
(12)
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

(11) Application No. AU 2012229110 B2STANDARD PATENT
AUSTRALIAN PATENT OFFICE

TitleHigh-level language for specifying configurations of cloud-based deployments
International Patent Classification(s)
G06F 9/06 (2006.01) GOOF 9/44 (2006.01)

Application No: 2012229110 (22) Date of Filing: 2012.03.15
WIPO No: WO12/125815
Priority Data

Number61/453,478 (32) Date2011.03.16 (33) CountryUS
Publication Date: 2012.09.20
Accepted Journal Date: 2013.10.31

Applicant(s) Google Inc.
Inventor(s)Risbood, Pankaj;Sarda, Parag Kacharulal;Kulkarni, Rahul S.;Jain, Rohit;Shenoy, Vittaldas Sachin;Sahasranaman, Vivek
Agent / AttorneyPizzeys, PO Box 291, WODEN, ACT, 2606
Related Art
US 7062718 B2 (Kodosky et al.) 13 June 2006
US 2011/0231280 A1 (Farah) 22 September 2011

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WIPO I PCT

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date
20 September 2012 (20.09.2012)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(10) International Publication Number

WO 2012/125815 A3

(51) International Patent Classification:
G06F 9/06 (2006.01) G06F 9/44 (2006.01)

(21) International Application Number:
PCT/US2012/029210

(22) International Filing Date:
15 March 2012 (15.03.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/453,478 16 March 2011 (16.03.2011) US

(71) Applicant (for all designated States except US):
GOOGLE INC. [US/US]; 1600 Amphitheatre Parkway,
Mountain View, California 94303 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): RISBOOD, Pankaj

[ΓΝ7ΙΝ]; C-704 Akme Ballet, Doddanakundi, Outer Ring
Road, Bangalore 560037 (IN). SARDA, Parag
Kacharulal [IN/IN]; A-205, Rohan Mihira, Chinnapan-
Halli, Bangalore 560037 (IN). KULKARNI, Rahul S.
[GB/IN]; #102 Alamanda Glendale Tata CHS, Off Pokhran
Road No. 2, Thane, Maharashtra 400610 (IN). JAIN, Ro-
hit [IN/IN]; F-404, Akme Ballet Apartments, Dod-
danekundi, Outer Ring Road, Bangalore 560037 (IN).
SHENOY, Vittaldas Sachin [IN/IN]; Flat A-7, La-Have,
Karat Road, West Nadakkavu, Calicut 673011 (IN).
SAHASRANAMAN, Vivek [IN/IN]; Flat 003 Windsor

Court, 17 Millers Road, Benson Town, Bangalore 560046
(IN).

(74) Agents: LIU, Jonathan W. et al.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

[Continued on next page]

(54) Title: HIGH-LEVEL LANGUAGE FOR SPECIFYING CONFIGURATIONS OF CLOUD-BASED DEPLOYMENTS

W
O

 20
12

/1
25

81
5 A

3

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for high-
level language for specifying configurations of cloud-based deployments. In one aspect, a method includes receiving a configuration
specification for configuring a cloud-based deployment, the configuration specification being written in a specification language and
requiring instantiation of respective class definitions of one or more classes, each class modeling a respective data or functional com
ponent of the cloud-based deployment using a group of configurable class parameters, and the respective class definition of each
class representing a requested state of the data or functional component modeled by the class; deriving a plurality of application pro -
gramming interface (API) calls for configuring the cloud-based deployment based on the class definitions of the one or more classes;
causing the plurality of API calls to be executed to configure the cloud-based deployment.

wo 2012/125815 A3 llllllllllllllllllllllllllllllllll^
- before the expiration of the time limit for amending the <88> Date of Publication of the international search report:

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

HIGH-LEVEL LANGUAGE FOR SPECIFYING CONFIGURATIONS OF CLOUD

BASED DEPLOYMENTS

RELATED APPLICATIONS

This application claims under 35 U.S.C. § 119(e) the benefit of U.S. Provisional

Application No. 61/453,478, filed March 16, 2011, which is hereby incorporated by

reference in its entirety.

BACKGROUND

This specification relates generally to cloud computing.

Cloud computing is a computing model developed to enable convenient, on-

demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be provisioned and

released quickly, dynamically, and with minimal manual management efforts and human

interactions with the service providers.

A few common cloud-based service models include, Software (e.g.,

commercially-available software applications) as a Service (SaaS), Platform (e.g., hosting

environment of software applications, such as virtual machines or application

frameworks) as a Service (PaaS), and Infrastructure (e.g., compute power, storage,

database, networking services, etc.) as a Service (IaaS). Before a cloud-based service is

made available to a cloud-service customer, various aspects of the service are configured

according to a configuration specification, such that when the service is deployed, it

meets the customer’s needs and usage demand.

SUMMARY

This specification describes technologies relating to use and management of cloud

computing environments.

In general, another innovative aspect of the subject matter described in this

specification can be embodied in methods that include the actions of: receiving a

configuration specification for configuring a cloud-based deployment, the configuration

specification being written in a specification language and requiring instantiation of

respective class definitions of one or more classes, each class modeling a respective data

or functional component of the cloud-based deployment using a group of configurable

class parameters, and the respective class definition of each class representing a requested

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

state of the data or functional component modeled by the class; deriving a plurality of

Application Program Interface (API) calls for configuring the cloud-based deployment

based on the class definitions of the one or more classes; and causing the plurality of API

calls to be executed to configure the cloud-based deployment.

These and other embodiments can each optionally include one or more of the

following additional features. The one or more classes include at least an existing base

class and at least a customized class extended from the existing base class, the customized

class inherits respective class parameters of the existing base class, and the customized

class modifies a value of at least one of the class parameters inherited from the existing

base class or includes at least one new class parameter not present in the existing base

class. The data or functional component modeled by each class is one of a virtual device

supporting a cloud-based environment, a service utilized in the cloud-based environment,

a software role performed by an installed application in the cloud-based environment, a

data package holding data to be used during deployment or operation of the cloud-based

environment, or a combination of one or more thereof. The specification language

supports dependency between class definitions, and a definition dependency between a

first class and a second class represents a deployment dependency between respective

components modeled by the first and the second class. The specification language

supports connectivity between class definitions, and a value assignment linking an

instance of a second class to a class parameter of a first class represents a connectivity

between respective components modeled by the first class and the second class.

Identifying, based on the respective class definitions of the one or more classes, a

plurality of data and functional components modeled by the one or more classes, and one

or more dependency and connectivity relationships existing among the plurality of data or

functional components; deriving a block diagram of a cloud-based environment based on

the identified plurality of data and functional components and the identified dependency

and connectivity relationships; and representing trigger events for dynamic

reconfiguration of the cloud-based environment in the block diagram. Identifying a

plurality of cloud-based deployments each having been carried out according to a

respective configuration specification written in the specification language; identifying at

least one base class whose class definition is used in multiple of the plurality of cloud

based deployments; monitoring respective performance of each of the multiple of the

plurality of cloud-based deployments; and calculating a quality metric of the at least one

base class based on aggregated performance of the multiple of the plurality of cloud

2

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

based deployments. Storing respective class definitions of a plurality of core classes of

the specification language, each core class corresponding to a modular component of a

cloud-based environment, each core class being extendable with additional class

parameters to configure the respective modular component; storing a mapping between

each of the core classes and a respective group of API calls, the respective group of API

calls for configuring the modular component associated with the core class according to

the class parameters of the core class; and storing a plurality of protocols for modifying

the respective groups of API calls associated with each core class to obtain a new group

of API calls for a new class definition derived from the core class. Deriving the plurality

of API calls for configuring the cloud-based deployment further comprises: deriving the

plurality of API calls based on the respective groups of API calls associated with one or

more of the plurality of core classes from which the one or more classes of the

configuration specification are derived, and based on the plurality of protocols for

modifying the respective groups of API calls. The plurality of protocols further includes

rules for imposing an ordering of the groups of API calls according to dependency and

connectivity relationships specified in class definitions written according to the

specification language.

In general, another innovative aspect of the subject matter described in this

specification can be embodied in methods that include the actions of: Receiving a

respective definition submission from each of a plurality of definition suppliers, wherein

the respective definition submission includes one or more class definitions written in a

specification language, and each class definition models a data or functional component

of a cloud-based deployment using a group of configurable class parameters and is

extendable to create at least one new class definition by a modification to one or more of

the group of configurable class parameters or an addition of one or more new class

parameters; and providing a user interface that presents the class definitions received

from the plurality of definition suppliers, for review and selection by a plurality of

definition users.

These and other embodiments can each optionally include one or more of the

following additional features. Receiving a plurality of distinct configuration

specifications written in the specification language, the plurality of distinct configuration

specifications each for configuring a distinct cloud-based deployment and including a

distinct class definition that extends from a same one of the class definitions received

from the plurality of definition suppliers; and configuring each of the distinct cloud-based

3

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

deployments based at least on the same one of the received class definitions and the

distinct class definition that extends therefrom in the distinct configuration specification

of the distinct cloud-based deployment. For each of the received class definitions:

monitoring usage of the class definition in a plurality of configuration specifications that

have been used to configure a plurality of cloud-based deployments; and recording, for

each use of the class definition in the plurality of configuration specifications, a credit to a

definition supplier of the class definition and a charge to a definition user associated with

the use. The usage of the class definition includes an instantiation of the class definition

in a respective configuration specification that has been used to carry out a respective

cloud-based deployment. The usage of the class definition includes an extension of the

class definition to create a new class definition that is instantiated in a respective

configuration specification used to carry out a respective cloud-based deployment.

Receiving a software submission from a software supplier, the software submission

including a software application to be deployed in a cloud-based environment and a

plurality of distinct configuration specifications each for deploying the software

application in the cloud-based environment in a distinct manner; and providing the

plurality of distinct configuration specifications for review and selection by a software

user. Receiving selection of one of the plurality of distinct configuration specification by

the software user; deploying the software application in the cloud-based environment

according to the selected distinct configuration specification; and recording a charge to

the software user and a credit to the software supplier based on a respective price

associated the selected distinct configuration specification.

In general, another innovative aspect of the subject matter described in this

specification can be embodied in methods that include the actions of: providing a

plurality of class definitions for selection, each class definition modeling a respective data

or functional component of a cloud-based environment using a group of configurable

class parameters, each class definition supporting instantiation and inheritance of the class

definition in a configuration specification for a cloud-based deployment; deriving

respective performance metrics associated with each of the plurality of class definitions

based on aggregated performance of multiple cloud-based deployments, wherein the

multiple cloud-based deployments had been carried out according to respective

configuration specifications that require instantiation of the class definition or a new class

definition derived from the class definition; and utilizing the respective performance

4

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

metrics associated with each of the plurality of class definitions in ranking the plurality of

class definitions.

These and other embodiments can each optionally include one or more of the

following additional features. Categorizing the plurality of class definitions based on the

respective data or functional components of the cloud-based environment modeled by the

plurality of class definitions; and ranking the plurality of class definitions within the class

definitions’ respective categories. Providing the plurality of class definitions for selection

further comprises: providing the respective performance metrics with each of the plurality

of class definitions for user review in a selection user interface. For each of the plurality

of class definitions: identifying a plurality of cloud-based deployments that had been

carried out according to respective configuration specifications that required instantiation

of the class definition or at least one new class definition derived from the class

definition; monitoring respective performances of the plurality of cloud-based

deployments; and associating the respective performances of the plurality of deployments

with the class definition. Deriving respective performance metrics associated with each of

the plurality of class definitions based on aggregated performance of multiple cloud

based deployments further comprises: for each of the plurality of class definitions:

identifying one or more data or functional components in the plurality of cloud-based

deployments that were configured according to the class definition or a new class

definition derived from the class definition; identifying one or more performance metrics

associated with the identified one or more data or functional components; and deriving

the respective performance metrics associated with the class definition by aggregating the

identified one or more performance metrics. The performance metrics include one or

more measures of latency, reliability, scalability, availability, or security. For each of the

plurality of class definitions: tracking a respective count of cloud-based deployments that

have been configured at least in part according to the class definition; and utilizing the

respective counts associated with the plurality of class definitions in the ranking of the

plurality of class definitions. For each of the plurality of class definitions: tracking a

respective count of problems encountered in cloud-based deployments that have been

configured at least in part according to the class definition; and tracking a number of

required changes to resolve the problems encountered in the cloud-based deployments

that have been configured at least in part according to the class definition; and utilizing

the respective counts of the problems and the respective numbers of required changes

associated with the plurality of class definitions in the ranking of the plurality of class

5

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

definitions. The respective numbers of required changes associated with the plurality of

class definitions are used to calculate respective weights given to the respective

performance metrics associated with the plurality of class definitions in ranking the

plurality of class definitions.

Particular embodiments of the subject matter described in this specification can be

implemented so as to realize one or more of the following advantages.

A high-level object-oriented specification language allows configurable

components of a cloud-based deployment to be modeled by a class definition that

includes a group of configurable class parameters. The object-oriented specification

language supports extension of an existing base class definition to create new class

definitions, and supports inheritance of class parameters from the existing base class

definition by the new class definitions. An administrative user of a cloud-based service

can customized a cloud-based deployment based on class definitions used in configuring

one or more generic deployments, such as by modifying class parameter values of the

class definitions, varying interrelationships between the classes, and supplementing

existing class parameters with new class parameters.

The object-oriented specification language allows multiple layers of abstraction to

be made on the different types of cloud-service components that are configurable. For

example, the high-level object-oriented specification language not only supports class

definitions that model hardware and virtual resources, but also software roles and service

roles served by software applications and services in a cloud-based deployment. In

addition, the object-oriented specification language provides syntax for specifying

dependency and connectivity between classes. Cloud components that involve multiple

sub-components and complex structures can be modeled by class definitions that refer to

multiple types of base classes and specify respective interrelationships between the base

classes.

A configuration specification can rely on existing class definitions to configure

some aspects of a cloud-deployment at a high level of abstraction, while customizing

other aspects at a more detailed level using newly derived class definitions. An

administrative user of a cloud-based service is able to control the level of customization

for a cloud-based deployment by choosing an appropriate set of class definitions to

include and instantiate in the configuration specification for the cloud-based deployment.

In addition, the object-oriented specification language allows many class

definitions that model common or special purpose cloud-service components to be

6

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

created and stored. These stored class definitions can be extended or reused as is in

configuration specifications of future deployments by different cloud-service customers.

This reuse of class definitions in specification configurations can improve the speed and

efficiency of the deployment process.

Because class definitions can be reused and shared among many cloud-service

customers, the efforts for developing suitable configuration specifications for the same or

similar purposes do not have to be duplicated by the cloud-service customers. A

marketplace for sharing reusable class definitions can be developed, such that a cloud

service customer can choose to purchase or license the use of existing class definitions

developed and provided by other cloud-service customers for a fee. In addition, software

applications can be provided with different types of configuration specifications (i.e., as

“config-wrapped” software solutions) that are suitable for different usage demands and

organizational infrastructures of the cloud-customers.

When a configuration specification of a cloud-based deployment is written in the

object-oriented specification language, the cloud-service provider is able to parse the

configuration specification to identify the class definitions that are involved in

configuring each data or functional component of the cloud-based deployment. Further,

when the deployment is carried out according to the configuration specification, the

cloud-service provider is also able to identify the underlying software or virtual resources

associated with each of the data or functional components of the deployment. Therefore,

the object-oriented specification language enables the cloud service provider to monitor

the performance of the data and functional components of the cloud-based deployment,

and associate the performance with the class definitions that are used to configure each of

the data and function components. Thus, the cloud-service provider can provide guidance

to the cloud-service customers on which parts of the configuration specification needs to

be modified to improve the performance of the deployment.

In some implementations, the cloud-service provider can generate a block diagram

for the cloud-based deployment based on the configuration specification. The

performance of the different components of the deployment can be visually represented

on the block diagram. Various reconfiguration triggers specified in the configuration

specification can also be represented in the block diagram. This visual representation

allows an administrator of the cloud-based deployment to adjust the configuration

parameters of the deployment timely and appropriately.

7

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

The object-oriented specification language allows class definitions to be reused in

multiple configuration specifications, and potentially by multiple cloud-service

customers. The cloud-service provider can track the performances of multiple cloud

based deployments that have been configured using configuration specifications

involving reused class definitions. For each reused class definition, the cloud-service

provider can evaluate the quality of the class definition based on the aggregated

performance of the multiple deployments that have been configured using the class

definition. In a marketplace for sharing reusable class definitions, a ranking or quality

scores of the class definitions based on the quality of the class definitions can be

provided. This ranking or quality scores help cloud-service customers to better select the

class definitions to reuse in their own cloud-based deployments. The ranking or quality

scores may also help providers of reusable class definitions to improve their class

definitions.

The details of one or more embodiments of the subject matter described in this

specification are set forth in the accompanying drawings and the description below.

Other features, aspects, and advantages of the subject matter will become apparent from

the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example cloud-computing environment.

FIG. 2A shows an example of a conventional configuration specification for a

cloud-based deployment.

FIG. 2B illustrates a resulting topology of the cloud-based deployment configured

according to the configuration specification shown in FIG. 2A.

FIG. 3A is an example configuration specification written in an example object-

oriented specification language.

FIG. 3B is an example module that includes reusable class definitions written in

the example object-oriented specification language.

FIG. 3C is an example configuration specification that utilizes the reusable class

definitions shown in FIG. 3B.

FIG. 4 is a block diagram of an example cloud-service manager of an example

cloud-service provider.

FIG. 5 is a block diagram showing a topology of an example cloud-based

deployment configured according to the configuration specification shown in FIG. 3C.

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 6 is a flow diagram of an example process for processing a configuration

specification written in an object-oriented specification language.

FIG. 7 is a flow diagram of an example process for deriving a block diagram

showing a topology of a cloud-based deployment based on the configuration specification

of the cloud-based deployment.

FIG. 8 is a flow diagram of an example process for monitoring performance of

cloud-based deployments and associating the performance with class definitions that are

used in configuring the cloud-based deployments.

FIG. 9 is a flow diagram of an example process for evaluating the quality of a

reused class definition based on aggregated performance of multiple cloud-based

deployments that were configured at least in part based on the reused class definition.

FIG. 10 is a flow diagram of an example process for deriving API calls for

configuring a cloud-based deployment based on class definitions used in a configuration

specification.

FIG. 11 is a flow diagram of an example process for providing a platform for

sharing reusable class definitions.

FIG. 12 is a flow diagram of an example process for configuring multiple distinct

cloud-based deployments based on distinct configuration specifications that all use at

least one common reusable class definition.

FIG. 13 is a flow diagram of an example process for charging definition users and

crediting definition suppliers based on usage of the reusable class definitions provided by

the definition suppliers.

FIG. 14 is a flow diagram of an example process for providing a platform for

selling “configuration-wrapped” software solutions.

FIG. 15 is a flow diagram of an example process for charging software users and

crediting software providers based on the selection of configuration-wrapped software

solutions by software users.

FIG. 16 is a flow diagram of an example process for utilizing aggregated

performance metrics of multiple cloud-based deployments in ranking reusable class

definitions that have been used in configuring the multiple cloud-based deployments.

FIG. 17 is a flow diagram of an example process for categorizing reusable class

definitions and ranking the reusable class definitions within their respective categories.

9

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 18 is a flow diagram of an example process for associating performances of

multiple cloud-based deployments with a class definition that was used to configure the

multiple cloud-based deployments.

FIG. 19 is a flow diagram of an example process for deriving performance metrics

associated with a reused class definition based on aggregated performance of multiple

deployments.

FIG. 20 is a flow diagram of an example process for utilizing multiple factors in

ranking reusable class definitions.

Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

In a cloud computing environment, cloud-service customers (e.g., end users or

enterprises) obtain access to software, platform, and/or infrastructure services through one

or more networks (e.g., the Internet). The cloud-service customers are able to scale the

service level (e.g., in terms of service type, quality, and amount) up and down as needed,

for example, through configuration user interfaces provided by the cloud-service

providers, and/or through programmably-established configuration specifications stored

at the cloud-service providers. Correspondingly, a cloud-service provider pools resources

and serves its customers via a multi-tenant model, where physical and virtual resources

are assigned and reassigned, configured and reconfigured according to customer

demands. The locations of the physical resources underlying the cloud infrastructure are

not exposed to the cloud-service customers and can change dynamically.

FIG. 1 is a block diagram illustrating an example cloud-computing environment

100. In the example cloud-computing environment 100, cloud-service customers (e.g.,

102a, 102b, 102c) communicate with a cloud-service provider 104 using a customer

device through one or more networks 106. The cloud-service customers include end

users of software applications provided by the cloud-service provider 104, such as in a

“Software as a Service” (SaaS) model. The cloud-service customer can also include

enterprise customers that receive platform and/or infrastructure services from the cloud

service provider 104, such as in the “Platform as a Service” (PaaS) and/or “Infrastructure

as a Service” (IaaS) models. The software application services, platform services, and

infrastructure services provided by the cloud-service provider 104 are developed by in

house or third-party service developers 108, and made available to the cloud-service

10

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

customers through the cloud-service provider 104. A cloud-service customer may

employ more than one type of services from the cloud-service provider 104.

In one example, the cloud-service provider 104 is conceptually structured in

multiple layers. The lowest layer is the firmware and hardware layer 110 on which other

layers of the cloud-service provider 104 are built. The firmware and hardware layer 110

includes generic contributing nodes (e.g., data centers, computers, and storage devices)

geographically distributed across the Internet and provide the physical resources for

implementing the upper layers of the cloud service provider 104.

Above the firmware and hardware layer 110 is the software kernel layer 112. The

software kernel layer 112 includes the operating system 111 and/or virtual machine

manager 113 that host the cloud infrastructure services provided by the cloud-service

provider 104. The software kernel layer 112 controls and communicates with the

underlying firmware and hardware layer 110 through one or more hardware/firmware-

level application programming interfaces (APIs). The hardware/firmware-level APIs can

be provider-specific and implemented to support Hypertext Transfer Protocol (HTTP) and

HTTP Secure (HTTPS) based communications protocols. Examples of provider-specific

APIs include Amazon Web Services APIs, Google App Engine APIs, and Microsoft SQL

Azure APIs.

The infrastructure services provided by the cloud-service provider 104 include

virtualized resources, such as virtual machines, virtual storage (e.g., virtual disks), virtual

network appliances (e.g., firewalls), and so on. The infrastructure servicers also include

virtualized services, such as database services, networking services, file system services,

web hosting services, load balancing services, MapReduce services, message queue

services, map services, e-mail services, and so on. Each of these infrastructure services

can be employed by a cloud-service customer and deployed in an infrastructure service

layer 114 above the software kernel layer 112.

The scale and various aspects (e.g., data, connectivity, and dependency

relationships within and between service components) of an infrastructure service

deployment are configurable by an administrator user of the cloud-service customer. In

one example, the administrator user submits a configuration specification to the cloud

service provider 104 via a frontend interface 120 of the cloud-service provider 104. The

cloud-service provider 104 translates the configuration specification into instructions

(e.g., API calls) to the infrastructure service layer 114 and the kernel layer 112 according

to the APIs of the involved infrastructure services and the APIs of the underlying

11

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

software kernel layer 112. These instructions are executed to provision and configure the

infrastructure services requested in the configuration specification of the deployment. For

example, a configuration specification can be translated into infrastructure and kernel

level APIs calls that create, re-create, move, or delete components (e.g., virtual machines

and services) and assign or change attributes (e.g., memory and CPU allocations, network

settings, disk sizes and volumes) of the components.

In addition to the infrastructure services, the example cloud-service provider 104

also provide platform services, such as an environment (e.g., Linux, Solaris, Microsoft

Windows, etc.) for running virtual machines or a framework (e.g., .NET, Java, Oracle

Database, etc.) for developing and launching a particular type of software applications.

The platform services are implemented in a platform service layer 116 over the

infrastructure service layer 114, and can employ one or more infrastructure services

configured in a particular manner. Configuration of platform services can be

accomplished by program code written according to the APIs of the platform services

and, optionally, the APIs of the infrastructure services that are employed in enabling the

platform services.

In this example, the cloud-service provider 104 also provides software application

services in an application service layer 118. A software application (e.g., a

commercially-available software application) can be installed on one or more virtual

machines or deployed in an application framework in the platform service layer 116. The

software application can also communicate with one or more infrastructure service

components (e.g., firewalls, databases, web servers, etc.) in the infrastructure layer 114.

The installation and configuration of the software application in the application service

layer 118 can be accomplished through APIs of the software itself and the APIs of the

underlying platform and infrastructure service components.

To manage the deployment and operation of the cloud-based services provided to

the cloud-service customers (e.g., 102a, 102b, 102c), the example cloud-service provider

104 includes a cloud-service manager 122. The example cloud-service manager 122

communicates with the frontend interface 120 to receive service requests from the cloud

service customers. The example cloud-service manager 122 is further responsible for the

managing of the cloud resources and services, including service enrollment, provisioning,

coordination, monitoring, scheduling, etc. As described in this specification, the example

cloud-service manager 122 also includes tools and libraries for translating the user

requirements (e.g., as expressed in one or more configuration specifications and service

12

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

level agreements (SLAs)) in the different service layers (e.g., the layers 114, 116, and

118) into physical resources demands (e.g., as expressed in one or more kernel and

hardware/firmware-level API calls).

Although the example cloud-service provider 104 provides all three types of

cloud-based services, in some implementations, fewer or more types of services may be

provided. In some implementations, the cloud-service provider 104 may outsource some

of the cloud services or portions of a service to other cloud-service providers. The cloud

service manager 120 may implement API calls to these other cloud-service providers for

supporting some of its services to the cloud-service customers. In addition, the

conceptual layers of the cloud-service provider 104 shown in FIG. 1 are merely

illustrative. Other conceptual structure of a cloud-service provider may be provided, for

example, depending on the types of services actually offered by the cloud-service

provider.

In this example, the cloud-service customers can employ cloud-based services

offered in each of the services layers 114, 116, and 118. Depending on the type of

services that a cloud-service customer has employed, the cloud-service customer is

granted different levels of control in configuring the services. For example, if a software

application service is employed, an administrator user of the cloud-service customer is

given control over how the software application is configured, but controls over the

underlying platform and infrastructure services supporting the software application

remains with the cloud-service provider 104. If a platform service is employed, an

administrative user of the cloud-service customer is given control over how the platform

and/or application frameworks are configured, but the control over the infrastructure

services that support the platform and/or application frameworks remains with the cloud

service provider 104. Similarly, if infrastructure services are employed, an administrative

user of the cloud-service customer is given control over the particular infrastructure

services employed, but not the underlying kernel layer 112 and firmware and hardware

layer 110.

In the cloud-computing environment 100, the cloud-service customers access the

cloud-based services using data processing apparatus such as personal computers, smart

phones, and tablet computers. Depending on the type of service being employed,

different user interfaces or programming interfaces may be used to communicate with the

cloud-service provider 104.

13

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

For example, if a software application service is being employed, an end user can

access and use the software application through a web browser. If platform or

infrastructure services are being employed, a user of the service (e.g., an administrator

user of a cloud-service customer) can access a configuration user interface that includes

administrative functions to control and configure the services. The administrative

functions include, for example, starting or stopping virtual machines, managing cloud

storage, installing and deploying software on virtual machines, or setting up web servers,

etc. In addition, a cloud-service provider 104 can optionally allow an administrator user

of a cloud-service customer to write program code according to various provider-,

platform-, framework-, and/or service- dependent application program interfaces (APIs)

to control and configure various aspects of the services that the cloud-service customer

receives. In some implementations, if an open standard is used for a cloud-computing

environment, provider-, platform-, framework-, and service- independent APIs can be

used to control and configure the services as well.

When configuring a cloud-based service for deployment, a service user or service

developer provides one or more configuration files to the cloud-service provider 104.

The configuration files set forth the desired initial state of the service expressed in terms

of various configuration parameters. Typically, the configuration file is written in a

structured way according to the rules and syntax provided or recognized by the cloud

service provider 104, such that the configuration file will be parsed and interpreted

correctly by the cloud-service provider 104.

FIG. 2A is an example of a conventional configuration specification 200 for

deploying a simple web application in a cloud-computing environment. The example

configuration specification 200 is written in an Extensible Markup Language (XML),

which is a commonly used language for specifying configurations for cloud-based

deployments. The example configuration specification 200 is provided to a cloud-service

provider in a text file. The cloud-service provider uses tools (e.g., a parser or API

translator) that parse the configuration file according to the markups (e.g., the MXL tags,

elements, and attributes, etc.) in the configuration file and converts the requirements

specified in the configuration file into one or more sets of API calls. After the

appropriate sets of API calls are determined, the cloud-service provider executes the API

calls to carry out the deployment according to the requirements set forth in the

configuration file.

14

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 2B illustrates the resulting topology 208 of the web application service after

it is deployed according to the configuration specification 200. First, according to the

code block 202, a single Grid Service Manager (GSM) 210 is deployed on a single GSM

virtual machine 212. After the GSM 210 is deployed on the GSM machine 212, two Grid

Service Containers (GSCs) 214a and 214b are deployed, each GSC on a respective GSC

machine (216a or 216b), as specified by code block 204. Then, according to the code

block 202, the GSM installs a copy of the web application software (e.g., application copy

218a or 218b) within each of the two GSCs 214a and 214b. According to code block

206, a load balancer service 220 is started on a load balancer machine 222, and used to

direct traffic (e.g., HTTP requests from client browsers 224) to the two GSC machines

216a and 216b, and to funnel back responses prepared by the web applications running on

the GSC machines 216a and 216b.

As illustrated in FIGS. 2A and 2B, the example conventional configuration

specification 200 relies on nested markup constructs (e.g., code blocks 202, 204, and 206)

to describe the components of a deployment and relationships among the components.

The user writing the configuration specification 200 needs to be familiar with the details

within each markup construct that goes into the configuration specification 200 and the

markup construct’s meaning to the API translator of the cloud-service provider. For a

large and complex deployment, the configuration file can become very long and complex

with many layers of markups and duplicate statements. Furthermore, the possibility of

code reuse decreases as a configuration specification becomes long and complex, because

customization of the configuration specification for another deployment would require

many changes and debugging the customized configuration file would also become more

difficult.

As disclosed in this specification, instead of providing a configuration

specification written in a markup language or through a graphical user interface, a cloud

service customer or service developer can provide a configuration specification written in

a high-level object-oriented specification language. The high-level object-oriented

specification language allows components (e.g., infrastructures, storage devices, services,

software package to be installed, and “software roles” played by installed software

applications) of a cloud-based deployment to be specified as instances of one or more

reusable and modifiable classes, where each class models a component of the deployment

using a group of configurable class parameters. The value of each class parameter can be

specified, reused, or modified for particular deployments using the syntax and functions

15

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

provided by the object-oriented specification language. The instance of each reusable and

modifiable class declares the desired state of the component that is modeled by the class.

As described in this specification, inheritance of class definitions is supported by

the high-level object-oriented specification language. New class definitions can be

provided based on statements relating or modifying one or more existing class definitions

using the high-level specification language. Statements relating different classes capture

the relationships between multiple aspects (e.g., data or functional components) of a

deployment. Examples of such relationships include the dependencies between software

installations and service activations in a deployment, the connectivity between multiple

software roles in a deployment, and the connectivity between a software role and a

service or virtual device in a deployment. New class definitions can also be created by

extending an existing class definition with the addition of new class parameters and/or

methods. A user can customize a deployment by specifying a new class derived from one

or more existing base classes and instantiate the new class.

According to this specification, a cloud-service provider is able to compile a

configuration specification written in the high-level object-oriented specification

language into a set of API calls, based on the requirements specified by the class

definitions included in the configuration specification. The inclusion of a class definition

in a configuration specification refers to a request in the configuration specification to

instantiate the class definition or to instantiate a new class definition derived from the

class definition.

In some implementations, different service layers of the cloud-service provider

and different services within the same layer have different APIs. To compile the

configuration specification written in the object-oriented specification language, the

cloud-service provider stores a set of rules and protocols for translating each of a set of

most basic class definitions (or core class definitions) of the specification language to a

respective group of API calls. The group of API calls for each core class definition

conforms to the API of the type of components modeled by the core class definition. The

compiler is then able to use the set of rules and protocols to translate all class definitions

derived from the core class definitions into an appropriate combination of API calls to

configure all of the components of a particular deployment. In some implementations,

the API calls are sent to and executed on one or more servers of the cloud-service

provider. Alternatively, some of the API calls may be passed to an intermediary

component of the cloud-service provider or a third-party service provider, where the API

16

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

calls are further processed into lower-level API calls and carried out by the sub

components of the intermediary component or third-party service provider.

In some implementations, the high-level object-oriented specification language

also includes syntax for specifying triggers for scaling or dynamically reconfiguring

various aspects of the deployment. For example, a class definition that models a virtual

machine can include one or more class parameters for a scaling policy, such that the

compiler can derive API calls to dynamically adjust the number of virtual machines

deployed based on various performance metrics monitored by the cloud-service manager

(e.g., the cloud-service manager 122 shown in FIG. 1).

The following examples (shown in FIGS. 3A-3C) illustrate the syntax and various

properties of an example object-oriented specification language, and how a cloud-based

deployment can be specified according to the example object-oriented specification

language, and based on existing and newly derived class definitions.

In the first example, an example configuration specification 300 written in an

example object-oriented specification language is shown in FIG. 3A. The deployment

made according to this configuration specification 300 is for launching a virtual machine

with a web server (e.g., an Apache web server) installed and serving the files present in a

data package.

This example assumes the existence of a number of base class definitions that the

compiler is able to parse and translate to API calls. The existing base class definitions

include a set of core class definitions provided by the compiler and possibly other class

definitions that extend from one or more of the core class definitions either directly or via

one or more intermediate class definitions.

In some implementations, the existing base class definitions are grouped into

modules (e.g., modules “utils,” “std” shown in FIG. 3A), and classes included in each

module are referenced in a configuration specification by a module name followed by a

class name (e.g., “std.Parameters,” “utils.ConfiguratorLAMP,” “std.DataPackage,”

“std.Role,” “utils.PublicTCPFirewall,” “utils.BaseDeployment” as shown in the

specification 300). Each of the base class definitions specifies an initial configuration

state of a corresponding component of a cloud-based deployment, subject to the

modifications and component relationships set forth in the configuration specification

300.

As shown in FIG. 3A, the configuration specification 300 includes new class

definitions that extend from the existing base class definitions. For example, a new class

17

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

“Params” extends from the base class “std.Parameters,” a new class

“SimpleHostingPackage” extends from the base class “std.DataPackage,” a new class

“SimpleHostingVM” extends from the base class “utils.Configurator.LAMP,” a new class

“SimpleHostingRole” extends from the base class “std.Role,” a class

“SimpleHostingFirewall” extends from the base class “utils.PublicTCPFirewell,” and a

class “SimpleHostingDeployment” extends from the base class “utils.BaseDeployment,”

as shown by the new class definitions 302, 304, 306, 308, 310, and 312, respectively.

The configuration specification 300 triggers the deployment of a simple hosting

application by creating an instance of the “SimpleHostingDeployment” class (e.g., as

shown by statement 314), which in turn creates instances of other classes from which the

“SimpleHostingDeployment” class is derived.

In this example, the “SimpleHostingDeployment” class definition 312 customizes

the definition of the base class “utils.BaseDeployment” by modifying two class

parameters, a “roles” parameter and a “firewall” parameter. The “roles” parameter

specifies the respective software roles that one or more installed software packages are

supposed to play in the deployment. The “firewall” parameter specifies that a firewall

service is to be included as part of the deployment. In this case, the class definition 312

specifies that a single software role is to be included, which is represented by an instance

of the “SimpleHostingRole” class. The class definition 312 further specifies that the

firewall service to be included in this deployment is represented by an instance of the

“SimpleHostingFirewall” class. According to the properties of the object-oriented

specification language, the “SimpleHostingDeployment” class inherits other class

parameters defined in the base class “utils.BaseDeployment” without further

modification. These other class parameters describe other aspects of the deployment that

need not be further customized for this simple hosting deployment.

According to the class definition 312, instantiation of the

“SimpleHostingDeployment” class requires instantiation of the “SimpleHostingRole” and

the “SimpleHostingFirewall” classes as well. As shown in FIG. 3A, the

“SimpleHostingRole” class definition 308 extends from the base class “std.Role.” Both

classes are based on a “software role” model that categorizes a software installation

according to the role that the software installation plays in a cloud-based deployment.

For example, a software package may be installed to play a role of a webhost, a frontend,

a backend, a communication interface, and so on. Depending on the particular role that a

software installation plays, different parameters may be used to configure the software

18

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

installation. Each configurable parameter for the software role can have a corresponding

class parameter or function in the class definition created based on the “software role”

model.

In one example, in addition to an identifier or name of the role that the software

installation plays in a deployment, a “software role” model can include model parameters

for configuring various aspects of the software installation, including the virtual machines

on which the software is to be installed, the location of the software binary, instructions

on which installer program should be used to install the software, and so on. If the

software installation requires other services or software installations to be performed first,

this dependency is optionally included in the “software role” model as well. Example of

dependency relationships are “start after” or “stop before.” Other dependency types (e.g.,

install on the same virtual machine, etc.) can be supported as well.

In this example in FIG. 3A, the class definition 308 for the “SimpleHostingRole”

class specifies that the role of the software installation in the deployment is to serve as a

“webhost.” How the “webhost” software is to be deployed is made known to the

compiler through the class definition of the “simplehosting.webhosf ’ class. In this

example, the “simplehosting.webhosf’ class definition includes the configurations of a

simple apache web server, which is already written and made known to the compiler.

When the “SimpleHostingRole” class is instantiated, the “simplehosting.webhost” class is

instantiated as well.

The class definition 308 for the “SimpleHostingRole” class further declares that

the data package that is needed to run this webhost is represented by an instance of the

“SimpleHostingPackage” class, and that the webhost is to be installed on virtual machines

that are represented by instances of a “SimpleHostingVM” class.

In this example, each of the “roleName,” “moduleName,” “dataPackages,” and

“vms” are parameters of the “std.Role” class, and are customized in the

“SimpleHostingRole” class definition 308. Other class parameters of the “std.Role” class

are inherited by the “SimpleHostingRole” class without modification.

The class definition 308 of the “SimpleHostingRole” class also defines a few new

parameters, such as the “serving_domain” and “document_root” parameters whose values

are assigned either indirectly through another parameter name (e.g., “serving_domain” of

the “Params” class 302) or by a direct value entry (e.g., “/var/www/static”). In this

example, only one software role is defined, so no dependency between software roles is

19

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

specified for the software role (e.g., the “SimpleHostingRole”) in terms of installation or

execution.

With respect to the firewall component of the deployment, the class definition 310

of the “SimpleHostingFirewall” class is based on the existing “utils.PublicTCPFirewall”

class definition. In this example, the “utilis.PublicTCPFirewall” class defines a public

firewall with Transmission Control Protocol (TCP) set as the protocol. The only

parameters of the “PublicTCPFirewall” class that are modified for this deployment are the

“target” and “ports” parameters. In the class definition 310, the target of the firewall is

represented by an instance of the “SimpleHostingRole” class, while the port of the

firewall is set to port “80.” Other parameters (e.g., the “source” and the “protocol”

parameters) that are needed to configure the firewall are specified in the base class

definition of “PublicTCPFirewall” and are inherited by the “SimpleHostingFirewall”

class without modification. In this example, a connectivity between the firewall

component and the simple hosting software role (e.g., represented by an instance of the

“SimpleHostingRole” class) is specified by the value assignment to the “target”

parameter.

In this example, the class definitions of the “SimpleHostingFirewall” and the

“utils.PublicTCPFirewall” classes are both based on a firewall service model. Unlike a

“software role” model, a service model does not need to include parameters for the

underlying virtual machines, disks, or software packages. Instead, these aspects are

controlled by the cloud-service provider and not subject to the configuration by the users

of the service. Like in a “software role” model, a service model also optionally includes

parameters that specify dependences between services and between services and software

roles. In this example, the firewall component is connected to the web server component,

but no dependencies of the firewall service are specified for this simple hosting

deployment.

As set forth earlier and shown in FIG. 3A, the class definition 308 of the

“SimpleHostingRole” class requires instantiation of the “SimpleHostingPackage” class

and the “SimpleHostingVM” class. The class definition 304 of the

“SimpleHostingPackage” class specifies the source of the data (e.g., “data” in the current

directory”) that is to be copied to the virtual machine hosting the “SimpleHostingRole.”

The class definition 304 further specifies a destination directory (e.g., “/var/www/static”)

of the copied data on the virtual machine. When the deployment is carried out according

to the configuration specification 300, the data package “data” is copied from the

20

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

directory in which the configuration file resides, to the destination directory

“/var/www/static” on the virtual machine that has been deployed according to the

“SimpleHostingVM” class definition 306.

As shown in FIG. 3A, the “SimpleHostingVM” class definition 306 extends from

the “utils.ConfiguratorLAMP” class definition. Both classes are based on a virtual

machine model and specify how a virtual machine can be configured. In this example,

the “utils.ConfiguratorLAMP” class configures a customized virtual machine that already

has an Apache web server installed. Therefore, by extending from the

“utils.ConfiguratorLAMP” class rather than a standard virtual machine class, a user can

simplify and speed up the configuration process. The “SimpleHostingVM” class

definition 306 also specifies the number of virtual machines to be deployed in this

deployment and the external IP addresses to be bound to the virtual machines, through the

newly added “replicas” and “staticIP” class parameters. Other parameters that are

commonly used to configure a virtual machine or virtual machines for supporting a

software role include, for example, configuration parameters for the CPU and memory

requirements of the virtual machine(s), storage disks to be attached to the virtual

machine(s), read-only storage sources attached to the virtual machine(s), IP addresses,

network interfaces of the virtual machine(s), the data center location of the virtual

machine(s), and so on. Each of these virtual machine model parameters is optionally

included as a class parameter in a virtual machine class definition or another class that

extends from a virtual machine base class definition.

Optionally, a special “Params” class is included in the configuration specification

of a deployment, such as that shown in the example configuration specification 300.

Parameter values can be provided in this class definition and used to assign values to

parameters in other class definitions that are included in the same configuration file. For

example, the values of parameters “replica_count,” “serving_domain,” and “ip_array” are

injected into the class definitions 306 and 308 through references made to the respective

names of parameters.

As illustrated in the example configuration specification 300, it is possible to

create class definitions for different components of a cloud-based deployment based on

different component models. A high-level object-oriented specification language can be

developed based on models of various types of infrastructures, storage, services, and

software roles that commonly occur in a cloud-based computing environment. Each

model describes a corresponding infrastructure component, storage, service, or software

21

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

role using a number of model parameters. Core class definitions that represent generic

initial configuration states of some most common and basic components of the cloud

based environment can be created based on these component models. As more complex

components can be built from combinations of multiple basic components, class

definitions that represent the initial configuration states of more complex components can

be created from multiple core class definitions and/or other class definitions that are

derived from the core class definitions.

A compiler of the high-level object-oriented specification language is created to

parse the class definitions created based on these component models, extract the

configuration requirements expressed by the values of the class parameters, and translates

the requirements into a proper set of API calls for configuring the types of components

represented by these component models. In some implementations, a compiler is

implemented as a software program or script that reads a configuration file and outputs a

set of API calls. In some implementations, the compiler also direct the API calls to

appropriate components of the cloud-service provider or third-party providers for

execution.

The example in FIG. 3A has illustrated class definitions developed based on an

example software data package model, an example virtual machine model, an example

“software role” model, an example firewall service model, and an example deployment

model, respectively. As an additional example, an example storage model includes model

parameters for configuring aspects of a storage option of a deployment, such as the size of

the storage, mounting points of the storage, and so on. In some implementations, a

storage model optionally includes a scaling policy for dynamically adjust the size of the

storage based on monitored usage of the storage. Furthermore, in addition to a firewall

service, a cloud-based environment can include many platform and infrastructure

services, such as a database service, a message queue service, a load balancing service, a

map service, a MapReduce service, and so on. Different service models can be developed

for each of these cloud-based services, and class definitions for configuring the different

services can be created based on the different service models.

As illustrated by the example of FIG. 3 A, an object-oriented specification

language enables the creation of class hierarchies that represent different levels of

customization for components in various layers of the cloud-computing environment. A

configuration specification written in the object-oriented specification language can reuse

existing class definitions, either by extending from an existing class definition or referring

22

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

□ 1

to an instance of an existing class definition when assigning a value to a class parameter.

Reusing existing class definitions simplifies the configuration specification for a new

deployment. Furthermore, when reusing an existing class definition, a user only needs to

know the configuration state that can be accomplished by the existing class definition, but

not all the literal details set forth within the class definition to accomplish that

configuration state.

In addition, class definitions of highly complex components (e.g., components

involving multiple services, multiple data sources, and multiple levels of deployments)

can be developed based on multiple existing class definitions, with or without

modification to the class parameters of the existing class definitions. These highly

complex class definitions can be reused by a user in a new deployment, without in depth

understanding of these complex class definitions on all levels.

By choosing the appropriate base classes to customize and modify in a new

configuration specification, the user also gains more refined control over particular

aspects of the deployment while leaving other aspects of the deployment generic to

definitions of the base classes.

FIG. 3B shows some base class definitions that are stored (e.g., in a “lamp”

module 320) and reused in configuration specifications of multiple cloud-based

deployments. These base class definitions are tailored for various Linux Apache MySQL

Perl/Python (LAMP)-based application deployments. Each class definition includes some

commonly used class parameters for configuring a respective data or functional

component of a LAMP-based application deployment.

FIG. 3C provides an example configuration specification 340 that utilizes the base

classes in the “lamp” module 320 to deploy a Mantis debugging software in a LAMP

based application deployment. By utilizing the based class definitions in the “lamp”

module 320, the configuration specification 340 for the Mantis application deployment

does not need to include the details of how a basic LAMP-based environment is

configured, and only needs to customize aspects that are particular to the Mantis

application deployment.

The following describes how the based class definitions in the “lamp” module 320

are used to establish a basic LAMP deployment structure. In the “lamp” module 320, the

special “Params” class 322 includes some parameters that are used in multiple class

definitions, such as a flag “single_node” indicating whether the Apache software and the

MySQL software should be installed on the same virtual machine, a “frontend_ip”

23

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

parameter for specifying the IP addresses to be bound to the LAMP frontend component,

a “serving domain” parameter for specifying the domain name of the Apache website, a

“doc_root” parameter for setting the document root of the Apache server, a

“mysqldatafolder” parameter for setting the database folder relative to the persistent disk

mount point, a “mysql pdname” parameter for specifying the name of the persistent disk,

a “mysql pd mount point” parameter for specifying the mount point of the persistent

disk, a “pd_size_gb” parameter for specifying the size of the persistent disk in GB.

Optionally, the parameter values in the special “Params” class can be changed through a

command line tool provided by the cloud-service provider to make it more convenient for

users to adjust deployments based on the “lamp” module.

A LAMP-based application deployment typically includes the following

components: a frontend (i.e., the software role of a frontend software application), virtual

machines on which the frontend software application (e.g., an Apache web server

application) is installed, a database (i.e., the software role of a database software

application), virtual machines on which the database software application (e.g., a MySQL

software application) is installed, a permanent disk for storing the database, and a

firewall. Each of the above components is modeled by a respective set of class

parameters that are configurable for a particular LAMP-based application deployment.

As shown in FIG. 3B, the class definition “FrontendVM” 324 extends from an

existing class definition “utils.ConfiguratorLAMP” which configures a virtual machine

image that already has an Apache web server software pre-installed. In this case, the

MySQL database software is to be installed on the same virtual machine as the Apache

software, as indicated by the “single_node” flag in the “Params” class definition 322.

Therefore, the “DatabaseVM” class definition 326 also extends from the class definition

“utils. ConfiguratorLAMP.”

In the “lamp” module 320, the “MysqlPD” class definition 328 models the

permanent disk on which the database is to be stored. The MysqlPD class definition 328

includes class parameters that specify the name of the persistent disk, the size of the

persistent disk, and the mount point of the persistent disk, for example. Other parameters

that specify how the persistent disk should be configured are inherited from an existing

“std.PersistentDiskSpec” class definition without modification.

The “FrontendRole” class definition 330 models the frontend component of the

LAMP-based environment. The “FrontendRole” class definition 330 extends from a

standard software role modeled by an existing base class definition “std.Role.” The

24

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

“FrontendRole” also refers to a “lampfront” placeholder class and a “lamp” placeholder

module as the temporary values assigned to the “roleName” and the “moduleName” class

parameters. These temporary values will be replaced by the names of the actual module

and class that configure the LAMP frontend software application to be deployed. As will

be shown in FIG. 3C, the class definition that configures the front end software (e.g., the

Mantis debugging software) is the “mantis_frontend” class in the “mantis” module. The

class definition 330 also sets forth that the virtual machine on which the LAMP frontend

role is to be installed is represented by an instance of the “FrontVM” class 324.

The “DatabaseRole” class definition 332 models the database component of the

LAMP-based environment. The “DatabaseRole” class also refers to a placeholder class

in a placeholder module (e.g., “lamp” and “lamp_backend”) for the backend software

configuration. The names of the placeholder class and the placeholder module will be

replaced by the actual names of the class and module that configure the backend database

software. The “DatabaseRole” class definition 332 also specifies that the persistent disk

storing the database is represented by an instance of the “MysqlPD” class definition 328.

In addition, a “vms” parameter is defined to indicate that the virtual machine for installing

the backend database software of the LAMP environment is to be represented by an

instance of the “FrontendVM” class if the “single_node” flag is set to TRUE, otherwise,

the virtual machine is to be represented by an instance of the “DatabaseVM” class.

Lastly, in the “lamp” module 320, the firewall component of the LAMP-based

environment is modeled by the “HttpFirewall” class definition 334. The “HttpFirewall”

class definition extends from the existing “utils.PublicTCPFirewall” class definition, such

as the protocol, source, and target parameters of the “util.PublicTCPFirewall” class are

inherited by the “HttpFirewall” class. The “HTTPFirewall” class definition modifies the

“port” parameter of the “utils.PublicTCPFirewall” from “any” to “80.”

Each class definition set forth in the “lamp” module 320 shown in FIG. 2B is

extendable, modifiable, and/or usable as is for an application-specific deployment and/or

for creating new class definitions in other modules. The configuration specification 340

shown in FIG. 3C includes and builds upon the class definitions in the “lamp” module

320 shown in FIG. 3B. A statement 342 at the beginning of the configuration

specification 340 points to a file containing the class definitions of the “lamp” module

320, to indicate to the compiler where to locate the base class definitions that are used in

the configuration specification 340.

25

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

The configuration specification 340 is for configuring an application deployment

that launches virtual machines in a LAMP structure and installs the Mantis debugging

software on the virtual machines. Mantis is a web-based bug-tracking system written in

the PHP scripting language and works with a MySQL database and a webserver.

As specified in the in the “MantisDeployment” class definition 354, the

deployment calls for two software roles and a firewall to be installed. In this case, the

two software roles are created according to the “MantisFrontend” class definition 348 and

the “MantisDatabaseRole” class definition 350, while the firewall is created according to

the “MantisFirewall” class definition 352. When the configuration specification 340 is

compiled, the statement 356 makes an instance of the “MantisDeployment” class and

causes the other classes on which the “MantisDeployment” class depends to be

instantiated as well.

In this example, the “MantisFrontend” class definition 348 extends from the

“lamp.FrontendRole” class definition 330 shown in FIG. 2B. The class parameters that

are modified for the Mantis software installation include the “roleName,” “moduleName”

of the software configuration specification, the “dataPackages” from which the Mantis

software binaries can be copied, and the database host to be associated with the Mantis

application deployment. The configuration parameters for the virtual machine aspect of

the Mantis frontend are inherited from the “lamp.FrontendRole” class definition 332

without modifications. In other words, the user writing the configuration specification

340 accepts the default virtual machine configuration specified in the “lamp” module 320,

and needs not customize the Mantis application deployment with that level of details.

Similarly, the “MantisDatabaseRole” class definition 350 extends from the

“lamp.DatabaseRole” class definition 332 shown in FIG. 3B. The class parameters that

are modified for the Mantis software installation includes the “roleName” and

“moduleName” of the configuration specification for the backend database role. In

addition, the frontend host of the database role is set to be an instance of the

“MantisFrontendRole” class. The configurations for the virtual machine aspect and the

persistent disk aspect of the database backend role are inherited from the

“lamp.DatabaseRole” class definition 332 without modification.

In addition, the “MantisFirewall” class definition 352 inherits the parameters from

the “lamp.HTTpFirewall” and modifies only the value for the “target” parameter to an

instance of the “MantisFrontendRole” class. Other parameters, such as the “port” and

26

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

“protocol” parameters of the “MantisFirewall” class are inherited from the base class

“lamp.HTTpFirewall” defined in the “lamp” module 320.

Other parameters and values specific to the Mantis deployment are set forth in the

special “Params” class definition 344 and the data package from which the Mantis

software is copied is specified in the “MantisPackage” class definition 346.

In the above example, the configuration specification for the Mantis software

deployment is derived from the base class definitions (e.g., class definitions in the “lamp”

module 320) created for a generic LAMP-based application deployment. Configurations

of many aspects of the LAMP-based deployment do not have to be redefined for the

Mantis application deployment. The configuration specification for the Mantis

application deployment only needs to specify new parameters or new parameter values

that are particular to the Mantis application deployment or in need of customization.

Parameters that are already defined for other more generic aspects of the deployment do

not need to be re-specified or modified in the configuration specification 340. The details

of these other aspects of the deployment can remain opaque to the user.

The examples shown in FIGS. 3A-3C are merely illustrative of the properties of

an object-oriented specification language for writing configuration specifications of

cloud-based deployments. In various implementations, the exact syntax of the object-

oriented specification language can depart from what is shown in the examples.

Furthermore, many types of base classes can be created to model the components that

may exist in a cloud environment. Syntax for specifying relationships between

components modeled by the classes can also vary from one object-oriented specification

language to another object-oriented specification language. For a given object-oriented

specification language, a compiler can be created to parse the class definitions included in

a configuration specification written in the object-oriented specification language

according to a predetermined set of syntax rules to extract the parameters that are used to

configure the various types of components in the cloud environment.

FIG. 4 shows an example cloud-service manager 222 of an example cloud service

provider 104. The example cloud-service manager 222 is responsible for deploying

cloud-based services according to the configuration specification 104 provided by the

administrative users (e.g., 102a, 102b, 102c) of the services. The cloud-service manager

222 receives communications from the administrative users of the cloud-customers

through the frontend 120 of the cloud-service provider 104. In some implementations,

27

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

the cloud-service manager 222 may have its own frontend components that communicate

with the cloud-service customers directly.

After the frontend 120 receives the configuration specifications 104 from an

administrative user of the cloud-service customers (e.g., 102a, 102b, 102c), the frontend

120 passes the received configuration specifications 104 to an API translator 404 of the

cloud-service manager 222. The API translator 404 have access to a library of core class

definitions (e.g., stored in a definition database 406) and translation protocols (e.g., stored

in a rule database 408) on how to translate the core class definitions into respective sets of

API calls for configuring various components of a cloud-based environment of the cloud

service provider 104.

For example, the API translator 404 can include a compiler (e.g., a parsing script

or program) that parses the class definitions received in a configuration specification 104,

identify all the base classes from which the classes in the configuration specification are

derived, and extract the base class parameters that are left unmodified as well as the class

parameters that are modified or new. In addition, the compiler also identifies all the

relationships (e.g., connectivity and dependencies) among the components of the cloud

based deployment from the statements in the class definitions. Based on the values of the

class parameters and the stored translation protocols, the API translator 404 generates an

appropriate set of API calls 410 to configure various aspects of the cloud-based

deployment.

For example, the translation protocols can include a mapping between a core class

definition modeling a respective modular aspect of the cloud-based environment to a

group of API calls that are used to configure that aspect of the cloud-based environment.

The translation protocols can further include protocols for modifying the set of API calls

(e.g., changing default parameters used in the API calls) with parameter values specified

for that modular aspect of the cloud-based environment in classes derived from the core

class definition.

As a more specific example, suppose a standard virtual machine class definition

(e.g., a “std.VM” class) is a core class definition known to the compiler. The compiler

would have access to a translation rule mapping the core class definition to a set of

provisioning API calls made to the VM manager in the kernel layer of the cloud-service

provider 104 for deploying a standard virtual machine image. A default set of parameters

(e.g., duplicate count, IP address, memory requirement, etc.) can be used in the

provisioning API calls. The protocol for modifying the API calls can include protocols

28

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

for changing the default parameter values according to the parameter values specified in

the specification configuration and in intermediate class definitions that are derived from

the standard virtual machine class definition. For example, if a class parameter of a new

class definition derived from the standard virtual machine image specifies the software

package to be installed on the virtual machine image, the translation protocols would

specify how the additional API calls for installing software packages on a designated

virtual machine should be added to the group of API calls associated with configuring the

standard virtual machine image.

fn some implementations, the protocols for translating class definitions to API

calls are written as program scripts. As new core class definitions are added to the class

definition database 406, the protocol for translating the new class definition can be

created and added to the translation rules database 408. The translation protocols can be

created, for example, by the cloud-service provider 104. fn some implementations, when

encountering a particular class definition in parsing a received configuration

specification, the API translator 404 locates and runs a corresponding script to parse the

class definition into a set of API calls. The API calls, when executed, cause the

configuration specified by the class definition to be achieved in the cloud-based

environment.

fn some implementations, the API calls 410 generated by the API translator 404

are sent to a service launcher component 412 of the cloud-service manager 222. The

service launcher component 412 is responsible for channeling the API calls 410 to

various layers of the cloud-service environment or components of the cloud-service

provider 104 where the API calls can be executed. In some implementations, where the

deployment are to be carried out in several stages due to the dependencies between

various aspects of the deployment, the service launcher component 412 is also

responsible in checking the order by which the API calls are sent out to the layers and/or

components for execution, and verify that the API calls have been completed in a proper

sequence.

Since class definitions written in an object-oriented specification language as

disclosed in this specification can be reused in multiple configuration specifications, an

administrator user of a cloud service may wish to employ class definitions provided by a

third party (e.g., another user, a service developer of the cloud-service provider, or third-

party developers) in their own configuration specifications, rather than developing those

class definitions by themselves. In some implementations, a marketplace for sharing/sale

29

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

and selection of existing configuration specifications and reusable class definitions can be

provided, for example, by the cloud-service provider or a third-party provider.

In this example, the cloud-service provider 104 provides such a platform for the

sharing of reusable configuration specification and class definitions. In some

implementations, the frontend 120 of the cloud-service provider provides a definition

submission user interface and a definition selection interface to facilitate the sharing of

reusable configuration specifications and class definitions. The parties that provide the

configuration specifications and class definitions 416 for reuse by others serve as

definition suppliers 414 for the cloud-service provider 104. The potential definition users

include administrative users of cloud-based services. The potential definition users also,

optionally, include definition suppliers who will create new reusable class definitions or

class definitions for submission based on the existing class definitions provided by other

definition suppliers.

As shown in FIG. 4, the cloud-service manager 222 of the cloud-service provider

104, or a component of the cloud-service manager 222, can serve to manage the platform

for sharing reusable class definitions. The definition suppliers 414 submit reusable class

definitions 416 to the cloud-service manager 222 through the definition submission user

interface provided by the frontend 120. Each class definition submission can include

multiple reusable class definitions, such as in a class module. Each class definition in the

submission is accompanied by descriptions of the initial configuration state that the class

definition can accomplish if subsequently used in a configuration specification. In some

implementations, the description also includes instructions on how the class parameters in

the class definition can be subsequently modified in configuration specifications to suit

the needs of particular deployments.

When a definition supplier submits a reusable class definition or a module of

reusable class definitions, the cloud-service manager 222 can store the received class

definitions in a class definition database (e.g., the definition database 406). In some

implementations, the frontend 120 provides registration and authentication services for

the definition suppliers 414. Each class definition or class module received from a

registered definition supplier 414 is stored in association with the identifier of the

definition supplier, such that the definition supplier 414 can be properly credited when the

class definition is subsequently used or purchased by a definition user.

In some implementations, the definition suppliers 414 can provide reusable class

definitions 416 for free or for a cost. The cloud-service manager 222 can facilitate the

30

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

sale or license of the reusable class definitions to the potential definition users (e.g.,

administrative users of the cloud-service customers) through the definition sharing

platform. In some implementations, the definition supplier 414 provides and the cloud

service manager stores respective prices associated with the sale or licenses for different

usage levels for the reusable class definitions provided by the definition suppliers 414.

In some implementations, the cloud-service manager 222 provides a definition

selection user interface over the frontend 120. The definition selection user interface

presents the class definitions that are available for reuse, such as in defining new class

definitions. The new class definitions include those included in the configuration

specification of a new deployment and, optionally, those that are submitted to the cloud

service provider for reuse by others. The potential definition users (e.g., administrative

users of the cloud-service customers and definition suppliers) can view the class

definitions that are available for selection through the definition selection interface, along

with their prices and descriptions, and optionally, reviews and quality scores, and decides

on whether to reuse one or more of the class definitions in a configuration specification or

for deriving a new class definition.

In some implementations, definition selection user interface allows the user of the

class definitions to download or copy a reusable class definition available for selection.

In some implementations, the user does not have to copy or download the class definition,

and can use the class definitions by simply identifying the module and class name in a

configuration specification submitted to the cloud-service provider for deployment. The

cloud-service manager 222 will identify and locate the class definitions that are

referenced in the specification file, and keep track of the usage of the class definition.

In some implementations, the reuse involves an entire module (e.g., the “lamp”

module shown in FIG. 3B), where the module includes a collection of multiple

interrelated class definitions for configuring a cloud component that includes multiple

sub-components. In some implementations, the class definitions or class modules are

categorized based on the type of components they model. In some implementations, the

definition selection interface allows the potential users of the class definitions to search or

review available class definitions by categories, functions, definition suppliers, and other

attributes associated with the class definitions and modules.

In some implementations, the cloud-service provider 104 or a third party provider

also provides a platform for software suppliers 418 to provide software solutions

accompanied by multiple alternative configuration specifications or alternative collections

31

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

of class definitions for configuring the software solutions. For example, a personnel

management program can be accompanied by configuration specifications that are

tailored for cloud-service customers that have different scale, needs, and internal

infrastructures. When a cloud-service customer purchases or licenses the software

solution for deployment in the cloud environment of the cloud-service provider 104, the

cloud-service customer can choose the configuration specification that best suits its needs.

In some implementations, the service manager 222 can receive submissions of

software solutions with accompanying configuration specifications (e.g., either as

configuration specifications or modules of reusable class definitions) through a software

submission user interface provided through the frontend 120. In some implementations,

the software submission user interface includes registration and authentication

capabilities, such that each submission of a configuration-wrapped software solution 420

is stored in association with the software provider that submitted the configuration

wrapped software solution 420.

The cloud-service provider 104 can provide the configuration-wrapped software

solutions in a software selection interface to the cloud-service customers (e.g., 102a,

102b, 102c) through the frontend 120. The software selection interface can also provide

the descriptions of the different configuration specifications accompanying each software

solution. When a user (e.g., an administrative user of an cloud-based application service)

select a software solution and one of the accompanying configuration specifications from

the software selection interface, the cloud service provider 104 can launch the software

solution in the cloud-based environment according to the selected configuration

specification, with or without additional customizations.

In some implementations, the cloud-service provider 104 facilitates the accounting

(e.g., by an accounting component 426) for the sale and purchase of the reusable

configuration specifications, reusable class definitions, and configuration-wrapped

software solutions that are accomplished through the platforms provided by the cloud

service provider 104. In some implementations, the cloud-service provider does not need

to directly provide these platforms, but provide accounting services (e.g., by the

accounting component 426) to the user and provider of the reusable configuration

specifications, reusable class definitions, and configuration-wrapped software solutions

based on actual usage that has occurred in the cloud environment of the cloud-service

provider 104.

32

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

In some implementations, the cloud-service manager 222 includes a service

monitor 422. The service monitor 422 monitors the statuses of the cloud-services that

have been deployed in the cloud environment of the cloud-service provider 104. The

statuses monitored by the service monitor 422 include, for example, the virtual resources

that are employed for each component of a cloud-based deployment, the usage level of

the virtual resources, the cloud-services that are employed by each component of the

cloud-based deployment, the usage level of the cloud-services. The service monitor 422

can compute performance metrics associated with each cloud-based deployment based on

the statuses of the virtual resources and the cloud-based services that are associated with

the deployment. The performance metrics include, for example, the number of user

requests received, the latency associated with the responses, the availability of the virtual

resources and services, the failure rate of each virtual resource or service, the fault

tolerance level of the virtual resources and services, and so on. In some implementations,

the performance metrics is stored in a performance data store 424 of the cloud-service

manager 222.

As disclosed in this specification, cloud-based deployments can be carried out

according to configuration specifications written in an object-oriented specification

language, where the configuration specifications include class definitions that model

different aspects of the cloud-based deployments at different levels of abstraction. When

the cloud-service manager 222 processes a configuration specification into a set of class

definitions, the cloud-service manager 222 is able to track the hierarchy of class

definitions that have influenced the configuration of each of those different aspects of the

deployment. Further, the cloud-service provider is able to associate the virtual resources

and services that are dedicated to the different aspects of the cloud-based deployment to

the different class hierarchies that have influenced the configuration of those aspects of

the cloud-based deployment.

Therefore, the object-oriented specification language allows performance metrics

to be derived for each of these different aspects based on the status and performance of

the virtual resources and services that contribute to the performance of the aspect of the

cloud-based deployment. In particular, the performance associated with each aspect of

the cloud-based deployment is associated with the class definitions that are involved in

configuring that aspect of the cloud-based deployment. Then, the performance associated

with a class definition can be used as a factor in determining a quality measure for the

class definition. If a class definition is used in configuring multiple cloud-based

33

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

deployments, the aggregated performance associated with the class definition can be used

to assess the quality of the class definition.

Using the reusable class definitions and configuration specification shown in

FIGS. 3B and 3C as an example, when the service-cloud manager 222 deploys the Mantis

and MySQL software applications and the firewall service in the Mantis application

deployment according the “MantisDeploymenf’ class definition 354 and all the base

classes on which the “MantisDeploymenf’ class definition 354 depends, the service

manager 222 can monitor the respective performances of the software roles, the firewall

service, and the underlying virtual machines supporting the software roles. The cloud

service manager 222 can associate the respective performances of the frontend role with

the classes that influenced the configuration of the frontend component of the Mantis

deployment, associate the respective performance of the firewall component with the

classes that influenced the configuration of the firewall component, associate the

respective performance of the virtual machines underlying the frontend role with the

classes that influenced the configuration of the frontend virtual machines, and so on, for

example.

In some implementations, the cloud-service manager 222 can generate a system

block diagram of the cloud-based deployment according to the configuration specification

writing in the object-oriented specification language. For example, the nature of the

infrastructural components, storage, services, software roles, as well as their

interrelationships (e.g., dependencies and connectivity) and reconfiguration triggers, can

be identified from the class definitions in the configuration specification and represented

as corresponding elements in the system block diagram of the deployment. The basic

system block diagram can be created when the configuration specification is parsed by

the API translator 404, for example.

FIG. 5 shows the block diagram 500 that can be created based on the deployment

specification 340 shown in FIG. 3C. When parsing the configuration specification 340 of

the Mantis application deployment, the cloud-service manager 222 recognizes from the

“MantisDeploymenf’ class definition 354 that there are two software roles and a firewall

involved in the deployment, e.g., the software roles modeled by the

“MantisFrontendRole” and the “MantisDatabaseRole” class definitions and a firewall

modeled by the “MatisFirewall” class definition. Therefore, the cloud-service manager

222 can add a block 504 for the frontend role, a block 506 for the database role, as well as

34

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

a block 508 for the firewall service within a block 502 representing the Mantis application

deployment.

Next, according to the class definition of the “MantisFrontendRole” class, the

cloud-service manager 222 determines that the software application serving the frontend

role is to be deployed according to the class definition of the “mantis_frontend” class.

The cloud-service manager 222 therefore adds a block 510 within the block 504, to

represent the frontend software that is serving the frontend role. Similarly, from the class

definition of the “MantisDatabaseRole” class, the service manager 222 determines that

the software application serving the database role is to be deployed according to the class

definition of the the “mantis_backend” class. Therefore, the service manager adds a

block 512 within the block 506, to represent the backend database software that is serving

the database role.

Furthermore, according to the class definitions 348 and 350 of the

“MantisFrontendRole” and the “MantisDatabaseRole,” the frontend role and the database

role are connected to each other. Based on the class definition 352 of the

“MantisFirewall,” the firewall is connected to the frontend role. Therefore, the cloud

service manager 222 can insert a connection 514 between the block 504 and the block

506, to represent the connectivity relationship between the frontend role and the database

role. In addition, the cloud-service manager 222 also inserts a connection 516 between

the block 504 and the block 508, to represent the connectivity relationship between the

frontend role and the firewall.

In addition, since the “MantisFrontRole” class definition 348 extends from the

“FrontendRole” class definition 330, the cloud-service manager 222 determines from the

class definition 330 of the “FrontendRole” class that, the frontend software (e.g., the

Mantis software) is to be installed on a virtual machine modeled by the “FrontendVM”

class definition 324. Similarly, the “MantisDatabaseRole” class definition 350 extends

from the “DatabaseRole” class definition 332, and the cloud-service manager 222

determines from the class definition 332 of the “DataBaseRole” class that, the backend

database software (e.g., the MySQL database software) is to be installed on the same

virtual machine as the frontend role software. Based on the above information, the

service manager 222 adds a block 518 under the blocks 504 and 506, to represent the

underlying virtual machine for the frontend role and the database role.

Furthermore, according to the “DatabaseRole” class definition 332, the cloud

service manager 222 determines that a persistent disk is connected to the database role by

35

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

a mount point on the underlying virtual machine. The persistent disk is deployed

according to the specification specified in the “MysqlPD” class definition 328.

Therefore, the service manager 222 adds a block 520 to the block 502 representing the

mantis deployment, and adds a connection 522 to represent the connectivity relationship

between the database software, its underlying virtual machine, and the permanent disk.

In some implementations, when the components of the deployment is deployed,

the service manager 222 can also record identifiers associated with the underlying

infrastructure components (e.g., process IDs or identifiers of the virtual machines and

other virtual resources) for each block or connection represented in the block diagram

500. When the cloud-service manager 222 monitors the statuses of the underlying virtual

resources and services for the deployment, the cloud-service manager 222 optionally

determines the performance or usage metrics for each component (e.g., blocks and

connections) represented in the block diagram 500. The cloud-service manager 222 can

also optionally represent the performances and usage of the different component in the

system block diagram 500.

In some implementations, visualization of the performances and usage of these

different components of the deployment and their changes over time can be shown on the

block diagram 500. In some implementations, the cloud-service manager 222 can present

the performance and usage statistics in a visual form on the block diagram in a

management interface of the cloud services for each cloud-service user. For example, the

performance and usage statistics can be represented as a histogram or pie chart that

dynamically changes according to the actual conditions of the components in the cloud

environment. In some implementations, the cloud-service provider bills the cloud-service

customers according to the performance and usage statistics.

In some implementations, the configuration specification optionally includes

programmatically triggered reconfiguration requests. For example, the configuration

specification for a component can specified that when a particular monitored parameter

reaches a specified threshold value, the cloud-service manager 222 is to scale the

provisioned virtual machine or services by a specified amount. For a more specific

example, the class definition of the persistent disk class (e.g., the “MysqlPD” class

definition) can include a statement that requests an increase in the size of the persistent

disk when the disk capacity is 80% utilized; the class definition of the “frontendVM”

class can request that when the latency of the frontend role is more than one second, the

“replica-count” parameter of the FrontendVM is to be increased by one; and so on.

36

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

As set forth in this specification, the object-oriented specification language allows

the configuration of each component in a cloud-based deployment to be specified by a

respective set of class definitions. When parsing a configuration specification, the service

manager is able to identify the components of the deployment, and identify all of the base

classes whose class parameters contributed to or influenced the configuration state of the

component. In some implementations, the performance of each component is associated

with the class definitions that contributed to the configuration of that component. If a

class definition contributed to the configuration of multiple components in multiple

deployments, the performance of these multiple components in the multiple deployments

can all be associated with that class definition. The quality of the class definition can be

assessed based at least in part on the aggregated performance of all of the multiple

components in the multiple deployments.

In some implementations, the cloud-service manager keeps track of the usage of

each class definition in the cloud-based environment and charges the cloud-service users

that have used the class definition in their deployments. Optionally, the amount of charge

billed to the users is based on the amount of usage the user has accrued for the class

definition in all of the deployments the user has requested. In some implementations,

where the class definitions are provided by third-party definition providers, the cloud

service manager 222 can record a credit to the third-party definition provider for each use

of the class definition provided by the third-party definition provider.

For example, when parsing the configuration specification for the Mantis

application deployment shown in FIG. 3C, the cloud-service manager 222 records that the

Mantis frontend component 504 is deployed according to the “MantisFrontendRole” class

definition 348, which extends the “lamp.FrontendRole” class definition 330, uses the

“mantis_frontend” class definition for software configuration, and the “MantisPackage”

class definition 346 to identify the location of the software package, and is connected to

the “MantisDatabaseRole” class 350. Further, the service manager 222 determines that

the “lamp.FrontendRole” class definition 330 further extends from the “std.Role” class

definition, uses the “FrontendVM” class definition 324, and that the “FrontendVM” class

definition 324 extends from the “utils.ConfiguratorLAMP” class definition.

The cloud-service manager 222 can continue to identify the class definitions that

are involved in the configuration of the frontend role component of the deployment by

tracing the class hierarchies connected to the “MantisFrontendRole” class definition 348,

until the most fundamental sets of class definitions are identified. All of the class

37

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

definitions that contributed to the configuration of the frontend role component are

associated with the frontend role component for the deployment. A similar process can

be carried out for each component of the deployment.

When the deployment is carried out, the cloud-service manager 222 can record the

usage of each class definition in configuring the deployment according to the number of

times that the class definition is used in the deployment. In some implementations,

multiple uses of a class definition is counted only once in each deployment or for each

user, depending on the payment structure (e.g., fees per use license or per sale)

established by the definition supplier of the class definition.

In some implementations, in a marketplace of reusable class definitions, each

reused class definition can be ranked against other reused class definitions according to

the aggregate performance of the class definition in all the deployments that used the

class definition. In some implementations, the performance of a deployment can be

associated with each class definition that contributed to the configuration of the

deployment, and used in evaluating the quality of the class definition. In some

implementations, only performances of those components whose configurations are

influenced by a class definition are associated with the class definition and used in

evaluating the quality of the class definition.

For example, when the cloud-service manager identified multiple components in

multiple deployments that are influenced by a virtual machine class definition, the

aggregated performance of the multiple components are used in evaluating the quality of

the virtual machine class definition. In addition, when the cloud-service manager

identifies all of the class definitions that contributed to the configuration of a frontend

role component of a deployment, the performance associated with the frontend role

component in the deployment will be associated with each of these identified class

definitions.

In some implementations, a quality score is calculated for each class definition

based on the aggregated performance associated with all or multiple components or

deployments that are configured based at least in part on the class definition. The quality

score can be presented with the class definition in the definition selection interface

provided by the cloud-service provider. In some implementations, multiple quality

metrics can be calculated for each class definition based on, for example, the scales of the

deployments that utilized the class definition, the weight or influence of the class

definition in each deployment that utilized the class definition, the availability, fault

38

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

tolerance, scalability, and failure rate of the components configured according to the class

definition, the types of problems encountered, the modifications required to solve the

encountered problems, explicit user feedback, and so on. Based on the various quality

metrics, one or more types of quality scores can be provided for each shared class

definition and a potential definition user can browse the list of available shared class

definitions based on the quality scores.

Although the above example describes the quality scores with respect to reusable

class definitions, similar quality scores can be calculated for reusable class modules,

reusable configuration specifications, or configuration-wrapped software solutions.

FIG. 6 is a flow diagram of an example process 600 for processing a configuration

specification written in an object-oriented specification language. An example of such a

high-level object-oriented specification language is described in the examples shown in

FIGS. 3A-3C. The example process 600 can be performed by a cloud-service provider

(e.g., the cloud-service provider 104 shown in FIG. 1), such as by a cloud-service

manager (e.g., the cloud-service manager 222) of the cloud-service provider. In some

implementations, the cloud-service manager performs the process 600 by an API

translator component (e.g., the API translator 404 in FIG. 4).

In the example process 600, a configuration specification for configuring a cloud

based deployment is received (e.g., by the API translator of a cloud-service provider)

(602). The configuration specification is written in an object-oriented specification

language and requires instantiation of class definitions of one or more classes. Each class

models a respective data or functional component of the cloud-based deployment using a

group of configurable class parameters. The respective class definition of each class

represents a requested state of the data or functional component modeled by the class. A

plurality of API calls for configuring the cloud-based deployment are derived based on

the class definitions of the one or more classes (604). Then, the API translator of the

cloud-service provider causes the plurality of API calls to be executed to configure the

cloud-based deployment (606).

In some implementations, the one or more classes include at least an existing base

class and at least a customized class extended from the existing base class. In some

implementations, the customized class inherits respective class parameters of the existing

base class and modifies a value of at least one of the class parameters inherited from the

existing base class. In addition, or alternatively, the customized class inherits respective

39

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

class parameters of the existing base class and includes at least one new class parameter

not present in the existing base class.

In some implementations, the data or functional component modeled by each class

is one of a virtual device supporting a cloud-based environment, a service utilized in the

cloud-based environment, a software role performed by an installed application in the

cloud-based environment, a data package holding data to be used during deployment or

operation of the cloud-based environment, or a combination of one or more thereof.

In some implementations, the object-oriented specification language supports

dependency between class definitions, and a definition dependency between a first class

and a second class represents a deployment dependency between respective components

modeled by the first and the second class. In some implementations, the definition

dependency between the first class and the second class is expressed by a class parameter

of the first class where the class parameter of the first class refers to an instance of the

second class.

In some implementations, the object-oriented specification language supports

connectivity between class definitions, and a value assignment linking an instance of a

second class to a class parameter of a first class represents a connectivity between

respective components modeled by the first class and the second class.

FIG. 7 is a flow diagram of an example process 700 for deriving a block diagram

showing a topology of a cloud-based deployment based on the configuration specification

of the cloud-based deployment. The example process 700 can be performed by a cloud

service manager of a cloud-service provider (e.g., the cloud-service provider 104 shown

in FIGS. 1 and 4).

In the example process 700, the cloud-service provider identifies, based on the

respective class definitions of the one or more classes in a configuration specification, a

plurality of data and functional components modeled by the one or more classes and one

or more dependency and connectivity relationships existing among the plurality of data or

functional components (702). Then, the cloud-service provider derives a block diagram

of a cloud-based environment based on the identified plurality of data and functional

components and the identified dependency and connectivity relationships (704). In some

implementations, when deriving the block diagram, the cloud-service provider also

represents trigger events for dynamic reconfiguration of the cloud-based environment in

the block diagram.

40

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 8 is a flow diagram of an example process 800 for monitoring performance

of cloud-based deployments and associating the performance with class definitions that

are used in configuring the cloud-based deployments.

In the example process 800, for each class definition, the cloud-service provider

identifies an aspect of the cloud-based deployments that are influenced by the class

definition in terms the respective initial configuration state of the aspect (802). The

cloud-service provider monitors one or more performance metrics associated with the

identified aspect (804). The cloud-service provider associates the one or more

performance metrics with the class definition (806). Then, the cloud-service provider

utilizes the one or more performance metrics in calculating a quality metric of the class

definition (808).

FIG. 9 is a flow diagram of an example process 900 for evaluating the quality of a

reused class definition based on aggregated performance of multiple cloud-based

deployments that were configured at least in part based on the reused class definition.

In the example process 900, the cloud-service provider identifies a plurality of

cloud-based deployments each having been carried out according to a respective

configuration specification written in the object-oriented specification language (902).

The cloud-service provider then identifies at least one base class whose class definition is

used in multiple of the plurality of cloud-based deployments (904). The cloud-service

provider monitors respective performance of each of the multiple of the plurality of

cloud-based deployments (906). The cloud-service provider then calculates a quality

metric of the at least one base class based on aggregated performance of the multiple of

the plurality of cloud-based deployments (908). In some implementations, the respective

performance of each of the multiple of the plurality of cloud-based environment is a

performance associated with a data or function component modeled by the at least one

class.

FIG. 10 is a flow diagram of an example process 1000 for deriving API calls for

configuring a cloud-based deployment based on class definitions used in a configuration

specification.

In the example process 1000, the cloud-service provider stores respective class

definitions of a plurality of core classes of the object-oriented specification language

(1010). Each core class corresponds to a modular component of a cloud-based

environment and each core class is extendable with additional class parameters to

configure the respective modular component. The cloud-service provider also stores a

41

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

mapping between each of the core classes and a respective group of API calls (1020).

The respective group of API calls is for configuring the modular component associated

with the core class according to the class parameters of the core class. The cloud-service

provider also stores a plurality of protocols for modifying the respective groups of API

calls associated with each core class to obtain a new group of API calls for a new class

definition derived from the core class (1030).

In some implementations, to derive the plurality of API calls for configuring the

cloud-based deployment, the cloud-service provider derives the plurality of API calls

based on the respective groups of API calls associated with one or more of the plurality of

core classes from which the one or more classes of the configuration specification are

derived, and based on the plurality of protocols for modifying the respective groups of

API calls.

In some implementations, the plurality of protocols further includes rules for

imposing an ordering of the groups of API calls according to dependency and

connectivity relationships specified in class definitions written according to the object-

oriented specification language.

FIG. 11 is a flow diagram of an example process 1100 for providing a platform for

sharing reusable class definitions. The example process 1100 can be performed by a

cloud-service provider or a platform provider that does not provider cloud-based services.

In the example process 1100, the cloud-service provider or platform provider

receives a respective definition submission from each of a plurality of definition suppliers

(1110). The respective definition submission includes one or more class definitions

written in an object-oriented specification language. Each class definition models a data

or functional component of a cloud-based deployment using a group of configurable class

parameters and is extendable to create at least one new class definition by a modification

to one or more of the group of configurable class parameters or an addition of one or

more new class parameters. The cloud-service provider or platform provider then

provides a user interface that presents the class definitions received from the plurality of

definition suppliers, for review and selection by a plurality of definition users (1120).

FIG. 12 is a flow diagram of an example process 1200 for configuring multiple

distinct cloud-based deployments based on distinct configuration specifications that all

use at least one common reusable class definition. The example process 1200 can be

performed by a cloud-service provider, such as the example cloud-service provider 104

shown in FIG. 4.

42

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

In the example process 1200, the cloud-service provider receives a plurality of

distinct configuration specifications written in the object-oriented specification language

(1210). The plurality of distinct configuration specifications are each for configuring a

distinct cloud-based deployment and including a distinct class definition that extends

from the same one of the class definitions received from the plurality of definition

suppliers. Then, the cloud-service provider configures each of the distinct cloud-based

deployments based at least on the same one of the received class definitions and the

distinct class definition that extends therefrom in the distinct configuration specification

of the distinct cloud-based deployment (1220).

FIG. 13 is a flow diagram of an example process 1300 for charging definition

users and crediting definition suppliers based on usage of the reusable class definitions

provided by the definition suppliers.

In the example process 1300, for each of the received class definitions, the cloud

service provider monitors usage of the class definition in a plurality of configuration

specifications that have been used to configure a plurality of cloud-based deployments

(1310). The cloud-service provider records, for each use of the class definition in the

plurality of configuration specifications, a credit to a definition supplier of the class

definition and a charge to a definition user associated with the use (1320).

In some implementations, the usage of the class definition includes an

instantiation of the class definition in a respective configuration specification that has

been used to carry out a respective cloud-based deployment. In some implementations,

the usage of the class definition includes an extension of the class definition to create a

new class definition that is instantiated in a respective configuration specification used to

carry out a respective cloud-based deployment.

FIG. 14 is a flow diagram of an example process 1400 for providing a platform for

selling “configuration-wrapped” software solutions. The process 1400 can be provided

by a cloud-service provider or a platform provider that does not provide cloud-based

services.

In the example process 1400, the cloud-service provider or platform provider

receives a software submission from a software supplier (1410). The software

submission includes a software application to be deployed in a cloud-based environment

and a plurality of distinct configuration specifications each for deploying the software

application in the cloud-based environment in a distinct manner. Then, the cloud-service

43

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

provider or platform provider provides the plurality of distinct configuration

specifications for review and selection by a software user (1420).

FIG. 15 is a flow diagram of an example process 1500 for charging software users

and crediting software providers based on the selection of configuration-wrapped

software solutions by software users. The example process 1500 can be performed by a

cloud-service provider (e.g., the cloud-service provider 104 shown in FIG. 4).

In the example process 1500, the cloud-service provider receives selection of one

of the plurality of distinct configuration specification by the software user (1510). The

cloud-service provider deploys the software application in the cloud-based environment

according to the selected distinct configuration specification (1520). Then, the cloud

service provider records a charge to the software user and a credit to the software supplier

based on a respective price associated the selected distinct configuration specification

(1530). In some implementations, to provide the plurality of class definitions for

selection, the cloud-service provider provides the respective performance metrics with

each of the plurality of class definitions for user review in a selection user interface.

FIG. 16 is a flow diagram of an example process 1600 for utilizing aggregated

performance metrics of multiple cloud-based deployments in ranking reusable class

definitions that have been used in configuring the multiple cloud-based deployments.

The example process 1600 can be performed by a cloud-service provider (e.g., a cloud

service provider 104 shown in FIG. 4).

In the example process 1600, the cloud-service provider provides a plurality of

class definitions for selection (1610). Each class definition models a respective data or

functional component of a cloud-based environment using a group of configurable class

parameters. Each class definition supports instantiation and inheritance of the class

definition in a configuration specification for a cloud-based deployment. The cloud

service provider also derives respective performance metrics associated with each of the

plurality of class definitions based on aggregated performance of multiple cloud-based

deployments, where the multiple cloud-based deployments had been carried out

according to respective configuration specifications that require instantiation of the class

definition or a new class definition derived from the class definition (1620). Then, the

cloud-service provider utilizes the respective performance metrics associated with each of

the plurality of class definitions in ranking the plurality of class definitions (1630).

44

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 17 is a flow diagram of an example process 1700 for categorizing reusable

class definitions and ranking the reusable class definitions within their respective

categories.

In the example process 1700, the cloud-service provider categorizing the plurality

of class definitions based on the respective data or functional components of the cloud

based environment modeled by the plurality of class definitions (1710). Then, the cloud

service provider ranks the plurality of class definitions within the class definitions’

respective categories (1720).

FIG. 18 is a flow diagram of an example process 1800 for associating

performances of multiple cloud-based deployments with a class definition that was used

to configure the multiple cloud-based deployments.

In the example process 1800, for each of a plurality of class definitions, the cloud

service provider identifies a plurality of cloud-based deployments that had been carried

out according to respective configuration specifications that required instantiation of the

class definition or at least one new class definition derived from the class definition

(1810). The cloud-service provider monitors respective performances of the plurality of

cloud-based deployments (1820). The cloud-service provider then associates the

respective performances of the plurality of deployments with the class definition (1830).

FIG. 19 is a flow diagram of an example process 1900 for deriving performance

metrics associated with a reused class definition based on aggregated performance of

multiple deployments.

When deriving respective performance metrics associated with each of a plurality

of class definitions based on aggregated performance of multiple cloud-based

deployments, the cloud-service provider performs the example process 1900. In the

example process 1900, the cloud-service provider, for each of the plurality of class

definitions, identifies one or more data or functional components in the plurality of cloud

based deployments that were configured according to the class definition or a new class

definition derived from the class definition (1910). The cloud-service provider identifies

one or more performance metrics associated with the identified one or more data or

functional components (1920). Then, the cloud-service provider derives the respective

performance metrics associated with the class definition by aggregating the identified one

or more performance metrics (1930). In some implementations, the performance metrics

include one or more measures of latency, reliability, scalability, availability, or security.

45

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

FIG. 20 is a flow diagram of an example process 2000 for utilizing multiple

factors in ranking reusable class definitions.

In the example process 2000, for each class definition, the cloud-service provider

tracks a respective count of cloud-based deployments that have been configured at least in

part according to the class definition (2010). Optionally, the cloud-service provider

tracks a respective count of problems encountered in cloud-based deployments that have

been configured at least in part according to the class definition. Optionally, the cloud

service provider also tracks a number of required changes to resolve the problems

encountered in the cloud-based deployments that have been configured at least in part

according to the class definition. Then, the cloud-service provider utilizes the respective

counts associated with the plurality of class definitions in the ranking of the plurality of

class definitions (2020). Optionally, the cloud-service provider also utilizes the

respective counts of the problems and the respective numbers of required changes

associated with the plurality of class definitions in the ranking of the plurality of class

definitions.

In some implementations, the respective numbers of required changes associated

with the plurality of class definitions are used to calculate respective weights given to the

respective performance metrics associated with the plurality of class definitions in

ranking the plurality of class definitions.

Embodiments of the subject matter and the functional operations described in this

specification can be implemented in digital electronic circuitry, or in computer software,

firmware, or hardware, including the structures disclosed in this specification and their

structural equivalents, or in combinations of one or more of them. Embodiments of the

subject matter described in this specification can be implemented as one or more

computer programs, i.e., one or more modules of computer program instructions encoded

on a computer storage medium for execution by, or to control the operation of, data

processing apparatus. Alternatively or in addition, the program instructions can be

encoded on a propagated signal that is an artificially generated signal, e.g., a

machine-generated electrical, optical, or electromagnetic signal, that is generated to

encode information for transmission to suitable receiver apparatus for execution by a data

processing apparatus. The computer storage medium can be a machine-readable storage

device, a machine-readable storage substrate, a random or serial access memory device,

or a combination of one or more of them.

46

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

The term “data processing apparatus” encompasses all kinds of apparatus, devices,

and machines for processing data, including by way of example a programmable

processor, a computer, or multiple processors or computers. The apparatus can include

special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an

ASIC (application specific integrated circuit). The apparatus can also include, in addition

to hardware, code that creates an execution environment for the computer program in

question, e.g., code that constitutes processor firmware, a protocol stack, a database

management system, an operating system, or a combination of one or more of them.

A computer program (also known as a program, software, software application,

script, or code) can be written in any form of programming language, including compiled

or interpreted languages, or declarative or procedural languages, and it can be deployed in

any form, including as a stand alone program or as a module, component, subroutine, or

other unit suitable for use in a computing environment. A computer program may, but

need not, correspond to a file in a file system. A program can be stored in a portion of a

file that holds other programs or data (e.g., one or more scripts stored in a markup

language document), in a single file dedicated to the program in question, or in multiple

coordinated files (e.g., files that store one or more modules, sub programs, or portions of

code). A computer program can be deployed to be executed on one computer or on

multiple computers that are located at one site or distributed across multiple sites and

interconnected by a communication network.

The processes and logic flows described in this specification can be performed by

one or more programmable processors executing one or more computer programs to

perform functions by operating on input data and generating output. The processes and

logic flows can also be performed by, and apparatus can also be implemented as, special

purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC

(application specific integrated circuit).

Processors suitable for the execution of a computer program include, by way of

example, both general and special purpose microprocessors, and any one or more

processors of any kind of digital computer. Generally, a processor will receive

instructions and data from a read only memory or a random access memory or both. The

essential elements of a computer are a processor for performing or executing instructions

and one or more memory devices for storing instructions and data. Generally, a computer

will also include, or be operatively coupled to receive data from or transfer data to, or

both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical

47

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

disks, or optical disks. However, a computer need not have such devices. Moreover, a

computer can be embedded in another device, e.g., a mobile telephone, a personal digital

assistant (PDA), a mobile audio or video player, a game console, a Global Positioning

System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB)

flash drive), to name just a few.

Computer readable media suitable for storing computer program instructions and

data include all forms of nonvolatile memory, media and memory devices, including by

way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash

memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto

optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can

be supplemented by, or incorporated in, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the subject matter

described in this specification can be implemented on a computer having a display device,

e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying

information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball,

by which the user can provide input to the computer. Other kinds of devices can be used

to provide for interaction with a user as well; for example, feedback provided to the user

can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile

feedback; and input from the user can be received in any form, including acoustic,

speech, or tactile input. In addition, a computer can interact with a user by sending

documents to and receiving documents from a device that is used by the user; for

example, by sending web pages to a web browser on a user’s user device in response to

requests received from the web browser.

Embodiments of the subject matter described in this specification can be

implemented in a computing system that includes a back end component, e.g., as a data

server, or that includes a middleware component, e.g., an application server, or that

includes a front end component, e.g., a client computer having a graphical user interface

or a Web browser through which a user can interact with an implementation of the subject

matter described in this specification, or any combination of one or more such back end,

middleware, or front end components. The components of the system can be

interconnected by any form or medium of digital data communication, e.g., a

communication network. Examples of communication networks include a local area

network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.

48

WO 2012/125815 PCT/US2012/029210

5

10

15

20

25

30

The computing system can include clients and servers. A client and server are

generally remote from each other and typically interact through a communication

network. The relationship of client and server arises by virtue of computer programs

running on the respective computers and having a client-server relationship to each other.

While this specification contains many specific implementation details, these

should not be construed as limitations on the scope of any invention or of what may be

claimed, but rather as descriptions of features that may be specific to particular

embodiments of particular inventions. Certain features that are described in this

specification in the context of separate embodiments can also be implemented in

combination in a single embodiment. Conversely, various features that are described in

the context of a single embodiment can also be implemented in multiple embodiments

separately or in any suitable subcombination. Moreover, although features may be

described above as acting in certain combinations and even initially claimed as such, one

or more features from a claimed combination can in some cases be excised from the

combination, and the claimed combination may be directed to a subcombination or

variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this

should not be understood as requiring that such operations be performed in the particular

order shown or in sequential order, or that all illustrated operations be performed, to

achieve desirable results. In certain circumstances, multitasking and parallel processing

may be advantageous. Moreover, the separation of various system components in the

embodiments described above should not be understood as requiring such separation in

all embodiments, and it should be understood that the described program components and

systems can generally be integrated together in a single software product or packaged into

multiple software products.

Particular embodiments of the subject matter have been described. Other

embodiments are within the scope of the following claims. For example, the actions

recited in the claims can be performed in a different order and still achieve desirable

results. As one example, the processes depicted in the accompanying figures do not

necessarily require the particular order shown, or sequential order, to achieve desirable

results. In certain implementations, multitasking and parallel processing may be

advantageous.

49

20
12

22
91

10

13
 Se

p 2
01

3 Throughout this specification and the claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be

understood to imply the inclusion of a stated integer or step or group of integers or steps but

not the exclusion of any other integer or step or group of integers or steps.

5 The reference to any prior art in this specification is not, and should not be taken as,

an acknowledgement or any form of suggestion that the prior art forms part of the common

general knowledge in Australia.

50

20
12

22
91

10

13
 Se

p 2
01

3

CLAIMS
What is claimed is:

5 l.A computer-implemented method, comprising:

receiving a configuration specification for configuring a cloud-based deployment, the

configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

.0 configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

causing the plurality of API calls to be executed to configure the cloud-based

.5 deployment;

identifying, based on the respective class definitions of the one or more classes, a

plurality of data and functional components modeled by the one or more classes, and one or

more dependency and connectivity relationships existing among the plurality of data or

functional components;

i0 deriving a block diagram of a cloud-based environment based on the identified

plurality of data and functional components and the identified dependency and connectivity

relationships; and

representing trigger events for dynamic reconfiguration of the cloud-based

environment in the block diagram.

25

2. The computer-implemented method of claim 1, wherein:

the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

30 and

the customized class modifies a value of at least one of the class parameters inherited

from the existing base class or includes at least one new class parameter not present in the

existing base class.

51

20
12

22
91

10

13
 Se

p 2
01

3

3. The computer-implemented method of claim 1, wherein:

the data or functional component modeled by each class is one of a virtual device

supporting a cloud-based environment, a service utilized in the cloud-based environment, a

5 software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

environment, or a combination of one or more thereof.

4. The computer-implemented method of claim 1, wherein:

.0 the specification language supports at least one of dependency between class

definitions and connectivity between class definitions, where a definition dependency

between a first class and a second class represents a deployment dependency between

respective components modeled by the first and the second class, and where a value

assignment linking an instance of a second class to a class parameter of a first class represents

.5 a connectivity between respective components modeled by the first class and the second

class.

5. A computer-implemented method, comprising:

receiving a configuration specification for configuring a cloud-based deployment, the

!0 configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

25 deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

causing the plurality of API calls to be executed to configure the cloud-based

deployment;

identifying a plurality of cloud-based deployments each having been carried out

30 according to a respective configuration specification written in the specification language;

identifying at least one base class whose class definition is used in multiple of the

plurality of cloud-based deployments;

monitoring respective performance of each of the multiple of the plurality of cloud

based deployments; and

52

20
12

22
91

10

13
 Se

p 2
01

3 calculating a quality metric of the at least one base class based on aggregated

performance of the multiple of the plurality of cloud-based deployments.

6. The computer-implemented method of claim 5, wherein:

5 the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

and

the customized class modifies a value of at least one of the class parameters inherited

.0 from the existing base class or includes at least one new class parameter not present in the

existing base class.

7. The computer-implemented method of claim 5, wherein:

the data or functional component modeled by each class is one of a virtual device

.5 supporting a cloud-based environment, a service utilized in the cloud-based environment, a

software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

environment, or a combination of one or more thereof.

!0 8. The computer-implemented method of claim 5, wherein:

the specification language supports at least one of dependency between class

definitions and connectivity between class definitions, and where a definition dependency

between a first class and a second class represents a deployment dependency between

respective components modeled by the first and the second class, and where a value

25 assignment linking an instance of a second class to a class parameter of a first class represents

a connectivity between respective components modeled by the first class and the second

class.

9. A computer-implemented method, comprising:

30 receiving a configuration specification for configuring a cloud-based deployment, the

configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

53

20
12

22
91

10

13
 Se

p 2
01

3 configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

5 causing the plurality of API calls to be executed to configure the cloud-based

deployment;

storing respective class definitions of a plurality of core classes of the specification

language, each core class corresponding to a modular component of a cloud-based

environment, each core class being extendable with additional class parameters to configure

.0 the respective modular component;

storing a mapping between each of the core classes and a respective group of API

calls, the respective group of API calls for configuring the modular component associated

with the core class according to the class parameters of the core class; and

storing a plurality of protocols for modifying the respective groups of API calls

.5 associated with each core class to obtain a new group of API calls for a new class definition

derived from the core class.

10. The method of claim 9, wherein deriving the plurality of API calls for configuring the

cloud-based deployment further comprises:

!0 deriving the plurality of API calls based on the respective groups of API calls

associated with one or more of the plurality of core classes from which the one or more

classes of the configuration specification are derived, and based on the plurality of protocols

for modifying the respective groups of API calls.

25 11. The method of claim 9, wherein:

the plurality of protocols further includes rules for imposing an ordering of the groups

of API calls according to dependency and connectivity relationships specified in class

definitions written according to the specification language.

30 12. The computer-implemented method of claim 9, wherein:

the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

and the

54

20
12

22
91

10

13
 Se

p 2
01

3 customized class modifies a value of at least one of the class parameters inherited

from the existing base class or includes at least one new class parameter not present in the

existing base class.

5 13. The computer-implemented method of claim 9, wherein:

the data or functional component modeled by each class is one of a virtual device

supporting a cloud-based environment, a service utilized in the cloud-based environment, a

software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

.0 environment, or a combination of one or more thereof.

14. The computer-implemented method of claim 9, wherein:

the specification language supports dependency between class definitions, and a

definition dependency between a first class and a second class represents a deployment

.5 dependency between respective components modeled by the first and the second class.

15. The computer-implemented method of claim 9, wherein:

the specification language supports connectivity between class definitions, and a

value assignment linking an instance of a second class to a class parameter of a first class

10 represents a connectivity between respective components modeled by the first class and the

second class.

16. A non-transitory computer-readable medium having instructions stored thereon, the

instructions, when executed by one or more processors, cause the processors to perform

25 operations comprising:

receiving a configuration specification for configuring a cloud-based deployment, the

configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

30 configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

55

20
12

22
91

10

13
 Se

p 2
01

3 causing the plurality of API calls to be executed to configure the cloud-based

deployment;

storing respective class definitions of a plurality of core classes of the specification

language, each core class corresponding to a modular component of a cloud-based

5 environment, each core class being extendable with additional class parameters to configure

the respective modular component;

storing a mapping between each of the core classes and a respective group of API

calls, the respective group of API calls for configuring the modular component associated

with the core class according to the class parameters of the core class; and

.0 storing a plurality of protocols for modifying the respective groups of API calls

associated with each core class to obtain a new group of API calls for a new class definition

derived from the core class.

17. The computer-readable medium of claim 16, wherein:

.5 the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

and

the customized class modifies a value of at least one of the class parameters inherited

10 from the existing base class or includes at least one new class parameter not present in the

existing base class.

18. The computer-readable medium of claim 16, wherein:

the data or functional component modeled by each class is one of a virtual device

25 supporting a cloud-based environment, a service utilized in the cloud-based environment, a

software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

environment, or a combination of one or more thereof.

30 19. The computer-readable medium of claim 16, wherein:

the specification language supports dependency between class definitions, and a

definition dependency between a first class and a second class represents a deployment

dependency between respective components modeled by the first and the second class.

56

20
12

22
91

10

13
 Se

p 2
01

3

20. The computer-readable medium of claim 16, wherein:

the specification language supports connectivity between class definitions, and a

value assignment linking an instance of a second class to a class parameter of a first class

5 represents a connectivity between respective components modeled by the first class and the

second class.

21. The computer-readable medium of claim 16, wherein deriving the plurality of API calls

for configuring the cloud-based deployment further comprises:

.0 deriving the plurality of API calls based on the respective groups of API calls

associated with one or more of the plurality of core classes from which the one or more

classes of the configuration specification are derived, and based on the plurality of protocols

for modifying the respective groups of API calls.

.5 22. The computer-readable medium of claim 16, wherein:

the plurality of protocols further includes rules for imposing an ordering of the groups

of API calls according to dependency and connectivity relationships specified in class

definitions written according to the specification language.

!0 23. A system, comprising:

one or more processors; and

memory having instructions stored thereon, the instructions, when executed by the

one or more processors, cause the processors to perform operations comprising:

receiving a configuration specification for configuring a cloud-based deployment, the

25 configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

30 deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

causing the plurality of API calls to be executed to configure the cloud-based

deployment;

57

20
12

22
91

10

13
 Se

p 2
01

3 identifying, based on the respective class definitions of the one or more classes, a

plurality of data and functional components modeled by the one or more classes, and one or

more dependency and connectivity relationships existing among the plurality of data or

functional components, deriving a block diagram of a cloud-based environment based on the

5 identified plurality of data and functional components and the identified dependency and

connectivity relationships; and

representing trigger events for dynamic reconfiguration of the cloud-based

environment in the block diagram.

.0 24. The system of claim 23, wherein:

the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

and

.5 the customized class modifies a value of at least one of the class parameters inherited

from the existing base class or includes at least one new class parameter not present in the

existing base class.

25. The system of claim 23, wherein:

!0 the data or functional component modeled by each class is one of a virtual device

supporting a cloud-based environment, a service utilized in the cloud-based environment, a

software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

environment, or a combination of one or more thereof.

25

26. The system of claim 23, wherein:

the specification language supports at least one of dependency between class

definitions and connectivity between class definitions, and where a definition dependency

between a first class and a second class represents a deployment dependency between

30 respective components modeled by the first and the second class, and where a value

assignment linking an instance of a second class to a class parameter of a first class represents

a connectivity between respective components modeled by the first class and the second

class.

58

20
12

22
91

10

13
 Se

p 2
01

3

27. A system, comprising:

one or more processors; and memory having instructions stored thereon, the

instructions, when executed by the one or more processors, cause the processors to perform

5 operations comprising:

receiving a configuration specification for configuring a cloud-based deployment, the

configuration specification being written in a specification language and requiring

instantiation of respective class definitions of one or more classes, each class modeling a

respective data or functional component of the cloud-based deployment using a group of

.0 configurable class parameters, and the respective class definition of each class representing a

requested state of the data or functional component modeled by the class;

deriving a plurality of application programming interface (API) calls for configuring

the cloud-based deployment based on the class definitions of the one or more classes;

causing the plurality of API calls to be executed to configure the cloud-based

.5 deployment;

identifying a plurality of cloud-based deployments each having been carried out

according to a respective configuration specification written in the specification language;

identifying at least one base class whose class definition is used in multiple of the

plurality of cloud-based deployments;

!0 monitoring respective performance of each of the multiple of the plurality of cloud

based deployments; and

calculating a quality metric of the at least one base class based on aggregated

performance of the multiple of the plurality of cloud-based deployments.

25 28. The system of claim 27, wherein:

the one or more classes include at least an existing base class and at least a

customized class extended from the existing base class,

the customized class inherits respective class parameters of the existing base class,

and

30 the customized class modifies a value of at least one of the class parameters inherited

from the existing base class or includes at least one new class parameter not present in the

existing base class.

29. The system of claim 27, wherein:

59

20
12

22
91

10

13
 Se

p 2
01

3 the data or functional component modeled by each class is one of a virtual device

supporting a cloud-based environment, a service utilized in the cloud-based environment, a

software role performed by an installed application in the cloud-based environment, a data

package holding data to be used during deployment or operation of the cloud-based

5 environment, or a combination of one or more thereof.

30. The system of claim 27, wherein:

the specification language supports at least one of dependency between class

definitions and connectivity between class definitions, and where a definition dependency

.0 between a first class and a second class represents a deployment dependency between

respective components modeled by the first and the second class, and where a value

assignment linking an instance of a second class to a class parameter of a first class represents

a connectivity between respective components modeled by the first class and the second

class.

60

WO 2012/125815 PCT/US2012/029210

1 / 16

φ φα>
> φ5

2 cm
φ 05 1
co

ω

ω
φ
φ
φ
-Q

> -2
φ
ο

φ
ω

Φ
§- -ΟΙ

■> °Ο
φ ο

φ
GO

> φ
Q

φ ω Φ
ο g α>| ω
S 2 S >
φ φ i—I φ
ωδ co

WO 2012/125815 PCT/US2012/029210

2/16

<cloud-config>
<cloud-name>plainwebapp</cloud-name>
<alternate-s3-source-dir>plainwebapp-bucketname</alternate-s3-source-dir>
<zone>us-east-1 a</zone>
<machines>

FIG. 2A
(Prior Art)

<gsm-machine>
<name>gsm</name>
<number-of-machines>1</number-of-machines>
<gsm-per-machine>1</gsm-per-machine>
<processing-units>

<processing-unit>
<name>$CPD/PlainWebAppExample.war</name>
<deploy-options/>

</processing-unit>
</processing-units>
<web-app-url>PlainWebAppExample</web-app-url>

</gsm-machine>
<gsc-machine>

<name>gsc</name>
<number-of-machines>2</number-of-machines>
<gsc-per-machine>1</gsc-per-machine>

</gsc-machine>
<load-balancer-machine>

<name>load_balancer</name>
<number-of-machines>1</number-of-machines>

</load-balancer-machine>
</machines>

</cloud-config>

J

FIG.2B

WO 2012/125815 PCT/US2012/029210

3/16

utils = Include/'../lib/utils.pi')

class Params(std.Parameters):
replica_count = 1
serving_domain = 'www.my-domain.com'
ip_array = []

class SimpleHostingPackage(std.DataPackage):

src = 'data'
dst = '/var/www/static'

class SimpleHostingVM(utils.ConfiguratorLAMP):

name = 'webhost'
def replicas(replica_count):

return replica_count
def staticlP(ip_array):

return list(ip array)

class SimpleHostingRole(std.Role):

roleName = 'webhost'
moduleName = 'simplehosting'
dataPackages = [SimpleHostingPackage]
vms = [SimpleHostingVM]
def roleParams(serving_domain):

return {'serving_domain': serving_domain,
'document_root': '/var/www/static'}

class SimpleHostingFirewall(utils.PublicTCPFirewall):

target = SimpleHostingRole
ports = ['80']

class SimpleHostingDeployment(utils.BaseDeployment):

roles = [SimpleHostingRole]
firewalls = [SimpleHostingFirewall]

Makelnstance(SimpleHostingDeployment) 314 FIG. 3A

WO 2012/125815 PCT/US2012/029210

4/16

N—» ra
o Eo o*“1 Ό
o' 1
o CD
Ό C

C
’fc

'ra Φ
ω

N—»
o

E
o Έ

o
I

Ό I 'ra CD
1

CD
c

E
o

O
Ό

■fc Ό
1 N—»o

> Φ
ω

CD
C g

Ό II I
C ω > CDΦ -1—' c

Ε
ra

to
E

φ
JZ>

O p
ο ra ra

CL ra
Φ Q.

II
ω
E

o Φ1

M—
Φ g

> Ό

Q E 1
ra φ
ra 2

Q.
σ

■φ
Q.

TD O
-1

tn
>>

1
σ tn
>>

II E^ σ tn

o o
φ
Q.
E
raX

σ tn >>
E

T3
Q.

1
σ tn >>

N—» c
E

II
N—»
_c
'rx

Φ
_φ

II E Q.IΞ3

H
II
c φ

Ό
II
φ

-J
C
Ξ3

o

II
Φ
Ό

II
Q.

'ra
E
o

N—»
to
II

O M— ra N—»
E
ra
c

O
E

1

II
_Q
CDIO 1 Ό ra Ό Ό

C
1

Ό
C

1
CD

o
o

Ό
_l

Q.
_l

Q.
_l

1
Φ
N
'to

I
Φ Φ c

| σ σ σ
CD c > Q tn tn tn
C g Φ o >> >> >> 1

Ό'tn M— tn E E E Q_

"O
Q. Ο

Ι

< o cr
to—I Φ >>

o Μ-»
Q.
ω E

Π5 z c

□ (Λ
o Q Φ

o
_ω

2

ω
(Λ ϊ-
Φ

Q.

ΈΓ
Ε
ra
c

Ο
ι 2 ■σΜ-*

Ό
Q.

I1
Ό
C
Φ N—»

>
Φ
(Λ
ra

σ tn
42-
Q
CL

__ I
σ tn
>>

c _Q >> Ε
o

M—
raM-*
ra

E
II

σ
(Λ
>

αΓ
Εc

N—»
Q
tn Φ tn

ra
C

Φ (Λ
ra CD

C
(Λ
ra

Μ—
φ
Ό

υ υ

λ £Ώ
C CO

Ν—»
Φ Ο

WO 2012/125815 PCT/US2012/029210

5/16

utils = lnclude('../lib/utils.pi')
lamp = Include('lamp.pi')

class Params(lamp.Params):

doc_root = '/var/www/mantis'
fs~344

class MantisPackage(std.DataPackage):

src = 'mantis'
dst = '/usr/data/mantis'

class MantisFrontendRole(lamp.FrontendRole):

roleName = 'mantis frontend'
moduleName = 'mantis'
dataPackages = [MantisPackage]
def roleParamsQ:

role_params = Get().copy()
db_host = std.GetHostnames(MantisDatabaseRole)[0]
role_params.update({'db_host_name': db_host})
return role_params

class MantisDatabaseRole(lamp.DatabaseRole):

roleName = 'mantis_backend'
moduleName = 'mantis'
def roleParams():

role_params = Get().copy()
frontend_host = std.GetHostnames(MantisFrontendRole)[0]
role_params.update({'frontend_hostname': frontend_host})
return role_params

class MantisFirewall(lamp.HttpFirewall):

target = MantisFrontendRole

class MantisDeployment(utils.BaseDeployment):

roles = [MantisFrontendRole, MantisDatabaseRole]
firewalls = [MantisFirewall]

Makelnstance(MantisDeployment)^.

FIG. 3C
356

WO 2012/125815 PCT/US2012/029210

6/16

WO 2012/125815 PCT/US2012/029210

7/16

ω
Q1 ■
c oi
ω CXI
To col
ω
ω

CL /

LO

ω

WO 2012/125815 PCT/US2012/029210

8/16

600y

700y FIG. 6

FIG. 7

WO 2012/125815 PCT/US2012/029210

9/16

800~)

FIG. 8

WO 2012/125815 PCT/US2012/029210

10/16

FIG. 9

WO 2012/125815 PCT/US2012/029210

11 / 16

1000

FIG. 10

WO 2012/125815 PCT/US2012/029210

12/16

FIG. 12

WO 2012/125815 PCT/US2012/029210

13/16

FIG. 13

FIG. 14

WO 2012/125815 PCT/US2012/029210

14/16

1500~)

1600-) FIG. 15

FIG. 16

WO 2012/125815 PCT/US2012/029210

15/16

170X

FIG. 17

FIG. 18

WO 2012/125815 PCT/US2012/029210

16/16

FIG. 19

FIG. 20

