0 02/056172 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 0 0 0 OO

(10) International Publication Number

18 July 2002 (18.07.2002) PCT WO 02/056172 A2
(51) International Patent Classification’: GO6F 9/40 (74) Agents: MALLIE, Michael, J. et al.; Blakely Sokoloff
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
(21) International Application Number: PCT/US01/50415 Los Angeles, CA 90025 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(22) International Filing Date:
20 December 2001 (20.12.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/752,587 27 December 2000 (27.12.2000) US

(71) Applicant: INTEL CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, CA 95052 (US).

(72) Inventors: CHOU, Stephen; 375 North Drive, #AS,
North Plainfield, NJ 07060 (US). NEIGER, Gilbert; 2424
NE 11th Avenue, Portland, OR 97212 (US). COTA-ROB-
LES, Erik; 4238 SW Marigold, Portland, OR 97219 (US).
JEYASINGH, Stalinselvaraj; 15821 NW Energia Street,
Portland, OR 97229 (US). UHLIG, Richard; 1564 NE
Orenco Station Parkway West, Hillsboro, OR 97124 (US).
KAGI, Alain; 2232 NW Everett Street, #2, Portland, OR
97210 (US). SCHOENBERG, Sebastian; Eisenacher
Strasse 3, 01309 Dresden (DE).

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, Fl, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR RESOLVING ADDRESS SPACE CONFLICTS BETWEEN A VIRTUAL MACHINE MONITOR AND

A GUEST OPERATING SYSTEM

(57) Abstract: In one embodiment, a method for resolving address space conflicts includes detecting that a guest operating system
attempts to access a region occupied by a first portion of a virtual machine monitor and relocating the first portion of the virtual
machine monitor within the first address space to allow the guest operating system to access the region previously occupied by the

first portion of the virtual machine monitor.

10

15

20

WO 02/056172 PCT/US01/50415

METHOD FOR RESOLVING ADDRESS SPACE CONFLICTS BETWEEN A
VIRTUAL MACHINE MONITOR AND A GUEST OPERATING SYSTEM.

Field of the Invention

The present invention relates generally to virtual machines, and more
specifically to resolving address space conflicts between a virtual machine

monitor and a guest operating system.

Background of the Invention

A conventional virtual machine monitor (VMM) typically runs on a
computer and presents to other software the abs&acﬁon of one or more virtual
machines. Each virtual machine may function as a self-contained platform,
running its own “guest operating system” (i.e., an operating system hosted by the
VMM). The guest operating system expects to operate as if it were running on a
dedicated computer rather than a virtual machine. That is, the guest operating
system expects to control various computer operations and have an unlimited
access to the computer’s physical memory and memory-mapped I/O devices
during these operations. However, in a virtual machine environment, the VMM
should be able to have ultimate control over the computer’s resources to provide
protection from and between virtual machines. To achieve this, the VMM
typically intercepts and arbitrates all accesses made by the guest operating system
to the computer resources.

With existing processors (e.g., IA-32 microprocessors), the VMM may not be

able to intercept accesses of the guest operating system to hardware resources

10

WO 02/056172 PCT/US01/50415

unless a portion of the VMM code and/ or data structures is located in the same
virtual address space as the guest operating system. However, the guest
operating system does not expect the VMM code and/or data structures to reside
in the address space of the guest operating system and can attempt to access a
region occupied by the VMM in this address space, causing an address space
conflict between the guest operating system and the VMM. This conflict may
result in abnormal termination of operations performed by the VMM or the guest
operating system.

Thus, a mechanism is needed that will detect and resolve address space

conflicts between a VMM and a guest operating system.

10

15

20

WO 02/056172 PCT/US01/50415

Brief Description of the Drawings

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like
reference numerals refer to similar elements and in which:

Figure 1 illustrates one embodiment of a virtual machine environment;

Figure 2 is a block diagram of a system for resolving address space conflicts
between a virtual machine monitor and a guest operating system, according to
one embodiment of the present invention;

Figure 3 is a flow diagram of a method for resolving address space conflicts
between a virtual machine monitor and a guest operating system, according to
one embodiment of the present invention;

Figure 4 is a flow diagram of a method for relocating a virtual machine kernel
within a virtual machine address space, according to one embodiment of the
present invention;

Figure 5 illustrates operation of a virtual machine kernel that supports guest
deprivileging, according to one embodiment of the present invention;

Figure 6 is a flow diagram of a method for handling a virtualization trap
generated by a guest operating system, according to one embodiment of the
present invention; and

Figure 7 is a block diagram of one embodiment of a processing system.

10

15

20

WO 02/056172 PCT/US01/50415

Description of Embodiments

A method and apparatus for resolving address space conflicts are described.
In the following description, numerous details are set forth, such as distances
between .components, types of molding, etc. It will be apparent, however, to one
skilled in the art, that the present invention may be practiced without these
specific details. In other instances, well-known structures and devices are shown
in block diagram form, rather than in detail, in order to avoid obscuring the
present invention.

In the following description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present
invention can be practiced without these specific details.

Some portions of the detailed descriptions which follow are presented in
terms of algorithms and symbolic representations of operations on data bits
within a computer memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art. An algorithm is
here, and generally, conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, transferred, combined,

compared, and otherwise manipulated. It has proven convenient at times,

10

15

20

WO 02/056172 PCT/US01/50415

principally for reasons of common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated otherwise
as apparent from the following discussions, it is appreciated that throughout the
present invention, discussions utilizing terms such as "processing" or "computing"
or "calculating" or "determining" or "displaying" or the like, may refer to the
action and processes of a computer system, or similar electronic computing
device, that manipulates and transforms data represented as physical (electronic)
quantities within the computer system's registers and memories into other data
similarly represented as physical quantities within the computer system
memories or registers or other such information storage, transmission or display
devices.

The present invention also relates to apparatus for performing the
operations herein. This apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer. Such a computer
program may be stored in a computer readable storage medium, such as, but is
not limited to, any type of disk including floppy disks, optical disks, CD-ROMs,
and magnetic-optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of

media suitable for storing electronic instructions, and each coupled to a computer
5

10

15

20

WO 02/056172 PCT/US01/50415

system bus. Instructions are executable using one or more processing devices
(e.g., processors, central processing units, etc.).

The algorithms and displays presented herein are not inherently related to
any particular computer or other apparatus. Various general purpose machines
may be used with programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these machines will appear
from the description below. In addition, the present invention is not described
with reference to any particular programming language. It will be appreciated
that a variety of programming languages may be used to implement the teachings
of the invention as described herein.

In the following detailed description of the embodiments, reference is made
to the accompanying drawings that show, by way of illustration, specific
embodiments in which the invention may be practiced. In the drawings, like
numerals describe substantially similar components throughout the several views.
These embodiments are described in sufficient detail to enable those skilled in the
art to practice the invention. Other embodiments may be utilized and structural,
logical, and electrical changes may be made without departing from the scope of
the present invention. Moreover, it is to be understood that the various
embodiments of the invention, although different, are not necessarily mutually
exclusive. For example, a particular feature, structure, or characteristic described
in one embodiment may be included within other embodiments. The following

detailed description is, therefore, not to be taken in a limiting sense, and the scope
6

10

15

20

WO 02/056172

of the present invention is defined only by the appended claims, along with the
full scope of equivalents to which such claims are entitled.

The method and apparatus of the present invention provide a mechanism
for resolving address space conflicts between a guest operating system and a
virtual machine monitor (VMM). Figure 1 illustrates one embodiment of a virtual
machine environment 100, in which the present invention may operate. In this
embodiment, bare platform hardware 116 comprises a computing platform, which
may be capable, for example, of executing a standard operating system (OS) or a
virtual machine monitor (VMM), such as a VMM 112. A VMM, though typically
implemented in software, may export a bare machine interface, such as an
emulation, to higher level software. Such higher level software may comprise a
standard or real-time OS, although the invention is not limited in scope in this
respect and, alternatively, for example, a VMM may be run within, or on top of,
another VMM. VMMs and their typical features and functionality are well-
known by those skilled in the art and may be implemented, for example, in
software, firmware or by a combination of various techniques.

As described above, a VMM presents to other software (i.e., “guest”
software) the abstraction of one or more virtual machines (VMs). Figure 1 shows
two VMs, 102 and 114. Each VM includes a guest OS such as a guest OS 104 or
106 and various guest software applications 108-110. Each of the guest OSs 104
and 106 expects to control access to physical resources (e.g., memory and
memory-mapped 1/O devices) within the hardware platform on which the guest

0OS 104 or 106 is running and to perform other functions. However, in a virtual
7

PCT/US01/50415

10

15

20

WO 02/056172 PCT/US01/50415

machine environment, the VMM 112 should be able to have ultimate control over
the physical resources to provide protection from and between VMs 102 and 114.
The VMM 112 achieves this goal by intercepting all accesses of the guest OSs 104
and 106 to the computer’s physical resources. For instance, a guest deprivileging
technique may be used to enable the VMM 112 to intercept the above accesses.
Guest deprivileging forces all guest software to run at a hardware privilege level
that does not allow that software access to certain hardware resources. Asa
result, whenever the guest OS 104 or 106 attempts to access any of these hardware
resources, it “traps” to the VMM 112, i.e., the VMM 112 receives control over an
operation initiated by the guest operating system if this operation involves
accessing such hardware resources. It should be noted that any other technique
known in the art may be used to transfer control over a similar operation from the
guest OS 104 or 106 to the VMM 112.

When using guest deprivileging or other techniques enabling the VMM
112 to intercept accesses of the guest OSs 104 and 106 to the computer’s physical
resources, a portion of VMM code and/or data structures may be architecturally
required to reside in the same virtual address space as each of the guest OSs 104
and 106. However, since the guest OSs 104 and 106 are unaware of the VMM'’s
presence, they may attempt to access a region occupied by the VMM code and/or
data structures in the virtual address space associated with the guest OS 104 or
106. Such an attempt may result in collision between the code and data structures
of the guest OS and the VMM code and data structures in the virtual .address

space, causing an abnormal termination of an operation performed by the guest
8

10

15

20

WO 02/056172 PCT/US01/50415

OS5 104 or 106, or the VMM 112. The present invention provides a mechanism for
resolving such address space conflicts.

Figure 2 is a block diagram of a system 200 for resolving address space
conflicts between a VMM and a guest OS, according to one embodiment of the
present invention. System 200 includes bare platform hardware 214 that includes
a computing platform capable of executing a guest OS (e.g., guest OS 104 or 106),
a VMM (e.g., VMM 112), etc. Two separate address spaces 204 and 202 are
allocated for guest software and the VMM. That is, VM address space 204 is
allocated to hold code and data structures of the guest OS and other guest
software, and VMM address space 202 is allocated for VMM code and data
structures.

As described above, certain components of the VMM code and/or data
structures may be architecturally required to reside in the same address space as
the guest OS to enable the VMM to intercept the guest OS’s accesses to hardware
resources. For instance, for the IA-32 instruction set architecture (ISA), when
guest deprivileging is used to ensure control of the VMM over the guest OS’s
accesses to hardware resources, an interrupt-descriptor table (IDT), which
includes pointers to trap handling routines, is architecturally required to reside in
the same address space as the guest OS. One embodiment of the present
invention that supports guest deprivileging will be described in greater detail
below in conjunction with Figures 5 and 6. For other ISAs, various other portions

of VMM code and/ or data structures may be architecturally required to reside in

10

15

20

WO 02/056172 PCT/US01/50415

the same space address as the guest OS to enable the VMM’s control over accesses
made by the guest OS to hardware resources.

In one embodiment, the VMM code and structures are divided into two
portions. The first portion of the VMM includes a set of code and/ or data
structures that are required to reside in the address space of the guest OS, i.e., in
the VM address space 204. The second portion of the VMM includes the
remainder of the VMM code and data structures. In one embodiment, a software
program (referred as a virtual machine kernel 210) collects a minimal set of the
VMM code and/ or data structures that are required to be located in the same
address space as the guest OS. The remainder of the VMM code and data
structures is compiled as a separate program and located in the VMM address
space 202. The virtual machine kernel (VMK) 210 then maps itself into both the
VM address space 204 and the VMM address space 202.

Subsequently, when the guest OS attempts to access a region occupied by
the VMM code and/or data structures in the VM address space 204, the VMK 210
detects this attempt of the guest OS. In one embodiment, the VMK 210 receives
control over an event initiated by the guest OS if this event may potentially cause
an address space conflict between the guest OS and the VMM. Guest
deprivileging or any other hardware or software mechanisms known in the art
may be used to transfer control over such an event from the guest OS to the VMM
code and/or data structures residing in the VM address space 204.

The VMK 210 then evaluates this event to determine its cause. Upon

detecting that the event was caused by the attempt of the guest OS to access the
10

10

15

20

WO 02/056172 PCT/US01/50415

region occupied by the VMM code and/or data structures, the VMK 210 re-maps
itself into a different region within the VM address space 204 to allow the guest
OS to access the region previously used by the VMK 210. One embodiment of a
method for relocating the VMK 210 within the VM address space 204 is described
in greater detail below in conjunction with Figure 4.

Figure 3 is a flow diagram of one embodiment of a method 300 for
resolving address space conflicts between a VMM and a guest OS, according to
one embodiment of the present invention. Method 300 begins with dividing the
VMM into a first portion and a second portion (processing block 304). As
described above, the first portion includes a set of VMM code and/or data
structures that are architecturally required to reside in the same address space as
the guest OS. The second portion of the VMM includes the remainder of the
VMM code and data structures. In one embodiment (described in greater detail
below), the first portion of the VMM includes a set of trap handlers and an
interrupt-descriptor table (IDT). In alternative embodiments, the first portion
includes various other data structures and code of the VMM that must reside in
the same address space as the guest OS.

Next, a first address space (i.e., VM address space 204) is created to hold
code and data structures of the guest OS and other guest software (processing
block 306), and a second address space (i.e., VMM address space 202) is created
for the VMM code and data structures (processing block 308). In one

embodiment, these address spaces are created during the boot process.

11

10

15

20

WO 02/056172 PCT/US01/50415

Further, the first portion of the VMM is mapped into both the VM address
space and the VMM address space (processing block 310), and the second portion
of the VMM is loaded into the VMM address space (processing block 312).

At processing block 314, an attempt of the guest OS to access a region
occupied by the first portion of the VMM is detected. In one embodiment, such
an attempt is detected by transferring control over an event initiated by the guest
OS to the first portion of the VMM if the event may potentially cause an address-
space conflict between the guest operating system and the VMM. One
embodiment of detecting a potential address space conflict is described in greater
detail below in conjunction with Figures 5 and 6.

Afterwards, at processing block 316, the first portion of the VMM is relocated
to another region within the VM address space to allow access of the guest OS to
the region previously occupied by the first portion of the VMM. Any subsequent
attempt to access the new region occupied by the first portion of the VMM will
again result in its relocation within the VM address space. One embodiment of a
method for relocating a VMK, which contains the first portion of the VMM, is
shown in Figure 4.

Referring to Figure 4, after an address space conflict between the guest OS and
the VMM is detected (processing block 404), the VM address space is searched for
an unused region (processing block 406). At decision box 408, a determination is
made as to whether an unused region exists in the VM address space. If the
determination is positive, the VMK containing the first portion of the VMM code

and data structures is remapped into this unused region, and control is
12

10

15

20

WO 02/056172 PCT/US01/50415

transferred back to the guest OS, which may now access the region previously
used by the VMK.

Alternatively, if no unused region exists in the VM address space, i.e., the
guest OS has used the entire VM address space, then a random region is selected
within the VM address space (processing block 412), the content of the memory
located at the selected region is copied to a buffer in the VMM address space
(processing block 414), and the VMK is remapped into the selected region in the
VM address space (processing block 416). Subsequent memory accesses to this
selected region (i.e., new VMK region) are serviced through emulated memory
accesses from the buffer in the VMM address space that contains the original
content of the new VMK region. In one embodiment, the frequency of such
emulated memory references may be reduced by periodically relocating the VMK
to random regions within the VM address space until a region is found that is
infrequently used.

Figure 5 illustrates operation of a VMK that supports guest deprivileging,
according to one embodiment of the present invention. As described above, guest
deprivileging causes the guest OS to run at a lesser privileged level so that the
guest OS “traps” to the VMM whenever it attempts to issue privileged
instructions that operate on the processor system state. In one embodiment, the
VMM supporting guest deprivileging installs pointers to trap handling routines
(i.e., trap handlers 552) in the interrupt-descriptor table (IDT) 514. Some ISAs
(e.g., IA-32 ISA) require that the IDT 514 be resident in the currently active virtual

address space (i.e,, VM address space 504). In one embodiment, the entries in the
13

10

15

20

WO 02/056172 PCT/US01/50415

IDT 514 are task gates, which provide an address space switch. That is, when a
trap is generated, the IDT 514 is searched for a pointer to a trap handling routine.
If this pointer is a task gate, it will enable a direct switch to the VMM address
space, which contains a trap handling routine for the generated trap.
Accordingly, a trap handler corresponding to a task gate does not need to reside
in the VM address space, although the task gate itself must reside in the VM
address space. In another embodiment, entries in the IDT 514 are trap gates or
interrupt gates, which do not provide address space switches. Consequently, trap
handlers associated with such IDT entries must reside in the VM address space.
In addition, the VMM may place shadow versions of other data structures (e.g.,
global descriptor table) in the VM address space.

In one embodiment, the VMK 510 collects together a minimal set of trap
handlers and/or data structures (e.g., the IDT 514) that must be located in the VM
address space, maps them into both the VM address space 504 and the VMM
address space 502, and sets access rights of the pages holding the VMK 510 to the
most privileged level (e.g., the “supervisor” privilege level with ring =0 for 1A-32
microprocessors). As described above, the guest OS runs in the deprivileged
mode (e.g., the “user” mode with ring=3 for [A-32 microprocessors). As a result,
in one embodiment, the guest OS generates virtualization traps whenever it
attempts to access privileged machine resources, including the pages holding the
VMK 510 that are protected with the most privileged access rights.

In one embodiment, when a virtualization trap is generated, the IDT 514 is

searched for a corresponding pointer to a trap handler. In one embodiment, a
14

10

15

20

WO 02/056172 PCT/US01/50415

trap may need to be handled by the VMM-resident trap handler. In this
embodiment, the VMK performs two address space switches - one switch to
deliver the trap to the trap handler in the VMM address space 502, and a second
switch to transition back to the VM address space 504 after the trap has been
serviced by VMM-resident trap-handler.

Alternatively, a trap can be handled in a VMK-resident handler. For instance,
a trap may be caused by an instruction of the guest OS to reset a flag in the
processor’s register. Such a trap can be handled entirely in the trap handler 552,
without transferring control to the VMM in the VMM address space 502, and such
an implementation would result in better performance.

One type of virtualization traps is a conflict faqlt which is generated when the
guest OS attempts to access a region of the VM address space 504 that is currently
in use by the VMK 510. The VMK 510 handles these conflict faults by re-mapping
itself into a new region within the VM address space 504 as described in greater
detail above in conjunction with Figure 4.

Figure 6 is a flow diagram of a method 600 for handling virtualization
traps generated by a guest OS, according to one embodiment of the present
invention. Method 600 begins with setting access rights of the region occupied by
the VMK to a more privileged level than a privilege level associated with the
guest OS (processing block 604). For instance, all VMK pages may be mapped
with supervisor-only privilege (ring=0) and the guest OS may be set to run in the

deprivileged user mode (ring=3).

N

10

15

20

WO 02/056172

At processing block 606, a trap generated by the guest OS is received. The
trap is caused by an attempt of the guest OS to access privileged hardware
resources. At decision box 608, a determination is made as to whether the trap
can be handled internally by the VMK (e.g., in a VMK-resident trap handler). If
the trap is too complex to be handled by the VMK, it is delivered to the VMM
address space (e.g., to a VMM-resident trap handler) (processing block 610) and
then resumed back to the VM address space after the trap has been serviced by
the VMM (processing block 612). Afterwards, control over the event that caused
the trap is returned to the guest OS (processing block 620).

Alternatively, if the trap can be handled internally by the VMK, a
determination is made as to whether the trap was caused by an address space
conflict between the VMK code and data structures and the code and data
structures of the guest OS (decision box 614). If the trap was indeed caused by an
address space conflict, the VMK code and data structures are relocated to a new
region within the VM address space (processing block 618). Alternatively, the
trap is handled in a corresponding trap handler (processing block 616).
Afterwards, control over the event that caused the trap is returned to the guest OS
(processing block 620).

Figure 7 is a block diagram of one embodiment of a processing system.
Processing system 700 includes processor 720 and memory 730. Processor 720 can
be any type of processor capable of executing software, such as a microprocessor,

digital signal processor, microcontroller, or the like. Processing system 700 can be

PCT/US01/50415

10

WO 02/056172 PCT/US01/50415

a personal computer (PC), mainframe, handheld device, portable computer,
set-top box, or any other system that includes software.

Memory 730 can be a hard disk, a floppy disk, random access memory
(RAM), read only memory (ROM), flash memory, or any other type of machine
medium readable by processor 720. Memory 730 can store instructions for
performing the execution of the various method embodiments of the present
invention such as methods 300, 400 and 600 (Figures 3, 4 and 6).

It is to be understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments will be apparent to
those of skill in the art upon reading and understanding the above description.
The scope of the invention should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to which such claims

are entitled.

17

WO 02/056172 PCT/US01/50415

CLAIMS

What is claimed is:
1. A method comprising:
detecting that a guest operating system attempts to access a region
5 occupied by a first portion of a virtual machine monitor (VMM) within a first
address space; and
relocating the first portion of the VMM within the first address space to
allow the guest operating system to access the region previously occupied by the
first portion of the VMM.
10
10 2. The method of claim 1 wherein the first portion of the VMM includes a set
of VMM code and data structures that are architecturally required to reside in the

first address space.

3. The method of claim 1 wherein the first portion of the VMM includes a set
of trap handlers and an interrupt-descriptor table (IDT).
15
15 4 The method of claim 1 further comprising:
dividing the VMM into the first portion and a second portion;
creating the first address space associated with the guest operating system;

creating a second address space associated with the VMM,;

18

10

15

20

WO 02/056172 PCT/US01/50415

locating the second portion of the VMM in the second address space
associated with the VMM; and
mapping the first portion of the VMM into the first address space and the

second address space.

5. The method of claim 1 further comprising:
receiving control over an event initiated by the guest operating system
when the event may potentially cause an address space conflict between the guest

operating system and the VMM.

6. The method of claim 5 wherein receiving control further comprises:

setting access rights of the section occupied by the first portion of the VMM
to a more privileged level than a privilege level associated with the guest
operating system; and

receiving a trap caused by an attempt of the guest operating system to
access a hardware resource having a higher privilege level than the privilege level

associated with the guest operating system.

7. The method of claim 6 further comprising:
determining that the trap can be handled by the first portion of the VMM,;
executing code associated with the trap; and

returning control over the event to the guest operating system.

19

10

15

WO 02/056172 PCT/US01/50415

8. The method of claim 6 further comprising:

determining that the trap should be handled by the second portion of the
VMM;

delivering the trap to the second portion of the VMM;

passing control over the event to the guest operating system after code

associated with the trap was executed by the second portion of the VMM.

9. The method of claim 1 wherein relocating the first portion of the VMM
further comprises:
finding an unused region within the first address space; and

re-mapping the first portion of the VMM into the unused region.

10. The method of claim 1 wherein relocating the first portion of the VMM
further comprises:

determining that no unused region exists within the first address space;

selecting a random region within the first address space;

copying content of a memory located at the random region to the second
address space; and

re-mapping the first portion of the VMM into the random region.

11. The method of claim 10 further comprising:

20

10

15

20

WO 02/056172 PCT/US01/50415

receiving control over an event initiated by the guest operating system, the
event corresponding to an attempt of the guest operating system to access the
content of the memory previously located at the random region; and

accessing the copied content of the memory in the second address space.

12, The method of claim 11 further comprising periodically relocating the first
portion of the VMM to random regions within the first address space until finding

a region that is infrequently accessed.

13. Anapparatus comprising:

a first address space associated with a guest operating system;

a second address space associated with a virtual machine monitor (VMM);
and

a virtual machine kernel to detect that the guest operating system attempts
to access a region occupied by a first portion of the VMM within the first address
space and to relocate the first portion of the VMM within the first address space to
allow the guest operating system to access the region previously occupied by the

first portion of the VMM.

14. The apparatus of claim 13 wherein the first portion of the VMM includes a
set of VMM code and data structures that are architecturally required to reside in

the first address space.

21

10

15

WO 02/056172 PCT/US01/50415

15. The apparatus of claim 13 wherein the first portion of the VMM includes a

set of trap handlers and an interrupt-descriptor table (IDT).

16. The apparatus of claim 13 wherein the virtual machine kernel is to divide
the VMM into the first portion and the second portion, to locate the second
portion of the VMM in the second address space associated with the VMM, and to
map the first portion of the VMM into the first address space and the second

address space.

17. The apparatus of claim 13 wherein the virtual machine kernel is to receive
control over an event initiated by the guest operating system when the event may
potentially cause an address space conflict between the guest operating system

and the VMM.

18. The apparatus of claim 13 wherein the virtual machine kernel is to receive
control by setting access rights of the section occupied by the first portion of the
VMM to a more privileged level than a privilege level associated with the guest
operating system, and by receiving a trap caused by an attempt of the guest
operating system to access a hardware resource having a higher privilege level

than the privilege level associated with the guest operating system.

19. The apparatus of claim 18 wherein the virtual machine kernel is to further

determine that the trap can be handled by the first portion of the VMM, to execute
22

10

15

WO 02/056172 PCT/US01/50415

code associated with the trap, and to return control over the event to the guest

operating system.

20. The apparatus of claim 18 wherein the virtual machine kernel is to further
determine that the trap should to handled by the second portion of the VMM, to
deliver the trap to the second portion of the VMM, and to pass control over the
event to the guest operating system after code associated with the trap was

executed by the second portion of the VMM.

21. The apparatus of claim 13 wherein the virtual machine kernel is to relocate
the first portion of the VMM by finding an unused region within the first address

space and re-mapping the first portion of the VMM into the unused region.

22. The apparatus of claim 13 wherein the virtual machine kernel is to relocate
the first portion of the VMM by determining that no unused region exists within
the first address space, selecting a random region within the first address space,
copying content of a memory located at the random region to the second address

space, and re-mapping the first portion of the VMM into the random region.

23. The apparatus of claim 13 wherein the virtual machine kernel is to receive
control over an event initiated by the guest operating system, the event

corresponding to an attempt of the guest operating system to access the content of

23

10

15

15

WO 02/056172 PCT/US01/50415

the memory previously located at the random region, and to access the copied

content of the memory in the second address space.

24. The apparatus of claim 13 wherein the virtual machine kernel is to
periodically relocate the first portion of the VMM to random regions within the

first address space until finding a region that is infrequently accessed.

25. A system comprising:

a memory to include a first address space associated with a guest operating
system and a second address space associated with a virtual machine monitor
(VMM); and

a processor, coupled to the memory, to detect that the guest operating
system attempts to access a region occupied by a first portion of the VMM within
the first address space and to relocate the first portion of the VMM within the
first address space to allow the guest operating system to access the region

previously occupied by the first portion of the VMM.

26. The system of claim 25 wherein the first portion of the VMM includes a set
of VMM code and data structures that are architecturally required to reside in the

first address space.

27. The system of claim 25 wherein the first portion of the VMM includes a set

of trap handlers and an interrupt-descriptor table (IDT).
24

WO 02/056172 PCT/US01/50415

28. A computer readable medium that provides instructions, which when
executed on a processor, cause said processor to perform operations comprising;
detecting that a guest operating system attempts to access a region
occupied by a first portion of a virtual machine monitor (VMM) within a first
5 address space; and
relocating the first portion of the VMM within the first address space to
allow the guest operating system to access the region previously occupied by the

first portion of the VMM.

29. The computer readable medium of claim 28 comprising further instructions
10 causing the processor to perform operations comprising:
finding an unused region within the first address space; and

re-mapping the first portion of the VMM into the unused region.

30. The computer readable medium of claim 28 comprising further instructions
causing the processor to perform operations comprising: determining that no
15 unused region exists within the first address space;
selecting a random region within the first address space;
copying content of a memory located at the random region to the second
address space; and
re-mapping the first portion of the VMM into the random region.

20
25

WO 02/056172 PCT/US01/50415
1/7
- 100
102 114
108 110
N N\
Eppj App. 2 App. 1 App. 2
104 106
OS #1 0OS #2
112

Virtual Machine Monitor (VMM)

Bare Platform Hardware

116

FIG. 1

WO 02/056172 PCT/US01/50415
2/7

_— 200

VMM Address Space 202 VM Address Space 204
VMM Code and Guest OS/Apps.
Data Structures 206 Code and
= Data Structures 208
Virtual Machine Kernel 210
More Guest Code and
Data Structures 212

Bare Platform Hardware 214

FIG. 2

WO 02/056172

PCT/US01/50415
3/7
Start
] r304

Divide VMM into first portion and
second portion

Map first portion of VMM into the
first address space and the second
address space

\ 306
Create first address space associated
with guest OS
s 308
Create second address space
associated with VMM
i s 310

/‘312

Locate second portion of VMM in
the second address space

¥ -

314

Detect that guest OS attempts to
access a region occupied by first
portion of VMM within first address
space

-~

316

Relocate the first portion of VMM
within the first address space to
allow the guest OS to access the

region previously occupied by the

first portion of the VMM

\ 318
End

FI1G. 3

WO 02/056172 PCT/US01/50415

4/7
/ 400
402
Start
(404
Detect an address space conflict
i 406

Search for unused region within VM
address space

f410

Remap kernel into

Unused region Y

found?

the unused region

}
N
v (412

Select a random region within VM
address space

i 414

Copy memory content from the

random region to VMM address
space

, 416

Remap kernel into the random region

i

418
End

FIG. 4

PCT/US01/50415

WO 02/056172

57

S "OIA

00S \

0ZS 21empiIel] uuope|d areq

916 ele(] pue 9po)) 1sano) IO

dei] uonezifeninp sdes 1 spdung

e

sder],
xo[dwo)

805 (¢ Bury ur [re) ereq
pue apo)) 'sddy/SQ 1senDH

Samjonns
EJEp pUR 3p0d
SO 1sen3 ynm

$0G 9oudg Ssa1ppy WA

SI91[JUOD PIOAR
03 s1eof} ANA

016 (0 Sury) [pwdy WA

905 (¢ 3ury) ereqg
pue a9poD WINA

70S 29edg ssa1ppy ININA

WO 02/056172

602
Start

6/7

604

Set access rights of the region
occupied by VMK to a more
privileged level than a privilege level
associated with guest OS

606
C

Receive a trap caused by attempt of
guest OS to access hardware
resource having a higher privilege
level than privilege level associated
with guest OS

608

Can the trap be
handled by VMK?

614

as trap caused by
address space

N—» corresponding trap

PCT/US01/50415

600
/

f‘610

Deliver trap to

N——— VMM in VMM

address space

(—616

Handle the trap in a

l 612

Receive control
over the trap
serviced by VMM

conflict? handler

Y

v ~ 618

—
Relocate VMK within the VM
address space
]
-
N
~ 620

Return control to guest OS

622
End

FIG. 6

WO 02/056172

720
N

PROCESSOR

717

PCT/US01/50415

700

’d

730

/

FIG. 7

MEMORY

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

