
street address may have corresponding data items on each of Jane Doe’s desktop
computer, portable computer, PDA, and telephone. Likewise, if our data were digital
photographs, a picture of John Doe on the desktop may have corresponding pictures
of John on the PDA, the portable computer and elsewhere. It is a job of the
synchronization function to provide a common view (as much as possible) of
corresponding data across many devices. .

11 Sample hardware and software structures
[0034] While the techniques described herein may be embodied in virtually any
structural context, we shall describe some example structural embodiments for
illustrative purposes. Referring to figure 2, there is shown a sample portable device
such as a PDA or telephone handset. As stated earlier, a client device may be
embodied in any item with sufficient intelligence to serve to allow users to access or
edit data. Therefore, the device of figure 2 is intended to illustrate, without limitation,
a sample of any such device. Front view 201 of device 200 shows screen 204 that
may be used for viewing or accessing data as well as inputting data (in the case of a
touch-sensitive or otherwise input-equipped screen). Keypad 205 may also be used
for data input such as by alpha-numerics or otherwise and wired connection 206 may
be used for power and/or data transport. Wireless port 203 may be infrared, Bluetooth,
802.11 or any other wireless transmission for moving data in and out of device 200.
Turning now to inside 202 of device 200, we see that a processor 209 is present for
performing processing tasks. The inventive embodiments may incorporate any type
of device so processor 209 may be any type of microprocessor or controller or
aggregate of components that perform the function of running software for effecting
one or more of the device functions. Device 200 may also have two or more types of

memory for storing data and programs as shown by memories 207 and 208. These

WO 2006/007498 PCT/US2005/022930

memories may be of any type such as magnetic memory, optical memory or any of
the many types of silicon-based memory such as SRAM and DRAM. Finally, device
200 may have components 210 to support I/O functionality such as that potentially
embodied in wired connection 206 and wireless connection 203.

[0035] Referring now to figure 3, computer 300 is another illustration of a device
that a user may use in conjunction with many of the disclosed techniques. Cémputer
300 is an ordinary computer, like a personal computer, but not intended to be limited
as such. Computer 300 has one or more microprocessors 315 and accompanying
chipset (not shown) at the heart of the system. The chipset may include items such as
network unit 310, audio unit 311 and many I/O functions such as those that might be
embodied in I/O unit 314. Of course, any of these functions, or sub-functions, may be
implemented individually or collectively within a chipset or outside. Computer 300
also has power supply 313 for adapting and supplying power. Computer 300 may
have any variety of optical and magnetic drives and the appropriate controllers to use
those drives such as IDE, ATA or SCSI controllers. For user accessibility, computer
300 has monitor 318, speakers 319, keyboard 321 and mouse 320 optional tablet /.
touch screen. Finally, computer 300 may connect with any manner of other items
(such as other devices carrying corresponding data items) through various ports
(Network 301, wireless 302, USB 303, parallel 306, serial 307, 1394 308 or modem
309).

[0036] Transitioning from sample hardware, we shall now discuss general
software background. In particular, referring to figure 4, there is shown a software
stack intended to be illustrative of the software architecture in which some
embodiments of the invention will reside. Like our hardware examples, this structure
is not intended to be exclusive in any way but rather illustrative. This is especially
true for layer-type diagrams, which software developers tend to express in somewhat
differing ways. In this case, we express layers starting with the O/S kernel so we have
omitted lower level software and firmware. Our notation is generally intended to
imply that software elements shown in a layer use resources from the layers below
and provide services to layers above. However, in practice, all components of a

particular software element may not behave entirely in that manner.

WO 2006/007498 PCT/US2005/022930

[0037] With those caveats, we see in figure 4 two layers 424 and 423 dedicated to
the operating system kernel and core services respectively. Generally above core
services layer 423 there are software layers (422 and 421) for providing higher level
resources and services to applications in the application layer 420. Putting the layer
diagram in context, we would generally expect to find PIM type software in the
application layer 420. For example there is iCal application 402 and Address Book
application 403 residing in the application layer. iCal 402 and Address Book 403 are
application programs that manage PIM data and present a user interface that allows a
user to access, edit or manipulate that data. These application layer services are a
type of sync client in that a synchronization function provides services to these clients
by maintaining a common view (as much as possible) of data among designated
clients. Area 4100 shows generally where processes implementing the
synchronization function may be located in many embodiments. In more particularity,
a process implementing the synchronization function may be a peer to its application
clients or may reside in a layer below, possibly even masking itself to the application
(referring to a synch client that doesn’t know it’s a sync client). The sync function
may also have components in two or more layers. In many embodiments, however,
the application level synch clients provide a user interface to configure and exploit the
synchronization functions, therefore the synchronization processes appear as an
integrated feature in client software. In addition, the synchronization processes
typically may present their own user interface for configuration and control that is
independent of any particular application. Lastly, as discussed earlier, sync clients
may exist as a proxy for an external device. Such a proxy process has less need for a
user interface and generally (but not necessarily) exists in the higher layers of the
software stack '

ITI. Retaining meta-data indicative of data history

a. Generation counting

[0038] Many of the problems of the prior art may find resolution by maintaining
data history information for each data set or data item. In one simple form, practiced
in some embodiments, a generation count may be maintained. In particular, each time
a data is changed, a generation count may be incremented to indicate that change. In

yet greater particularity, generation counts may be maintained for any level of data set;

WO 2006/007498 PCT/US2005/022930

i.e. per PIM database, per data class database, per record, or per data item. The
generation count may be conceptualized as meta data and thus may be associated with
data by any known technique. For example, in many embodiments the generation
count is maintained per each data item and is stored with the data. As stated, other
embodiments may use other techniques such as data structures associated with the
data item or some aggregation of data items.

[0039] The technique of using history-indicative information (such as generation
counts) may be further enhanced if the history indicative information is synchronized
with the data. In some embodiments, during the synchronization process, a
generation count may be synched, thereby maintaining a thin version of data history
across multiple client peers. As an example, assume we are synchronizing a three-
peer system using generation counts assocjated with each data item. Referring to
figure 5, there is shown a table that illustrates aspects of synchronizing client A, client
B and client C. In particular: the first column, labeled “Step” is for illustrative
reference so that we may refer to a line of activity without confusion; the second
column, labeled “Activity” states an action that causes a data item change; the third
column, labeled “Data” shows the intended data value from the perspective on the
omniscient; the fourth, fifth and sixth columns show the status of the data and
generation count after each listed activity from the perspective of the respective
clients A, B and C.

[0040] Referring then to figure 5, step 0, we see that the corresponding data items
for devices A, B and C are empty and there has been no activity with respect to that
data item. In fact, this status may represent either an empty data item or the temporal
non-existence of the data items. Referring to step 1, a user creates data on device B,
the data is “Blue.” The generation count is 1 (shown in the B Status column, and
devices A and C remain ignorant of this change). In step 2, the user edits the data
from “Blue” to “Bluegreen” (obviously, on device B); the generation count increases
to 2, and devices A and C remain similarly ignorant. In step 3, device B synchronizes
with device C; the status of the data remains “Bluegreen” and both devices B and C
know the correct data and correct generation count (2); device A remains ignorant.
Now, in step 4, the user edits the data on device C so the state is incremented to red

and the correct data changes from “Bluegreen” to “Red.” Device A remains ignorant

10

WO 2006/007498 PCT/US2005/022930

of all occurrences and device B holds old data and an antiquated state (2). Next in
step 5, devices A and C synchronize resulting in device A gaining awareness of the
correct data and generation count (device B remains antiquated on both). In step 6,
the user edits on device A, changing “Red” to “Orange” and reaching a new highest
state (4). Finally, in step 7, devices A, B & C all attempt to sync together. The result
will be generation 4 and orange. However, it is worth noting that, without carrying
the generation counts, this three-way synchronization may have generated an
unnecessary conflict.
b. Maintaining more rich indications of data history
[0041] In practice, there are significant uses for maintaining an indication of
history that is richer than a simple generation count. For example, in many
embodiments of the invention, detailed historical data is maintained. Referring to
figure 6, there is shown a table that illustrates aspects of synchronizing client A, client
B and client C using more detailed per-data item history. In particular: the first
column, labeled “Step” is for illustrative reference so that we may refer to a line of
activity without confusion; the second column, labeled “Activity” states an action that
causes a data item change; the third column, labeled “Data” shox;vs the intended data
value from the perspective of the omniscient; the fourth, fifth and sixth columns show
" the status of the data and history information after each listed activity from the
perspective of the respective clients A, B and C.
[0042] Referring then to figure 6, step 0, we see that the corresponding data items
for devices A, B and C are empty and there has been no activity with respect to that
data item. In fact, this status may represent either an empty data item or the temporal
non-existence of the data items. Referring to step 1, a user creates data on device B,
the data is “Blue.” The facts with respect to the step one transaction are retained on
device B. Next, in step 2, the user edits data on device B as indicated. The history is
recorded on device B. In step 3, devices B and C are synced, resulting in a synching
of the data (bluegreen) as well as the history facts for the data item. In the next step
(4), the user edits the data item on device C, changing the data to “Red.” Now, when
devices A and C sync in step 5, the entire history of the data item is conveyed to
device A. We see from this example that each device carries all or a portion of the

data item history.

11

WO 2006/007498 PCT/US2005/022930

[0043] Therefore, the history may be exploited to make intelligent decisions about
the data. One example of such a decision is, in the situation of an apparent conflict,
the devices may determine whether one version of the data item is an ancestor of
another. This can be very useful in many cases, such as that of truncated data.
Truncated data may occur when a fat device such as a desktop computer synchronizes
with a thin device such a phone. If the phone is not capable enough to carry all of a
data item (or all of a set such as a record), the data from the desktop computer is
truncated for inclusion in the phone database. Later, the phone may synchronize with
another device, such as a PDA, and convey the truncated data. If the PDA and
desktop attempt to subsequently synchronize, they will encounter a conflict that only-
specific history data can resolve.

c. Sample platforms for history-based synchronization
[0044] We have generally discussed the use of history based metadata for
improving and enhancing synchronization techniques. For illustrative purposes, we
shall discuss some sample inventive embodiments placing these techniques in
structural contexts. One advantage of these inventive embodiments is that they don’t
necessarily require the independent maintenance of a data snapshot after a prior
synchronization. More specifically and as explained earlier, many existing |
synchronization systerﬂs retain a snapshot of data after each synchronization. That
snapshot must be maintained independent of user edits because, the snapshot is used
during the next synchronization to determine what data has been added changed or
deleted. By contrast, many embodiments of the current invention do not require the
enduring maintenance of such a snapshot. In particular, no separate snapshot may be
necessary if the system dynamically updates both history information and
corresponding metadata at the data item. This is possible because history data
provides an alternative and more comprehensive method of determining what data is
truly new. Alternatively, some embodiments of the current inveption may avoid
maintaining an enduring snapshot by simply generating a snapshot just prior to
synchronization and disposing the snapshot after synchronization is complete.
[0045] Referring now to figure 7C, there is shown sync client device 790. Within
device 790 there is shown a conceptualization of potential data structures that may be

used to implement an embodiment of the invention. The data structures may be

12

WO 2006/007498 PCT/US2005/022930

stored in any suitable place accessible to a client device. As discussed earlier, some
examples are SRAM, DRAM, magnetic or optical memory. The data structures
needn’t be stored in the same memory type or place. Referring now to device 790,
data store 791 is intended to represent the live database for use interacting with the
user interface. There are many ways to implement such a structure in the current art.
Such implementations may be in a single file or many files. The files may be flat
tables, soup-type files or combination or other type of file that is suitable. For
example, in the context of PIM data, often there is an independent soup or flat file for
each data class managed by the associated PIM programs. In any of those events, the
data store 791 maintains actual data and some mete‘ldata. The metadata data may be as
little as an ID code, or as much as a full history of the data. The use of the term
metadata is not intended to preclude the use of this data for user access or
manipulation. In some embodiments, the metadata accompanying a data item in the
data store 791 is a state identification and optionally a data item ID.

[0046] History store 792 is intended to represent a data structure for maintaining
history information regarding the data sets or data items in the data store 791. This
history information can be in any form consistent with the discussion herein. In
addition, the monicker “history information” isn’t intended to preclude the use of
information that is not related history. History information may include any metadata
useful under the disclosed techniques. Furthermore, the history information may be
associated with data items using any suitable technique such as ID codes, virtual or
physical location or a separately stored association device such as a table or database.
In some embodiments, information in the history store is associated with data sets or
data items using state identification and/or a data item ID. In greater particularity, in
some embodiments, data items are associated with a state (e.g. kept as meta in the
data store 791). In certain of those embodiments, many data items may have the same
state. History information is associated with that state 0 by using corresponding state
ID in the history store 792. For example, in some embodiments, a user on device A
may create 10 (or even 10,000) data items in an otherwise empty data store. The
added data items may represent only a single state — the ID for state accompanied by
history information that the user edited data on device A. Taking the example deeper,
if the user on device A were to edit three of the 10 created data items, a second state

v

13

WO 2006/007498 PCT/US2005/022930

would be reflected in the history store 792 to reflect the history of those three data
items. (They would be, for example, at state whereas the unedited 7 items would be
at state 1.)
[0047] Moving now to snapshot 793, this represents a data structure that may be
used for a temporal snapshot of the all or a portion of the data store. As discussed
earlier, certain embodiments may exploit an independent snapshot during or prior to
synchronization.. As discussed earlier with respect to the data store 791, both the
history store 792 and the snapshot 793 are flexible as to implementation regarding
data structures and physical memory. Furthermore, data store 791, history store 792
and snapshot 793 may be implemented in the same data structure; or in three separate
data structures; or in one or more data structures; or any combination of the foregoing.

IV. State based synchronization
[0048] As discussed earlier, many embodiments of the invention exploit state
based synchronization techniques whereby a state identification is associated with
each data item or data set. In these embodiments, states represented in the data store
are also represented in the history store. Within the history store, states are associated
with facts about the data items, including without limitation, facts about the history of
the data item. In a multi-peer system, each client device maintains a data store and/or
a history store. When a data item is added or edited (including deletion) on a
particular device, that data item is assigned a new state and an entry is potentially
made in the history space to reflect the state change of the item. The reason, the entry
in the history space is only “potential” is because the new state of the added or edited
data item may already be reflected in the history store by a statement created in
conjunction with a state change of another data item. So it is clear that state and their
accompanying metadata in the history store may simultaneously apply to several data
items. Furthermore, it is desirable in many embodiments to minimize the amount of
information in the history store.

a. General synchronization example

[0049] Assuming peer sync clients operating as described, ultimately there maybe
a desire to synchronize any two of such sync clients. In some embodiments,
synchronization is performed in an asymmetrical fashion. In particular, a first device

synchronizes its data store with a second device, and then the second device may

14

WO 2006/007498 PCT/US2005/022930

separately synchronize its data store with the first device. For many embodiments,
the actual process of synchronization involves two very general steps shown in figure
- 7A. The first step 701 is to synchronize the information in the history stores (e.g.
metadata describing state changes of the data items). The second step 702 is to
synchronize the data items in the data store. Since the history information is
synchronized first, the new history information in the history store may be used to aid
in synchronizing the data store.
[0050] Generally, the history information may be synchronized in several
different ways. Referring to figure 7B, there is shown a pair of devices performing a
one way synchronization from device 704 to device 703. Probably the simplest way
to sync history items is to transfer all the history items from device 704 to device 703.
The transferred history items may be evaluated on device 703 to determine which of
those items require representation in the history store 705. Another téchnique for
synchronizing the history information is for devices 704 and 703 to enter a dialog
over any suitable communications mechanism, such as wireless link 708. In one
manner of dialog, device 703 may query device 704 about the contents of device
704’s history information or facts regarding that history information. With the
responses to those queries, device 703 may then either create necessary history
information in store 705 or request necessary information from device 704 and place
it in store 705. In another manner of dialog, device 704 may query device 703.
regarding history information in store 705. Device 704 may then determine and send
whatever, if any, history information is required by device 703.
[0051] A third technique for synchronizing the history information is to
recursively exploit a state based synchronization technique to the history information.
Referring to figure 8, there is silown a pair of devices performing a one-way
synchronization from device 802 to device 801. As shown in figure 8, recursive use
of state based synchronization may require multiple history stores. Device 801 has
primary history store 805, secondary history store 804 and tertiary history store 803.
Device 802 has primary history store 809, secondary history store 808 and tertiary
history store 807. As discussed with respect to other data structures, the history stores
on each device many exist in any type of memory and may be implemented in one or

several data structures of varying types. In order to perform recursive state based

15

WO 2006/007498 PCT/US2005/022930

synchronization, each element (e.g. factual statement or group of factual statements)
in a primary history store 805 or 809 is assigned a state; such state also associated (in
secondary history stores 804 or 808) with information regarding state changes
occurring to the elements in the primary history stores 805 and 809. This is secondary
metadata for maintaining primary metadata. Of course, one can recursively nest the
technique as many times as efficiency dictates. For example, tertiary history stores
803 and 807 may carry tertiary metadata to aid in the synchronization of secondary
metadata in history stores 804 and 808. When synchronizing an implementation with
nested history stores, the order of synchronization may be in the reverse of the
hierarchy of the history stores. For example, if all the history store in figure 8 were
exploited, the tertiary pair 803-807 may be synchronized first. The result of that
synchronization may then be used to aid in synchronizing secondary history stores
804 and 808, which in turn aids the synchronization of primary history stores 805 and
809.

[0052] Once the history information has been has been synchronized, all metadata
states for the remote data are known locally. Now the data store synchronization may
begin with the potential for aid by the new history information. Referring to figures 8
and 9, the general process may be as follows. In step 901, some embodiments may
compare the corresponding data items from local device 801 and remote device 802.
In those embodiments, if decision 902 determines that the data items are identical,
then step 903 dictates that no action is necessary to the local data and we are ready for
the next data. If the data is not identical in step 902, then control moves to step 904 to
compare states. It is noteworthy that many embodiments will omit the steps 901 and
902 and therefore begin this illustrated process at step 904 by comparing, for the data
under consideration, the local state and the remote state. If decision 905 determines
that the states are the same, then no further action is required with respect to this data
item and control passes to step 906 for the next data. If decision 905 determines that
the states are different, then control passes to decision 907 to determiné if the local
state is an ancestor of the remote state. If decision 907 is yes, this indicates that that
the local data is antiquated, and the local data should be updated to reflect the value of
the remote data. If decision 907 determination is no, then control shifts to decision

909 to determine if the remote state is an ancestor of the local state. If the decision at

16

WO 2006/007498 PCT/US2005/022930

step 909 is yes, then we have confirmed that the local state is most recent and control
passes to step 911 for the next data item. If the decision 909 is no, then control passes
to step 910 and a conflict is generated. There are many potential mechanisms for
resolving a conflict. In some embodiments, a user interface is presented so the user
may chose between the conflicted data items. Varying embodiments may display
some metadata at this point to aid the user. Some potentially useful metadata may be
the history of each data item, including to the extent available, the times, devices and
users involved in the data manipulations. This metadata may be carried in the history
store, the data store or elsewhere. However, if item-specific metadata is carried in the
history store, such will tend to cause a large number of history statements.
[0053] While one skilled in the art may understand without prompting, it should
be noted that the process described with respect to figure 9 may be applied to
synchronized generation counts, however with potentially more opportunity for
conflict generation.

b. An extensible semantic language for history statements
[0054] We have discussed the use of history and history statements at length. We
shall now discuss exemplary types of information for uses as history information. In
forming the semantics of history statements many embodiments require a syntax that
lends itself to machine use. Therefore, in those embodiments, a source code type
format may be used in order to provide for computer reading and/or compiling. Some
err;bodiments use the following general syntax
[0055] New State, Function/Command, Client, Old State(s)
[0056] The “New State” is a state identification being assigned on the local device.
An “Old State” reflects the prior state of the data, expressed in terms of local states.
For a given history statement, both the old and new states may be useful to frack
ancestry as may be necessary during synchronization as previously described. State
identifications needn’t be assigned in incremental order. These identifications need
only be unique to the environment of their exploitation. For example, in many
embodiments, state identification may be unique per client device because there is
only a single history store in that device. However, to the extent that data and meta
for some class of data may be maintained separately, tﬁen state identification may

only need be unique for a data class / sync client combination. In addition, in some

17

WO 2006/007498 PCT/US2005/022930

embodiments, states may be immutable in that they are created once and for all. Of
course, then it may be more important for those embodiments to avoid the creation of
unnecessary new states and clean up states that are determined to be forever useless.
[0057] In our general syntax, the “Client” is an identification of the sync client
involved in the change reflected by the history statement. In some embodiments, the
client identification is essential in order to accurately track ancestry and limit conflicts
to those that are true.

[0058] In our general syntax, the “Function / Command” is merely a word
(usually a verb) indicative of the nature of the state change. At the time of this
application, the inventor has conceived several functions for use in varying

embodiments. They are as follows:

[0059] The command “external” may be used to establish correspondence between

local and remote clients. For example, the statement {12,external,homemachine,34}

indicates that state 12 on the local machine corresponds with state 34 on the

“homemachine” sync client. This is useful during synchronization because during the

described compare operations, if a data item on the remote is at state 34 and the local
state is 12, we know that the states are the same.

[0060] The command “user_edited” may be used to indicate that data was
changed by a user. For example, {17, user_edited, "ClientB", 14} indicates that the
user on client B edited data in state 14, and on the local device, the state for the edited
data is state 17. Of course, client B may be the local client, in which case the
statement reflects a local data change.

[0061] The command “conflict_Resolved” may be used to indicate the result of a
conflict resolution. For example, {101, conflict_resolved, homemachine, 37, 38}
indicates that data associated with state 37 was found conflicting with that associated
with state 38; and that the conflict was resolved on homemachine; the resolution
being indicated in local state 101. The order of the conflicting states may be used to
indicate more information, such as the winning state and the losing state (e.g. winning
state, losing state). As with the foregoing example, a preferred embodiment lists the

winning state and the losing state in that order. As discussed earlier there are many

18

WO 2006/007498 PCT/US2005/022930

techniques for resolving a conflict such as presenting a user interface to receive a user
decision.

[0062] The command “Known_equal” is used to indicate that two corresponding
data items were found to be equal. To be clear, we are referring to whatever is being
treated as data, not the meta for that data, such as the state identification. This type of
discovery may occur during the compare operations previously described. For
example, {100, known_equal, homemachine, 37, 38} indicates that that data items in
states 37 and 38 were found to be equal on sync client homemachine and new local
state 100 was created to reflect the discovery. Once again, the order of the old states
may (but needn’t necessarily) be used to convey more information by providing a
syntax for this function that specifies, for example, “local state, remote state.”

[0063] The command “truncated” is used to indicate that a data item has been
truncated for some reason (such as discussed earlier). For example, {69, truncated,
officemachine, 68 }indicates that a remote data item in state 68 was truncated on
officemachine in state 68 and is associated with state 69 on the local device.

[0064] The command “deleted” indicate that a data item was deleted. For
example, {27, deleted, PDA, 26} indicates that data item in state 26 was deleted on
sync client PDA and state 27 was created locally to reflect that fact

[0065] The command “soft_deleted” is used to indicate a data item that was
deleted due to something other than a user deletion, such as maximum capacity of a
device. For example, {17, soft_deleted, PhoneA, 16} indicates that a data item under
state 16 was soft deleted on sync client PhoneA, and local state 17 is used to reflect
that fact

[0066] The “equivalent_states” command is used to record the fact that two states
are duplicative. While most embodiments should be designed not to permit duplicate
states, they may occur in poorly designed systems or as a result of corruption or other
un-planned problems. Nevertheless, when they are found they may be recorded. For
example {38, equivalent_states, homemachine, 101, 22} indicates that local states
101 and 22 are equivalent and that fact was found on sync client homemachine. State
38 is used to record that fact and potentially provide for cleaning it up later.

[0067] The command “in_use” indicates that states are in use in the data store of a

device. For example, {0,in_use, home_machine, 3, 5, 11, 25 26} indicates that the

19

WO 2006/007498 PCT/US2005/022930

data items existing in the sync client home_machine’s data store all correspond to
one of the states 3, 5, 11, 25 or 26. In many embodiments, “0” is used as the subject
state for in_use command statements. In those embodiments, “0” is only used to
maintain syntax with other history statements. As a functional matter, there is no new
state necessary to record current states in use. Furthermore, in some embodiments,
the in_use command may be primarily exploited for a process called garbage
collection, described later. Lastly, in some embodiments, the in_use command will
carry a generation count indicating its vintage. In one or more embodiments, the
generation count is placed in brackets next to the client name as follows: {0,in_use,
home_machine[1], 3, 5, 11, 25 26}
[0068] The comrnan/ds herein described are not intended to be exclusive by their
name or function. For example, instead of “know_equal,” the same function may be
implemented by a command called “same_data” or anything else a programmer
wishes. In addition, the sample commands provided herein are intended to be
illustrative of command type that may be useful. Varying embodiments may exploit a
subset of these commands or even a superset. In particular, many embodiments
provide for extensibility of the system. In particular, once built, a system may be
upgraded (with software of otherwise) to include other commands without disruption
of legacy data or legacy history information. For example, an executable or a library
or both may be replaced in order to add new commands and functionality. The new
library or executable may be able to interpret the new commands as well as the old
commands. This allows a vendor to enhance or increase feature sets without
disruption of data or the necessity to re-process all data or history information.

c. Samples
[0069] Figure 10 is a collection of samples created from a program wriiten to
demonstrate and test some embodiments of the invention. While the program remains
in development, the examples are illustrative of creating history statements using the
syntactical language illustrated earlier. For reference and more specific disclosure,
the source code for the demonstration program is appended as an exhibit hereto.
[0070]1 Referring to figure 10A, there is shown an object 1001 embodying one or
more data items (the object may be viewed two ways: as one data item that changes

its value by changing shape or internal letters; or as a data set embodying two data

20

WO 2006/007498 PCT/US2005/022930

items that are visually demonstrated by the shape and the internal letters. The number
“1” reflected on object 1001 represents the state of the data. An object created, such
as object 1001 is assigned a state (“17). The data and the state identification (“1”) are
stored in the data store and a history statement 1002 is created in the history store. In
this case, history statement 1002 shows the transition of data item 1001 from state 0 to
state 1 through user edit. Obviously then, some embodiments use state O to indicate
no information is known.

[0071] Referring now to figure 10B, a continued representation of figure 10A is
shown. The context has changed in that four objects have been added (1003 — 1006).
Note that no new history statement is necessary because all five objects are described
by the single statement (user edited to fransition from state 0 to state 1.

[0072] Referring now to figure 10C, a continued representation of figure 10B is
shown. The context has changed in that object 1001 has changed from an oval to a
rectangle. This data item change is reflected in the history store in line 1007, which
states that the transition from state 1 to state 2 was caused by a user edit. All other
objects remain at state 1.

[0073] Referring now to figure 10D, a continued representation of figure 10C is
shown. The context has changed in that object 1005 has changed shape and moved to
state 2. This is reflected in the history store by line 1007. Note that line 1007 now
reflects the same transition for two objects, 1001 and 1005. Similarly, we could edit
the remaining three objects and no new states would be created because the two listed
states would describe the transitions from state O to state 2 for all existing objects.
[0074] Referring now to figure 11A, there is shown a graphical user interface
from the aforementioned demonstration program. The UI has two windows 1101 and
1102 indicating client devices “untitled” and “untitled 2” being simulated by the
program (device names are at the top of each window). Figure 11A shows that device
“untitled” 1101 has a single object 1103 in its data store and a single corresponding
history statement 1110 in its history store.

[0075] Referring now to figure 11B, a continued representation of figure 11A is
shown. The context has changed in that device 1102 has performed a one way
synchronization from device 1101. We see that the synchronization causes device

1102 to put an identical object in its history store. In addition the history statements

21

WO 2006/007498 PCT/US2005/022930

1120 — 1122 reflect the functions discussed earlier. In particular, the in_use command
1120 tells us that state 1 is the only state in use in device 1102’s data store. The
external command 1121 reflects that local state 1 corresponds to remote state 1
(which is locally represented as state 1). The user edited command 1122 reflects that
object 1130 was edited on device “untitled” 1101 from state 0.
{0076} Referring now to figure 11C, a continued representation of figure 11B is
shown. The context has changed in that device 1101 has performed a one way
synchronization from device 1102. We see that the data stores have not changed in
that objects 1103 and 1130 remain the same and the only objects in their respective
devices. However, in synchronizing the history store, we see that three statements
have been added to the history store of device 1101 (on the receiving side of the
synchronization). In particular lines 1111 through 1113 are new and implemented
according to the defining discussions earlier. The in_use command used in lines
1111 and 1113 reflects the states in use in the data stores on each device. The
external command 1112 reflects that local state one is equivalent to state 1 on device
“untitled 2” 1102.

d. A more specific example of synchronizing history information
[0077] Having generally discussed the synchronization history statements, we
shall now provide exemplary synchronization techniques using the example history
statements that have been introduced. In synchronizing history statements, many
embodiments will synchronize one-way at a time. Therefore, referring to figure 7B, if
we are attempting to perform a two-way synchronization of history information
between device 704 and device 703, we may (i) first incorporate device 704’s
information into device 703, and (ii) second, incorporate device 703’s information
into device 704. Of course, the reverse order would work as well. Nevertheless,
since these embodiments perform 2-way synchronization by multiply applying a one-
way synchronization technique, we éhall discuss one-way synchronization.
[0078] Referring to figure 12, for illustration, assume that we are synchronizing
history information in two devices named “Alpha” and “Beta.” In this example,
device Alpha is the local target client and device Beta is the remote source client. The
effect of the example is to incorporate Beta’s history statements into Alpha (i.e.

Beta’s history store is read-only during this process). In concept, this synchronization

22

WO 2006/007498 PCT/US2005/022930

is simply the process of ensuring that all the states in Beta have corresponding states
in Alpha. This is accomplished by creating new states in Alpha to correspond with
any states in Beta for which there are presently no corresponding state. In practice,
when a Beta state is identified for incorporation into Alpha, the associated history
statement (in Beta) is translated for local usage and added to Alpha’s history store.
This general process may be conceptualized with respect to the flow chart in figure
12B.
[0079] Referring to figure 12B, a first step 1201 is to consider a history statement
represented in Beta’s history store. Next, at decision step 1202, we must determine if
the examined history statement is already reflected in Alpha’s history store. In
general, this determination regards whether there is an equivalent history statement or
the same information is somehow otherwise existing in the Alpha history store. If the
determination 1202 is yes, then the process is over for this state/history statement. If
the corresponding state is not found in Alpha, then the process moves to stem 1204
where the Beta statement under consideration is translated for localized use in Alpha.
In step 1205, the localized statement is inserted in the Alpha history store or a
mapping table for temporary holding.

e. Five step synchronization of history
[0080] A synchronization process for synchronizing history statements in a
remote history store into a local history store may be plainly stated in only three steps
as follows: (i) create new local states to correspond to all remote states (using
external or equivalent state type commands); (ii) translate all the remote history
statements into local a local history statement and place it in the local store (step (i)
guarantees all necessary states are present) covert all remote history statements; and
(iii) try to eliminate duplicates in the local store. In some embodiments. However,
this three step process is comparatively inefficient when compared to a slightly more
complex five step synchronization of history statements. We shall discuss the five
steps as five passes through the target (e.g. the Beta history store). Each pass is
designed to address different types of history statements or different situations.
Therefore, each pass may create new history statements for incorporation into Alpha’s
history store. However, prior to beginning substantive work, logistical provision

must be made in the operating environment. For example, in a common computing

23

WO 2006/007498 PCT/US2005/022930

environment, memory may be allocated and a mapping table or similar data structure
may be created. Such a “mapping table” may be used to maintain new Alpha’s new
history statements, as the list of such statements grows or changes over the five passes.
In addition, a table or like structure may be used to maintain information that
corresponds with Alpha’s new history statements, such as data, other metadata or the
Beta-origin history statement.
[0081] In the first pass, we examine and translate all “external” command-based
history statements in the source (Beta) history store. Therefore, in some embodiments,
for each and every “external”-based history statement in the Beta history store (or
snapshot of same), we will ensure that we have a corresponding state association in
Alpha. For example, referring to figure 12, line 1, if there are five “external”-based
states reflected in Beta, B1 through B5, then we check to ensure that we have an
“External” command in Alpha that establishes an equivalent state in Alpha for each of
the 5 states B1 through B5. Assume we find only B1 through B3 in the Alpha history
store, using the command nomenclature described earlier, those statements might
appear as

Al,external,beta,B1

A2,external,beta,B2

A3,external, beta, B3.
[0082] Since, in our example, we have found no “external” correspondence for B4
and B5, we may create statements for those states and place them in our table.
Referring to figure 12, sample new statements appear in line 1, “Device Alpha”
column. As seen in figure 12, we are creating an external mapping the state of Beta
into a state of Alpha. During the first pass, many embodiments ignore history
statements in the source (Beta) having both (i) the command in_use and (ii) the target
client (Alpha). For example, in those embodiments, we will ignore statements having
the following form: AnyState,in_use,Alfpa,AnyState. In these embodiments, the new
states_"in_use” for Alpha will be created at the end of the process, if garbage
collection is performed.
[0083] In the second pass, we process all the history statements in the source
(Beta) that may be expressed in existing states of the target (Alpha). As a matter of

vocabulary, if a source (Beta) history statement may be expressed using the currently

24

WO 2006/007498 PCT/US2005/022930

existing target states, then we say that such history statement may be “localized.” For
any source (Beta) history statements that may be localized, we may perform the
localization (expressing the statement using existing local states) and add the new
localized history statement to the target (Alpha) mapping table (or history store in
other embodiments). Of course, if the localized history statement is already in
Alpha’s store, then it needn’t be added to the mapping table. Furthermore, depending
upon the precise algorithm used, it may be unnecessary to fully “localize” a statement
before realizing that the localized version is already in the history store. In that case,
the localization process may be aborted whenever such realization is made. The
following example illustrates this process. For purposes of this example, assume
Alpha has existing states Al through A15, Beta has existing states B1 through B18
and a different peer device Kappa has existing states K1-13. Further assume that the
states of Alpha, Beta and Kappa correspond as to numeral (i.e. Al, A2, A3
correspond to B1, B2, B3, correspond to K1, K2, K3 respectively) and that each of
Alpha, Beta and Kappa have “external” command statements establishing all existing
correspondence. Referring then to figure 12, line 2, there are shown in the
“condition” column, two history statements for this example of a second pass. Both
statements, for the purpose of this example, existing in Beta’s data store. The first
statement is a user_edited command showing that B5 is the state reflecting a user
having edited a state B4 object on the Beta device. As seen in line 2 of the Mapping
Table column, this statement easily translates to Alpha state equivalents. This is
because Beta states B4, B5, and B10 already have correspondence established on
device Alpha (as stated earlier, correspondence may be established through “external”
command-based history statements). Similarly, figure 12, line 2 shows an example of
a history statement comprising a conflict_resolved command.

[0084]) In some embodiments, the second pass may also attempt to convert source
(Beta) history statements that aren’t simply localized as described above. Therefore,
if a Beta history statement can’t be localized, then that statement becomes a candidate
for this process. The process is to deduce (with certainty) a relationship between
history statements in the source (Beta) and history statements in the target (Alpha).
Naturally, the technique for making such deductions varies according to the command

at the heart of the history statement. For example, referring to line 3 of figure 12, (i)

25

WO 2006/007498 PCT/US2005/022930

if there is a source (Beta) conflict_resolved statement (e.g.
{B16,conflict_resolved,Kappa,B3,B5}); and (ii) if there is a target conflict_resolved
statement (e.g.{A9,conflict_resolved,Kappa,A3,A5}); and (iii) as here, there is
identity correspondence between winner states (A3 & B3) and loser states (A5 and
B5); then (iv) we can deduce that the subject states, B16 and B9 are the same. Having
made that deduction, we can ultimately add mapping statements to the mapping table
(or, in other embodiments , the target (Alpha) history store). In particular, we have
discussed two types of mapping history statements: “extgma"’ command statements;
and “equivalent_states” command statements. In this case, we use the “external”
command if, as a result of the first pass, the correspondence is already in the mapping
table (recall that the mappiﬁg table is a temporary holding place for new history
statements). If the correspondence is not already in the mapping table, we use an
“equivalent_states” command.
[0085] Before completing the second pass, if there are any new mappings caused
by deduced relationships, the second pass is repeated to determine if those new
mappings provide information for localizing more source (Beta) history statements.
[0086] In the third pass, we process history statements in the source (Beta) history
store that, subject excepted, match history statements in the existing target (Alpha)
history store. Alternatively stated, we process history statements from the Beta
history store, for which we may infer the subject state. These history statements
already have equivalents in the Alpha store, but those equivalehts are not readily

. identified because there is no “external” or other statement creating the
correspondence between the subject states. For example, referring to figure 12, line 4,
there are two known_equivalent commands having different subjects (result states
A13 and B16) but otherwise equivalent statements. Since the winner states (B3, A3)
are the same and the loser states (B5, A5) are the same, we know that the subject
states A13 and B16 must also be equivalent. Therefore, we may add a corresponding
“external” command as shown in the mapping table column of line 4 (the external
command has been used indicating for some embodiments that the correspondence
was not found in the mapping table). Before completing the third pass, if there are

any new mappings caused by inferred relationships of the third pass, then the second

26

WO 2006/007498 PCT/US2005/022930

pass is repeated to determine if those new mappings provide information for
localizing more sourcé (Beta) history statements.

[0087] In the fourth pass, we handle all Beta’s history statements that can be
localized, subject excepted, i.e. where all states in the Beta history statement except
for the subject may be expressed in a current state of Alpha. At this point, we know
for any such Beta history statement: (i) its subject can not be localized (because that
would have happened in the second pass); and (ii) that the Beta history statement does
not match any existing Alpha history statement (from any standpoint, including
inference or deduction). We handle these statements by creating a new Alpha state
and appending it as the subject to the localized version of the Beta history statement.
As an example, see line 5 of figure 12 wherein new state “ANEW” is appended to an
otherwise matching conflict_resolved history statement. Furthermore, we create a
new mapping statement establishing correspondence between the newly created state
(ANEW) and the Beta subject state that couldn’t be localized earlier (see example in
line 4 of figure 12). Our convention for using an “external” or “equivalent_states”
commands remains the same as suggested earlier (use external if the association is not
already in the mapping table). In addition, as before, if we have created any new
mappings in pass 4, we retry pass 2 because new mappings may result in our ability to
localize new Beta history statements.

[0088] In the fifth and final pass, we process each remaining source (Beta) history
statement as follows: (i) ignore remaining statements with a subject that is either 0 or
already mapped in the mapping table; (ii) ignore “external” commands that remain
(because we don’t want to waste processing time or space learning states that are not
necessary); (iii) create a new target (Alpha) state for each state in the source (Beta)
history that is not already mapped; and (iv) create a target (Alpha) history statement
analogous to the Beta statement but using the newly created Alpha states. For an
example, see line 6, figure 12 wherein there is shown pass 5 conversion on the Beta
history statement, { B18, conflict_resolved, Kappa, B17, B16} (assuming that Alpha
has no corresponding states for B16, B17 or B18). As shown in line 5, new Apha
states ANEW1, ANEW2 and ANEW?3 are created for B16 ~ B18 respectively. In
addition, the Beta conflict resolved statement is translated using the newly created

Alpha states.

27

WO 2006/007498 PCT/US2005/022930

[0089] As in the other cases, if pass 5 has created any new mappings, we retry
pass 2 because new mappings may result in our ability to localize new Beta history
statements.
[0090] At the end of pass 5, all Beta history statements of concern should have
been processed.

f. Garbage Collection
[0091] As stated earlier, it may be desirable to minimize the number of history
statements to conserve system resources and increase performance. Therefore, some
embodiments use a garbage collection process to eliminate unnecessary history
statements. Garbage collection is the process of evaluating the history statements in a
history store in order to determine if any can be deleted (because they are unnecessary
to the function of the system). Generally in order to effect garbage collection, each
client keeps track of the states in use on every other client and only garbage collects
states that are known useless on all known clients. In gredter particularity, a sample
process is as follows.

@) Keep track of states in use

[0092] Foremost, each client may keep track of all the states that are in-use for
itself and each known peer sync client. Inbrief, a state is in-use if it is being used to
represent an object in fhe data store. For example, referring to figure 13A, there a
single object (Dog) 1302 in the data store. As indicated by the figure 1301, the object
Dog is at state 5 because, as shown in history store 1303, the object was created
(causing a first history statement) and then user edited 4 times (each edit causing a
new history statement). However, for garbage collection purposes, only state 5 is in-
use in the data store 1305. Assuming the object Dog 1302 is the only object in our
extended system (all data, all sync clients) at the moment, then it is intuitive that
history statements 1310 through 1313 are unnecessary (it doesn’t matter how many
times we edited the object Dog if we never told another client about those edits).
Therefore, referring to figure 13B, there is shown the result of garbage collection on
the sync client of 13A in the system as assumed. As we see in figure 13B, history
statements 1310 through 1313 have been deleted leaving only statement 1314 (with
subject 5 — the only subject state used in the data store). Furthermore, history

statement 1315 has been added to record the facts that state 5 is in-use on the client

28

WO 2006/007498 PCT/US2005/022930

“untitled” 1320 and that the “user_edited” command for uptitled is in its first
generation (“[117).
[0093] Referring to figure 13C, there is shown another example to illustrate a
state in use. In particular, figure 13C shows two objects 1351 and 1352 in the data
store. In this case, first object 1351 was created and then edited seven times (thus it is
at state 8). Then, object 1352 was created and edited twice (thus it is at state 3).
Therefore, states 8 and 3 are in use for client “untitled” 1350.
[0094] Lastly, with respect to keeping track of the states in use, there is a question
regarding how, or }’)erhaps when such information is tracked. A client may keep
dynamic track of its states in use by re-calculating the information each time there is a
change in the data store. Alternatively, a client may calculate its states in use at the
time it performs a garbage coilection or at the time it performs a synchronization.

(ii) Necessary history statements
[0095] In addition to keeping track of states in use, there must also be a
mechanism for understanding which history statements are necessary for which
clients, given a specified set of states in use. Every time there is data changeon a
given client, one may calculate which history statements are necessary to each and
every known client. If a history statement is necessary to any known client then it
must be kept. For example, referring to figure 14A, there is shown a synchronization
system having 3 clients 1410, 1430 and 1450. Referring to figure 14A and rows one
and two of the chart in figure 15, there is a single object that was created in client
1410 and synchronization has occurred among and between all clients. Referring then
to figure 14B and row 3 of figure 15, client 1410 edits data 1411, and the edit is
reflected in both the data store and the history store (state 2 in 1410). As we see in the
comments of figure 15 (row 3), all clients need to know about this data edit (to state 2)
so it must be maintained. However, client 1410 no longer needs state 1 history
statements, but must maintain same because it knows about the existence of clients
1430 and 1450 and doesn’t know if they need that change. Referring to figure 14C
and figure 15, row 4, we now edit the data object 1411 again, moving it to state 3 and
creating a corresponding history statement. Referring then to the comments in figure
15, row 4, all clients 1410, 1430 and 1450 require this change (state 3), so it is

maintained. However, client 1410 really no longer needs state 2 (the change to A’)

29

WO 2006/007498 PCT/US2005/022930

but must maintain the related history statements because clients 1430 and 1450 may
need it. Referring now to figure 14D and row 5 of figure 15. now we have
synchronized clients 1410 and 1430. We see in the comments of row 5 that both 1410
and 1430 no longer require state 2 or State 1 but keep it due to their knowledge that
1430 exists and may need that state. Finally then, we move to figure 14E and row 6
of figure 15, now we synchronize all three clients and garbage collect. Since we are
now certain the states 1 and 2 are obviated, history statements having subject states 1
or 2, may be eliminated. Therefore, we see that a client may release a state (any
history statements with that state as a subject) as soon that client is certain that all
other known clients do not require the released state.

- (iii) Sharing / syncing in-use information
[0096] Finally, we may have a mechanism for sharing this information with
other clients (how does a particular client know what each other client may need). As
seen in figures 14A through 14E, this mechanism is a history statement using the
“in_use” command. As noted earlier, an in_use history statement may carry all of the
following information: a subject state indicator (which is always “0”); the in_use
command, a generation count (shown in brackets in examples) because only the most
recent in_use command is relevant for a given sync client; and finally, a list of the
states in use. By maintaining and synchronizing these in-use statements, each client
can know what states were in use on the other know devices, the last time they
connected (an presumably 2-way synchronized and garbage collected). This is how
client 1410 (in the example above) could know not to throw away states 1 and 2 until
it was verified that both devices 1430 and 1450 did not require these states. Therefore,
in some embodiments, the in_use history statement must be synchronized onto other
sync clients so that those other sync clients do not dispose of states that are necessary
on another client.
[0097] Thus, stated generally, for a given client that has connected to (i.e knows
about) N other clients (maybe transitively) you have N sets of in-use states reflected
in in-use statements. These in-use states and their descendants (opposite of ancestors)
are the states that may be relevant for that group of N clients. All the other states can

be thrown away. Typically, when you connect with another client, you may

30

WO 2006/007498 PCT/US2005/022930

determine some group of ancestors mutually irrelevant (such as in line 6, figure 15) —
therein iies an opportunity to garbage collect.

[0098] The foregoing embodiments are intended as illustrative and without
limitation unless expressly stated. One skilled in the art may adapt these
embodiments and illustrations in a variety of ways. Such adaptation is expected and

intended as part of the discussion herein.

31

WO 2006/007498 PCT/US2005/022930

What is claimed is:

1. A method for maintaining data and metadata for synchronization, the method

comprising the steps of:

- creating first data on a first device and associating a first state with said
first data;

- creating a first history statement to reflect metadata regarding the creation
of said first data;

- associating said first history statement with said first state; and

- creating second data on said first device and associating said first state
with said second data.

The method of claim 1 wherein said first data is a data set such as a record.

The method of claim 1 wherein said first data is a data item.

The method of claim 1 wherein said first data represents a photo.

The method of claim 1 wherein said first data represents sound.

o m A W

The method of claim 1 wherein said first history statement comprises
information regarding the identity of said first device and the nature by which
said first data was created.
7. The method of claim 1 further comprising the steps of:
- editing said first data on said first device;
- associating a second state with said first data;
- creating a second history statement to reflect metadata regarding said
editing;
- associating said second state with said second history statement.
8. A device for maintaining data to be synchronized, said device comprising:
- auser input for creating a first data and a second data;
- aprocessor and software for creating a first history statement to reflect
metadata regarding the creation of said first data and the creation of said
second data, and for associating said fir\lst data, said second data and said

first history statement with a first state;

32

WO 2006/007498 PCT/US2005/022930

- afirst memory for storing a first data structure, said first data structure for
maintaining both said association between said first data and said first state,
and said association between said second data and said first state;

- asecond memory for storing a second data structure, said second data
structure for maintaining said association between said first history
statement and said first state.

9. The device of claim 8 wherein said first data is a data item.

10. The device of claim 8 wherein said first data represents sound.

11. The device of claim 8 wherein said first data represents a photo.

12. The device of claim 8 wherein said first history statement comprises
information regarding the identity of said first device and the nature by which

said first data was created.

13. The device of claim 8 wherein said first memory is magnetic.

14. The device of claim 8 wherein said first memory is dynamic memory.

15. The device of claim 8 wherein said first memory is static memory.

16. The device of claim 8 wherein said first memory and said second memory or
the same.

17. The device of claim 8 wherein said first data structure and said second data

structure are incorporated into a single soup data structure.

18. The device of claim 8 wherein said first data structure and said second data
structure are incorporated into a single flat data structure.

19. The device of claim 8 wherein said first data structure and said second data.
structure are separate objects.

20. A method of synchronizing databases, the method comprising the steps of:

- in afirst data structure, associating a first state identification with one or
more data sets;

- inasecond data structure, associating said first state identification with
information regarding said one or more data sets associated with said state
identification;

- making a change to a first one of said one or more data sets;

- insaid fifst data structure, associating a second state with said first one of

said one or more data sets;

33

WO 2006/007498 PCT/US2005/022930

- in said second data structure, associating said second state with
information regarding said change if said information regarding said
change is not already associated with said second state in said second data
structure.

21. The method of claim 20 wherein said first data structure is a soup database.

22. The method of claim 20 wherein said first data structure is a flat file.

23. The method of claim 20 wherein said first data structure comprises two or
more sub data structures.

24. The method of claim 20 wherein said second data structure is a soup database.

25. The method of claim 20 wherein said second data structure is a flat file.

26. The method of claim 20 wherein said second data structure comprises two or
more sub data structures

27. The method of claim 20 wherein a third data structure comprises both said
first and said second data structures.

28. - The method of claim 20 wherein a data set is a record.

29. The method of claim 20 wherein a data set is a data item.

30. The method of claim 20 wherein said change is an edit.
31. The method of claim 20 where said change is a deletion.
32. A device for synchronizing information comprising:

a first memory for storing a first data structure, said first data structure for

associating a first state identification with one or more data sets;

- asecond memory for storing a second data structure, said second data
structure for associating said first state identification with information
regarding said one or more data sets associated with said state
identification;

- awuser input for making a change to a first one of said one or more data sets;

- aprocessor and software for

- associating a second state with said first one of said one or more data sets,
in said first data structure; and for

- associating said second state with information regarding said change in

said second data structure, if said information regarding said change is not

already associated with said second state in said second data structure.

34

WO 2006/007498 PCT/US2005/022930

33. The device of claim 32 wherein said first memory and said second memory
are the same.

34. The device of claim 32 wherein said first data structure is a soup database.

35. The device of claim 32 wherein said first data structure is a flat file.

36. The device of claim 32 wherein said first data structure comprises two or more
sub data structures.

37. The device of claim 32 wherein a data set is a record.

38. The device of claim 32 wherein said data set is a data item.

39. The device of claim 38 wherein said data item represents sound.

40. The device of claim 38 wherein said data item represents a photo.

41. The device of clajm 20 wherein said change is an edit.

42. A method of synchronizing first data maintained in a first data structure with
second data maintained in a second data structure, the method comprising the
steps of:

- associating each data item of first data with a first state identification in
said first data structure;

- associating each first state identification with a history statement in a third
data structure;

- associating each data item of second data with a second state identification
in said second data structure;

- associating each second state identification with a history statement in a
fourth data structure;

- synchronizing history statements from said third data structure into said
fourth data structure to create a synchronized fourth data structure;

- synchronizing data from said first data structure into said second data
structure by using information from said synchronized fourth data
structure. ‘

43. The method of claim 42 wherein said first and third data structures are the
same.

44, The method of claim 42 wherein said first and third data structures reside on

one device and said second and fourth data structures reside on another device.

35

WO 2006/007498 PCT/US2005/022930

45. The method of claim 42 wherein one or more of said history statements in
each of the third and fourth data structures comprises correlation between a
first state identification and a second state identification.

46. The method of claim 42 wherein first data comprises N data items, and such N
data items are associated with M states, and M < N.

47. A local device for synchronization with a remote device, said local device
comprising:
~ afirst local data store for storing local data items and associated local data

states, a plurality of said local data items correlating with remote data
items stored on said remote device, said remote data items associated with
remote states;

- asecond local data store for storing history statements, said history
statements comprising statements associating local data states with remote
data states and statements regarding the editing of one or more local data
items and one or more remote data items.

48. The device of claim 47 wherein editing is creating.

49. The device of claim 47 wherein editing is deleting.

50. The device of claim 47 wherein editing is truncating.

51. The device of claim 47 wherein there are N local data items, and such N local
data items are associated with M local states, and M < N.

52. A method of tracking changes to data, wherein data comprises a plurality of
data items, said method comprising the steps of:

Associating a first state with a first plurality of data items, all of said first

plurality of data items having a first common history;

Associating said first state with a first history statement describing said first

common history.

53. The method of claim 52 wherein said first common history is the creation of
said data items.

54. The method of claim 53 wherein said first history statement indicates that data
was created and how data was created.

55. The method of claim 53 wherein said first history statement indicates that data

was created and what device was used to create data.

36

WO 2006/007498 PCT/US2005/022930

56. The method of claim 53 wherein said first history statement jndicates that data
was created and a synchronization client associated with said data creation.

57. The method of claim 52 wherein said first common history is the editing of
data, said editing associated with a certain synchronization client.

58. The method of claim 52 wherein said first plurality of items comprises an
address and a phone number.

59. The method of claim 52 wherein said first plurality of items comprises two
addresses.

60. The method of claim 52 further comprising the steps of: making a first change
to a first subset of data items, said first subset of data items comprising one or
more of said first plurality of data items; associating a second state with said
first subset of data items; and associating a second history statement with said
first change.

61. The method of claim 60 wherein the step of associating a second history
statement with said first change comprising creating a said second history
statement.

62. The method of claim 60 wherein said first change is deleting said first subset
of data items.

63. The method of claim 60 wherein said first change is independently editing
each of said data items of said first subset of data items.

64. The method of claim 60 wherein said plurality of data items and all associated
history statements are maintained in a first common data structure.

65. The method of claim 64, further comprising the step of synchronizing history
statements from a second common data structure into said first common data
structure.

66. The method of claim 65 wherein said first common data structure resides on a
first device and said second common data structure resides on a second device.

67. The method of claim 64 further comprising the step of reducing unnecessary
history statements from the synchronized first common data structure.

68. The method of claim 67 wherein said step of reducing comprises keeping

history statements have a subject state that is a descendant of a state in use.

37

WO 2006/007498 PCT/US2005/022930

69. The method of claim 66 further comprising the step of reducing unnecessary
history statements from the synchronized first common data structure.

70. The method of claim 69 wherein said step of reducing comprises keeping
history statements have a subject state that is a descendant of a state in use on
said first device or said second device.

71. A computer-readable medium having computer executable instructions for

performing the method recited in any one of claims 1, 20, 42, 50, 62 or 67.

38

WO 2006/007498 PCT/US2005/022930

1/24
/- 100 Vs 110
Desktop Portable
DB | ~1017 DB | ~111
Desktop Portable
Snapshot | 102
Desktop
s 120
PDA
DB L~ 121
PDA
FIG. 1
203
b 200
201~ R 202
()
S 209 207
204
) Processor Memory |
s 210 s 208
/O Memory Il
S 27 / y
205 ~ 9320660050
\ﬂggooooggo
063238695

206 FIG. 2

PCT/US2005/022930

WO 2006/007498

&€ OH

o | e
916~ T
Jossadoudonny 09PIA
sig” zie-
opny
&@\\O.QQOU LLE K
pue SeAL(o/l YIOMION
L1 T oLe~
Y61 [ojeied asnow ssofolI
80¢ -~/ 90¢ -/ ros-/ | zoe
WBPO [eLIaS pIeogAdy qgsn JIOMIBN

605~ 10~ soc - cos- 4

PCT/US2005/022930

WO 2006/007498

3/24

¥y "DId

[Buley S/O
S80IMBS 910D S/0
0% 0% 907
/\ SedInosay S80JN0SoY 20In0say solydelo

00Ly —

13

S80IAIBS pue SyJomawel{ uonesiddy

\ w7 707 0% 707 07
guopeonddy | emop | JoE VOl | v uoneoyddy

™
N
¥

™~
N
<t

ocy

PCT/US2005/022930

WO 2006/007498

4/24

SO

(ebueso) y | (ebueio) ¢ | (ebues0)y abuelip ORaVouls | £
(pas) ¢ (usalibanq) z| (ebueiO)y abueip vsupsiesn | 9
(pes) ¢ [(uemubonig)z| (peyle pay oukls oY | G
(pos) ¢ |(usaibonig) 0 pay Osupasesn | ¥

(uoaubonig) z|{uesibeniq) Z 0 usalben|g | ouAsQpueg | €

0 (usaubeniq) ¢ 0 uaaibanig € sUpo Jasn Z

0 (enia)} 0 enig g sejeaso lesn| |

0 0 0 0 BUON 0
snjeis o snejg g9 snmeis v ejeqg fiaoy [dejs

PCT/US2005/022930

WO 2006/007498

5/24

9 D

(pa1) O uo way
BJEp S)Ip® Jesn-¢

¢ uo wsyl
BJep S|pe 1esn-g
£ U0 anjq wayl

(pas) & (usauboniq) z | e1ep sa)eald JosM)-L pey | oSuAgopuey| ¢
(peu)
O UO Way ejep sype Jasn-¢ (usaubeniq) g 0 pay osupdiesn | ¥
(uosaibanq)
g uo usaiban|g 0}
an|g wey ejep sype Iesn-g
g uo onjq way
ejep selealo 1osn-| (usaliboniq) ¢ 0 usaibonig | osuAg Hpue g [on
(ueaibon|q)
g uo usaibenig 0}
0| enjg wsyl elep syps Jesn-g 0 useibenig gsiipaesn) ¢
g uo anjq way
0 e)ep sejeslo Josn-| 0 onjg | gseeainlesn | L
0 0 0 0 SUON | o
snjejs o snjejg g snjejg y ejeq fiagoy dejg

WO 2006/007498 PCT/US2005/022930

6/24

Sync History | _— 701
Information

Sync Data |- 702

FIG. 7A
Vs 704
r ™)
Vs 703
—
\ LI Ei .
- |_—~ 705 7
HIStOry / 708 Hlstory - 70
706
Data [a))))) ((((CI) Data | 795

FIG. 7B

WO 2006/007498 PCT/US2005/022930

7/24
f'790
Data Store
Data ltem, Meta |~ 7917
Data Item, Meta
Data ltem, Meta
History Store
~ 792
Snap Shot
_~ 793
FIG. 7C
802
801\ r - 2
)
\
) J
\. .
803 . =L
History" (e
\‘ History" I~ 807
804~ History' |-
y HiStOry' |~ 808
805 N History History |~ 809
806 ~1 pata |« Data 870

FIG. 8

WO 2006/007498

8/24

[907

Compare Local
and Remote Data

PCT/US2005/022930

s 903

Next Data

NO | 904

Compare Local
and Remote Data

s 906

Next Data

s 908

| Update Local

to Remote

/'977

Remote YES

Ancestor of Local

Next Data

¢

f910

Conflict

FIG. 9

WO 2006/007498 PCT/US2005/022930

9/24

/~1001

...............

(~1002
{1. user_edited, "Untitled",0}

FIG. 10A

/—1002
{1. user_edited, "Untitled",0}

FIG. 10B

WO 2006/007498

10/24

r 7002

{1. user_edited, "Untitled",0}
{2. user_edited, "Untitled", 1}

\- 1007
FIG. 10C
1006
f 1005
1004 > cat

2 sink

e 71002

{1. user_edited, "Untitled",0}
{2. user_edited, "Untitled", 1}

. 1007

FIG. 10D

PCT/US2005/022930

PCT/US2005/022930

'l

WO 2006/007498

11/24

00

VLI "Dl

29+ Aem-g
OUAg Aem-z
ouAg Aem-|,

=

A pepnun
Juall) Jeylo

—J

sojdnj Jesjn
29

X8} sibboy

Jojon aifibo|
adeyg 9jbboy

108igO MaN

pajosies ‘s1oslqo (

7

(29+femz)
(oukg femg)
(oufg fem-,)

(5 zpemun)
SN 18O

(sejdnyresy)
C») {0'.ponpun, ‘poups Jesn '}
Qw:\
IS |
(maL 9)bbor) mo:\
(Jojo9 s(6601 v
(' adeys ajffio])

(welgomeN)

| ‘soie)s ‘pajosjes | ‘sjoalqo |

chaiun OO0

L pepiiun OO0

zoLL-

LoLL-’

PCT/US2005/022930

WO 2006/007498

12/24

dll "OlH

99+ Aem-g
OUAS Aem-7
ouAg Aem-|,

~

5 popun |

JUSlD BYIO

sajdn] Jes|n

J9

X8| sjbboy

LZlLl

Jojon ajfibo|
adeyg sjbboj

108[q0 maN

B0k

NN:\J

3“__%_%;_ .E_Sumw:._w
— {}'.Papnun, ‘euisixe’)
{1'(1). pennun, ‘esn ur'p}

oziL-

peyosles (‘sposlqo |

09+ Aem-g
QuAg Aem-z
oUAg Aem-|

(& zpemun)

JUSHD JBYI0

"

seydn| Jeaj)

Ow I3 3 -
{0".pennun, ‘paups tesn "} }

oLLL \ pmmmeee N
9] o|ffol
Jojon sjbboy

adeyg sibbfo|

o

)

h ~,

™

\,:'_:c
=
2]
"

109[q0 MeN

| :s91e)S [pa)osles | ‘s10sfqo |

chapiun OO

Lpapiun OOE

zoLL-

1011~

PCT/US2005/022930

\

WO 2006/007498

13/24

JLL "OH

99+ Aem-g
OUAG Aem-7
oulg fem-),

—

¢ Dbepun
UL JBYI0

so|dn} Jes|n
)

LcLl
8] 8|bboL

10jon gjbbo}
adeyg e|bb0]

109[q0 maN

NN\L\I/

{0".papnun, ‘payps sasn’y}
— {}'.paniun,‘leusopxe’ |
{1'(1)uz PonRUN, ‘BSN U0}

AT E—

pa)osjes (‘sjoalqo |,

/

79+ fem-g
(oukghemz)
ouAg Aem-|

(5 zpomiun |
8D 46U30

se|dn] Jes|) OLLL N
G {q*,pannun, ‘payps Jesn‘

_— {1z papnun, ‘feuseixe’
MRM _—{1'(})\g Pepsun,‘asn_urg

{1°(1).ponnuUN, ‘osn”ur'p}
(wepsiffoL)

i
ﬁ 10joD) a|b6o) v

(edeys sififio])
(wslgo meN)

| :s9jes (peyosles | isoelgo |

Zpepiun OO0

Lpapiun OO

zoLL -

oL~

PCT/US2005/022930

WO 2006/007498

14/24

vcl "Did

914 ‘ejeg ‘feussixe ‘ZMINY
119 ‘ejeg ‘[eussixs ‘ZMINY

619 pue giLg ‘/1g Joj seje)s Buipuodsariod

£ t 4 £ mmm
81d ejog |eulsixe "L MIANY ou sey eyd)y swnssy 9id /14 ;EM 9
_ SMANY ‘eddey ‘paAjosal JO1JUOD ‘Ql g :SMOJ|O) ‘
ZMINY ‘PaA0Sal JOIJUOD ‘LAAIINY se Juswale)s Alojsiy e}ag e si alay |
9jgjou
Ing ‘G pue ¢g aZI[edo| ued 8\ Gg ‘€d | SSed
919 ‘ejeg ‘jeussixe ‘MINY ‘edde)| ‘poOAjOSAl 1OIIUOD ‘gL g ‘SMO}0} | UHNo4 §
GV ‘cy ‘eddey ‘paajosal JOIIUOD ‘MINY se juawale)s Aloisiy eyeg e sl assy |
GV ‘CV ‘PeAjosal_joijjuod ‘clg | Ssed ¥
olLd ‘ejeg ‘|euisixe ‘gL Gg ‘c9 ‘paAjosal JOIJuod ‘gl | PAYL
Gq ‘ejog ‘[jeussixd ‘zLv ZLV ‘6Y ‘eddey] ‘panjosal Jo1juod ‘gLy | ssed ¢
£g ‘ejog ‘[euioixo ‘v Gd ‘cq ‘eddey] ‘pajosal JI)ju0o ‘gl g | puodsg
GV ‘cY ‘eddey] ‘paajosal OIju00 ‘OLY Gg ‘cg ‘eddey| ‘paajosal oljjuoo ‘gLg | Ssed 7
v ‘elog ‘poype Josn ‘Gy Gd ‘cd ‘ejed ‘paype Jesn ‘gqg | Puodes
101g Aiojsiy eydjy
Ul (SpUBLIWOD ,[EUISIXS, *0'8) PausIiqelss | oqp d
aouapuodsaliod aaey Apeale (¢g-19) 1Siid L
Gq ‘ejeg ‘feulaixs ‘gy s9a]e)s 8y} Jo 9aly] "Gg ybnoliy) g ejeg uo :
y4 ‘ejag ‘|eueixs ‘py punoj SjusLWIa]L)S PUBLIWOD [BUISIXS G
g 9291n0(q
wo.j uoneuuioyul A1oysiy Buiziuoaysuis uoljipuo? ssed |# aul

jeso-eydjy asiaaq/elqel Buiddepy

WO 2006/007498 PCT/US2005/022930

15/24

1201

Consider Beta
Statement

In 1202 ' e 1203

Alpha History
Storage
?

Done

NO
/s 1204

Translate

V1205

Store

FIG. 12B

WO 2006/007498

16/24

PCT/US2005/022930

Ve 1320

©00 Untitled

1 objects; 1 selected; states: 5

1305~

1301 \/\--._(.-.\1302

..........

r 1303

{1, user_edited, "Untitled", 0} — ;g}?
{2, user_edited, "Untitled”, 1}—"_ 1312
§3, user_edited, "Untitled", 2} —"_ 1373
4, user_edited, "Untitled", 3}—" 1314
{5, user_edited, "Untitled", 4} -

(' New Object)

Toggle Shape

(Toggle Color)

Toggle Text

GC

Clear Tuples

i

Other Client:

(—q
av
—

1-way Sync
2-way Sync

2-way +GC

28

FIG. 13A

WO 2006/007498

17/24

PCT/US2005/022930

/s 1320

@00 Untitled

1 objects; 1 selected; states: 5

........

..........

0, in_use, "Untitled"[1], 5} —— 1312
§5, user_edited, "Untitled", 41— 1314

New Object

Toggle Shape

Toggle Color

Toggle Text

(' Clear Tuples)
Other Client:
L ?J
(1-waySync)

Z

FIG. 13B

WO 2006/007498

18/24

PCT/US2005/022930

/’7350

©00 Untitled

2 objects; 1 selected; states: 3

/—7357

3 swim

/—1352
3 jump

|

§1, user_edited, "Untitled", 0}/ ;ggg
2, user_edited, "Untitled", 13— 1362
3, user edited, "Untitled", 21— 1363
4, user_edited, "Untitied”, 31— 1364
5, user_edited, "Untitled”, 41— 1365
8, user_edited, "Untitled", 51— 1366
7, user_edited, "Untitled", 8} =" 732
8, user_edited, "Untitled", 7}

I

[

{

I

{

New Object

Toggle Shape
Toggle Color

il

Toggle Text

GC

Clear Tuples

Other Client:
[Untitled2 4 |

1-way Sync
2-way Sync

2-way +GC

FIG. 13C

PCT/US2005/022930

\

WO 2006/007498

19/24

VPl "DId

99+ fem-g
2UAg Aem-z
uAS Aem-}
4 papaun
JUalfD Y0
sojdnj_ieajD
{0 “.pepnun,, ‘peype sosn ‘y
| .2 panun, ‘reussixe ‘|
ﬁ . Pafiun, ‘feusspxe ‘|
)

MF ”* o€ PaBBUN,, 8BS U1 ‘g
mm..w pauny,, osn_i m

&
o

—‘ -
{1 ‘{tl.ponnun,, ‘asn"u
o) 9j6boL
1009 9)6Boy.
adeyg s)660), o
108f00 meN LSYL .\

pesjes ¢ ‘s1elqo |

09+ Aem-g
Jukg Aem-z
JUAG Aem-|,

§ papun

JUald BUYI0

\

so|dn] sea|n

Q

9

VTR
J0jo9) 9j6ifo)
adeyg ajfifoy

98[O MeN

{0’ .pennun, ‘paypasesn *y
{1 “.€ papiun, ‘feuselxs ‘|

%P P3N, ‘[BUsep® '}

M« *T «£ Pepnun,, ‘asn_ui ‘g
L ‘[L].2 pennun,, ‘esn”ul g
{1 ‘TiL.popnun,, 'asnul g

apy)

1t~
pejosies ¢ ‘syoalqo |

09+ Rem-g
oufg Aem-g
oufg Aem-i

¢ Zpapun
Ul BYIo

i

soidn] Jesjn

(&)
Q

3 9)b6o)
lojon 51660y
adeyg o660y

18[q0 MeN

{0 *,papun, ‘payps Jasn ‘|
L *.€ Pajjun, ‘eussixe ‘y
L2 Paliun, ‘[euisixe |
Me ‘1€ poniun,, ‘esn_ui ‘
b ‘[L].g Pennun,, ‘esn"ut ‘g
{1 ‘i1.ponnun,, ‘esnui ‘g

My

LivL~
| :soje;s ‘pojosjes | isjoalqo |

epbapun OO©

Zpapsun 00

paphun OO0

051~

ocyL -

oLyl -’

PCT/US2005/022930

\

WO 2006/007498

20/24

dqrl "D

09+ Aem-z
JUAg Aem-g
aufg fem-|

g bepun
Jueld Jeyo

so[dn| Jes|)

©
(O]

a1 aj66o).
Jojo 9jbfiot.
adeys sibBoy

1081q0 MON

{o “.pennun,, ‘poypa esn ‘.
1 .2 pofiun, ‘feutexe ‘|,

L *,pepiiun, ‘feussixs ‘|

MF .mp £ Papun,, ‘asn”ui ‘g
1 ‘[L].2 paniun,, ‘esn”ui ‘g
{1 ‘1].papnun,, ‘asnut g

|

1551
pajosjes (:sj08iqo |

99+ Aem-g
JUAg Aem-z
UAg Aem-|,

¢ papun
quBlD BUIO

se|dny Jeajn
29

a1 s)bboy.
Jojon 8j6Boy.
adeyg ajfboy.

303[q0 MoN

M

{0 ‘.popnun, ‘peypaiasn ‘)
{1 *.€ papiun, ‘eusaxs ‘|

L ‘.papiun, ‘eussixs ‘|

b ”T ug POpIUN,, BN Ul ‘)
L[]z papun, ‘asn”ui ‘g
{1 Tt].ponnun, ‘ssn™ui g

iy

1L~
pajosies () s109(qo |

29+ fem-g
oufg Aem-z
SUAg Rem-|,

§ Zpomun
Jual) BYI0

'

so|dn] se9[

[

9

a1 9jfboy
Jojog 816601
adeyg oifBoy.

108{gO Mo

{1 ".papun,, ‘payipaiesn g
{0 ".papnun, ‘pajipa sesn 1}
L€ Papiun, ‘feuseixe ‘|

L.\ bepiun, ‘feussixe ‘|

MF 1], pennun, ‘esn”ui ‘g
b ‘1],z pannun, ‘asn”ut ‘0
{1 ‘ILL.ponnun,, ‘'ssn"ut g

Z saeys ‘pejosies | ‘sjoalqo |

¢ papaun OO0

A 1N elelo]

papgun OO0

T4

ocyL -

oLyl

PCT/US2005/022930

WO 2006/007498

21/24

Jusl) Jeuo

se[dn) Jeaj)

O
(O

i

{0 “.pepnun,, ‘paNpe sasn)

LW Pajinun, ‘jeusalxs ‘
L ".papiun, ‘feusexa
L€ pappun,, ‘asn”_ul ‘o
L.g Papiun, ‘asn_ui ‘g
to

{1 Til.pannun, ‘esn"u
%3] oj66o).
Jojog) sibbo).
dous ool My
198[q0 MmaN LSHL /

peyosjes () 'sjoafqo |

Ju8lD JoyI0
sojdny Jesjn

39

a1 9jbbo).
Jojog s)bfol
adeys iy

108100 meN

{0 ".pemun, ‘payps Jesn ‘)
{1 '\ pannun, ‘eulaps '}
) MF PO, JeuIBIX® ‘|
MF _mv «£ PapBun, ‘asn_ul g
@..N _uw_u_e:..,mm::m.a
.,o

F p—
{1 {LL.papnun,, ‘asn"u

iy}

1spL -
pajoses (s1osfqo |

- OvL "DId
7 4 ’

Jualjd J8Ylo

soidny sy) {z ‘.penpun, ‘poypaIesn ‘¢
MF ‘PN, ‘pejipa_lasn ‘7
0 '.popiun, ‘pelipe tesn ‘)
L. papnun, ‘feussixe ‘}

AL 'ug papiun, ‘jewsolxe
MF 111.€ pepnun,, ‘asn_ui ‘g
b 1Ll.g panhun,, ‘esn”ui ‘g
{1 ‘[tL.ponnun,, ‘esn"ui /g

)

ol 8|fboy.

1003 8J660]

adeyg ejfBop _\s_v_m~
103140 MON Ly~

¢ :sale)s {papajes | 'sjoslqo |

¢ pepun 00O

Zpapin O0©

pspun OO

osiL -

ocyL

oLy~

PCT/US2005/022930

WO 2006/007498

22/24

arl ‘O

09+ hem-g
JUAg Aem-g
aufg fem-},

o bapaun
Juald J-yio

so|dn| Jes|n

O
0}

a1 oifboy
1005 aifibol
adeyg sj660}

198[00 MeN

{0 “.papnun, ‘peyps sesn ‘)
l ,__N psfiun, ._mchwwxw ._‘

L “.pofiun, ‘feusspxe ‘

M_ ”T oS PanBuN,, ‘esn_u1 ‘g
1 ‘[Ll.g pannun, ‘asn”ui ‘g
{1 ‘Lul.ponnuq, ‘esnui ‘g

Y I

15y~
pajoales ('sjoefqo |

99+ Rem-g
JUAG Rem-z
ouAg Aem-|

\

¢ Papaun

AWIDBUI0 {7 ¢, papyun, ‘payipa Iesn .mW
{¢ *.pejuun, ‘leuselxs ‘¢
sojdn) teaj) {1 ‘.pennun,, ‘paypaiesn g}

{z " popun, ‘lewsixe z
09 {0, \apun, ‘paups Jasn '’}
{1 *.¢ panyun, ‘leuls)xe ‘y

L “.pepaun, ‘feussixe ‘|

Me .T «£ PORNUN,, Osn_uj ‘)
ﬁ ! W -N nm—u_“—h:: QQW:].:m -O
{¢ ‘Tel.ponnun,, ‘osnui ‘g

hmvha

pelogjes () 'sjoslqo |

v
a1 a|6for.

J0jo) sbboy.

adeyg gjfboy.
1900 MoN

09+ fem-g
aufg fem-g
Sufg Aem-|,

\

3 Zpspaun
JUBID J8YI0 {z ‘.bopuun, ‘paypsJesn ‘¢
{e ".Z pepaun, ‘Tewe)xe ‘g
A_‘ ._..nm_E:D__ .nmu_.nm Josn .N
{2 * .z papBun, ‘Teuselxe ‘Z
) {0 ".penun, ‘paypaIesn *}
L. Pepun, ‘feusaixs ‘|

1., Pepiun, ‘eusaixe ‘|

sojdn] sea|n

Q

Mv 111.€ penpun, ‘asn_u ‘p
¢ '[zl.z papiun,, ‘esn_ui ‘g
{¢ ‘[el.ponnun,, ‘ssn"u1 ‘g
a1 9iffog
J0j09) aibbol.
adeyg aibbot :sa_ww
polonen) LipL-

¢ 'sojess ‘pejosjes | ‘sjoafqo |

¢papun OO0

Zhapnun O0©

pepiun OO0

osyL -

osrL -

oLyl

PCT/US2005/022930

WO 2006/007498

23/24

so|dnj_seajn
0

oy 9j6601
lojo 86601,
adeyg 9iffoy.

10900 meN

{¢ ‘pepnun, ‘paypa sasn ‘g
{€ 'z papun, ‘fewiepa °Z

€ "upafiun, ‘[eussxe ‘g

MN ”w u€ PalIRuN,, ‘asn_ui *g
z 1zl.g papnun, ‘asn”ui ‘g
{2 lel.bapnun,, ‘esnui ‘g

LSYL
pejosyes () 'sjoslqo |

sajdn} Jesjn
09

CTREl]]
Jojo9) sjbboy
adeyg ayfioy

1089{q0 MeN

{¢ '.pamun, ‘peypasesn '}
{ '€ penaun, ‘fewialxs ‘)

Mm ,paIuN, ‘[eulexs '

{¢ ‘Tel.g papnun,, ‘osn_ui ‘g
{¢ 'lgl.z papaun, 'esn uo
)

{¢ ‘[zl peniun, ‘esnu

LEYL
pajos|es () sjoelqo |

arlL "Did
L/ " -
99+ hem-g 99+ Aem-g 09+ Aem-g
2UAS Rem-Z ouhg %3.& Jufg Aem-g
ouAg fem-|; oufg fem-|, uc>w fem-|
$ pamun § pepun § zpapun
Jueld eyio JUSHD BUO USID BUI0

so|dny Jes|p

99 {z ‘,pemnun, ‘psupa Jasn ‘g
Z L€ Papiun, ‘[eulolxe ‘g

€ W PoIUN, “eulsix® ¢
Mw ‘lz].€ papiun,, ‘asn_ui ‘g
¢ ‘lz].z Pepnun,, ‘esn”"ul ‘g
{¢ ‘[].popnun,, ‘asn”ui ‘g

o] 9)bBoy.

Jojon ajbboy

adeyg s|6boy. ;>_me
193[qo maN LLYL -\.

¢ :saje)s ‘pajosjes | 'sjoslqo |

¢pspnun 00O

Zpapun O0©

papiiun OO0

ossL -~

osyL -

oLl

PCT/US2005/022930

WO 2006/007498

24/24

51 °OH

(pejeunie aq Aew syuswalers AIoisiy Z 9

W Bled Y ered WVeeq| | ssjes),y oy o} sbueys pasu sjusid oN IvouAg | o
so)ers
SSOU} SPasu OGP JI MOWY LUOp pue oGyl
noge mowy Ogy | pue 0Lyl Yioq esnessq
paulejuiew ale asoyj g ‘.Y 0} abueyo 1o
».4 01 mmcmco 9y} pasu ;mm:o_ ou QgL pue 0S¥yl pue
.V ered 0l ¥LSiuald yjoq uonezjuosyduAs siyy uodn OLyLouAg | ¢
0S¥l
Jo 0grL Aq papsau si) ji mouy },useop
OL¥1 JUSIO 8snedaq paueiuiew aq
Isnw Ji Jng ,y 0} 86ueyo ay) spasu Jebuoj uiebe QL)
wweleg| ouglyl .V o)abueyo ey pssusey) iy |uoyeeqipg | ¥
0lvL uo
Y ereq SjuslD JBY30 Mowy uoQ velegupa| ¢
Sjusi|D evIy L
v ejed v ejeg) lleyouAs | 2z
{eooT uo
V eje meN Sjusi|D J8Yyjo mowy Luog ejeq ayeal)n L
0Sv1L JusND | 0Pl SO | OLYL JUdLD uawwo uoioy moy

INTERNATIONAL SEARCH REPORT ir¥gational Application No
PCT/US2005/022930

CLASSIFICATION OF SUBJECT MATTE

. R
St 0or17/30 | GOBF11/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Docitmentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

EP0-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category © | Citation of document, with indication, where appropriate, of the relevantpassages Relevant to claim No.
Y US 6 516 327 Bl (ZONDERVAN QUINTON YVES ET 1-7,
AL) 4 February 2003 (2003-02-04) 20-46
the whole document
Y US 20027049764 Al (BOOTHBY DAVID J ET AL) 1-7,
25 April 2002 (2002-04-25) 50-46
X 8-19,
47-71

paragraphs [0009] - [0014]
paragraphs [0033] - [0096]

A US 6 000 000 A (HAWKINS ET AL) 1,8,20,
7 December 1999 (1999-12-07) 42 ,47,52
column 6, line 6 - column 13, line 67

A US 5 946 689 A (YANAKA ET AL) ' 1,8,20,
31 August 1999 (1999-08-31) 42,47 ,52

the whole document

../....

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : .
"T" later document published after the intemational filing date

or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P* dacument published prior to the international filing date but
later than the priority date claimed

cited fo understand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
{n?;:ts, ;uch combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actual completion of the interational search

13 October 2005

Date of mailing of the intemational search report

01 1L 0%

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl,
Fax: (+31-70) 340-3016 :

Authorized officer

Bowler, A

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT InMPhational Application No
PCT/US2005/022930

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 20037131004 Al (KRISHNA VIKAS ET AL) 1,8,20,
10 July 2003 (2003-07-10) _ 42,47 ,52
paragraphs [0066] - [0072]; figures
6a,6b,7,8

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT W ational Application No
PCT/

US2005/022930
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6516327 B1 04-02-2003 US 2003131025 Al 10-07-2003

e e e e - Y e e e Bt B P P B e M iy i i i e e e e e e w4 P R St e o e

e e o e b e T T = a0 o B a8 8 B M R B 0 e e e e e e e b e o b b o o B O e e e 0 b e e

e o o e e " o M0 P e T o e e B e e S e i i e e W e e e T e P e b e s e S ot

e e o o o e o e e i e e e e e M e e e e e T e et R By T et o B o e e e e e e P e e e e e e e N e e S e R e B B e o

e i v " o T o o o s ot B0 et b 00 M e oy (e b i e e e T e o et o T e e b R B B S e e

Eorm PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

